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Abstract

We study extensions of the Election Isomorphism problem, focused on the existence of
isomorphic subelections. Specifically, we propose the Subelection Isomorphism and the
Maximum Common Subelection problems and study their computational complexity
and approximability. Using our problems in experiments, we provide some insights into the
nature of several statistical models of elections.

1. Introduction

We study the computational complexity of several extensions of the Election Isomor-
phism problem, recently introduced by Faliszewski et al. (2019) as an analogue of Graph
Isomorphism. While in the latter we are given two graphs and we ask if they can be made
identical by renaming the vertices, in the former we are given two ordinal elections (i.e.,
elections where each voter ranks the candidates from the most to the least appealing one)
and ask if they can be made identical by renaming the candidates and reordering the vot-
ers. Interestingly, even though the exact complexity of Graph Isomorphism, as well as of
many related problems, remains elusive (Babai, Dawar, Schweitzer, & Torán, 2015), Elec-
tion Isomorphism has a simple polynomial-time algorithm (Faliszewski et al., 2019). Yet,
in many practical settings perfect isomorphism is too stringent and approximate variants
are necessary. For the case of Graph Isomorphism, researchers considered two types of
relaxations: Either they focused on making a small number of modifications to the input
graphs that make them isomorphic—see, e.g., the works of Arvind et al. (2012) and Grohe
et al. (2018)—or they sought (maximum) isomorphic subgraphs of the input ones—see, e.g.,
the classic paper of Cook (1971) and the textbook of Garey and Johnson (1979); for an
overview focused on applications in cheminformatics we point to the work of Raymond and
Willett (2002). For the case of elections, the former approach was first taken by Faliszewski
et al. (2019), who introduced the isomorphic swap distance between elections: Given two
elections, their isomorphic swap distance is the number of swaps of adjacent candidates that
we need to perform in one of them to make it isomorphic to the other one (they also consid-
ered a related notion based on the Spearman distance between votes). As they showed that
computing their distances is computationally challenging, Vayer et al. (2020) sought prac-
tical ways of circumventing this intractability, and Szufa et al. (2020) proposed a different,
polynomial-time computable metric, which, however, is less precise (while it ensures that
isomorphic elections are at distance zero, it does not guarantee that distance zero means that
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elections are isomorphic). Using this new distance, Szufa et al. (2020) and Boehmer et al.
(2021) developed the map of elections framework, that is, a technique for presenting similar-
ities between elections graphically, later studied in many of their follow-up works (Boehmer,
Faliszewski, Niedermeier, Szufa, & Wąs, 2022; Boehmer, Bredereck, Elkind, Faliszewski, &
Szufa, 2022; Boehmer, Cai, Faliszewski, Fan, Janeczko, Kaczmarczyk, & Wąs, 2023; Fal-
iszewski, Kaczmarczyk, Sornat, Szufa, & Wąs, 2023).

Our goal is to explore the other way of relaxing the notion of election isomorphism, fo-
cused on seeking isomorphic substructures. Specifically, we consider the Subelection Iso-
morphism and Maximum Common Subelection families of problems.1 In the former,
we are given two elections, a smaller and a larger one, and we ask if it is possible to delete
some candidates and voters from the larger election so that it becomes isomorphic to the
smaller one. One reason why this problem is interesting is its connection to restricted prefer-
ence domains. For example, both single-peaked (Black, 1958) and single-crossing (Mirrlees,
1971; Roberts, 1977) elections are characterized as those that do not have certain forbidden
subelections (Ballester & Haeringer, 2011; Bredereck, Chen, & Woeginger, 2013). We show
that Subelection Isomorphism is NP-complete and W[1]-hard for the parameterization
by the size of the smaller election, which suggests that there are no fast algorithms for the
problem. Fortunately, the characterizations of single-peaked and single-crossing elections use
subelections of constant size and, hence, such elections can be recognized efficiently; indeed,
there are very fast algorithms for these tasks (Bartholdi III & Trick, 1986; Escoffier, Lang, &
Öztürk, 2008; Elkind, Faliszewski, & Slinko, 2012). Our results show that characterizations
with subelections of non-constant size might lead to NP-hard recognition problems.

In our second problem, Maximum Common Subelection, we ask for the largest iso-
morphic subelections of the two input ones. Since their size can be used as a (particularly
demanding) measure of similarity, our work is related to those of Faliszewski et al. (2019)
and Szufa et al. (2020), discussed above. The main difference, as compared to the work of
Faliszewski et al. (2019), is that some of our problems—including practically useful ones—
are polynomial-time solvable, and the main difference from the distance proposed by Szufa
et al. (2020) is that using the Maximum Common Subelection problem we can give
much stronger indication of similarity between elections (but our indication of dissimilarity
is much weaker).

For both our problems, we consider their “candidate” and “voter” variants. For example,
in Candidate Subelection Isomorphism we ask if it is possible to delete candidates
from the larger election (but without deleting any voters) so that it becomes isomorphic
with the smaller one. Similarly, in Maximum Common Voter-Subelection we ask if
we can ensure isomorphism of the two input elections by only deleting voters (so that at
least a given number of voters remains). In Section 5 we use this latter problem to evaluate
similarity between elections generated from various statistical cultures and some real-life
elections. These results confirm some findings observed by Szufa et al. (2020) and Boehmer

1. Problems from graph theory that inspired ours are Subgraph Isomorphism (Karp, 1972) and Maximum
Common Subgraph (see, e.g., the work of Kann (1992) for an early reference). In the former, we ask if a
given smaller graph is isomorphic to a subgraph of a given larger one. In the latter, we ask for the largest
graph that is isomorphic to subgraphs of two given ones. The literature also includes many variants of
these problems and, as an example, we mention the Maximum Common Edge Subgraph problem of
Bokhari (1981), where we seek a common subgraph of two given ones that has as many edges as possible.
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Problem no matching voter-matching cand.-matching both matchings

Election Isomorphism P P P P

Subelection Isom. W[1]-h. [Thm. 4.2] NP-com. [Thm. 4.4] P [Thm. 4.1] P [Thm. 4.1]
Cand.-Subelection Isom. NP-com. [Prop. 4.5] NP-com. [Thm. 4.4] P [Thm. 4.1] P [Thm. 4.1]
Voter-Subelection Isom. P [Thm. 4.1] P [Thm. 4.1] P [Thm. 4.1] P [Thm. 4.1]

Max. Common Subel. W[1]-h. [Prop. 4.10] NP-com. [Prop. 4.10] NP-com. [Prop. 4.10] NP-com. [Prop. 4.10]
Max. Common Cand.-Subel. NP-com. [Prop. 4.9] NP-com. [Prop. 4.9] NP-com. [Prop. 4.9] W[1]-com. [Thm. 4.6]
Max. Common Voter-Subel. P [Thm. 4.1] P [Thm. 4.1] P [Thm. 4.1] P [Thm. 4.1]

Table 1: An overview of our results; those for Election Isomorphism are due to (Faliszewski et al.,
2019). W[1]-hardness holds with respect to the size of the smaller election or a common subelection.
Problems indicated as W[1]-hard problems are also NP-hard.

et al. (2021) in their maps of elections (such as the similarity between various ways of
generating single-peaked elections) and give a new perspective on some of these statistical
cultures and real-life elections.

In the most general variants of our problems, we assume that both input elections are over
different candidate sets and include different voters. Yet, sometimes it is natural to assume
that the candidates or the voters are the same (for example, in a presidential election votes
collected in two different districts would have the same candidate sets, but different voters,
whereas two consecutive presidential elections would largely involve the same voters, but not
necessarily the same candidates). We model such scenarios by variants of our problems where
either the matchings between the candidates or the voters of the input elections are given.
This way we follow Faliszewski et al. (2019), who considered the complexity of computing
their distances for the cases where such matchings are given. While one would expect that
having the matchings would make our problems easier, there are cases where they remain
NP-hard even with both matchings. This stands in sharp contrast to the results of Faliszewski
et al. (2019), who have shown that isomorphic swap distance is polynomial-time computable
in this setting. For a summary of our results, see Table 1.

2. Preliminaries

For a positive integer k, we write [k] to denote the set {1, . . . , k}, and by Sk we refer to the
set of all permutation over [k]. Given a graph G, we write V (G) to refer to its set of vertices
and E(G) to refer to its set of edges.

Elections. An election is a pair E = (C, V ) that consists of a set C = {c1, . . . , cm} of
candidates and a collection V = (v1, . . . , vn) of voters. Each voter v ∈ V has a preference
order, i.e., a ranking of the candidates from the most to the least appreciated one, denoted
as ≻v. Given two candidates ci, cj ∈ C, we write ci ≻v cj (or, equivalently, v : ci ≻ cj) to
denote that v prefers ci to cj . We extend this notation to more than two candidates in a
natural way. For example, we write v : c1 ≻ c2 ≻ · · · ≻ cm to indicate that voter v likes c1
best, then c2, and so on, until cm. If we put some set S of candidates in such a description
of a preference order, then we mean listing its members in some arbitrary (but fixed, global)
order. Including

←−
S means listing the members of S in the reverse of this order. We often refer

to the preference orders as either the votes or the voters, but the exact meaning will always
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be clear from the context. By the size of an election, we mean the number of candidates
multiplied by the number of voters. Occasionally we discuss single-peaked elections.

