Journal of Artificial Intelligence Research 81 (2024) 741-769 Submitted 10/2023; published 11/2024

QCDCL vs QBF Resolution: Further Insights

Benjamin Bohm BENJAMIN.BOEHM@QUNI-JENA.DE
Olaf Beyersdorfft OLAF.BEYERSDORFFQUNI-JENA.DE
Friedrich Schiller University Jena, Germany

Abstract

We continue the investigation on the relations of QCDCL and QBF resolution
systems. In particular, we introduce QCDCL versions that tightly characterise QU-
Resolution and (a slight variant of) long-distance Q-Resolution. We show that most
QCDCL variants — parameterised by different policies for decisions, unit propagations
and reductions — lead to incomparable systems for almost all choices of these policies.

1. Introduction

SAT solving has revolutionised the way we practically handle computationally complex
problems (Vardi, 2014) and emerged as a central tool for numerous applications (Biere
et al., 2021). Modern SAT solving crucially relies on the paradigm of conflict-driven
clause learning (CDCL) (Marques Silva et al., 2021), on which almost all current SAT
solvers are based.

The main theoretical approach to understanding the success of SAT solving (and
its limits) comes through proof complexity (Buss & Nordstréom, 2021). From seminal
results (Beame et al., 2004; Pipatsrisawat & Darwiche, 2011; Atserias et al., 2011) we
know that CDCL — viewed as a non-deterministic procedure — is exactly as powerful as
propositional resolution, which is by far the best-understood propositional proof system
(Krajicek, 2019; Buss & Nordstrom, 2021). However, we also know that practical CDCL
using e.g. VSIDS is exponentially weaker than resolution (Vinyals, 2020). Moreover, any
deterministic CDCL algorithm will be strictly weaker than resolution unless P = NP
(Atserias & Miiller, 2019). In any case, the mentioned results of (Beame et al., 2004;
Pipatsrisawat & Darwiche, 2011; Atserias et al., 2011) imply that all formulas hard
for resolution will be intractable for modern CDCL solvers (at least when disabling
preprocessing).

Solving of quantified Boolean formulas (QBF) extends the success of SAT solving
to the presumably computationally harder case of deciding QBFs, a PSPACE-complete
problem. While QBF solving utilises quite different algorithmic approaches (Beyers-
dorff et al., 2021), which build on different proof systems, one of the central paradigms
again rests on CDCL, lifted to QBFs in form of QCDCL (Zhang & Malik, 2002). In
comparison to the propositional case, the main changes are (i) different decision strate-
gies using information from the prefix, (ii) differently implemented unit propagation
incorporating universal reductions (i.e., dropping trailing universal variables in clauses),
and (iii) adapted methods for learning clauses using a QBF resolution system called
long-distance Q-Resolution (Balabanov & Jiang, 2012).

The advances in QBF solving have also stimulated growing research in QBF proof
complexity (Beyersdorff et al., 2023; Beyersdorff, 2022; Beyersdorff et al., 2020). As
in the propositional case, QBF resolution systems have received great attention. How-
ever, in QBF there are a number of conceptually different resolution systems of varying

(©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

BOHM & BEYERSDORFF

strength (Beyersdorff et al., 2019; Balabanov et al., 2014; Beyersdorff et al., 2021).
The core system is Q-Resolution, introduced in 1995 in (Kleine Biining et al., 1995).
This system generalises propositional resolution to QBF by using the resolution rule for
existential pivots and handling universal variables by universal reduction. A stronger
calculus QU-Resolution (Van Gelder, 2012) also allows universal pivots in resolution
steps (and this is perhaps the most natural QBF resolution system from a logical per-
spective (Beyersdorff et al., 2018, 2023)). Yet another generalisation is provided in
the form of long-distance Q-Resolution (Balabanov & Jiang, 2012) which allows certain
merging steps forbidden in Q-Resolution. Similarly to the simulation of CDCL by res-
olution, QCDCL traces can be efficiently transformed into long-distance Q-Resolution
proofs and this was in fact the reason for creating that proof system.

A recent line of research has aimed at understanding the precise relationship between
QCDCL and QBF resolution (Janota, 2016; Beyersdorff & Bohm, 2021; Béhm et al.,
2022a, 2022b; Bohm & Beyersdorff, 2021). The findings so far reveal both similarities
to the tight relation between CDCL and resolution in SAT as well as crucial differences.
While the first work (Janota, 2016) on this topic showed that practical (deterministic)
QCDCL is exponentially weaker than Q-Resolution, the paper (Beyersdorff & Béhm,
2021) demonstrated that QCDCL — even in its non-deterministic version — is incompara-
ble to Q-resolution. This also implies that (non-deterministic) QCDCL is exponentially
weaker than long-distance Q-Resolution. This is in sharp contrast to the equivalence
of SAT and resolution in the propositional case (Beame et al., 2004; Pipatsrisawat &
Darwiche, 2011; Atserias et al., 2011), as explained above.

These results were strengthened in (Bohm & Beyersdorff, 2021) by developing a
lower-bound technique for QCDCL via a new notion of gauge, by which a number of
lower bounds for QCDCL can be demonstrated (which not necessarily hinge on any
QBF resolution hardness). Further, (Bohm et al., 2022a, 2022b) showed that several
QCDCL variants, utilising e.g. cube learning, pure-literal elimination, and different de-
cision strategies give rise to proof systems of different strength.

1.1 Our Contributions

In this paper we continue this recent line of research to try to understand to precisely
determine the relationship of QCDCL variants and different QBF resolution systems.
The central quest of our research here is to find different QCDCL variants that are
as strong as QU-Resolution and long-distance Q-Resolution. While we do not claim
that these new algorithms are of immediate practical interest, we believe it is important
to theoretically gauge the full potential of QCDCL. Our results can be summarised as
follows.

(a) New QCDCL Versions. We realise that there are at least three crucial QCDCL
components that determine the strength of the algorithm. These are (i) whether deci-
sions are made according to the prefix or not (decision policies LEV-ORD or ANY-ORD),
(ii) whether unit propagation always or never includes universal reduction (reduction
policies ALL-RED, NO-RED) or whether this can be freely chosen at each propagation
(ANY-RED), and (iii) whether unit propagation can propagate only existential variables
(as in practical QCDCL, propagation policy EXI-PROP) or whether also universal vari-
ables can be propagated (ALL-PROP).

While some of these policies were already defined and investigated in earlier works
(Beyersdorff & Bohm, 2021; Béhm et al., 2022a, 2022b), the policies ANY-RED and

742

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

ALL-PROP are considered here for the first time. We note that a solver implementing
the strategy ALL-PROP together with LEV-ORD and NO-RED was recently presented in
(Slivovsky, 2022) (in fact this motivated our definition of the policies EXI-PROP and
ALL-PROP). We demonstrate that in principle, all the aforementioned policies can be
combined to yield sound and complete QCDCL algorithms (Proposition 3.9). We denote
these as e.g. QCDCkaX:SE& Exi-Prop (this combination models standard QCDCL).

(b) Characterisation of QBF Proof Systems. In our main result we tightly char-

acterise the proof systems QU-Resolution by QCDCLQ'SY,}{%E?ALL_PROP as well as (a slight

variant of) long-distance Q-Resolution by QCDCLQHX:SQS,EXFPROP (Proposition 4.10 and
Theorem 5.6). These results are similar in spirit (and proof method) to the charac-
terisation of propositional resolution by CDCL (Pipatsrisawat & Darwiche, 2011) and
Q-Resolution by QC DCLQE&%E?EXI_PROP (Beyersdorff & Bohm, 2021). However, quite some
technical care is needed for the simulations to go through with the modified policies, for
which we use the new notion of a blockade (Definition 5.3).

The mentioned variant of long-distance Q-Resolution — called mLD-Q-Res (for mod-
ified long-distance Q-Resolution, Definition 4.9) — is defined such as to contain exactly
those steps that are needed for clause learning in standard QCDCL. The original def-
inition of long-distance Q-resolution also allows some merging steps that do not occur
in clause learning (those that have merged literals left of the pivot in both clauses).
We leave open whether mLD-Q-Res is indeed weaker or equivalent to long-distance

Q-Resolution (cf. Section 6).

(c) Separations between QCDCL Variants. We clarify the joint simulation order of
QBF resolution and QCDCL systems (cf. Figure 1 for an overview depicting known and
new results). In general, the emerging picture shows that different choices of policies lead
to incomparable systems (and could thus in principle be exploited for gains in practical
solving over currently used QCDCL, cf. (Slivovsky, 2022; Béhm et al., 2022b)).

One set of results that we highlight concerns the new system QCDCLkEN\’('_ORFéB,EXPPROP,
which we show to be strictly stronger than standard QCDCL, yet still weaker than
mLD-Q-Res (and incomparable to Q-Resolution). To show that the system is strictly
stronger than standard QCDCL (= QCDCL!&E\L’_‘SEDD!EXI_PHOP), we exhibit some new family
of QBFs which we show to be hard under the ALL-RED or NO-RED policies, yet tractable

under ANY-RED.

1.2 Organisation

The remainder of this article is organised as follows. We start by reviewing some notions
from QBFs and QBF resolution systems in Section 2. In Section 3 we review the existing
QCDCL models and define our variants. In Section 4 we investigate the simulation order
of the QCDCL proof systems and show various separations. In Section 5 we obtain our
main results, the characterisation of the proof systems QU-Res and mLD-Q-Res. We
conclude in Section 6 with some open questions.

2. Preliminaries

Propositional and Quantified Formulas. Variables x and negated variables = are
called literals. We denote the corresponding variable as var(z) := var(z) := x.

743

BOHM & BEYERSDORFF

/ p-simulation ())
o LDQU™-resolution
p-simulation + L)
% exponential separation I,
. incomparability p T N
long-distance
red new results Q-resolution
\
blue new systems 2
(AnY-O
QCDCLA::-R:SEXI-PROP
3 =mLD-Q-Res |
4 T 6
+5
ANY-ORD (LEv-ORD) 7 QCDCLANY “ORD
QCDCLA™C, o QUDCLE R e [-37 gy einEmmor

9\5\/ 2 w1y

[QCDCL,IZ\ELZ g:s E><| ProP }’_ { QCDCLII:IZ\{-F({)EFEJDEXI-PROP J
14)

[LDQUT-resolution]

- 15
QCDCLANY -ORD]

No-REeD,ALL-PRoOP

[16 =QU-resolution
TN 18

[Q-resolution] [QCDCLE 0L - Prop]

Figure 1: Hasse diagrams of the simulation order of QCDCL proof systems using prop-
agation policies EXI-PROP (above) and ALL-PROP (below) together with corresponding
QBF resolution proof systems. Blue names indicate new systems introduced here. Each
relation is labelled by a number that represents a reference depicted in the table in
Figure 2.

