
Journal of Artificial Intelligence Research 81 (2024) 1703-1759 Submitted 10/2023; published 09/2024

The Goal after Tomorrow:
Offline Goal Reasoning with Norms

Pere Pardo pere.pardo@uni.lu
University of Luxembourg
Department of Computer Science
L-4364 Esch-sur-Alzette, Luxembourg

Christian Straßer christian.strasser@rub.de

Ruhr-Universität Bochum

Philosophie II

D-44780 Bochum, Germany

Abstract

Recent studies have focused on autonomous agents that select their own goals and then
select actions to achieve these goals, using online Goal Reasoning (GR). GR agents can
revise goals and plans at execution time if unexpected outcomes occur. However, for ethical
or legal agent design, even the partial execution of an online plan may result in foreseeable
norm violations. To prevent these violations, it is crucial to incorporate GR already at the
planning phase. To this end, we design an offline GR system that can harbour normative
systems or deontic logics for goal generation. Our main results include a characterization
and comparison of the completeness classes for a variety of offline GR planners, and a
discussion of the irreducibility of offline GR to pure planning methods.

1. Introduction

Put yourself in the shoes of an autonomous robot: you need first to sensibly select your
goals, and then a course of actions to enforce these goals.1 During this task, bear in mind,
your goals and actions will have an impact upon each other: any goal you set will typically
motivate new actions, and in turn these actions will likely cause new goals to appear.

At the symbolic level, goal selection tasks are studied in deontic logic and normative
systems (Gabbay et al., 2013), while action selection tasks are addressed by automated
planning (Ghallab et al., 2004). More recently, a coordinated effort for selecting both plans
and goals has been made in the field of goal reasoning (GR) (Aha, 2018). By taking potential
goals as primitive elements, online GR methods can effectively be used for unmanned rescue
or military operations but, as we will see, do not perform well in norm-regulated societies.
From norms to goals. Rational agents act primarily motivated by internal drives such
as needs or desires, but also conform their behaviour to moral, legal and social norms.
Prescriptive norms, drives and desires can be conveniently expressed as conditional goals:2

(condition, goal) : (p, q) = q is a goal conditional on p.

1. A third selection task is to reason about (conflicting) beliefs. Beliefs play an important role in BDI
agents (Meyer et al., 2015). This additional layer of reasoning is not presently taken into consideration.

2. A prescriptive norm is a conditional obligation stemming from an external binding source (law, ethics).
Other types of norms, such as permission or constitutive norms, are out of the present scope. For
convenience, by norm we will refer to any conditional goal —including a conditional desire.

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Pardo & Strasser

The goal selection task is to define one’s goals from these norms. A norm (p, q) is violated
whenever p but not q holds, formally (p∧¬q). Two possible readings of a norm (p, q) exist:

(p, q) =

{
if p is true, then q is a goal (factual)

if p is a goal, then so is q (deontic).

Each reading generates a different set of definite goals,3 as formalized by logical principles
for goal detachment called factual detachment (FD) and resp. deontic detachment (DD):

[fact] p
[norm] q if p

[goal] q
(FD)

[goal] q
[norm] r if q

[goal] r
(DD)

Example 1 (Running example). You (the agent) desire to meet your friend at a party. You
consider it a social obligation to bring snacks at parties. Let us formalize your desire as an
unconditional norm (with the constant > = true), and the social obligation as a norm:

(>,meet) (party , snacks).

In this example, the only goal detached is {meet}, under (FD). (Had your desire been
instead (>, party), the goals detached by (FD)+(DD) would have been: {party , snacks}.)

Often enough, moral or legal norms do conflict with each other or with our desires. For
this reason, detachable goals are regarded as prima facie goals, from which a selection of
all–things–considered goals needs to be made.4 As argued by Van der Torre and Tan (1995),
for most conflicts (but not all!) an unfulfilled norm still maintains its normative force and
should thus count as violated. The evaluation of a plan should then reflect not only the
cost of its execution but also the norm violations the plan will incur in.