Definition 2.1 (Black, 1958). Let C be a set of candidates, and let ◁ be a linear order
over C (referred to as the societal axis). We say that a vote v is single-peaked with respect
to ◁ if for each k ∈ [m], the top k candidates in v form an interval within ◁. An election is
single-peaked if there is a societal axis for which all its votes are single-peaked.

Given elections E = (C, V ) and E′ = (C ′, V ′), we say that E′ is a subelection of E if C ′

is a subset of C and V ′ can be obtained from V by deleting some voters and restricting the
remaining ones to the candidates from C ′. We say that E′ is a voter subelection of E if we
can obtain it by only deleting voters from E, and that E′ is a candidate subelection of E if
we can obtain it from E by only deleting candidates.

Election Isomorphism. Let E be an election with candidate set C = {c1, . . . , cm} and
voter collection V = (v1, . . . , vn). Further, let D be another set of m candidates and let
σ : C → D be a bijection between C and D. For each voter v ∈ V , by σ(v) we mean a voter
with the same preference order as v, except that each candidate c is replaced with σ(c). By
σ(V ) we mean voter collection (σ(v1), . . . , σ(vn)). Similarly, given a permutation π ∈ Sn, by
π(V ) we mean (vπ(1), . . . , vπ(n)).

Two elections are isomorphic if it is possible to rename their candidates and reorder their
voters so that they become identical (Faliszewski et al., 2019). Formally, elections (C1, V1)
and (C2, V2), are isomorphic if |C1| = |C2|, |V1| = |V2|, and there is a bijection σ : C1 → C2

and a permutation π ∈ S|V1| such that (σ(C1), σ(π(V1))) = (C2, V2). We refer to σ as
the candidate matching and to π as the voter matching. In the Election Isomorphism
problem we are given two elections and we ask if they are isomorphic.

Computational Complexity. We assume familiarity with (parameterized) computa-
tional complexity theory; for background, we point the readers to the textbooks of Pa-
padimitriou (1994) and Cygan et al. (2015). Most of our intractability proofs follow by
reductions from the Clique problem. An instance of Clique consists of a graph G and a
nonnegative integer k, and we ask if G contains k vertices that are all connected to each
other. Clique is well-known to be both NP-complete and W[1]-complete, for the parameter-
ization by k (Downey & Fellows, 1995). Additionally, we provide some lower-bounds based
on the Exponential Time Hypothesis (ETH), which is a popular conjecture on solving the
CNF-SAT problem. For a formal statement see, e.g., Conjecture 14.1 in the textbook of Cy-
gan et al. (2015). Specifically, in our lower-bound proofs we use a consequence of the ETH
which says that there is no |V (G)|o(k)-time algorithm for Clique (Chen et al., 2006). As
all the problems that we study can easily be seen to belong to NP, in our NP-completeness
proofs we only give hardness arguments.

3. Variants of the Isomorphism Problem

We introduce two extensions of the Election Isomorphism problem, inspired by Sub-
graph Isomorphism and Maximum Common Subgraph. In the former, we are given
two elections and we ask if the smaller one is isomorphic to a subelection of the larger one.
That is, we ask if we can remove some candidates and voters from the larger election to
make the two elections isomorphic.
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Definition 3.1. An instance of Subelection Isomorphism consists of two elections,
E1 = (C1, V1) and E2 = (C2, V2), such that |C1| ≤ |C2| and |V1| ≤ |V2|. We ask if there is a
subelection E′ of E2 isomorphic to E1.

The Voter-Subelection Isomorphism problem is defined in the same way, except
that we require E′ to be a voter subelection of E2. Similarly, in Candidate-Subelection
Isomorphism we require E′ to be a candidate subelection. We often abbreviate the name
of the latter problem to Cand.-Subelection Isomorphism.

Example 3.1. Consider elections E = (C, V ) and F = (D,U), where C = {a, b, c}, D =
{x, y, z, w}, V = (v1, v2, v3) and U = (u1, u2, u3), with preference orders:

v1 : a ≻ b ≻ c, u1 : w ≻ x ≻ y ≻ z,

v2 : b ≻ a ≻ c, u2 : y ≻ w ≻ x ≻ z,

v3 : c ≻ b ≻ a, u3 : z ≻ w ≻ y ≻ x.

If we remove candidate w from (D,U), then we find that the resulting elections are iso-
morphic (to see this, it suffices to match voters v1, v2, v3 with u1, u2, u3, respectively, and
candidates a, b, c with x, y, z). Thus E is isomorphic to a (candidate) subelection of F and,
so, (E,F ) is a yes-instance of (Cand.-)Subelection Isomorphism.

In the Maximum Common Subelection problem we seek the largest isomorphic sub-
elections of two given ones. We often abbreviate Maximum as Max.

Definition 3.2. An instance of Max. Common Subelection consists of two elections,
E1 = (C1, V1) and E2 = (C2, V2), and a positive integer t. We ask if there is a subelection
E′

1 of E1 and a subelection E′
2 of E2 such that E′

1 and E′
2 are isomorphic and the size of E′

1

(or, equivalently, the size of E′
2) is at least t.2

Analogously to the case of Subelection Isomorphism, we also consider the Max.
Common Cand.-Subelection and Max. Common Voter-Subelection problems. In
the former, E′

1 and E′
2 must be candidate subelections and in the latter they need to be

voter subelections (thus in the former problem E1 and E2 must have the same numbers of
voters, and in the latter E1 and E2 must have the same numbers of candidates).

For each of the above-defined problems we consider its variant with or without the can-
didate or voter matching. Specifically, the variants defined above are with no matchings.
Variants with candidate matching include a bijection σ that matches (some of) the can-
didates in one election to (some of) those in the other. Then we ask for an isomorphism
between respective subelections that agrees with σ. In particular, this means that none of
the unmatched candidates remain in the considered subelections. Consequently, in case of
Subelection Isomorphism with candidate matching and its variants, all the candidates

2. It would also be natural to include two numbers in an instance, tc and tv, and ask for E′
1 and E′

2 that
both have at least tc candidates and tv voters. The choice between these two formulations—with number
t or with numbers tc and tv—is somewhat arbitrary, in the sense that computational complexity for both
variants is the same. Indeed, in our hardness proofs we always have that if there is a solution then it
has certain numbers of candidates and voters, and our polynomial-time algorithms only regard variants
of Max. Common Voter Subelection, where we cannot delete candidates and the two variants are
equivalent.
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from the smaller election must be matched to those in the larger one. For variants of our
problems where each candidate from one election is matched to some candidate from the
other, a convenient interpretation of having a candidate matching is to assume that both
input election have the same candidate sets.

Example 3.2. Consider elections (C, V ) and (D,U) from Example 3.1, and a matching
σ such that σ(a) = x, σ(b) = w, where c, y, and z are unmatched. After applying it and
dropping the unmatched candidates, the votes in the first election become v1 : x ≻ w, v2 : w ≻
x, and v3 : w ≻ x, whereas all the voters in the second election have preference order w ≻ x.
Thus, this instance of Max. Common Subelection with Candidate Matching has
isomorphic subelections, respecting the matching σ, of size 2 · 2 = 4.

Variants with voter matching are defined similarly: We are given a matching between
(some of) the voters from one election and (some of) the voters from the other. The sought-
after isomorphism must respect this matching; again, this means that we can disregard the
unmatched voters and, hence, for Subelection Isomorphism and its variants, each voter
from the smaller election must be matched to some voter from the larger one.

Variants with both matchings include both the matching between the candidates and the
matching between the voters; note that these variants are not trivial because we still need
to decide who to delete. By writing all four matching cases we mean the four just-described
variants of a given problem.

Finally, we note that each variant of Max. Common Subelection is at least as com-
putationally difficult as its corresponding variant of Subelection Isomorphism.

Proposition 3.1. Let M be a variant of Max. Common Subelection and let S be a
corresponding variant of Subelection Isomorphism. We have that S many-one reduces
to M in polynomial time.

Proof. We are given a problem M which is a variant of Max. Common Subelection,
and problem S, which is an analogous variant of Subelection Isomorphism (so if the
former only allows deleting candidates, then so does the latter, etc.). We want to show that
S many-one reduces to M in polynomial time. Let IS = (E1, E2) be an instance of S, where
E1 is the smaller election. We form an instance IM = (E1, E2, t) of M , which uses the very
same elections and where t is set to be the size of E1. This means that in IM we cannot
perform any operations on election E1, because that would decrease its size below t. Hence,
we can only perform operations on E2, so the situation is the same as in the S problem and
in the IS instance.