744

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Number | Reference
1 (Balabanov et al., 2014)
2 Definition 4.9
3 Theorem 5.6
4 Proposition 4.10
) Propositions 4.3, 4.5, 4.10
6 Corollary 4.11
7 Proposition 4.5
8 (Beyersdorff & Bohm, 2021)
9 (Beyersdorff & Bohm, 2021)
10 Proposition 4.8
11 (Beyersdorff & Bohm, 2021)
12 Proposition 4.8
13 (Beyersdorff & Bohm, 2021)
14 (Beyersdorff & Bohm, 2021), Proposition 4.6
15 (Balabanov et al., 2014), (Beyersdorff et al., 2018)
16 Theorem 5.6
17 (Van Gelder, 2012)
18 Propositions 4.3, 4.5

Figure 2: References for simulations and separations depicted in Figure 1

A clause is a disjunction of literals, but we will sometimes interpret them as sets of
literals on which we can perform set-theoretic operations. A wunit clause (¢) is a clause
that consists of only one literal. The empty clause consists of zero literals, denoted (L).
We sometimes interpret (L) as a unit clause with the ‘empty literal’ L. A clause C' is
called tautological if {¢,f} = C for some literal £. Alternatively, we will sometimes write
¢* € C instead of {,¢} < C.

A cube is a conjunction of literals and can also be viewed as a set of literals. We
define a unit cube of a literal ¢, denoted by [¢], and the empty cube [T] with ‘empty
literal’ T. A cube D is contradictory if {¢,} < D for some literal £. If C is a clause or
a cube, we define var(C) := {var(¢) : £ € C}. The negation of a clause C =1 v ... v ly,
is the cube =C :=C =01 A ... A by,

A (total) assignment o of a set of variables V' is a non-contradictory set of literals
such that for all z € V' there is some ¢ € o with var(¢) = x. A partial assignment o of
V' is an assignment of a subset W € V. A clause C' is satisfied by an assignment o if
Cno#d. Acube D is falsified by o if =D no # (. A clause C that is not satisfied
by o can be restricted by o, defined as Clo 1= \/ /e g, - Similarly we can restrict a
non-falsified cube D as D|, 1= /\, p\o ¢- Intuitively, an assignment sets all its literals
to true.

If L is a set of literals (e.g., an assignment), we can get the negation of L, which we
define as =L := L := {{| f € L}.

A CNF (conjunctive normal form) is a conjunction of clauses and a DNF' (disjunctive
normal form) is a disjunction of cubes. We restrict a CNF ¢ by an assignment o as
o = /\Ce¢ non-satisfied Clo- Similarly, we restrict a DNF ¢ by an assignment o as
Olo = \/De¢ nonfalsified Do~ For a CNF (DNF) ¢ and an assignment o, if ¢|, = (J, then
¢ is satisfied (falsified) by o.

745

BOHM & BEYERSDORFF

A @BF (quantified Boolean formula) ® = Q - ¢ consists of a propositional formula
¢, called the matriz, and a prefix Q. A prefir Q = Q Vi ... QLV; consists of non-empty
and pairwise disjoint sets of variables Vi,..., Vs and quantifiers Qf,..., Q. € {3,V}
with @) # Q; ., fori € {1,...,s —1}. For a variable x in Q, the quantifier level is
lv(z) := lvg(x) := 4, if x € V;. For lvg(l1) < lve(le) we write {1 <g {2, while /1 <g {2
means {1 < U9 or {1 = {o.

For a QBF ® = Q- ¢ with ¢ a CNF, we call ® a QCNF. We define €(®) := ¢. The
QBF @ is an AQBF (augmented QBF), if ¢ = ¢ v x with CNF ¢ and DNF x. Again
we write €(P) := ¢ and D(P) := x. We will sometimes interpret QCNFs as sets of
clauses and AQBFs as sets of clauses and cubes. If ® is a QCNF or AQBF, we define
var(®) := (Jpeq var(C).

We restrict a QCNF & = Q- ¢ by an assignment o as ®|, := 9|, - ¢|,, where 9|, is
obtained by deleting all variables from O that appear in 0. Analogously, we restrict an
AQBF @ = Q- (¢ v x) as @]y := Qlo - (Yo v X|o)-

(Long-distance) Q-resolution. Let C} and C3 be two clauses. Let £ be an existential
literal with var(¢) ¢ var(Cy) u var(Cs). The resolvent of Cy v £ and Cy v £ over £ is
defined as

l
(Cl Vﬁ)M(CQVK) :201VCQ

Let C := {1 v ... v {y, be a clause from a QCNF or AQBF & such that ¢; <g ¢; for
all i < j, while 4,7 € {1,...,m}. Let k be minimal such that ¢, ..., ¢, are universal.
Then we can perform a universal reduction step and obtain

red$(C) =01 v ... v l_1.

If it is clear that C is a clause, we can just write reds(C) or even red(C), if the
QBF @ is also obvious. We will write red(®) = rede(®), if we reduce all clauses of &
according to its prefix.

We can also perform partial universal reduction. Let K be a non-contradictory set
of literals and let C' :=¥¢1 v ... v £, be a clause from a QCNF ® such that

{lg,....4m} ={leC|le K, {is universal and x <¢ ¢ for all existential x € C'}.

Then we can partially reduce C' by K and obtain
red 5 (C) :==Ll1 v ... v l_1.

Intuitively, we will reduce all reducible literals that are also contained in K.

As before, we simply write redy instead of red\;, i if the context is clear.

As defined by (Kleine Biining et al., 1995), a Q-resolution proof 7 from a QCNF or
AQBF @ of a clause C' is a sequence of clauses m = (C;)I", such that C,, = C and for
each C; one of the following holds:

o Aziom: C; € €(P);

e Resolution: C; = C} > C}, with x existential, j, k < ¢, and C; non-tautological;

e Reduction: C; = red}(C}) for some j < i.

(Balabanov & Jiang, 2012) introduced an extension of Q-resolution proofs to long-

distance Q-resolution proofs by replacing the resolution rule by

746

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

x
e Resolution (long-distance): C; = C;j » Cy with z existential and j,k < i. The
resolvent Cj; is allowed to contain tautologies such as u v @, if u is universal. If
there is such a universal u € var(C;) n var(Cy), then we require <¢ u.

The work (Van Gelder, 2012) presented a further extension for Q-resolution, called
QU-resolution, where we can also resolve over universal literals. Formally, it replaces
the resolution rule by

e Resolution (QU-Res): C; = C; > Cy, with z existential or universal, j, k < i, and
C; non-tautological.

In (Balabanov et al., 2014), long-distance Q-resolution and QU-resolution were com-
bined into a new proof system: long-distance QU™ -resolution. The resolution rule is as
follows:

o Resolution (long-distance QU*t-Res): C; = C} > (' with x existential or universal
and j, k < i. The resolvent C; is allowed to contain tautologies such as u v u, if u
is universal. If there is a such a universal u € var(Cj) n var(C}), then we require
index(z) < index(u), where index() is a fixed total order on the variables of ®
such that index(a1) < index(ay) whenever a; < ag for variables aq, as of ®.

A Q-resolution (resp. long-distance Q-resolution, QU-resolution or long-distance
QU -resolution) proof from ® of the empty clause (L) is called a refutation of ®. In
that case, ® is called false. We will sometimes interpret 7 as a set of clauses.

For the sake of completeness, we note that the above described proof systems are
refutational proof systems that cannot be used to prove the truth of a QBF. For that,
we would need analogously defined proof systems that work on cubes instead of clauses.
For these proof systems, it is common to use the notion consensus instead of resolution,
as well as verification instead of refutation. However, as we will purely concentrate on
false formulas in this paper, we omit defining these aspects in more detail.

A proof system P p-simulates a system (@, if every) proof can be transformed in
polynomial time into a P proof of the same formula. P and @ are p-equivalent (denoted
P =, Q) if they p-simulate each other.

3. Our QCDCL Models

First, we need to formalise QCDCL procedures as proof systems in order to analyse their
complexity. We follow the approach initiated in (Beyersdorff & Boéhm, 2021; Bohm &
Beyersdorff, 2021; Bohm et al., 2022a, 2022b).

We store all relevant information of a QCDCL run in trails. Since QCDCL uses
several runs and potentially also restarts, a QCDCL proof will typically consist of many
trails.

Definition 3.1 (trails). A trail 7 for a QCNF or AQBF ® is a (finite) sequence of
pairwise distinct literals from ®, including the empty literals L and T. Each two literals
in T have to correspond to pairwise distinct variables from ®. In general, a trail has
the form

T = (p(0,1)7 -+ P(0,90)3 d1>p(1,1)7 <o P(1,g1)5 - ;drvp('r,l)v s 7p(r,gr)); (1>

747

BOHM & BEYERSDORFF

where the d; are decision literals and p(; jy are propagated literals. Decision literals are
written in boldface. We use a semicolon before each decision to mark the end of a
decision level. If one of the empty literals L or T is contained in T, then it has to be
the last literal p(,. g,y In this case, we say that T has run into a conflict.

Trails can be interpreted as non-contradictory sets of literals, and therefore as (par-
tial) assignments. We write x <7y if x,y € T and x is left of y in T. Furthermore, we
write x KTy if t <7y orx =1y.

As trails are produced gradually from left to right in an algorithm, we define T i, j]
fori€{0,....r} and j € {0,...,9;} as the subtrail that contains all literals from T up
to (and excluding) p(; jy (resp. di, if j = 0) in the same order. Intuitively, T[i, j] is the
state of the trail before we assigned the literal at the point [i,j] (which is p(;) or d;).
We define T[0,0] as the empty trail.

For each point [i, j| in the trail there must exist a set of literals K ;) which we call
the reductive set at point [i,j]. Intuitively, K(; jy contains all literals that are reduced
directly before the point [i,j]. The sets K; jy depend on the QCDCL variant (i.e., the
reduction policy). Note that these sets are non-empty only if reduction is enabled.