From actions to plans. Symbolic propositions not only allow us to express norms and
goals. Actions can be represented by pairs of preconditions {p, . . .} and effects {q, . . .} that
determine the state reached after an action. The action selection task for goal g = {q, . . . , r}
(see fn. 3) consists of identifying an action sequence or plan that leads to a state s satisfying
the goal: s |= q ∧ . . . ∧ r. A plan for g is built incrementally by a non-deterministic choice
over executable actions (forward search); or over instances of means-ends reasoning (ME):

[goal] q
[action] q . . . if p . . .

[goals] p . . .
(ME)

In either case, conflicts between goals are also found in action selection tasks. These
conflicts are due to the practical impossibility, for any plan, to fulfil two goals {q1, q2},
rather than to a logical contradiction between prima facie goals, as in {q1,¬q1}.

Oversubscription planning addresses practical impossibilities with preferences over goals.
Deontic logics address contradictory goals with preferences over norms. Very few systems
for practical reasoning exist that address both practical and ethical goal dilemmas.

3. The expression ‘goal ’ here refers to some desirable or obligatory fact, represented by a literal p or ¬p.
In planning contexts, ‘goal ’ will often refer to the set of all current such goals, say a set g = {p, q, . . .}.
The context will make it clear what we mean at each occurrence of the expression ‘goal ’.

4. In this sense, norms are more primitive than the goals they detach. Norms can give rise to dispositions
to act in some ideal form (of hedonistic, legal or moral nature).

1704

Offline Goal Reasoning with Norms

Motivation. Our aim is a formal system that selects goals and actions based on normative
reasoning and plan search. Observe that these two selection tasks are mutually dependent:
action effects may trigger new goals (FD), and new goals may in turn request further actions
to be added to the plan (ME). To this end, we address two research questions:

(Q1) What ways exist to embed norms into planners in order to define GR architectures?

(Q2) Do these agent architectures in practice reduce to pure planning systems?

No particular deontic system is vindicated in this article. As in online GR, the pre-
scriptive component is here a function that assigns goals to states, called the goal function.
Goal functions encode goals in a simple but inefficient, pointwise manner. For this reason
we will focus on goal functions generated by norms under some deontic logic.

Let us review three existing decision pipelines that address question (Q1).

(Naive) A straightforward answer to (Q1) is simply to juxtapose the two selection tasks:
formulate goals first and then find a plan for these goals. See the next diagram:

goals ¤

plan áobserve Y

execute 3 (1)

After sensing the initial state Y, a deontic logic endows the agent with a goal ¤, say
g = {q, r, . . .}. A classical planner aimed at goal g then provides the agent with a plan á.
The agent sequentially executes 3 the whole plan to achieve a goal state.

(BDI) Belief-desire-intention models iterate the Naive method (1). BDI agents reason
about beliefs Y (from observations) and about intentions (from beliefs and desires). After
selecting one intention ¤, the agent picks up a plan á whose ‘precondition’ fits the beliefs
and its ‘effect’ fulfils the intention. This plan is executed 3. This process is repeated as
long as pending or new intentions remain unfulfilled. BDI agents are described by the cycle:

goals ¤

plan áobserve Y

execute 3 (2)

(OnGR) Online Goal Reasoning agents can revise goals and plans at the execution
phase. Such online revisions monitor and deal with false beliefs or unpredictable facts
(non-deterministic action effects, adversarial actions) if they present new threats or oppor-
tunities. OnGR consists of a cycle of tasks (starting with Y):

goals ¤

plan áobserve Y

execute1 3 (3)

1705

Pardo & Strasser

In this cycle, the execute1 task 3 enforces just the first action of the plan (or an initial
fragment of it) after which the agent observes Y the new state. If a discrepancy is found
between the expected state and this observation, the agent may adjust the goal ¤ and then
the plan á accordingly. The OnGR cycle (3) is left on repeat for continual monitoring.

A problem with norms. For norm-based agency, unfortunately, the three methods (1)–
(3) fail to accommodate certain action-norm interactions. These failures result in foreseeable
norm violations committed by the agent executing the Naive, BDI or OnGR cycle.

Example 2. In the party scenario (Ex. 1), further suppose: Once you arrive at the party
any snack shop will be closed. Let us represent this detail with a precondition for buySnacks:

norms action = (preconditions, effects){
(>,meet)
(party , snacks)

} {
goParty = ({¬party}, {party ,meet})

buySnacks = ({¬party}, {snacks})

}
The planners in Naive, BDI and OnGR can only provide two possible plans for Ex. 1:

goParty go directly to the party;
buySnacks.goParty buy snacks first and then go to the party.