4. Computational Complexity Analysis

In this section we present our complexity results. While in most cases we obtain intractabil-
ity (see Table 1 for a summary of our results), we find that all our problems focused on
voter subelections are solvable in polynomial time, and having candidate matchings leads to
polynomial-time algorithms for all the variants of Subelection Isomorphism.

All our polynomial-time results rely on the trick used by Faliszewski et al. (2019) for the
case of Election Isomorphism. The idea is to guess a pair of (matched) voters and use
them to derive the candidate matching.
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Theorem 4.1. Voter-Subelection Isomorphism and Max. Common Voter-
Subelection are in P for all four matching cases. Subelection Isomorphism, Cand.-
Subelection Isomorphism are in P for all cases with candidate matchings.

Proof. We first give an algorithm for Max. Common Voter-Subelection. Let E =
(C, V ) and F = (D,U) be our input elections and let t be the desired size of their isomorphic
subelections. Since we are looking for a voter subelection, without loss of generality we may
assume that |C| = |D| (and we write m to denote the number of candidates in each set).
For each pair of voters v ∈ V and u ∈ U we perform the following algorithm:

1. Denoting the preference orders of v and u as c1 ≻v c2 ≻v · · · ≻v cm and d1 ≻u d2 ≻u

· · · ≻u dm, respectively, we form a bijection σ : C → D such that for each ci ∈ C we
have σ(ci) = di.

2. We form a bipartite graph where the voters from V form one set of vertices, the voters
from U form the other set of vertices, and there is an edge between voters v′ ∈ V and
u′ ∈ U if σ(v′) = u′.

3. We compute the maximum cardinality matching in this graph, using, e.g., one of the
classic polynomial-time algorithms; see the overview of Ahuja et al. (1993) or the
textbook of Cormen et al. (2001). Then, we form subelections that consist of the
matched voters. We accept if their size is at least t.

If the algorithm does not accept for any choice of v and u, we reject.
Very similar algorithms also work for the variants of Max. Common Voter-

Subelection with either one or both of the matchings: If we are given the candidate
matching, then we can omit the first step in the enumerated algorithm above, and if we
are given a voter matching then instead of trying all pairs of voters v and u it suffices to
try all voters from the first election and obtain the other one via the matching. Analogous
algorithms also work for Voter-Subelection Isomorphism (for all four matching cases)
and for all the other variants of Subelection Isomorphism, provided that the candidate
matching is given.

4.1 Intractability of Subelection Isomorphism

Next we show computational hardness for all the remaining variants of our problems. In this
section we consider Subelection Isomorphism.

Theorem 4.2. Subelection Isomorphism is NP-complete and W[1]-hard with respect to
the size of the smaller election.

Proof. Before we describe our reduction, we first provide a method for transforming a graph
into an election: For a graph H, we let EH be an election whose candidate set consists of
the vertices of H and two special candidates, αH and βH , and whose voters correspond to
the edges of H. Specifically, for each edge e = {x, y} ∈ E(H) we have four voters, v1e , . . . v4e ,
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with preference orders:

v1e : x ≻ y ≻ αH ≻ βH ≻ V (H) \ {x, y},
v2e : x ≻ y ≻ βH ≻ αH ≻ V (H) \ {x, y},
v3e : y ≻ x ≻ αH ≻ βH ≻ V (H) \ {x, y},
v4e : y ≻ x ≻ βH ≻ αH ≻ V (H) \ {x, y}.

Note that the elements from the set V (H) \ {x, y} are always ranked in the same order
(as per our convention, including a candidate set in a preference order means listing its
members according to some arbitrary, but fixed, global order). We give a reduction from
Clique. Given an instance (G, k) of Clique, where G has at least k vertices and

(
k
2

)
edges,

we let K be a size-k complete graph and we form an instance (EK , EG) of Subelection
Isomorphism. The reduction runs in polynomial time and it remains to show its correctness.
Without loss of generality, we assume that k ≥ 3.

First, let us assume that G has a size-k clique. Let X be the set of its vertices and let Y
be the set of its edges. We form a subelection E′ of EG by removing all the candidates that
are not in X ∪ {αG, βG} and removing all the voters that do not correspond to the edges
from Y . One can verify that E′ and EK are, indeed, isomorphic.

Second, let us assume that EK is isomorphic to some subelection E′ of EG. We will
show that this implies that G has a size-k clique. First, we claim that E′ includes both αG

and βG. To see why this is so, consider the following two cases:

1. If E′ contained exactly one of αG, βG, then this candidate would appear in every
vote in E′ among the top three positions. Yet, in EK there is no candidate with this
property, so E′ and EK would not be isomorphic.

2. If E′ contained neither αG nor βG then every vote in E′ would rank some vertex
candidates z and w on positions three and four (to be able to match αK and βK to
them). In particular, this would mean that z and w would never appear on top two
positions in E′ and, hence, that E′ would not include votes corresponding to edges
involving vertices z and w. By the construction of EG, either in every vote from E′ we
would have z ≻ w or in every vote from E′ we would have w ≻ z. Since in EK half of
the voters rank the candidates from positions three and four in the opposite way, E′

and EK would not be isomorphic.

Thus αG and βG are included in E′. Moreover αG and βG are matched with αK and βK .
To see why this is the case, let us consider the following two cases: (a) If E′ contains a
vote where αG appears on position three then it must also include a vote where αG appears
on position four (this holds because in Ek every candidate that appears on position three
in some vote also appears on position four in some other vote). However, αG appears on
position four in some vote from E′ only if βG appears on position three in this vote. Hence,
this vote witnesses that αG and βG must be matched to αK and βK (because αK and βK are
the only candidates that appear on positions three and four in EK). Analogous reasoning
applies to the case where βG appears on position three in some vote from E′. (b) If the
preceding case does not apply, then all votes in E′ rank αG and βG on the top two positions.
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However, this means that E′ is not isomorphic to EK because in the latter election there
are no two candidates that are always ranked on the top two positions.

As a consequence, for each vote v from EG that appears in E′, the candidate set of E′

must include the two candidates from V (G) that v ranks on top (if it were not the case,
then E′ would contain a candidate—either αG or βG—that appeared in all the votes within
the top four positions and in some vote within the top two positions; yet EK does not have
such a candidate). This means that for each edge e ∈ E(G), if E′ contains some voter vie
for i ∈ [4], then it also contains the other voters corresponding to e (otherwise, E′ and EK

would not be isomorphic). The number of voters in EK is 4
(
k
2

)
, and the number of distinct

corresponding edges from G is
(
k
2

)
. As said before, for each such chosen edge, we also choose

two corresponding vertices as candidates. It means that the number of chosen candidates
(except αG and βG) is between k and 2

(
k
2

)
. However, the number of candidates in EK

except αK and βK is k, therefore we conclude that the chosen vertex-candidates form a
size-k clique in G. This completes the proof of NP-hardness.

To show W[1]-hardness, note that the number of candidates and voters in the smaller
election equals k+2 and 4

(
k
2

)
respectively, hence the size of the smaller election is a function

of parameter k, for which Clique is W[1]-hard.

The above reduction shows something stronger than the theorem claims. Indeed, assum-
ing ETH one cannot compute a solution faster than a straightforward brute-force approach.

Proposition 4.3. Subelection Isomorphism has an O∗(mk)-time algorithm, where k is
the number of candidates in the smaller election and m is the number of candidates in the
larger election (hence the problem is in XP for the parameter k). Moreover, assuming ETH,
there is no O∗(mo(k))-time algorithm.

Proof. The XP algorithm is a straightforward brute-force approach. For a fixed order of
candidates in the smaller election, we create a matching with some k candidates in the
larger election. We try at most m(m− 1) . . . (m− k+ 1) ≤ mk cases. For a given matching,
we solve a problem Subelection Isomorphism with Candidate Matching using a
polynomial-time algorithm from Theorem 4.1. Hence the total running time is O∗(mk).

For the hardness part, recall that ETH implies that there is no |V |o(K)-time algorithm
for finding a size-K clique on a graph with vertex set V (Chen et al., 2006). In our reduction
in Theorem 4.2, we have that the number of candidates in the larger election is m = |V |+2
and the number of candidates in the smaller election is k = K + 2. Therefore, using an
O∗(mo(k))-time algorithm for Subelection Isomorphism we could solve Clique in time
mo(k) ·poly(k3+m3) = (|V |+2)o(K+2) ·poly(|V |) = |V |o(K). This would contradict ETH.