For each propagated literal p(; jy € T there has to be be a clause anter(p(; ;) such
that

TEdK(i,j)(anteT(p(i,j))|T[i,j]) = (P(z’,j)),

or a cube anter(p(; ;) such that

redre,, ;, (anter (P) l17i51) = [Paj)]-

We call such a clause/cube the antecedent clause/cube of p(; j)-

Remark 3.2. In classic QCDCL, all K(; jy are set to var(®) U var(®).
We state some general facts about trails and antecedent clauses/cubes.
Remark 3.3. Let T be a trail, £ € T a propagated literal and A := anter ().

o Ifl is existential, then ¢ € A and for each existential literal x € A with x # ¢ we
need T <y L.

o If { is universal, then £ € A and for each universal literal u € A with v # { we
need u <y £.

Definition 3.4 (natural trails). We call a trail T natural for formula ®, if for each
i €{0,...,r} the formula redk ; , (®|77:01), does not contain unit or empty constraints.
Furthermore, the formula redK(i’j)CI)h-[i,j] must not contain empty constraints for each
ie{l,...,r}, je{l,..., g}, except [i,5] = [r, gr]. Intuitively, this means that decisions
are only made if there are no more propagations on the same decision level possible.
Also, conflicts must be immediately taken care of.

Remark 3.5. Although it is allowed to define all sets K; jy differently, it might make
sense from a practical perspective to weaken these possibilities. We point out three
nuances of partial reduction in QCDCL that are interesting to consider:

(i) We change the reductive set after each propagation or decision step. That means
that all sets K(;j might be different. This is the strongest possible version of
partial reduction.

748

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

(ii)) We only update the reductive set after backtracking. That means the sets K
are constant for each trail. It will turn out that this version is enough for our
characterisation of mLD-Q-Res (c¢f. Theorem 5.6). Consequently, this version is
as strong as version (i).

(i) We never change the reductive set. That means that the sets K; jy remain constant
throughout the whole QCDCL proof. This version is enough for the separation
between systems with and systems without partial reduction (cf. Theorem 4.8).

Definition 3.6 (learnable constraints). Let T be a trail for ® of the form (1) with
D(rg,) € {J-v T}

In the case p(, 4.y = L, we have detected a clause conflict. Starting with the clause
anteT(p(T’gr)) we reversely resolve with the antecedent clauses until we stop at some
point. Literals that were propagated via cubes will be interpreted as decisions.

Analogously, if g,y = T, we have detected a cube conflict. Starting with the cube
anteT(p(wr)) we reversely resolve with the antecedent cubes until we stop at some point.
Literals that were propagated via cubes will be interpreted as decisions.

If a resolution step cannot be performed at some point due to a missing pivot, we
stmply skip that antecedent. The constraint we so derive is a learnable constraint. We
denote the sequence of learnable constraints by £(T).

We can also learn cubes from trails that did not run into conflict. If T is a total
assignment of the variables from ®, then we define the set of learnable constraints as
the set of cubes £(T) := {red%(D)| D < T and D satisfies €(®)}.

Note that only situations in which clauses are falsified or cubes are satisfied will be
referred to as conflicts. In particular, although we can also learn cubes by satisfying all
clauses, this is not considered a conflict.

Generally, we allow to learn an arbitrary constraint. However, for the characterisa-
tions, it suffices to concentrate on clause learning. Additionally, most of the time we will
simply learn the clause which we obtain after propagation over every available literal
in the trail. This clause can only consist of negated decision literals, and literals that
were reduced during unit propagation. Since this is the last clause we can derive during
clause learning in a trail 7, we will refer to that clause as the rightmost clause in L(T).

Definition 3.7 (QCDCL proof systems). Let D € {LEV-ORD, ANY-ORD} a decision pol-
icy, R € {ALL-RED, NO-RED, ANY-RED} a reduction policy and P € { EXI-PROP, ALL-PROP}
a propagation policy (all defined below). A QCDCLBP proof v from a QCNF & = Q- ¢
of a clause or cube C is a (finite) sequence of triples

Li= [(7;3 Ci, ﬂ-i)];llv

where Cp, = C, each T; is a trail for ®; that follows the policies D, R and P, each
C; € £(T;) is one of the constraints we can learn from each trail and 7; is the proof from
O, of C; we obtain by performing the steps described in Definition 3.6, where ®; are
AQBFs that are defined recursively by setting ®1 := Q - (€(P) v) and

B o= Q- ((€(®)) A Cj) v DO(Py)) if C; is a clause,
T Q - (€(®)) v (D(®5) v Cy)) if Cj is a cube,

forj=1,...,m—1. If necessary, we set w; := .
We now explain the three types of policies:

749

BOHM & BEYERSDORFF

e Decision policies:

— LEV-ORD: For each decision d; we have that lug) . (d;) = 1. Le., decisions
are level-ordered.

— ANY-ORD: Decisions can be made arbitrarily in any order.
e Reduction policies:

— ALL-RED: All K(; jy are set to var(®) v var(®). This is the classic setting —
we have to reduce all reducible literals during unit propagation.

— NO-RED: All K(; ;) are set to J. We are not allowed to reduce during unit
propagation at all. There is one exception: Combined with ALL-PROP, we
are allowed (but not forced) to reduce universal unit clauses (existential unit
cubes) and immediately obtain a conflict. This is due to reasons of complete-
ness which will be explained later.

— ANY-RED: The sets K(; ;) can be set arbitrarily. Hence, we can choose after
each propagation or decisions step which literals are to be reduced next.

e Propagation policies:

— EXI-PROP: Unit clauses can only propagate existential literals. Universal unit
clauses will be reduced to the empty clause if allowed by the reduction policy.
Analogously, unit cubes can only propagate universal literals. Existential unit
cubes will be reduced to the empty cube if allowed by the reduction policy.

— ALL-PROP: Universal unit clauses will lead to the propagation of the universal
unit literal. Analogously, existential unit cubes will lead to the propagation of
the existential unit literal.

This policy is nullified if combined with ALL-RED. If combined with NO-RED,
we are allowed to reduce universal unit clauses and existential unit cubes
instead of doing a unit propagation. This is due to reasons of completeness.

Having defined all policies, we can now denote trails that follow the policies D, R
and P as QCDCLRP trails.

We require that T1 is a natural QCDCLBP trail and for each 2 < i < m there is
a point [a;, b;] such that Ti|a;, bi] = Ti-1[ai,b;] and T\Ti[a;, b;] has to be a natural
QCDCLRP trail for ®;| 714, p,1- This process is called backtracking. If Ti—1[ai, bi] = &,
then this is also called a restart.

IfC = Cy,, = (1), then v is called a QCDCLRP refutation of ®. If C = C,, = [T],
then ¢ is called a QCDCLBP verification of ®. The proof ends once we have learned (L)
or [T].

If C is a clause, we can stick together the long-distance Q-resolution derivations
from {m1,...,mn} and obtain a long-distance Q-resolution proof from ® of C, which we
call R(1).

The size of v is defined as |¢| := >/~ |Ti|. Obviously, we have |R(¢)| € O(|¢|).

Remark 3.8. In contrast to earlier works, we allow (but not force) a QCDCL solver
that uses NO-RED together with ALL-PROP to reduce universal unit clauses to the empty
clause instead of using them for unit propagation. The following example will explain
this tweak:

750

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Consider the QBF Yu - (u) and assume, we would not be allowed to reduce universal
unit clauses. Then we would need to propagate u as this is the only action available.
We will not obtain a conflict and therefore learn the cube [u]. After backtracking, we
must first propagate u via [u], followed by a conflict on (u), which allows us to learn the
empty clause.

However, if we would have first propagated u via (u), we would have got a cube
conflict on [u], from which we would not be able to learn something new. This might
lead to unwanted loops, which should be avoided.

Additionally, this tweak ensures the completeness of the corresponding model on false
formulas without the necessity to perform cube learning, which would be otherwise a very
unnatural property.

We can show that all combinations of the above policies lead to sound and complete
proof systems (and algorithms).

Proposition 3.9. All defined QCDCL variants are sound and complete.

Proof. 1t suffices to show completeness for the weakest combinations. Hence, we can
use LEV-ORD and choose between ALL-RED and NO-RED, as both are subsumed by
ANY-RED. For EXI-PROP, completeness was already shown in (Beyersdorff & Bohm,
2021). For ALL-PROP, we distinguish two cases:

(i) ALL-RED: Then we will never propagate universal literals via clauses, as they
will always be directly reduced to the empty clause. Analogously, we will never
propagate existential literals via cubes, as they will always be directly reduced
to the empty cube. Hence, this system is the same as if we would have chosen
EXI-PROP.

(ii) NO-RED: As described in Remark 3.8, we are not forced to do universal propaga-
tions via clauses or existential propagations via cubes. Therefore, the version with
EXI-PROP is already simulated by this combination system.

The soundness follows from the soundness of long-distance QU™ -resolution (resp.
long-distance QU*-consensus) proofs, which can be extracted from all QCDCL variants
defined here. O

While all 2 x 3 x2 = 12 combinations of policies are sound and complete, we point out
that we will not consider all of them. On the one hand, combining the policies ALL-RED
and ALL-PROP leads to two QCDCL variants that collapse to the respective versions with
EXI-PROP. This is because ALL-RED prevents ALL-PROP from enabling propagations of
universal literals via clauses and existential literals via cubes as universal unit clauses
and existential unit cubes would be immediately reduced to empty constraints.

On the other hand, we also omit two further combinations using ALL-PROP, namely
QCDCLQNZSE&ALL_PROP and QCDCLkIIE\I\\/(_—%Eg,ALL—PROP since our simulation method does not
work for systems with ANY-RED and ALL-PROP. In particular, the proof of Lemma 5.5 be-
low, which is crucial for showing the characterizations, requires that ANY-RED is not com-
bined with ALL-PROP due to some technicalities. We conjecture that the QCDCL variant
QCDCLQE&SES’ ALL-Prop INight characterise a proof system such as LDQU*-resolution, but
we would need a completely different approach.

That said, we consider all remaining eight variants that are included in Figure 1. In
particular, we analyse all possible variants with the EXI-PROP policy, which is also the

standard policy in practical QCDCL.