For our discussion, assume the planners return goParty. These methods proceed as follows:

Y The agent observes the initial state s0 = {¬meet ,¬party ,¬snacks}. 1
¤ A single goal {meet} is detached using (FD). Active norm: (>, meet). 2
á [Assumption] The planner returns goParty, a plan from s0 to a goal state. 3
3 The agent executes goParty. 4

The Naive method terminates. BDI and OnGR continue:

Y The agent observes state s1 = {meet , party ,¬snacks}. 5
¤ A new goal {snacks} is detached using (FD). Active norm: (party , snacks). 6
á The planner returns failure. (No plan for the goal {snacks} exists from s1.) 7
3 No further action or plan is executed. 8

Result. The final state becomes {. . . , party ,¬snacks} and so the agent violates the norm
(party , snacks).5 The three methods Naive, BDI and OnGR are thus not ‘sound’ with
respect to norm violations, since a norm-complying plan also exists: buySnacks.goParty.

(OffGR) Offline Goal Reasoning. Our analysis of Example 2 is that the revision of
plans after any (partial) execution arrives too late. To prevent the norm violation, one must
first predict it during the planning phase. To this end, we propose the cycle:

goals ¤

plan áupdate [3]

observe Y execute 3

(4)

5. Observe that it is inessential to the example the use of a complex action goParty. In a detailed sequence
of primitive actions, only its last move causes party and activates the norm (party , snacks). See (Ghallab
et al., 2016) for a formal investigation on the distinction between planning and acting.

1706

Offline Goal Reasoning with Norms

where update [3] simulates an execution 3 of the plan under consideration. Note that,
strictly speaking, the cycle in (4) only involves goal, planning and update programs. These
programs will be formally introduced in Definition 1 as the functions:

¤ = β á = ϕ [3] = γ.

Example 3. Under the OffGR cycle (4), steps 1–3 in Example 2 are followed by:

[3] Simulate the execution of goParty. Predict the state {meet , party ,¬snacks}. 4
¤ A new goal {snacks} is detached using (FD). Active norm: (party , snacks). 5
á The planner returns failure. 6

Result. This run of OffGR terminates with failure, as desired. Further runs on this scenario
either repeat steps 1–6, or return the plan buySnacks.goParty and dispatch it for execution.
An OffGR agent, then, solves the scenario without violating any norm.

Remark 1 (On the elimination of norms). In line with question (Q2), planning practi-
tioners might protest against using Example 2 to prove that norms cannot be addressed by
pure planning methods. Any GR problem P defined by norms, they might claim, can be
transformed into a planning problem P ′, say using a compilation P 7−→ P ′, such that:

(i) P ′ only describes a goal (no norms), and
(ii) solving P ′ means returning a plan that complies with the original norms in P .

The reader is referred to Section 8.4 for a discussion of reductions of this type.

Contributions and overview. One can summarize the above discussion and overview
our proposal as follows:

• BDI and Online GR respond to real goals after an execution. Offline GR responds to
goals predicted after a plan, but it does respond to them before its execution.

• Although offline GR planners can be adapted to any goal function, for our complete-
ness results we limit our study to memoryless goal functions. That is, the current
goal will only depend on the current state, not on the history of previous goals.

• Our definitions for an offline GR system are supported by fundamental results akin
to those proved for online GR by Cox (2017). (See Facts 3–4.)

In this article we present an Offline Goal Reasoning system called OffGR for the decision
pipelines of type (4) and (1). Our main contributions are listed next:

• Six OffGR planning algorithms are formally studied and, together with BDI and Online
GR methods, compared in terms of performance.

• Each OffGR planner is proved equivalent to the computation of least fixed points of
some plan revision function.

• We prove the first completeness results for GR algorithms and study their relative
power (Figure 1) and the computational cost of generating solutions.