As a consequence of the above XP algorithm, even testing if a fairly small, constant-sized,
election is isomorphic to a subelection of some bigger one may require a polynomial-time
algorithm with impractically large exponents. Luckily, in practice this is not always the case.
For example, single-peaked elections are characterized as exactly those that do not have
subelections isomorphic to certain two elections of sizes 8 and 9 (Ballester & Haeringer,
2011), but there is an algorithm for deciding if a given election is single-peaked that runs in
time O(nm), where m is the number of candidates and n is the number of voters (Escoffier
et al., 2008). For single-crossing elections, such a characterization uses subelections of sizes
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up to 18, but there is a recognition algorithm that runs in time O(n2+nm logm) (Doignon
& Falmagne, 1994), which can even be improved using appropriate data structures.

Next we consider Cand.-Subelection Isomorphism. In this problem both elections
have the same number of voters and we ask if we can delete candidates from the one that
has more, so that they become isomorphic. We first show that this problem is NP-complete
for the case where the voter matching is given (which also proves the same result for Sub-
election Isomorphism with Voter Matching) and next we describe how this proof
can be adapted to the variant without any matchings (the variant with candidate matching
is in P and was considered in the preceding section).

Theorem 4.4. Subelection Isomorphism with Voter Matching and Cand.-
Subelection Isomorphism with Voter Matching are NP-complete.

Proof. We note that each instance of Cand.-Subelection Isomorphism with Voter
Matching is also an instance of Subelection Isomorphism with Voter Matching.
Consequently, it suffices to show NP-hardness of the former (as per our convention, we omit
simple NP-membership proofs). We do so by giving a reduction from Exact Cover by
3-Sets (X3C). An instance of X3C consists of a set X = {x1, . . . , xm} of elements and a
family S = {S1, . . . , Sn} of three-element subsets of X. We ask if S contains a subfamily S ′
such that each element from X belongs to exactly one set from S′. Given such an instance,
we form two elections, E1 and E2, as follows.

Election E1 will be our smaller election and E2 will be the larger one. We let X be
the candidate set for election E1, whereas to form the candidate set of E2 we proceed as
follows. For each set St = {xi, xj , xk} ∈ S, we introduce candidates si,t, sj,t, and sk,t.
Intuitively, if some candidate su,t remains in a subelection isomorphic to E1, then we will
interpret this fact as saying that element xu is covered by set St; this will, of course, require
introducing appropriate consistency gadgets to ensure that St also covers its other members.
For each i ∈ [m], we let Pi be the set of all the candidates of the form si,t, where t belongs
to [n] (in other words, each Pi contains the candidates from E2 that are associated with
element xi).

Example 4.1. Let X = {x1, x2, x3, x4, x5, x6} and S = {S1, . . . , S4}, where:

S1 = {x1, x2, x5}, S2 = {x1, x3, x6}, S3 = {x2, x3, x5}, S4 = {x3, x4, x6}}.

Then:

P1 = {s1,1, s1,2}, P2 = {s2,1, s2,3}, P3 = {s3,2, s3,3, s3,4},
P4 = {s4,4}, P5 = {s5,1, s5,3}, P6 = {s6,2, s6,4}.

We denote the voter collection of election E1 as V = (v, v′, v1, v
′
1, . . . , vn, v

′
n) and the

voter collection of E2 as U = (u, u′, u1, u
′
1, . . . , un, u

′
n). Voters v and v′ are matched to

voters u and u′, respectively, and for each i ∈ [2n], vi is matched to ui and v′i is matched
to u′i. The preference orders of the first two pairs of voters are:

v : x1 ≻ x2 ≻ · · · ≻ xm, u : P1 ≻ P2 ≻ · · · ≻ Pm,

v′ : x1 ≻ x2 ≻ · · · ≻ xm, u′ :
←−
P 1 ≻

←−
P 2 ≻ · · · ≻

←−
P m.
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Next, for each t ∈ [n] such that St = {xi, xj , xk}, i < j < k, we let the preference orders
of vt, v′t and their counterparts from U be as follows (by writing “· · · ” in the votes from E1

we mean listing the candidates from X \ {xi, xj , xk} in the order of increasing indices, and
for the voters from E2 by “· · · ” we mean order P1 ≻ P2 ≻ · · · ≻ Pm with Pi, Pj , and Pk

removed):

vt : xi ≻ xj ≻ xk ≻ · · · ,
ut : si,t ≻ sj,t ≻ sk,t ≻ Pi \ {si,t} ≻ Pj \ {sj,t} ≻ Pk \ {sk,t} ≻ · · · ,
v′t : xk ≻ xj ≻ xi ≻ · · · ,
u′t : sk,t ≻ sj,t ≻ si,t ≻ Pk \ {sk,t} ≻ Pj \ {sj,t} ≻ Pi \ {si,t} ≻ · · · .

This finishes our construction. It is clear that it is polynomial-time computable and it
remains to show that it is correct.

Let us assume that we have a yes-instance of X3C, that is, there is a family S ′ of
sets from S such that each element from X belongs to exactly one set from S ′. We form
a subelection E′ of E2 by deleting all the candidates si,t except for those for whom set St

belongs to S ′. Then, let σ be a function such that for each xi ∈ X we have σ(xi) = si,t,
where St is the set from S ′ that contains xi. Together with our voter matching, σ witnesses
that E1 and E′ are isomorphic.

For the other direction, let us assume that E2 has a subelection E′ that is isomorphic
to E1 and let C ′ be its candidate set. First, we claim that for each i ∈ [m] exactly one
candidate from Pi is included in C ′. Indeed, if it were not the case, then u and u′ would
not have identical preference orders, as required by the fact that they are matched to v
and v′. Second, we note that for each i ∈ [m] the candidate matching that witnesses our
isomorphism must match xi with the single candidate in Pi ∩ C ′. Finally, we claim that if
some candidate si,t is included in C ′, where St = {xi, xj , xk}, i < j < k, then candidates sj,t
and sk,t are included in C ′ as well. Indeed, if sj,t were not included in C ′, then ut and u′t
would rank the members of Pi∩C ′ and the members of Pj∩C ′ in the same order, whereas vj
and v′j rank xi and xj in opposite orders (and, by the second observation, xi and xj are
matched to the member of Pi ∩ C ′ and Pj ∩ C ′, respectively). The same argument applies
to xk,t. We say that a set St = {xi, xj , xk} ∈ S is selected by C ′ if the candidates si,t, sj,t,
and sk,t belong to C ′. By the above reasoning, we see that exactly n/3 sets are selected and
that they form an exact cover of X.

Cand.-Subelection Isomorphism remains NP-complete also without the voter
matching. By doubling the voters and using a few extra candidates we ensure that only
the intended voter matching is possible.

Proposition 4.5. Cand.-Subelection Isomorphism is NP-complete.

Proof. We give a reduction from Cand. Subelection Isomorphism with Voter
Matching. Let the input instance be (E1, E2), where the smaller election, E1, has voter
collection (v1, . . . , vn) and the larger election, E2, has voter collection (u1, . . . , un). Further,
for each i ∈ [n] voter vi is matched with voter ui. We form elections E′

1 and E′
2 in the

following way. The candidate set of E′
1 is the same as that of E1 except that it also includes

candidates from the set D = {d1, . . . , d2n}. Similarly, E′
2 contains the same candidates as
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E2 plus the candidates from the set F = {f1, . . . , f2n}. The voter collections of E′
1 and E′

2

are, respectively, (v′1, v′′1 , . . . , v′n, v′′n) and (u′1, u
′′
1, . . . , u

′
n, u

′′
n). For each i ∈ [n] these voters

have the following preference orders (by writing [vi] or [ui] in a preference order we mean
inserting the preference order of voter vi or ui in a given place):

v′i : d2i−1 ≻ d1 ≻ · · · ≻ d2n ≻ [vi],

u′i : f2i−1 ≻ f1 ≻ · · · ≻ f2n ≻ [ui],

v′′i : d2i ≻ d1 ≻ · · · ≻ d2n ≻ [vi],

u′′i : f2i ≻ f1 ≻ · · · ≻ f2n ≻ [ui].

We claim that E′
1 is isomorphic to a candidates subelection of E′

2 if and only if E1 is
isomorphic to a candidate subelection of E2 with the given voter matching. In one direction
this is clear: If E1 is isomorphic to a subelection of E2 with a given voter matching, then it
suffices to use the same voter matching for the case of E′

1 and E′
2, and the same candidate

matching, extended with matching each candidate di to fi.
Next, let us assume that E′

1 is isomorphic to some subelection E′ of E′
2. By a simple

counting argument, we note that E′ must contain some candidates not in F . Further, we
also note that it must contain all members of F . Indeed, each voter in E′

1 has a different
candidate on top and this would not be the case in E′ if it did not include all members of F
(if E′ did not include any members of F then this would hold for each two votes u′i and u′′i ,
and if E′ contained some members of F but not all of them, then this would hold because
each voter in E′ would rank some member of F on top, but there would be fewer members
of F than voters in the election).