751

BOHM & BEYERSDORFF

4. The Simulation Order of QCDCL Proof Systems

While the policies ALL-RED and NO-RED were already introduced in previous work (Bey-
ersdorff & Bohm, 2021), in which an incomparability between these two models was
shown, it is natural to analyse their relation to our new policy ANY-RED. Obviously,
ANY-RED covers (hence: simulates) both ALL-RED an NO-RED, as we can simply choose
to reduce everything or nothing. We want to prove now that both ALL-RED and NO-RED
are exponentially worse than ANY-RED on some family of QBFs. I.e., we want to show
that there exist formulas where we need to reduce some but not all literals during unit
propagation.

These formulas will be hand-crafted, consisting of two already well-known QCNFs,
named MirrorCR,, which is a modified version of the Completion Principle (Janota &
Marques-Silva, 2015), and QParity,, (Beyersdorff et al., 2019).

Definition 4.1 ((Bohm et al., 2022a)). The QCNF MirrorCR,, consists of the prefix
IXVuIT,

where X := {T(11),- -, T(nn)} and T :={ay,...,an,b1,...,bn}, and the matriz
T(ig) VUV aQ c:nv...v@n x(iyj)vﬂv@ ai Vv ...V ay
Tajyvavby biv...vb, Zgjyvuvby biv...vb, forije{l,...,n}.

The reason why we use MirrorCR,, instead of CR,, is because its matrix is unsatisfiable.
That means that cube learning, which might have a positive effect on CR,, (note that
there are false QCNFs that become easy with cube learning (Bohm et al., 2022a)) is
now completely unavailable. Additionally, we can now guarantee to always get a conflict
once all variables from MirrorCR,, got assigned.

Lemma 4.2 ((Bohm et al., 2022a)). The matriz €(MirrorCR,) of MirrorCR,, is unsat-
isfiable as a propositional formula.

As MirrorCR,, is simply an extension of the Completion Principle (CR,), which is
known to be easy for Q-resolution (Janota & Marques-Silva, 2015), we can simply reuse
the exact same refutation from (Janota & Marques-Silva, 2015). Note that we do not
need all axiom clauses to refute the formula.

Proposition 4.3 ((Bohm et al., 2022a)). The QBFs MirrorCR,, have polynomial-size
Q-resolution refutations.

Definition 4.4 ((Beyersdorff et al., 2019)). The QCNF QParity, (Y, w,S) consists of
the prefix Y VwaS, where Y := {y1,...,yn} and S := {sa,...,s,}, and the matriz
Y1VY2VS2 Y1VY2VvS2 Y1VyYavs YrVyVS
YiV &1V S8 YiVSi_1VSs YiVS_1VSs UVS8_1Vvs forie {2,... ,n},
Sp VW Sn V.

When introduced in (Béhm et al., 2022a), it was shown that MirrorCR,, is hard for
all QCDCL models with level-ordered decisions considered in (Béhm et al., 2022a). We
generalize this result and show that the lower bound for MirrorCR,, indeed only depends
on the decision policy used and also holds for our new models introduced here.

Proposition 4.5. The QBFs MirrorCR, (X, u,T) need exponential-sized refutations in
all our QCDCL variants with the LEV-ORD policy.

752

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Proof. In (Bohm et al., 2022a), it was shown that MirrorCR,, is hard for the QCDCL
variant QCDCka\L’_'SEg,EW_PROP by proving that the QCDCL model generates so-called
primitive Q-resolution refutations for that formula. This proof is completely indepen-
dent from the applied reduction policy. Hence, one can easily show that the same result
holds for NO-RED and ANY-RED, as well.

It remains to show that the policy ALL-PROP does not affect the hardness. This is
because QCDCL with LEV-ORD will never be able to propagate universal literals for
MirrorCR,.

Assume, for the sake of contradiction, that QCDCL with LEV-ORD propagates a
universal literal v in some trail 7. W.lLo.g. let this be the first trail and the first time
in the trail where this happens. Its antecedent clause antes(v) must contain at least
some T-literal ¢1, otherwise v would have been reduced away during the learning of
anter(v). But then we need #1 € 7 and /1 has to be assigned before v. It could not be
done by decision, otherwise this would contradict the LEV-ORD rule. Therefore ¢; was
propagated and there exists its antecedent clause A; := antes (/7).

Since MirrorCR,, fulfils the so-called XT-property (cf. (Bohm et al., 2022a)), A;
cannot be a unit clause or a clause that consists of X- and T-literals, but no universal
literals. Because the only universal variable of MirrorCR,, will be assigned later, and we
are not allowed to reduce universal literals for the propagation of T-literals, we conclude
that A; cannot contain universal literals must therefore contain another T-literal ¢s.

We can repeat the argument above and find the antecedent clause A := anter(f2),
another T-literal ¢3, another clause A3 and so on. Therefore we would detect an infinite
amount of different T-literals, which is obviously impossible.

Hence we have shown that QCDCL cannot propagate universal literals for MirrorCR,
and each QCDCL variant with ALL-PROP behaves the same as the corresponding version
with EXI-PROP on that formula. O

With the QBFs QParity,, one obtains one direction of the incomparability between
classical QCDCL (here called QCDCLEEV-OR0) and Q-resolution, being easy for

ALL-ReD,ExI-ProP
the former and hard for the latter system.

Theorem 4.6 ((Beyersdorff et al., 2015; Beyersdorff & Bohm, 2021)). The QBFs
QParity,, need exponential-sized Q-resolution and QU-resolution refutations, but admit

polynomial-sized QCDCL%Z_’EE& Ex-Prop Tefutations.

We combine the MirrorCR and QParity formulas into a new one, using auxiliary
variables.

Definition 4.7. The (QBF MiPa,, consists of the prefix VzaXVuldTVpdY VwiSVuvir such
that X, u, T are the variables for MirrorCR,(X,u,T), and Y, w, S are the variables
for QParity, (Y, w, S). The matriz of MiPa,, contains the clauses

ZVvVT, ZVT
Cvpvovr
Cvpvovr

Cvpvovr
Cvpvovr

for C € €(MirrorCR, (X, u,T)),

pv D

sy D }for D e ¢(QParity, (Y, w,S)).

753

BOHM & BEYERSDORFF

We show next that MiPa, needs indeed ANY-RED in order to admit polynomial-
size refutations in QCDCL. The idea is that ALL-RED will always lead to refutations of
MirrorCR,,, and NO-RED will alternatively lead to Q-resolution refutations of QParity,,
which are both of exponential size.

Theorem 4.8. The (QBFs MiPa,,
(i) need exponential-size QCDCL%‘L’:ggg Ex-Prop Tefutations,

(ii) need exponential-size QCDCLk,EO‘ng’ZDEX,_PROP refutations,

(iii) but have polynomial-size QCDCL%ﬁ,‘C_%’Zg} Ex-Prop Tefutations.

Proof. For (i), since the formula has no unit clauses, we have to start by deciding the
variable z. Because z occurs symmetrically in MiPa,,, we can assume that we set z to
true. This always triggers the unit propagation of 7 via the clause zZ v 7. After that, we
are forced to assign the variables from X, U := {u} and T along the quantification order.
Since the matrix of MirrorCR,, is unsatisfiable, and we need to reduce all literals if possi-
ble, we will detect a conflict at the same time as we would get the conflict in MirrorCR,,
itself. The proof we can extract from the trails is essentially a QCDCLkE\L/-SI?DD,EXI-PROP
refutation of MirrorCR,,, except that it additionally contains the variables z, p, v and r
in some polarities. However, this does not change the fact that we can still not resolve
two clauses that contain X-, U-, and T-variables over any X-variable. Therefore, if we
shorten the proof by assigning r to false and z to true, we get a refutation of MirrorCR,,,
in which we never resolve two clauses that contain X-, U-, and T-variables over an X-
variable. This property is called primitive (cf. (Béhm & Beyersdorff, 2021)). Also in
(Bohm & Beyersdorff, 2021), it was shown that primitive Q-resolution refutations of
MirrorCR,, need exponential size.

For (ii), we start in the same way as in (i), but we do not get a conflict once we
assigned all variables of MirrorCR,,. Next, we need to decide p in some polarity, but
nothing will happen for the moment. We then start assigning the variables of QParity,,
along the quantification order. Now we have to distinguish two cases:

Case 1: We get a conflict in QParity,. But then, because of NO-RED, we can only
extract Q-resolution derivations of learned clauses. And if we get enough conflicts in
QParity,,, we can essentially extract a Q-resolution refutation of QParity,,, which has
exponential size.

Case 2: We do not get a conflict in QPartity,. This might happen when the universal
player assigns the variable w the “wrong” way. Then the only unassigned variable is
v. After deciding it in any polarity, we will always get a conflict in MirrorCR,,. If we
find enough conflicts in MirrorCR,, we can essentially extract an exponential-size fully
reduced primitive Q-resolution refutation of MirrorCR,, as in (i).

Note that it is possible to get both kind of conflicts. However, it is only important
with what kind of conflicts we were able to derive the empty clause.

Finally, for (iii), we can construct a polynomial-size QCDCL,L\E,\/('%EB’EX,_PROP proof by
only reducing the literals w and w. After deciding z, propagating 7, assigning all vari-
ables from X, u and T" and deciding p arbitrarily, we can simply copy the polynomial-size
QCDCkaX_’SESEXl_PROP proof of QParity,, (note that ALL-RED only applies to w and w).
At some point, we will derive the clause (p) or (p), which can be reduced to the empty
clause. O

754

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

One of the initial motivations of this paper was to find a way to p-simulate long-
distance Q-resolution refutations of QCNFs by certain variants of QCDCL. However,
it appears that not all resolution steps that are allowed in long-distance Q-resolution
can be recreated with QCDCL proofs. In long-distance Q-resolution proofs that are

extracted from QCDCL, one can easily observe that for each resolution step C é Cs,
at least one parent clause C; has to be an antecedent clause for £ or £ in the corresponding
trail. In particular, there must be a partial assignment 7 and a set of literals K such
that redx (C;|;) becomes unit, i.e. redg(C;|,;) = (€) (resp. (£)). This is not possible if
there are tautologies left of £ in C; that cannot be reduced.

Motivated by this observation, we introduce a new proof system similar to long-
distance Q-resolution, but with the restriction that such a situation as described above
is not allowed.

Definition 4.9. A long-distance Q-resolution proof is called a mLD-Q-Res proof, if it

x
does not contain a resolution step between two clauses D and E, such that C = D < E
for an existential variable x and there are universal variables w,w such that u* € D,
w* € E and lvg(u), lvg(w) < lvg(x).

With this definition in place, we can show that mLD-Q-Res proofs can be extracted
from runs of most variants of QCDCL that we defined. Further, for some QCDCL
paradigms, stricter simulations hold.

Proposition 4.10. The following holds on false QCNFs:

(i) Q-resolution p-simulates QCDCL’;\\,'(\Q_/,'%;?EX,_PROP.

(ii) QU-resolution p-simulates QCDCL’,‘\\,gfh?EgquL_PROP.

(i1i) mLD-Q-Res p-simulates QCDCLANY-ORD

ANY-RED, Exi-PROP*

Proof. Ttem (i) was already shown in (Beyersdorff & Béhm, 2021).

For (ii), because of ALL-PROP, we might propagate (and resolve) over universal
literals, which can be handled by QU-resolution. It remains to show that NO-RED
prevents the derivation of tautological clauses. This holds because we only use an-
tecedent clauses for clause learning. Let us assume we learn a tautological clause
C from a QCDCLﬁg\-{I_:gB?ALL-PROP trail 7. Then there would be two antecedent clauses
D := anter(¢;) and E := antey(f3) such that there exists a universal literal u with
u# b, u # b, ueDand ue E. We need u € T for D to become unit and at the
same time we need u € T for E to become unit, which is not possible. Therefore, we
will never derive tautological clauses.

Let us now prove (iii). By definition, we can extract long-distance Q-resolution
proof from QCDCLQEX:SE&EXFPROP trails (note that we only propagate existential literals,
hence we also only resolve over existential variables during clause learning). It remains
to show that the kind of resolution step that is forbidden in mLD-Q-Res (but allowed
in long-distance Q-resolution) will never occur during clause learning.

Assume it does. Then we have derived a clause C by resolving two clauses D and

E over some literal = (hence C' = D 0 E), such that there exists universal tautologies
u* € D and w* € E with u* # w* and Iv(u*),lv(w*) < Iv(z). Then at least one of
these parent clauses needs to be an antecedent clause for a trail 7, say D = antey(x).

755

BOHM & BEYERSDORFF

But then D can never become the unit clause (x), because we cannot reduce u* since
it is blocked by z, and we cannot falsify it by the previous trail assignment since it is a
tautology. This is a contradiction that shows that all resolution and reduction steps are
allowed in mLD-Q-Res.

O

We could formulate analogous results on true QCNF's using the notation of consensus
proofs. However, we will omit this as all separations and characterisations will be
performed on false QCNFs and resolution proofs.

One can easily show that the separation between Q-resolution and long-distance
Q-resolution transfers to a separation between Q-resolution and mLD-Q-Res.

Corollary 4.11. mLD-Q-Res p-simulates Q-resolution. Furthermore, mLD-Q-Res is
exponentially stronger than Q-resolution.

Proof. The simulation follows by definition. The separation follows by Theorem 4.6 and
Proposition 4.10 (iii). O

In fact, all currently known upper bounds for long-distance Q-resolution can be
easily transformed into mLD-Q-Res upper bounds. However, we leave open the question
whether long-distance Q-resolution is stronger than or equivalent to mLD-Q-Res.

5. Characterisations of QU-resolution and mLD-Q-Res

In this section, we show that all the simulations in Proposition 4.10 can be tightened to
equivalences.

Characterising Q-resolution by QCDCLQ'SY,}{(EB'?EXI_PROP was already undertaken in (Bey-
ersdorff & Bohm, 2021). Here we characterise both mLD-Q-Res and QU-resolution by
the specific variants of QCDCL mentioned in Proposition 4.10. However, we leave open
whether we can replace mLD-Q-Res with long-distance Q-resolution in this charac-
terization. This will depend on whether it is possible to polynomially transform the
‘forbidden’ resolution steps that can occur in long-distance Q-resolution, but cannot be
created by QCDCL, into mLD-Q-Res steps.

The characterisations follow the same idea as in (Beyersdorff & Boéhm, 2021), in
which Q-resolution was characterised. One crucial difference is that we now want to use
the ANY-RED policy, i.e., in each step we have to decide what literals to reduce.

As already mentioned in Remark 3.5, it suffices to update the reductive sets only
after a conflict. That means that for characterising mLD-Q-Res, it is enough to fix the
literals that are going to be reduced throughout the whole trail. Thus, we introduce the
notion of L-reductive trails.

Definition 5.1 (L-reductive trails). Let L be a set of literals. A trail T is called L-
reductive, if for each propagation step in T the literals that were selected to be reduced
are exactly the literals in L. Formally, this means that for each p(; ;) there is an an-
tecedent clause (resp. cube) anter(p(jy) such that redp(anter(pu)l71i5) = (Pay))

(resp. [P, jl)-

Before starting with a new L-reductive trail, we always need to consider the choice
of the reductive set L. As we know from (Beyersdorff & Bohm, 2021) and Proposition
4.10, tautologies can only be created when the corresponding literal got reduced some-

where in the trail. In fact, since QCDCLQg&gEDEXI_PROP already characterises Q-resolution

756

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

(Beyersdorff & Bohm, 2021), we can conclude that in some sense the only purpose of
reductions during unit propagation is to create tautological clauses. Therefore we will
distinguish between the tautological and the non-tautological part of a clause.

Definition 5.2. Let C be a clause. Let G(C) := {u € C : u is universal and u € C}.
This set is the tautological part of C. The non-tautological part H(C) of C is defined
as H(C) := C\G(C).

For each QU-resolution proof 7 and C' € m we have G(C) = (.
Our next notion is similar to the concepts of unreliable (Beyersdorff & Bohm, 2021)
and 1-empowering (Pipatsrisawat & Darwiche, 2011).

Definition 5.3 (Blockades). Let S € {QCDCLANCA™ o\ prop QCDCLANO0, | prop} and
C be a clause. A tuple (U, l,K), where U is a trail, ¢ is a literal, o is a non-
contradictory set of literals and K is a set of universal literals, is called a blockade of
C with respect to S for a QCNF & = Q- ¢, if U is a K-reductive S trail with decisions
a, such that € C, a € O\{{}, K € G(C) and a n K = .

For S = QCDCL%{:BERDD, Exi-Props We additionally require that £ is an existential literal
and o consists of only existential literals.

Example 5.4. Blockades occur when we are not able to choose all decisions from a
pre-defined non-contradictory set a. For example, consider the QCNF

Jz, yVu, vz (v Z)A(@vavz)A(zvyvovz)A(yvovz).

Assume that we use QCDCLM&%EE,’ALL_PHOP. Then the clause C:=Tvijvuviuvz has a
blockade (U, o, £, K) withU := (y,é, Z), where antey(z) =y v z, antey(Z) =T vauvz,
as well as £ :=7 € C, a := {y} € C\{{} and K := {u}.

Intuitively, this means that although the clause C' is not directly contained in the
formula, we are still able to detect the implication (o A K — £) = (y A u) — T (which
is equivalent to gy v u v T S C) as a composition of decisions and unit propagations. It
turns out that, instead of learning C directly, it is enough to detect a blockade in order

to make use of C' for unit propagations in later trails.

The next lemma shows, that we can recall trails (and blockades in particular), that
were detected and stored at an earlier point, and restore all propagations they contained.
This will be important for the characterisations, as we will go through the given proof,
find blockades or conflicts for all clauses in that proof, and recall the corresponding trails
(by using this Lemma) an all their containing propagations whenever the clauses are
needed for another resolution step. In that way, we can virtually store previous trails
and recall them later again as natural trails.

Lemma 5.5. Let =9 -¢ and ¥ = Q - be QCNFs such that ¥ S ¢.

Let S € {QCDCLﬂm:gEHgEX,_PHOP, QCDCL’,L\\,gfhgg,DALL_PHOP} and let U be a K-reductive S
trail (for NO-RED we set K = () for the QCNF U with decisions . Let T be a natural
L-reductive S trail (L = & for NO-RED) with decisions « for the QCNF ® such that
KcL gcTandanlL = . If T does not run into a clause conflict, then all

propagated literals from U are also contained in T .

Proof. Assume that 7 does not run into a clause conflict, but there are some propagated
literals from U that are not contained in 7. Let p(4p) be the literal that is leftmost in U

757

BOHM & BEYERSDORFF

with this property and define A := antey(p(4)). Since there are no cubes present, we
conclude that A must be a clause, regardless of whether p(,) is existential or universal.

Because p(,) is leftmost, all other propagated literals before p(,) in U are already
contained in 7. Since U was K-reductive, we know that redx (Alyjap) = (Pap))-
Because of K = L and U[a,b] = T we have either red(A|7) € {(p@p)), (L)}, or Alr
becomes true. Note that we can set K := L := (J for the rest of our argumentation in
the case where p(, ;) is universal.

The first case would contradict our assumption (since 7 is natural), therefore we
have to assume that Al becomes true. This means that we can find a literal p(,) #
u€ AnT. If u was existential, then we would need @ € U[a,b]. But this would also
imply @ € 7 which contradicts the fact that u € 7. Hence u must be universal.

If w was a decision in 7, then we would have v € . Because of a n L = & we
conclude u ¢ L and also u ¢ K. In order to make u vanish in redx (Alyq]), We need
@ € Ula,b], hence also u € T. However, this is a contradiction because we already
assumed u € T.

Therefore, v must have been propagated by an antecedent clause antes(u). But
then we have K = &, hence u ¢ K and u € U[a,b] S T, which is a contradiction again
because of u e T. O

In the next theorem we will prove the main result: There exist two QCDCL variants
that can p-simulate mLD-Q-Res and QU-resolution respectively. The other direction
was already proven in Proposition 4.10, therefore we essentially prove the equivalence
of these systems.

Theorem 5.6. The following holds:

° QCDCLMX:%EHEEX,_PHOP p-simulates mLD-Q-Res.

° QCDCLQZY;?(;’;?ALL_PHOP p-simulates QU-resolution.

In detail: Let ® = Q- ¢ be a QCNF in n variables and m = D1,..., Dy, be a mLD-
Q-Res (QU-resolution) refutation of ®. Then we can construct a QCDCLAWET® £ oo 0

(QCDCLQZ‘_/[_-{(;’;’?ALL_PROP refutation v of ® with 1] € O(n-|xn|). Furthermore, all trails from
L can be constructed such that they run into clause conflicts, meaning that we will only

learn clauses in t.