As a consequence, every candidate matching σ that witnesses isomorphism between E′
1

and E′ matches some member of D to some member of F . Further, we claim that for each
i ∈ [2n], σ(di) = fi. For the sake of contradiction, let us assume that this is not the case and
consider some i ∈ [2n − 1] for which there are j and k such that σ(di) = fj , σ(di+1) = fk
and j > k (such i, j, k must exist under our assumption). However, in E′

1, all but one voter
rank di ahead of di+1, whereas in E′ all but one voter rank σ(di+1) ahead of σ(di). Thus σ
cannot witness isomorphism between E′

1 and E′.
Finally, since for each i ∈ [2n] we have that di is matched to fi, it also must be the case

that for each j ∈ [n] voters v′j and v′′j are matched to u′j and u′′j , respectively (indeed, v′j is
the only voter who ranks d2j−1 on top, and u′j is the only voter who ranks f2j−1 on top;
the same argument works for the other pair of voters). As a consequence, we have that E1

is isomorphic to a subelection of E2 under the voter matching that for each i ∈ [n] matches
vi to ui.

4.2 Intractability of Max. Common Subelection

Perhaps the most surprising result regarding Max. Common Subelection is that it is
NP-complete even when both matchings are given. The surprise stems from the fact that
all generalizations of Election Isomorphism considered by Faliszewski et al. (2019) are
solvable in polynomial-time in this setting. We first show this result for candidate subelec-
tions.
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Theorem 4.6. Max. Common Cand.-Subelection with Both Matchings is NP-
complete and W[1]-complete with respect to the candidate set size of isomorphic candidate
subelections.

Proof. We give a reduction from the Clique problem, where the idea is to encode the
adjacency matrix of a given graph by a pair of elections with both matchings defined. We
encode the missing edges in the graph as a conflict on the candidate ordering within matched
voters.

Formally, given an instance (G, k) of Clique, we form two elections, E1 = (C, V1)
and E2 = (C, V2), where C = V (G). Since we need to provide an instance with candidate
matching, we simply specify both elections over the same candidate set. Without loss of
generality, we assume that V (G) = {1, . . . , n}. For each x ∈ V (G) we define the neigh-
borhood of x in G as N(x) = {y ∈ V (G) : {x, y} ∈ E(G)} and the set of non-neighbors
as M(x) = V (G) \ {N(x) ∪ {x}}.

For each vertex x ∈ V (G) we define two matched voters, vx in E1 and ux in E2, with
the following preference orders:

vx : M(x) ≻ x ≻ N(x),

ux : x ≻M(x) ≻ N(x).

We ask if E1 and E2 have isomorphic candidate subelections that contain at least k can-
didates each. Intuitively, in a solution to the problem, for each vertex x one has to remove
either x or all vertices from M(x). It is a direct definition of a clique: Either x is not in
a clique or all its nonneighbors are not in a clique. It is clear that the reduction can be
computed in polynomial time and it remains to show its correctness.

First, let us assume that G has a size-k clique. Let K be the set of this clique’s vertices.
We form elections E′

1 and E′
2 by restricting E1 and E2 to the candidates from K. To verify

that E′
1 and E′

2 are isomorphic via the given matchings, let us consider an arbitrary pair of
matched voters vx and ux. If x is not included in K then the preference orders of vx and ux
restricted to K are identical. Indeed, removing even only x from the set of candidates
makes vx and ux identical. Otherwise, if x is in K then K ∩M(x) = ∅ as K is a clique.
Therefore, removing M(x) from the set of candidates makes vx and ux identical.

For the other direction, let us assume that there are subelections E′
1 and E′

2 of E1

and E2, respectively, each with candidate set K, such that |K| ≥ k and E′
1 and E′

2 are
isomorphic via the given matchings. It must be the case that the vertices from K form a
clique because if K contained two vertices x and y that were not connected by an edge,
then votes vx and ux would not be identical. Indeed, we would have y ≻ x in vx and x ≻ y
in ux, respectively, when restricted to candidates from K. This completes the proof of NP-
hardness. To show W[1]-hardness, note that the required number of candidates in isomorphic
candidate subelections is equal to the parameter k for which Clique is W[1]-hard.

To show membership of Max. Common Cand.-Subelection with Both Match-
ings in W[1], let us now give a reduction to Clique with an equal value of the parameters.
Let E1 = (C, V1) and E2 = (C, V2) be our input elections and let k be the number of candi-
dates in maximum isomorphic candidate subelections (since we are in the “with candidate
matching” regime, we take the candidate sets to be equal). Let m = |C|, n = |V1| = |V2|
(since we cannot remove the voters).
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We create an instance (G, k) of Clique as follows. We define G as having vertices
corresponding to candidates, i.e., V (G) = C. We construct the set of edges by starting from
a complete graph and removing some of them as follows. For every two matched voters v
and u and every two candidates x and y such that x ≻v y and y ≻u x, we remove edge {x, y}
from the graph. It is clear that the reduction can be computed in polynomial time and both
parameters have the same value. It remains to show its correctness.

First, let us assume that there are subelections E′
1 and E′

2 of E1 and E2, respectively,
each with candidate set K, such that |K| ≥ k and E′

1 and E′
2 are isomorphic via the given

matchings. It must be the case that the vertices from K form a clique. Indeed, if K contained
two vertices x and y that were not connected by an edge, then edge {x, y} had to be removed
by some two matched voters v and u such that x ≻v y and y ≻u x. Since both voters belong
to subelections E′

1 and E′
2, we obtain a contradiction that they are isomorphic via the given

matchings.
For the other direction, let us assume that G has a size-k clique. Let K be the set of this

clique’s vertices. We form elections E′
1 and E′

2 by restricting E1 and E2 to the candidates
from K. To verify that E′

1 and E′
2 are isomorphic via the given matchings, let us consider

an arbitrary pair of matched voters v and u and an arbitrary pair of candidates x, y ∈ K.
It follows that x ≻v y and x ≻u y. Otherwise edge {x, y} would have been removed during
the reduction, hence K would not be a clique. A contradiction.

The above reduction can be used to show strong hardness results which transfer from
Clique. In particular, a brute-force algorithm is essentially the best possible for exact com-
putation. Further, a trivial approximation algorithm which returns a constant size solution
(hence the approximation ratio is O(m)) is also essentially optimal.

Proposition 4.7. Max. Common Cand.-Subelection with Both Matchings has
an O∗(mk)-time algorithm, where k is the number of candidates in isomorphic candidate
subelections and m is the number of candidates in the input (hence the problem is in XP for
the parameter k). Moreover, assuming ETH, there is no O∗(mo(k))-time algorithm.

Proof. Note that in the input of the problem we have the same number of candidates and
the same number of voters in both elections. The algorithm simply guesses k candidates
from one of the input elections and checks if both obtained candidate-subelections restricted
to chosen k candidates are the same. There are

(
m
k

)
many choices for k candidates, hence

the total running time is bounded by O∗(mk).
Under ETH there is no |V |o(K)-time algorithm for finding a size-K clique on a graph with

vertex set V (Chen et al., 2006). In our reduction in Theorem 4.6 we have m = |V | many
candidates and required candidate set size is k = K. Therefore, using an O∗(mo(k))-time
algorithm for Max. Common Cand.-Subelection with Both Matchings we could
solve Clique in time mo(k) · poly(m2) ≤ |V |o(k). This contradicts ETH.

Proposition 4.8. Max. Common Cand.-Subelection with Both Matchings has a
polynomial-time t/c-approximation algorithm for any constant c ≥ 1, where t is the maximum
number of candidates in isomorphic candidate subelections. Moreover, approximating the
problem within a t1−ϵ factor is NP-hard for every ϵ > 0.
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Proof. First, note that we use the convention that an approximation ratio α is at least 1
also for a maximization problem. Therefore, if Alg is a value of a solution returned by
an algorithm and Opt is the value of an optimal solution then Opt

Alg ≤ α implies that the
solution is an α-approximation of an optimal one.

Let us describe the algorithm. For any fixed natural number c ≥ 1 we check all size-c
subsets of candidates as a solution. There are at most

(
m
c

)
≤ mc many such subsets (i.e.,

polynomially many). We evaluate each of them in polynomial time. At least one such trial
leads to finding a subset of an optimal solution, so it is a feasible solution of size c. Therefore
the algorithm has approximation ratio at most Opt

Alg = t
c .

It is NP-hard to approximate Clique within factor |V |1−ϵ for every ϵ > 0, where V
is a given set of vertices (Zuckerman, 2007). In the reduction in Theorem 4.6 the number
of candidates m equals to the number of vertices of the graph, hence t ≤ m = |V |. There-
fore, using a t1−ϵ-approximation algorithm for Max. Common Cand.-Subelection with
Both Matchings, for some ϵ > 0, we could approximate Clique within |V |1−ϵ factor. This
would imply P = NP.

As a comment we point that the above running time lower-bound (Proposition 4.7) and
hardness of approximation (Proposition 4.8) can be combined under a stronger hypothesis.
The work of Chalermsook et al. (2017) give an evidence that for Clique, where K denotes
the size of maximum clique, K1−ϵ-approximation is not possible even in time FPT with
respect to K assuming the gap version of ETH, called Gap-ETH. Hence, the same hardness
holds for Max. Common Cand.-Subelection with Both Matchings. It means, that
the best way to solve both problems, even approximately, is to essentially enumerate all
possibilities (Chalermsook et al., 2017).

Max. Common Cand.-Subelection (without any matchings) also is NP-complete,
and so are its variants with a candidate matching and with a voter matching. The proofs
either follow by applying Proposition 3.1 or by introducing candidates that implement a
required voter matching. In the latter case, W[1]-hardness does not follow from this reduction
as we introduce dummy candidates that have to be included in a solution, but their number
is not a function of the Clique parameter (i.e., the clique size).

Proposition 4.9. Max. Common Cand.-Subelection is NP-complete and so are its
variants with a given candidate matching and with a given voter matching.

Proof. Below we give the reductions for all the three cases, i.e., the case with a given can-
didate matching, with a given voter matching, and without any matchings.

Given Candidate Matching. We give a reduction from Max. Common Cand.-
Subelection with both Matchings. Let E1 = (C, V ) and E2 = (C,U) be our input
elections, where V = (v1, . . . , vn) and U = (u1, . . . , un), and let t be the desired size of the
isomorphic subelection (since we are in the setting with both matchings, we can assume that
both elections are over the same candidate set). We assume that for each i ∈ [n], voter vi is
matched to ui. Let m = |C| and let k = t/n. We note that k ≤ m.

Our construction proceeds as follows. First, we form m + 1 sets, A, D1, . . . , Dm, each
containing m + 1 new candidates. Let D = A ∪D1 ∪ · · · ∪Dm. Note that |D| = (m + 1)2.
We form elections E′

1 = (C ∪ D, V ′) and E′
2 = (C ∪ D, U ′), where V ′ = (v′1, . . . , v

′
n) and
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U ′ = (u′1, . . . , u
′
n). For each i ∈ [n], we set the preference orders of v′i and u′i as follows (by

writing [vi] and [ui] we mean copying the preference order of vi and ui, respectively):

v′i : D1 ≻ · · · ≻ Di−1 ≻ A ≻ Di ≻ · · · ≻ Dm ≻ [vi],

u′i : D1 ≻ · · · ≻ Di−1 ≻ A ≻ Di ≻ · · · ≻ Dm ≻ [ui].

Finally, we set the desired size of the isomorphic subelections to be t′ = n · (k+(m+1)2) =
t+ n(m+ 1)2.

We claim that E′
1 and E′

2 have isomorphic candidate subelections of size t′ for the given
candidate matching if and only if E1 and E2 have isomorphic candidate subelections of size
t for given candidate and voter matchings.

Let us assume that E′
1 and E′

2 have the desired candidate subelections, E′′
1 and E′′

2 . We
claim that their isomorphism is witnessed by such a matching that for each i voter v′i is
matched to u′i. If it were not the case, then to maintain the isomorphism these subelections
would have to lose at least m− 1 candidates from D (e.g., the candidates from A) and their
sizes would be, at most, n(m +m(m + 1)) = n((m + 1)2 − 1) < t′. Thus the isomorphism
of E′′

1 and E′′
2 is witnessed by the same voter matching as the one required by our input

instance. A simple counting argument shows that after dropping candidates from D from
subelections E′′

1 and E′′
2 , we obtain elections witnessing that (E1, E2) is a yes-instance of

Max. Common Cand.-Subelection with both Matchings. The reverse direction is
immediate.

Given Voter Matching. This case follows by Proposition 3.1 and the fact that Cand.-
Subelection with Voter Matching is NP-complete.

No Matchings Given. This case follows by Proposition 3.1 and the fact that Cand.-
Subelection Isomorphism problem is NP-complete.

Similarly to all four matching cases of the Max. Common Cand.-Subelection, all
four matching cases of the Max. Common Subelection also are NP-complete.

Proposition 4.10. All four matching cases of the Max. Common Subelection are NP-
complete.

Proof. For the case without any matchings and the case with the voter matching, we use
Proposition 3.1 to reduce from the corresponding variant of Subelection Isomorphism.
For the variants that include the candidate matching (for which Subelection Isomor-
phism is in P), we reduce from the corresponding variants of Max. Common Cand.-
Subelection. Let E1 = (C, V1) and E2 = (C, V2) be our input elections and let t be the
desired size of their isomorphic candidate subelections (since we are in the “with candi-
date matching” regime, we take the candidate sets to be equal). Without loss of generality,
we can assume that |V1| = |V2|; our NP-completeness proofs for Max. Common Cand.-
Subelection give such instances.

Let m = |C|, n = |V1| = |V2|, and let D be a set of (n−1)m dummy candidates. We form
elections E′

1 and E′
2 to be identical to E1 and E2, respectively, except that they also include

the candidates from D, who are always ranked on the bottom, in the same order. Hence,
the number of candidates in E′

1 and E′
2 equals nm. We ask if E′

1 and E′
2 have isomorphic

subelections of size t′ = t+ n(n− 1)m.
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If E1 and E2 have isomorphic candidate subelections of size t, then certainly E′
1 and E′

2

have isomorphic subelections of size t′ (it suffices to take the same subelections as for E1

and E2 and include the candidates from D).
On the other hand, if E′

1 and E′
2 have isomorphic subelections of size t′, then E1 and E2

have size-t isomorphic candidate subelections. Indeed, the subelections of E′
1 and E′

2 must
include all the n voters. Otherwise their sizes would be at most (n−1)mn < t+(n−1)mn ≤ t′.
Thus the subelections of E′

1 and E′
2 are candidate subelections. As we can also assume that

the subelections of E′
1 and E′

2 include all the candidates from D, by omitting these candidates
we get the desired candidate subelections of E1 and E2.

5. Experiments

In this section we use the Max. Common Voter-Subelection problem to analyze simi-
larities between elections generated from various statistical models. While Max. Common
Voter-Subelection has a polynomial-time algorithm, it is too slow for our purposes.
Thus we have expressed it as an integer linear program (ILP) and we were solving it using
the CPLEX ILP solver. Our ILP formulation is available in Appendix A. The source code
used for the experiments is available in a GitHub repository3. Whenever we discuss the
running time of a particular algorithm, we report experiments performed on a single thread
on Apple MacBook Air with M1 processor and 8 GB RAM.

We stress that we could have used other problems from the Max. Common Subelec-
tion family in this section, but we chose Max. Common Voter-Subelection because
its outcomes are particularly easy to interpret. Specifically, given two elections, E1 and E2,
both with the same number of voters, using the Max. Common Voter-Subelection
problem we can compute the largest fraction of votes that we can keep in these elections
while ensuring their isomorphism. For example, if we know that it is possible to keep certain
70% of the votes while ensuring the elections’ isomorphism, then we have a strong argument
that these elections are structurally very similar. On the flip side, if the fraction of the vot-
ers in the largest isomorphic subelections is small, then it does not need to mean that the
elections are not similar. Indeed, the elections may be similar, but their votes may differ
slightly, preventing the existence of large isomorphic subelections. For example, consider two
elections over a large number of candidates and with a large number of voters, where in the
first one all the votes are identical, and in the second one all the votes are identical except
that each voter ranks some small number of bottom-ranked candidates differently. We would
typically view such elections as very similar, but their largest isomorphic voter subelections
contain only a single voter each. While this clearly is a drawback of the isomorphism-based
approach, it is the necessary price to pay for the strength of the similarity results. If one
insists on identifying such approximate similarity, then one should use the isomorphic swap
distance of Faliszewski et al. (2019) or the positionwise distance of Szufa et al. (2020).

Our main finding is that elections with few candidates (say, four) are quite similar to each
other irrespective of what model is used to generate them. For larger candidate sets some
similarities (in terms of large isomorphic voter subelections) between elections generated
from various sources exist, but they are far less frequent.

3. https://github.com/Project-PRAGMA/Subelections
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5.1 Statistical Models of Elections

Below we describe several standard models for generating elections. For some of these models
it suffices to provide a distribution over the votes, possibly parameterized in some way. Under
such models, generating an election boils down to sampling the required number of voters
from the given distribution. For other models, we give an explicit procedure for generating
an election with a given number of candidates and voters:

Identity. Under the Identity model (ID), we choose a single preference order uniformly at
random and then all the generated votes are equal to it.

Impartial Culture. Under Impartial Culture (IC), we generate each preference order uni-
formly at random.