Note that the fact that we only learn clauses in the QCDCL proof not only strength-
ens the result (a possibly weaker QCDCL system suffices for the simulations), but it
also simplifies the simulation itself as several auxiliary results below will rely on the as-
sumption that no cubes are learned. Before giving the full proof of Theorem 5.6, which
involves the aforementioned auxiliary results, we will sketch the proof idea.

Proof sketch of Theorem 5.6. Going through a given mLD-Q-Res (QU-resolution) refu-
tation 7, starting at the axioms, for each C' € m we create specific natural trails (where

some of them will later be part of the QCDCLQNZSE&EXI_PROP or QCDCLﬁgYhOEg?ALL_PROP

proof) in which all decisions are negated literals from C, until one of the following
events occur:

o We get a conflict and learn a subclause of C.

e We obtain a blockade of C.

758

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

When this happens, we either assign the label “subclause” or the label “blockade” to
C. When a clause was derived via a resolution or reduction step in m, we simply recall
the blockades of its parent clauses by applying Lemma 5.5 to create a blockade for the
resolvent or a conflict. If a parent clause does not have a blockade, the clause itself (or a
subclause) must have been learned directly and can therefore be used as an antecedent
clause for the trail that either becomes a blockade for the resolvent, or that runs into a
conflict from which we can learn a subclause of the resolvent.

Since a clause C' € 7 can be derived via resolution (say C' = D x E) or reduction
(say C =red(D)), we have to consider all possible cases:

(i) resolution, both D and E are labelled “blockade” (cf. Lemma 5.8)

(ii) resolution, D is labelled “blockade”, E is labelled “subclause”, or vice versa (cf.
Lemma 5.9)

(iii) resolution, both D and E are labelled “subclause” (cf. Lemma 5.10)
(iv) reduction, D is labelled “blockade” (cf. Lemma 5.11)
(v) reduction, D is labelled “subclause” (cf. Lemma 5.12)

At the end, each clause in 7 is either labelled “subclause” or “blockade”. In partic-
ular, this holds for the empty clause. Because, by definition, there cannot be a blockade
of the empty clause (we need at least one literal), the empty clause must be labelled
“subclause”, which means we have learned the empty clause.]

We now proceed with the full proof of Theorem 5.6. Before doing so, we need a
couple of technical lemmas.

The aforementioned creation of specific natural trails is determined by their deci-
sions as well as reductive sets K(; ;). In particular, it is not important in which order
propagations are performed as long as they are valid. The following remark explains the
way we create these trails in more detail.

Remark 5.7. Let & = Q- ¢ be a QCNF and L be a set of universal literals. Let o be a
non-contradictory set of literals. Then we can construct a trail T for ® by choosing « in
a specific order as decision literals and propagating literals as soon as the corresponding
antecedent clauses become L-reductive unit clauses. We are allowed to update the set
L after each propagation. We can even undertake these automatic construction steps
after backtracking. However, it is possible that we propagate a literal from « in the same
polarity before deciding it. In this case we have to skip the decision. Also, we could
reach a conflict before deciding all literals, then we abort the trail as usual.
If we propagate a literal from &, then we also abort.

For the next lemmas, we will construct natural trails from a given set a of decision
literals. Our goal will to obtain a blockade or a conflict. We will always assume that we
start with all existential literals from « before deciding universal literals. In particular,
for the simulation of mLD-Q-Res, where we use EXI-PROP instead of ALL-PROP, all
blockades (U, a, ¢, K') will consist of existential decisions «, but universal reductions K.
Therefore we can guarantee a n K = (.

The first lemma handles the case where we want to simulate a resolution step between
two clauses such that we have already detected blockades for both of them (i.e., both

759

BOHM & BEYERSDORFF

parental clauses are labelled “blockade”). This corresponds to Case (i) from the proof
sketch of Theorem 5.6.

Lemma 5.8. Let & = Q- ¢ be a QCNF. Let further C'v x and D v T two clauses such

that Cv D = Cva = D v i is a valid mLD-Q-Res (QU-resolution) step. Suppose that
there exists a blockade of C v x for ¥ = Q- and a blockade of D v T forI' = Q -~
with ¥,y € ¢. Then there exists a QCDCLﬂ,’:’”Y,:gEHgEX,_PROP (QCDCL’,‘\\,'\(;Y;?(Z';%LL_PROP) proof

L= [(7;7 Ci7 71—7;)]5:1

from ®© with a constant c, such that C. € C v D or there exists a blockade of C' v D for
Q' (gbu {Cl,...,Cc}).

Proof. Let the blockade of C'vx for ¥ be (U, a1, ¢1, K1). Analogously let (Us, ag, la, K2)
be the blockade of D v T for I' with respect to corresponding QCDCL model.

Case 1: /1 =x and ¢5 = 7.

We construct a natural G(C v D)-reductive trail 7 with decisions o := a3 U ay S
C v D. If we receive a blockade, we are done. Note that the set of decisions that were
actually made and G(C v D) is always disjoint.

If we run into a conflict, then we can start clause learning and learn the rightmost
clause E in £7. Then E can only contain literals froma € Cv D or G(Cv D) < Cv D.
In this case we are also done.

Suppose that we do not get a blockade and do not run into a conflict. Then we
have o € 7. By Lemma 5.5, each propagation from U as well as Uy is contained in 7.
Note that we have K7 u Ko € G(C v D). But then we would have x,z € T, which is a
contradiction.

Case 2: (1 = z and ¢y # Z (or analogously ¢ # x and {3 =).

We construct a natural G(C' v D)-reductive trail 7 with decisions a := (a3 U ag U
{lo})\{z} = C v D (note that x might be contained in ay). Similar to Case 1, we are
done if we get a blockade or run into a conflict.

Otherwise we would have o« € 7. By Lemma 5.5, we conclude ¢; = x € T. This
means ag € 7. Again, by Lemma 5.5 we would get 5 € T, which is a contradiction to
{5 € T. Hence we always get a blockade or a conflict.

Case 3: /1 # x and ¢y # T.

W.lo.g. let C not contain a universal tautology u v @ with lv(u) < lv(z). We can
make this assumption because the resolution step is valid for mLD-Q-Res (and also for
QU-resolution).

We construct a natural Kj-reductive trail 7 with decisions o := a1 U {£1}, but we
will decide Z at the end (if = or & does not get propagated before). If we run into a
conflict without deciding &, then we can again learn the rightmost clause £ in £7 which
is a subclause of C' and therefore a subclause of C' v D. Assume we get a blockade of
C v z with a literal / € @ € C' v z. If £ # x, then this is a blockade of C' (and also a
blockade of C' v D) since & was not decided, yet. If £ = z, then we have propagated x
before deciding Z. But then we can go to Case 2 with the trails 7 and Us.

If we do not get a blockade and do not run into a conflict without deciding z, and if
we actually decide Z at the end, we will show that we will run into a conflict afterwards.
Assume not. Then we have oy € o € 7. By Lemma 5.5, we conclude that /1 € T,
which is a contradiction to ¢, € o € T. Therefore we run into a conflict.

760

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Then we again learn the rightmost clause E in L7, which is now a subclause of
av K € av G(C) with z € E (because T was the last decision and the last decision
always contributes to the conflict). If Z was the 7' decision, we backtrack back to
Tr,0] (right before the decision z was made). Because T was the last decision, we have
a\{z} < T[r,0].

Our precondition at the beginning was that C' does not contain a universal tautology
left of x. In particular, for all u € G(C') we have lv(u) > lv(z). We conclude

redg, (Elr(r,0) = (2)-

Finally, we propagate x, receive the new trail 7' (which is 7 [r,0] plus) and go into
Case 2 again. Note that 77 is still a Kj-reductive trail, even after backtracking.
The number of backtracking steps and restarts are obviously bounded, hence f,, €

O(1).
Note that for QU-resolution, we construct ¢F-reductive trails because G(C'v D) = &,
which means that we can activate NO-RED. O

In the next lemma, we want to simulate a resolution step between a clause for
which we have already detected a blockade, and a second clause that is subsumed by a
previously learned clause or an axiom (i.e., one clause is labelled “blockade” while the
other is labelled “subclause”). This corresponds to Case (ii) from the proof sketch of
Theorem 5.6.

Lemma 5.9. Let ® = Q- ¢ be a QCNF. Let further C v x and D v T two clauses such

that Cv D = C v aw Dv 7 is a valid mLD-Q-Res (QU-resolution) step. Suppose
that there exists a blockade of C' v x for ¥ = Q -1 with ¥ S ¢. Suppose also there
exists a subclause D' € D v T with D' € ¢. Then there exists a QCDCLANY-9AD

o ANY-RED, Exi-ProOP
ANY-ORD
(QCDCLNO-RED,ALL-PROP proof

L= [(7;7 Ci,ﬂ'i)]f=1

from ® with a constant ¢, such that C. € C' v D or there exists a blockade of C' v D for
Q- -(pu{Cy,...,C.}).

Proof. Let the blockade of C' v z be (U, a1, l1, K7).

Case 1: V1 = x.

Construct a natural G(C v D)-reductive trail 7 with decisions « := (a3 U D)\G(C' v
D) such that we decide existential literals first (again, this is only important for mLD-Q-
Res). If we get a blockade, we are done, as for mLD-Q-Res we could have only decided
existential literals from o« u D < C v D. If we run into a conflict, we can learn the
rightmost clause F in £ which is a subclause of C' v D.

Assume now that we do not get a blockade and not run into a conflict. Then we
have o € 7. By Lemma 5.5, all propagations from U; are contained in 7T, in particular
¢1 = x € T. Consider the clause

A= redg(cy py(D'|7)-

The negations of all literals from D\G(C v D) are contained in 7. Hence A can only
consist of literals from G(C v D). But these literals can be reduced away. Therefore

761

BOHM & BEYERSDORFF

A = (1) and we would be able to run into a conflict, which is a contradiction. All in all
we run into a conflict or receive a blockade of C' v D.

Case 2: V1 # .

Case 2.1: C' v = does not contain a universal tautology u v @ with lv(u) < lv(x) (we
are always in this case if we consider QU-resolution).

Note that in this case for all literals w € G(C) we have Iv(w) > lv(x). This case is
similar to Case 3 of the previous Lemma. We construct a natural G(C')-reductive trail
T with decisions a := a3 U {f1}, whereby we decide Z at the end (if Z € ay). If we Tun
into a conflict before deciding &, we can learn the rightmost clause E in L7, which is a
subclause of C. Assume we get a blockade with a literal f e @ € C v x. If £ # x, then
this is a blockade of C' and also C' v D. However, if £ = x, then we can go to Case 1
and replace the blockade that consists of U] with the blockade consisting of 7.

Suppose we do not run into a conflict or get a blockade before deciding . If we
somehow propagate Z, we have oy € o« € T and by Lemma 5.5 we conclude ¢; € T.
However, this contradicts ¢, € T.

By not running into a conflict or getting a blockade before deciding z, we are able
to actually decide Z at the end. We would run into a conflict by the same argument
as above. We learn the rightmost clause E in £, which is a subclause of & v G(C)
with € E. We backtrack back to T [r,0] (right before deciding z). As above, we have
a\{z} < T|r,0].

By our precondition, we conclude

redg o) (E| 7o) = (2)-

We propagate = and receive another blockade of C' v x such that we can go into Case 1
again.
Case 2.2: D v & does not contain a universal tautology u v @ with lv(u) < lv(z).
We can assume that we only consider mLD-Q-Res and QCDCLQ%:SE&EXI_PRQP.
Now we have lv(v) > lv(x) for all v € G(D). We construct a natural G(D)-reductive

trail 7 with decisions

a:= (a1 v {li} v H(D))\{z}

such that we decide the existential literals first. Note that « is non-contradictory because
a1 U {1} consists of existential literals only and C'v D 2 a can only have universal
tautologies. Also, we still have a n L = ¢J because of G(D) n H(D) = .

If we run into a conflict or get a blockade, we are done again. Otherwise, we have
decided or propagated all literals from «. I.e., « € 7. Consider the clause

A= red(D'|7).

Because of 7 ¢ H(D), we have H(D) € o € T and therefore A € G(D) v Z. By our
precondition (all literals from G(D) are right of), we conclude A = () since we can
reduce all universal literals from D’|r. That means we have to propagate Z in T, hence
T € T. But then we have a7 € 7. By Lemma 5.5, all propagated literals from i/, have
to be contained in 7T, in particular ¢; € 7. However, this is a contradiction to ¢; € T .

That means we always have to run into a conflict or get a blockade, as we desired. [

The next lemma covers the last case for the simulation of resolution steps: Both
parent clauses are now subsumed by previously learned clauses or axioms (i.e., both

762

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

clauses are labelled “subclause”). This corresponds to Case (iii) from the proof sketch
of Theorem 5.6.

Lemma 5.10. Let ® = Q- ¢ be a QCNF. Let further C v x and D v T two clauses such

that Cv D = C vz D v 7 is a valid mLD-Q-Res (QU-resolution) resolution step.
Suppose there exist subclauses C' € C v x and D' € D v T with C', D' € ¢. Then there

. ANY-ORD ANY-ORD
ezists a QCDC LANY—HED, Ex-Pror (QCDCL NO-RED,ALL-PF!OP) proof

= [(Ti, Ci,mi)liz

from ® with a constant c, such that C. C v D or there exists a blockade of C'v D for
Q- -(pu{Cy,...,C.}).

Proof. We construct a natural G(C'v D)-reductive trail 7 with decisions o := H(C' v D)
such that existential decisions are made first. If we get a blockade or run into a conflict,
we are done. So suppose we neither get a blockade, nor run into a conflict. Then we have
a S T. Wlo.g. let C v x not contain a universal tautology u v @ with lv(u) < lv(z).
Consider the clause

A= redgey p)(C'|7)-

The clause C’|7 can only consist of x or universal literals from G(C' v D) since the
rest got negated by a. We now want to prove that all universal literals in C’|7 can be
reduced. In detail, for all universal literals w € C’|; we need lv(w) > lv(z). Suppose
we have a universal literal v € C'|7 € C v x with Iv(v) < lv(xz). We already concluded
that this literal v has to be contained in G(C v D). Because we do not have universal
tautologies in C' left of z, we conclude v ¢ C. But then we need v € D since v € G(C'v D).
However, such a resolution step is not allowed in mLD-Q-Res (not even in long-distance
Q-resolution).

That means all universal literals from C’|7 can be reduced, hence A € {(x), (L1)}.
The case A = (L) is impossible because we assumed we do not run into a conflict.
Therefore A = (x) and we have to propagate = in 7. Le., x € T.

Now, we consider the clause

B := redgcy py(D'|7).
Similarly to the situation before, B can only consist of universal literals from G(C v D).
Note that the Z that was potentially contained in D’ is now vanished. All literals from

D'|1 can be reduced, hence B = (L). Then 7 would run into a conflict, which is a
contradiction. O

The following lemma shows how we can simulate a reduction step on a clause for
which we have detected a blockade (i.e., the clause is labelled “blockade”). This corre-
sponds to Case (iv) from the proof sketch of Theorem 5.6.

Lemma 5.11. Let ® = Q- ¢ be a QCNF. Let D = C v uy v ... v us such that
red(D) = C is a valid reduction step in mLD-Q-Res (QU-resolution). Suppose there
exists a blockade of D for ¥ = Q- with) < ¢. Then there exists a QCDCLAN-QP

ANY-RED, EXI-PROP
(QCDC Lﬁ/,(\;)-/:‘-??_:g,DALL —PROP) proof

= [(Ti, Ci, mi)]izy

from ® with a constant ¢, such that C. S C or there exists a blockade of C for Q- (¢ U
{Cy,...,C.}).

763

BOHM & BEYERSDORFF

Proof. Let the blockade of D be (Ui, aq, 1, K1). In the case of mLD-Q-Res, we demand
that oy and ¢; is existential, hence this is also a blockade for C' and we are done.

In the case for QU-resolution, we construct a natural Ki-reductive trail 7 with
decisions a := a1 U {{1} such that the literals 4; are decided last for those contained in
a. If we get a conflict, we can learn the clause red(a) € red(D) = C and we are done.
So suppose we get a blockade (7, 5,¢, K1) with € a. If £ # u; for each i =1,...,m,
then we also have u; ¢ B for each i because the u; can only be decided last. But then
we have a blockade of C' and we are done. However, if ¢ = w; for some i € {1,...m},
then instead of propagating u;, we can simply run into a conflict and learn a subclause
of red(B v u) € red(C v u) = C.

If we neither get a blockade, nor run into a conflict, then we have o € T and we
can make all propagations from U; by Lemma 5.5, hence we get 8 € 7. This is a
contradiction to f e a € T . O

The next lemma is the last one before we are able to completely prove Theorem
5.6. It handles the case where we want to simulate a reduction step on a clause D
that is subsumed by a previously learned clause or axiom (i.e., the clause is labelled
“subclause”). This corresponds to Case (v) from the proof sketch of Theorem 5.6.
Note that this case is somewhat special: As learned clauses are already fully universally
reduced, there is nothing to show if D is subsumed by a previously learned clause.
Hence, we can assume that D is subsumed by an axiom. But then we can also assume
that D is an axiom itself, otherwise we could simply shorten the given mLD-Q-Res
(QU-resolution) refutation that is to be simulated. In particular, we can assume that
D is non-tautological.

Lemma 5.12. Let ® = Q- ¢ be a QCNF. Let D = C v uy v ...V u, be non-tautological

such that red(D) = C. Suppose D € ¢. Then there exists a QCDCij:gEHgEX,_PHOP (resp.
QCDC Lllé\‘lgrhgg,ﬂjé\LL-PHOP) proof

= [(Ti, Ci,mi)liz

from ® with a constant ¢, such that C. S C or there exists a blockade of C for Q- (¢ U
{Cy,...,C.}).

Proof. We construct a natural (J-reductive) trail 7~ with decisions o = D, such that all
the @; are decided last. If we run into a conflict, we can learn a subclause of red(a) =
red(D) = C.

Assume that we get a blockade (T, 3,4,). If £ # u; for each i, then we also have
u; ¢ B for each ¢ because the u; are decided last. In that case, this is also a blockade for
C and we are done. In the case where £ = u; for some i, we can again simply run into a
conflict instead of propagating u;, hence learning a subclause of red(a) = red(D) = C.

Suppose that none of this occurs. Then we have a € 7. But then we would falsify
D, hence we would have the opportunity to run into a conflict with the aid of D, which
is a contradiction. O

Finally, we are able to formally prove Theorem 5.6.

764

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Theorem 5.6. The following holds:

e QCDCLANY-OAD p-simulates mLD-Q-Res.

ANY-RED, ExI-ProP

° QCDCLQZ‘_{,}{C;Z’DALL_PROP p-simulates QU-resolution.

Proof. Let S € {QCDCLAV-QR0 QCDCLRNYOR0 }. The procedure for both

ANY-RED,ExI-PrOP? No-ReD,ALL-PROP
simulations is the same. The plan is going through the whole proof 7 for each clause D

in 7 either find a blockade, or learn a subclause of D during the construction of S-trails.

Suppose we already considered the clauses Di,...,D;_; for an i € {1,...,m} and
constructed S proofs ¢1,...,¢;—1. In detail, we have ¢; = [(Tq(j), C’,g]),ng))]?:l for each
je{l,...,i—1} and some constants c;. Define

j—1
;=00 IO, c®y.
k=1

One could interpret ¢; as the knowledge base right before considering the clause D; in 7
(and right after going through D;_1, if j > 1). In particular, we want to show that if for

each h € {1,...,i—1} there exists a blockade of Dy, for Q-¢y, 1 or there exists a subclause
Dj, < Dy, with Dj € ¢p41, then we can construct an S proof ¢; = [(7;(1), Cél),ﬁg))];izl

from Q- ¢; such that there exists a blockade of D; for Q- ¢;,1 or there exists a subclause
D! ¢ D; with D} € ¢;1+1. Note that we will only add the trail to our S proof if we learned
a clause. The blockade itself will never actually be added to the proof.

If D; was an axiom (for example if ¢ = 1), then we already have a subclause of
D; which is contained in ¢; (in fact, D; itself). In this case we set ¢;11 := ¢; and do
nothing. The proof ¢;11 can be defined as the empty proof (or simply left out).

Suppose D; was the resolvent of two previous clauses D, and Dy. By induction, we
know that

e there exists a blockade of D, for Q-¢,.1 or there exists a subclause D! < D, with
D(,z € ¢a+17 and

e there exists a blockade of Dy, for Q- ¢ or there exists a subclause D, € D;, with
Dy € ¢p+1.