Pólya-Eggenberger Urn Model. The Pólya-Eggenberger Urn Model (Berg, 1985) is pa-
rameterized by a nonnegative value α ∈ [0,∞), which specifies the degree of correlation
between the votes (McCabe-Dansted & Slinko, 2006). We start with an urn contain-
ing exactly one copy of each possible preference order over the given candidate set
(we assume that there are m candidates). Then we generate the votes one by one, by
drawing a preference order from the urn (which we assume to be the generated vote)
and putting it back to the urn together with α ·m! duplicates.

Mallows Model. The Mallows Model (Mallows, 1957) is parameterized by a value ϕ ∈
[0, 1] and a central preference order u, which we choose uniformly at random. The prob-
ability of generating a preference order v is proportional to ϕswap(u,v), where swap(u, v)
is the minimum number of swaps of adjacent candidates needed to transform v into
u. In our experiments we do not set the value of ϕ directly, but we use the parame-
terization by norm-ϕ proposed by Boehmer et al. (2021) (strictly speaking, they used
parameter rel-ϕ which is equal to 0.5 ·norm-ϕ). It works as follows: For a given norm-ϕ
value and a given number m of candidates in the election to be generated, we choose
value ϕ so that for a generated vote v the expected value of swap(u, v) is equal to
norm-ϕ times half the maximum possible number of swaps between two preference
orders (i.e., times 1/4 · m(m − 1)). Thus using norm-ϕ = 1 means generating votes
according to the IC model, using norm-ϕ = 0 means using the identity model, and
using norm-ϕ = 0.5 means using a model that in a certain formal sense is exactly
between these two extremes. See the work of Lu and Boutilier (2014) for an effective
sampling algorithm for the original Mallows model, and the work of Boehmer et al.
(2021) for ways of computing ϕ given norm-ϕ.

1D Interval Model. The candidates and the voters are points drawn uniformly at random
from a unit interval. Each voter v ranks the candidates with respect to increasing
Euclidean distances of their points from that of v.

We also use the models of Walsh (2015) and Conitzer (2009) that generate single-peaked
elections (it is also well-known that all 1D Interval elections are single-peaked). Given a
societal axis, these models work as follows:

Walsh Model. Each single-peaked vote, for a given axis, is drawn with equal probability
(we use the sampling algorithm of Walsh (2015)).
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Conitzer Model. Under the Conitzer model, to generate a vote we start by choosing the
top candidate uniformly at random. Then we keep on extending the vote with either
of the two candidates right next to the already selected one(s) on the axis, depending
on a coin toss.

Whenever we generate a single-peaked election, we choose the axis by selecting it uniformly
at random among all possible ones.

5.2 Results and Analysis

We study the following nine models: IC, 1D-Interval, Conitzer model, Walsh model, urn
(with α ∈ {0.1, 0.5}), Norm-Mallows (with norm-ϕ ∈ {1/3, 2/3}), and identity. We consider
elections with 4, 6, 8, and 10 candidates and with 50 voters. For each scenario and each two
of the selected models, we have generated 1000 pairs of elections. For each pair of models,
we recorded the average fraction of voters in the maximum common voter subelections
(expressed as a percentage value), as well as the standard deviation of this value. We show
our numerical results in Figure 1 (each cell corresponds to a pair of models; the number in
the top-left corner is the average, and the one in the bottom-right corner is the standard
deviation). Note that the matrices in Figure 1 are symmetric (the results for models A and
B are the same as for models B and A).

For the case with four candidates, we see that the level of similarity between elections
from various models is quite high and drops sharply as the number of candidates increases.
This shows that for experiments with very few candidates, up to four or five, it is not as
relevant to consider very different election models, but for more candidates using diverse
models is justified.

Despite the above, some models remain similar even for 6, 8, and sometimes even 10
candidates. This is particularly visible for the case of single-peaked elections. The 1D-Interval
model remains very similar to the Conitzer model, and the Walsh model is quite similar to
these two for up to 6 candidates, but for 8 and 10 candidates it starts to stand out. This is in
sync with the maps of elections of Szufa et al. (2020) and Boehmer et al. (2021), where 1D-
Interval and Conitzer elections are very close to each other. On these maps, Walsh elections
are notably distinct from 1D-Interval and Conitzer ones, but Szufa et al. (2020) and Boehmer
et al. (2021) considered elections with 100 candidates and with 10 candidates, so this agrees
with our findings.

We also note that the urn models remain relatively similar to each other (and to the 1D-
Interval and Conitzer models) for all numbers of candidates, but this is not the case for the
Norm-Mallows models. One explanation for this is that the urn model proceeds by copying
some of the votes already present in the election, whereas the Norm-Mallows model generates
votes by perturbing the central one. The former leads to more identical votes in an election.
Indeed, to verify this, it suffices to consider the “ID” column (or row) of the matrix: The
similarity to the identity elections simply shows how often the most frequent vote appears
in elections from a given model. For 10 candidates, urn elections with α ∈ {0.1, 0.5} have,
on average, 21±8% and 49±17% identical votes, respectively. For Norm-Mallows elections,
this value drops to around 2% (in our setting, this means 1 or 2 voters, on average).

Finally, we consider the diagonals of the matrices in Figure 1, which show the self-
similarity of our models. Intuitively, the larger are these values, the fewer elections of a given
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(a) 4 candidates & 50 voters (b) 6 candidates & 50 voters

(c) 8 candidates & 50 voters (d) 10 candidates & 50 voters

Figure 1: The numbers typeset in large font denote the rounded percentage of matched votes for
Max. Common Voter-Subelection. The numbers typeset in small font denote the rounded
standard deviation. There are results for elections with 4, 6, 8, and 10 candidates and 50 voters.
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(a) 10 candidates (b) 50 voters.

Figure 2: Average time needed to find the maximum common voter subelections with the fixed
number of candidates (left), and fixed number of voters (right). The shaded parts depict the standard
deviation.

type one needs in an experiment. Single-peaked elections stand out here for all numbers of
candidates, whereas urn models become more prominent for larger candidate sets.

We have also analyzed the average running time that CPLEX needed to find the max-
imum common voter subelections. We focused on IC, 1D-Interval, Conitzer model, Walsh
model, Norm-Mallows model with norm-ϕ = 0.5, and identity. First, we generated 1000 pairs
of elections from each model with 10 candidates and 5, 10, . . . , 45, 50 voters (in each pair
both elections are from the same model), and calculated the average time needed to find
the maximum common voter subelections. Second, we fixed the number of voters to 50 and
generated elections with 3, 4, . . . , 9, 10 candidates, and, like before, calculated the average
time needed to find the maximum common voter subelections.

The results are presented in Figure 2. As we increase the number of voters, the time
seems to increase exponentially. We observe large differences between the models, with IC
requiring by far the most time. Conitzer and Walsh models are significantly different from
each other, even though both generate single-peaked elections. Moreover, the fact that the
1D-Interval and Conitzer models need on average the same amount of time reinforces the
arguments about their similarity.

5.3 Real-Life Subelections

We also conducted analogous experiments regarding 11 real-life elections from PrefLib (Mat-
tei & Walsh, 2013). Specifically, we analyzed city council elections in Glasgow and Aspen,
elections from Dublin North and Meath constituencies (Irish), elections held by non-profit
organizations, trade unions, and professional organizations (ERS), data from Tour de France
(TDF) (Boehmer & Schaar, 2023), Giro d’Italia (GDI) (Boehmer & Schaar, 2023), speed
skating (Boehmer et al., 2021), figure skating,4 as well as preferences over Sushi (Kamishima,

4. In the figure skating dataset, the votes correspond to how the judges ranked the competitors in a given
contest. In races, such as Tour the France, each edition is an election where each vote is a stage of the
race and the candidates—the bikers—are ranked according to the place on which they finished the stage.

1363



Faliszewski, Sornat, & Szufa

2003), T-Shirt designs, and costs of living and population in different cities (Caragiannis
et al., 2019). We also included impartial culture elections in this experiment, as a reference
point. All these elections were also visualized on a map of elections by Boehmer et al. (2021)
and we generally used the same preprocessing steps as they did (see the details below).

Except for the Aspen, Sushi, and the T-Shirt preferences, each of the other elections
comes from a somewhat larger dataset that includes more than a single election (for example,
there were many editions of the Tour de France race, and each corresponds to an election).
In each such case, we selected a single election from the respective dataset to focus on.5 We
did so because even elections from the same dataset can be quite different from each other,
as witnessed by the results of Boehmer et al. (2021) (on their map, elections from the same
source tend to cluster together, but the clusters do have nonnegligible diameters, and some
elections are outliers with respect to these clusters).

Further, we need elections where all the voters have total orders over the candidates, but
the original data includes a number of ties. We deal with them in the same way as Boehmer
et al. (2021), i.e., we perform the following operations:

1. If a given vote includes a tie (except for a tie regarding bottom-ranked candidates
only) then we break this tie uniformly at random.