Each possibility is covered by some earlier Lemma: Lemma 5.8 or Lemma 5.9 or Lemma
5.10. In each case we can construct an S proof ¢; from Q-¢; such that D) := Cc(f) C D;or
we get a blockade of D; for Q- ¢;11. Note that we always have ¢,+1 S ¢; and ¢p.1 S ;.

Now suppose D; was derived by a reduction of some previous clause Dy, i.e., D; =
red(D,). By induction, we either know that

e there exists a blockade of D, for Q- ¢411, or
e there exists a subclause D! € D, with D € ¢g.1.

The first case is covered by Lemma 5.11. In the second case either D/, is non-tautological
(this case is covered by Lemma 5.12), or D! is tautological and hence actually a previ-
ously learned clause.

In the latter case we already have D! = red(D)) € red(D,) = D; by the definition
of clause learning. Hence we do not have to construct any trails and therefore ¢; can
again be viewed as the empty proof.

765

BOHM & BEYERSDORFF

Finally we construct proofs ¢; as long as we have not learned the empty clause, yet.
In the worst case we will learn (L) during ¢,, since it is impossible to find a blockade of
D,, = (1) and therefore we will always learn a subclause of D,,.

We receive a refutation ¢ by sticking together all constructed subproofs ¢;. As usual,
we restart between two subproofs ¢; and ¢;,1. Note that all ¢; have, by construction,
linear size and therefore || € O(n - |7]). O

Proposition 4.10 and Theorem 5.6 yield the following characterisations:
Corollary 5.13. It holds
(i) QCDCLAVEE £x-pror =p MLD-Q-Res,
(i1) QCDCLY 52a aus-proe =» QU-Res.

Remark 5.14. Note that our simulations require a particular learning scheme, in which
we almost always restart after each conflict. This is also the reason why we get an
improved simulation complexity of O(n - |r|) compared to O(n3 - |x|) from (Beyersdorff
& Bohm, 2021), in which arbitrary (asserting) learning schemes were allowed (where we
do not necessarily restart every time).

Performing our simulation under arbitrary asserting learning schemes might require
some additional analysis on asserting clauses under the ANY-ORD and ANY-RED rules,
as a clause learned from a K1-reductive trail might not be asserting in Ko-reductive trails
anymore. However, if it was clear how to guarantee asserting clauses in our systems,
we would be able to obtain similar results as in (Beyersdorff & Bohm, 2021), that is:

e For each clause C in the given mLD-Q-Res (QU-resolution) refutation and an
arbitrary asserting learning scheme, we need O(n?) trails and backtracking steps
until we either learn a subclause of C', or we receive a blockade for C.

o Under any arbitrary asserting learning scheme, we can perform the simulation in
time O(n - |r|). In particular, we do not need to restart after each conflict.

6. Conclusion

Proving theoretical characterisations of QCDCL variants successfully used in practice is
an important and compelling endeavour. While we contributed to this line of research,
a number of open questions remain, both theoretically and practically. In particular, in
light of Figure 1, it seems worthwhile to explore whether some of the QCDCL models
shown to be theoretically better than standard QCDCL can be used for practical solving.
In our quest to modify QCDCL to match the strength of its underlying system long-
distance Q-resolution, we introduced the new proof system mLD-Q-Res, which not only
characterises a strong version of QCDCL, but also simulates all related variants. This
allows to use proof-theoretic results for mLD-Q-Res whenever considering the strength
of QCDCL solvers. Yet, we leave open whether mLD-Q-Res is strictly weaker than or
equivalent to long-distance Q-resolution. Both possible outcomes would be interest-
ing, as either long-distance Q-resolution does not characterise QCDCL, or there are
modifications of QCDCL that unleash the full strength of long-distance Q-resolution.
Additionally, we exhibited a QCDCL version characterising QU-resolution. One
could try to combine these two characterisations to obtain an even stronger family

766

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

of QCDCL variants in the spirit of LDQU™-resolution. We point out again that the
QCDCL variant QCDCLANTRED o | _pror Might be a suitable candidate for that.

Further, cube learning, which can hugely impact the running time even on false
formulas (Bohm et al., 2022a), was not considered here. Hence, verifying true formu-
las as well as the proof-theoretic characterisation of modifications to QCDCL such as

dependency learning (Peitl et al., 2019) are further topics for future research.

Acknowledgments

An extended abstract of this work appeared in the proceedings of the conference SAT’23
(Bohm & Beyersdorff, 2023). Research was supported by a grant from the Carl-Zeiss
Foundation and DFG grant BE 4209/3-1.

References

Atserias, A., Fichte, J. K., & Thurley, M. (2011). Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res., 40, 353-373.

Atserias, A., & Miiller, M. (2019). Automating resolution is NP-hard. In IEEE An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 498-509. IEEE
Computer Society.

Balabanov, V., & Jiang, J.-H. R. (2012). Unified QBF certification and its applications.
Form. Methods Syst. Des., 41(1), 45-65.

Balabanov, V., Widl, M., & Jiang, J.-H. R. (2014). QBF resolution systems and their
proof complexities. In Proc. Theory and Applications of Satisfiability Testing
(SAT), pp. 154-169.

Beame, P., Kautz, H. A.; & Sabharwal, A. (2004). Towards understanding and harness-
ing the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22, 319-351.

Beyersdorff, O. (2022). Proof complexity of quantified Boolean logic — a survey. In
Benini, M., Beyersdorff, O., Rathjen, M., & Schuster, P. (Eds.), Mathematics for
Computation (M4C), pp. 353-391. World Scientific.

Beyersdorff, O., Blinkhorn, J., & Hinde, L. (2018). Size, cost, and capacity: A semantic
technique for hard random QBFs. In Proc. Conference on Innovations in Theo-
retical Computer Science (ITCS’18), pp. 9:1-9:18.

Beyersdorff, O., Blinkhorn, J., & Mahajan, M. (2021). Building strategies into QBF
proofs. J. Autom. Reason., 65(1), 125-154.

Beyersdorff, O., Blinkhorn, J., Mahajan, M., & Peitl, T. (2023). Hardness character-
isations and size-width lower bounds for QBF resolution. ACM Trans. Comput.
Log., 24(2), 10:1-10:30.

Beyersdorff, O., & Boéhm, B. (2021). Understanding the Relative Strength of QBF
CDCL Solvers and QBF Resolution. In 12th Innovations in Theoretical Computer
Science Conference (ITCS 2021), Vol. 185 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 12:1-12:20.

Beyersdorff, O., Bonacina, I., Chew, L., & Pich, J. (2020). Frege systems for quantified
Boolean logic. J. ACM, 67(2), 9:1-9:36.

767

BOHM & BEYERSDORFF

Beyersdorff, O., Chew, L., & Janota, M. (2019). New resolution-based QBF calculi
and their proof complexity. ACM Transactions on Computation Theory, 11(4),
26:1-26:42.

Beyersdorff, O., Chew, L., & Janota, M. (2015). Proof complexity of resolution-based
QBF calculi. In Proc. Symposium on Theoretical Aspects of Computer Science
(STACS’15), pp. 76-89. LIPIcs.

Beyersdorff, O., Janota, M., Lonsing, F., & Seidl, M. (2021). Quantified Boolean for-
mulas. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of

Satisfiability, Frontiers in Artificial Intelligence and Applications, pp. 1177-1221.
IOS Press.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2021). Handbook of Satisfi-
ability, Frontiers in Artificial Intelligence and Applications. IOS Press.

Bohm, B., & Beyersdorff, O. (2021). Lower bounds for QCDCL via formula gauge. In
Li, C.-M., & Manya, F. (Eds.), Theory and Applications of Satisfiability Testing
(SAT), pp. 47-63, Cham. Springer International Publishing.

Bo6hm, B., & Beyersdorff, O. (2023). QCDCL vs QBF resolution: Further insights. In
Mahajan, M., & Slivovsky, F. (Eds.), 26th International Conference on Theory

and Applications of Satisfiability Testing (SAT), Vol. 271 of LIPIcs, pp. 4:1-4:17.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

Bohm, B., Peitl, T., & Beyersdorff, O. (2022a). QCDCL with cube learning or pure literal
elimination - what is best?. In Raedt, L. D. (Ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1781-1787.
ijcai.org.

Bohm, B., Peitl, T., & Beyersdorff, O. (2022b). Should decisions in QCDCL follow prefix
order?. In Meel, K. S., & Strichman, O. (Eds.), 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT), Vol. 236 of LIPIcs, pp.
11:1-11:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

Buss, S., & Nordstrom, J. (2021). Proof complexity and SAT solving. In Biere, A., Heule,
M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, pp. 233—-350. I0OS Press.

Janota, M. (2016). On Q-Resolution and CDCL QBF solving. In Proc. International
Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 402—
418.

Janota, M., & Marques-Silva, J. (2015). Expansion-based QBF solving versus Q-
resolution. Theor. Comput. Sci., 577, 25-42.

Kleine Biining, H., Karpinski, M., & Flogel, A. (1995). Resolution for quantified Boolean
formulas. Inf. Comput., 117(1), 12-18.

Krajicek, J. (2019). Proof complexity, Vol. 170 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press.

Marques Silva, J. P., Lynce, 1., & Malik, S. (2021). Conflict-driven clause learning SAT
solvers. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications. IOS Press.

Peitl, T., Slivovsky, F., & Szeider, S. (2019). Dependency learning for QBF. J. Artif.
Intell. Res., 65, 180—208.

768

QCDCL vs QBF RESOLUTION: FURTHER INSIGHTS

Pipatsrisawat, K., & Darwiche, A. (2011). On the power of clause-learning SAT solvers
as resolution engines. Artif. Intell., 175(2), 512-525.

Slivovsky, F. (2022). Quantified CDCL with universal resolution. In Meel, K. S., &
Strichman, O. (Eds.), 25th International Conference on Theory and Applications
of Satisfiability Testing (SAT), Vol. 236 of LIPIcs, pp. 24:1-24:16. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik.

Van Gelder, A. (2012). Contributions to the theory of practical quantified Boolean
formula solving. In Proc. Principles and Practice of Constraint Programming

(CP), pp. 647-663.

Vardi, M. Y. (2014). Boolean satisfiability: theory and engineering. Commun. ACM,
57(3), 5.

Vinyals, M. (2020). Hard examples for common variable decision heuristics. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI).

Zhang, L., & Malik, S. (2002). Conflict driven learning in a quantified Boolean satisfi-
ability solver. In Proc. IEEE/ACM International Conference on Computer-aided
Design (ICCAD), pp. 442—-449.

769