2. If a vote is represented as a top-truncated preference order (i.e., it ranks some number
of candidates, who are then followed by a group tied for the bottom positions) then
we extend it as follows: (a) We find all the votes whose top part agrees with that of
the current vote and which rank at least one further candidate; (b) we select one of
them uniformly at random; and (c) we extend the current vote with the candidate that
the selected vote ranked at the next position (after the initial part on which the votes
agree). This way our vote has one tied-at-the-bottom candidate less. We repeat this
process until the vote is complete. If during the process it turns out that there are no
votes that agree with the top part of the current one and rank at least one candidate
more, then we choose the ordering of the remaining candidates uniformly at random.

By performing these operations, we obtain 11 elections, which we refer to as the source elec-
tions, where all the voters have total orders over all the available candidates. We summarize
these elections (and, in particular, the number of voters that they include) in Table 2.

In the experiment, we consider elections with 4, 6, 8, and 10 candidates, and with 50
voters. We generate these elections by treating the source ones as distributions. Specifically,
if we need an election with m candidates and n voters, then we first remove from the source
election all but m candidates with the highest Borda scores (i.e., we keep m candidates that,
on average, are ranked highest in this source election), and then we sample with replacement
n votes from the source election. Note that in some source elections—in particular those
related to sport events—the number of votes is smaller than 50, which means that elections
generated using them certainly include several copies of some of the source votes.

5. In particular, we chose Dublin North election for Irish, Scotland Baillieston Ward for Glasgow, ERS Set
1 for ERS, 2009 Aspen city council election for Aspen, 1998 Euros Men Short Program for figure skating,
TDF edition of 1910, GDI edition of 1998, Amateur Competitions Set 1 for speed skating, and cost of
living data for the Cities dataset. When choosing these elections, our main guiding principle was that
the election includes at least 10 candidates (if possible), and not much more (if possible).
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Category Name # Votes # Distinct Votes

Political Irish 43942 29908
Political Glasgow 10376 5790
Political Aspen 2459 2018
Political ERS 380 336

Sport Figure Skating 9 9
Sport Speed Skating 12 12
Sport TDF 15 15
Sport GDI 17 17

Survey T-Shirt 30 30
Survey Sushi 5000 4926
Survey Cities 392 392

Table 2: Number of votes in the real-life elections used as distributions for sampling.

In Figure 3 we show the results of the experiment on the above-described data (other
than the datasets, the experiment is the same as in the preceding section; for example,
for each pair of source elections we generated 1000 pairs of elections and computed aver-
age number of voters in their maximum voter subelections). For the experiment with only
four candidates (the upper left matrix), we see significant similarity between political and
survey elections, whereas the sport ones stand out (their self-similarity, i.e., their entries
on the diagonal, are high, but not really relevant because they come from source elections
with very few votes; this also explains their, much lower but still visible, similarity to each
other). Similar phenomena were observed by Boehmer et al. (2021) in their map of real-life
elections, albeit, their map considered ten candidates and not four. This difference stems
from the fact that our methodology provides very strong similarity results, but is not as
good at detecting approximate similarity (whereas the map of elections approach detects
approximate similarity well). Thus the interpretation of our results is that for the case of
four candidates, there is very strong similarity between political and survey elections, but
we cannot say much about the similarity of the sport ones. Interestingly, for the cases of six,
eight, and ten candidates, we no longer see the strong similarity of the political and survey
elections (which, again, does not mean that they are not similar, but that it is not easy to
make them isomorphic by removing just a few voters).

Another thing worth pointing out is the relative similarity between two political elec-
tions: Irish and Glasgow. Let us first consider elections with four candidates. When looking
for elections that are most similar to those from Glasgow, we find the Irish ones (on aver-
age, we can match 67.7% of the votes). When looking for elections that are most similar to
the Irish ones, we find Cities (68.6% of the matched votes, on average), IC (68.4%), Aspen
(66.5%), ERS (64.1%)m and Glasgow (63.7%). For elections with six candidates, both Glas-
gow and Irish are each other’s closest instances and more similar to each other than any
other pair (except for the Speed Skating and Figure Skating elections). Nonetheless, this
level of similarity is not very high. For the case of eight and ten candidates, the effect is
not visible at all. Once again, we stress all the caveats that come with our approach: High
similarity values are meaningful and show strong structural similarity between elections, but
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(a) 4 candidates & 50 voters (b) 6 candidates & 50 voters

(c) 8 candidates & 50 voters (d) 10 candidates & 50 voters

Figure 3: The numbers denote the rounded percentage of matched votes for Max. Common Voter-
Subelection. There are results for elections with 4, 6, 8, and 10 candidates and 50 voters.
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low values do not necessarily carry much information. It would be interesting to verify if
similar results hold for other political elections, or if Irish and Glasgow elections are similar
by chance.

6. Conclusions and Summary

We have shown that variants of Election Isomorphism that are based on consider-
ing subelections are largely intractable but, nonetheless, some of them can be solved
in polynomial-time. Indeed, we have used the polynomial-time solvable Max. Common
Voter-Subelection problem to analyze similarity between various different models of
generating random elections.

In Section 4 we have classified variants of the problem as either belonging to P or be-
ing NP-complete (and some being W[1]-hard). For some variants of our problems we have
shown strong inapproximability results and matching approximation algorithms. However,
it would also be desirable to establish the parameterized complexity of these problems for
the remaining variants.

In Section 5 we have used the Max. Common Voter-Subelection problem to an-
alyze similarity between both synthetic and real-life elections. We found that for a small
number of candidates (such as four) all the synthetic elections that we consider, as well as
the political and survey ones, are very similar to each other, but sport-based ones stand
out. For larger candidate sets (containing six, eight, or ten candidates) similarities are still
visible for some synthetic elections, but essentially disappear for the real-life data. While
analyzing these results, one has to keep in mind that isomorphism-based signs of similarity
between elections are very strong, but indication of dissimilarity (i.e., the fact that common
isomorphic subelections are small) is very weak and, in essence, does not carry information.

It would be interesting to consider variants of our problems where instead of requiring
identical preference orders among matched voters, we might ask for similar ones (e.g., within
a given swap distance). In particular, this would address the issue with low information
content of dissimilarity results. Another possible research direction would be to consider
elections with partial preference orders. However, in this case our problems may become
notably harder. For example, if we allow top-truncated votes, where each voter ranks some
top candidates and leaves the other ones unranked (with the understanding that all unranked
candidates are less preferred than the ranked ones), then Election Isomorphism becomes
at least as hard as Graph Isomorphism: Given a graph G, we can form a corresponding
election where the candidates are the vertices and for each edge {u, v} from the graph,
we form two top-truncated votes, one ranking u above v, and one ranking v above u (and
both leaving all the other vertices unranked). Two graphs are isomorphic if and only if their
corresponding elections are isomorphic.
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Appendix A. ILP for Maximum Common Voter-Subelection

Since the polynomial-time algorithm for Max. Common Voter-Subelection is fairly
slow, we express the problem as an ILP. We have two types of variables:

1. For each pair of voters v ∈ V and u ∈ U , we have a binary variable Nv,u. If it is set to
1, then we interpret it as saying that voter v is included in the subelection of E, voter
u is included in the subelection of F , and the two voters are matched. Value 0 means
that the preceding statement does not hold.

2. For each pair of candidates c ∈ C and d ∈ D, we have a binary variable Mc,d. If it
is set to 1 then we interpret it as saying that c is matched to d in the isomorphic
subelections (note that, since we are looking for voter subelections, every candidate
from C has to be matched to some candidate from D, and the other way round).

To ensure that variables Nv,u and Mc,d describe the respective matchings, we have the
following basic constraints:∑

u∈U Nv,u ≤ 1, ∀v ∈ V,
∑

d∈D Mc,d = 1, ∀c ∈ C,∑
v∈V Nv,u ≤ 1, ∀u ∈ U,

∑
c∈C Mc,d = 1, ∀d ∈ D.
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For each pair of voters v ∈ V , u ∈ U and each pair of candidates c ∈ C and d ∈ D, we
introduce constant wv,u,c,d which is set to 1 if v ranks c on the same position as u ranks
d, and which is set to 0 otherwise. We use these constants to ensure that the matchings
specified by variables Nv,u and Mc,d indeed describe isomorphic subelections. Specifically,
we have the following constraints (let m = |C| = |D|):∑

c∈C
∑

d∈D wv,u,c,d ·Mc,d ≥ m ·Nv,u, ∀v ∈ V, u ∈ U.

For each v ∈ V and u ∈ U , they ensure that if v is matched to u then each candidate c
appears in v on the same position as the candidate matched to c appears in u.

Finally, our objective is to maximize the following sum:∑
v∈V,u∈U.

Nv,u.
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