1707

Pardo & Strasser

βClassical∗

UniClass∗ Append∗ Replan∗

βSaturate

Universal

Figure 1: The completeness hierarchy. (↔) OffGR planners that are complete for the same
class of GR problems. (→) Proper inclusions ⊂ between completeness classes.
Note that βSaturate is incomparable (6⊆, 6⊇) with most OffGR planners.

• Using a set of benchmark problems, we identify dilemmas between short- and long-
term goal fulfilment as a trade-off between optimality and completeness.

• OffGR can be used as a testbed for long-standing debates on detachment principles.
With the aim of settling such disputes, OffGR can test their performance on benchmark
scenarios (deontic puzzles) when one adds actions and intentions.

Finally, the use of norms in offline goal reasoning constitutes an elegant approach to the
problems of preference elicitation and representation.

Structure of the paper. Section 2 reviews the literature on agent autonomy based
on symbolic representations. Section 3 defines the basic components of our system and
Section 4 introduces a general definition for OffGR planners. Sections 5–7 study six OffGR

planners divided in three categories. Section 8 discusses the significance of the OffGR system
(question Q2), and of the planners under study: their hierarchy and combinability, the local
planning function ϕ, and applications of GR to deontic logic. After concluding in Section 9,
an Appendix contains the proofs of our results and explicit algorithms for OffGR planners.

Notation. Given two sets A and B, the set A∗ contains all finite sequences of elements
of A; P(A) is the power set of A; and A \ B denotes their difference. Given two binary
relations R and T , their composition is R ◦ T = {(a, b) : R(a, c) and T (c, b) for some c}; we
also let R1 = R and Rn+1 = R ◦ Rn so that R+ =

⋃
n≥1R

n is the transitive closure of R;
and R∗ = R+ ∪ Id is its reflexive transitive closure, where Id is the identity relation on the
domain of R. R(a, ·) = {b : R(a, b)} is the set of elements reachable from a in one R-step.
For α ∈ A and π, π′ ∈ A∗, the expressions π.π′ and α.π and π.α denote the corresponding
concatenations.

2. Related Work

As described next, Offline GR overlaps with deontic logic, normative systems and preference-
based planning on the selection of goals; with online GR on goal-plan interactions; and
finally with BDI approaches on intentions and rational behaviour. A common issue in all
these areas is how to aggregate goals or preferences.

Goal Reasoning, surveyed by Aha (2018), studies the continual monitoring of actions and
the revision of goals and plans. Earlier work by Knoblock (1995) on interleaving planning
and acting was equally motivated by sensing actions and predates modern approaches to GR.

1708

Offline Goal Reasoning with Norms

Current work also focuses on online GR, to enable agents to face unexpected opportunities
or threats. Partial observability or external events are studied by Jaidee et al. (2011),
Klenk et al. (2013) and Paisner et al. (2014) for applications in unmanned aerial or naval
operations. Existing planning architectures can incorporate goal deliberation subsystems,
as in the work of Shaparau et al. (2006). See also Hawes (2011) for a survey on motivation
in intelligent systems along this line. Finally, Cox (2007) proposes an algebraic reduction
of online GR to an equation system involving goal, planning and update functions (under
an assumption of deterministic actions that equates execution and update). Paisner et
al. (2014) extend this work into a cognitive model of human behaviour. Although inspired
by this area, the OffGR system is aimed at norm-based agency and practical reasoning. Our
goal updates are globally defined by deontic inferences upon a state, and so they differ from
the atomic goal change operators considered by Aha (2018) and Cox (2017).

Symbolic Planning has also studied extensions of classical planning in line with GR.
Partial satisfaction planning (Smith, 2004) studies cost-minimal plans and goal selection
for consistent but practically unachievable goal sets. Quantitative approaches also con-
sider utility-cost for net-benefit planning, as in Van den Briel et al. (2004). A hierarchi-
cal approach combining HTNs with partial satisfaction can be found in (Behnke et al.,
2023). Preference-based planning studies temporal preferences over plan trajectories, see
Baier and McIlraith (2008) for an overview. Along the same lines, the planning language
PDDL 3 (Haslum et al., 2019) can express goal preferences (as soft goals with violation
costs) and metric preferences over plans (based on plan length, cost or trajectory). Plan-
ning over temporal goals (Bonassi et al., 2023) does solve our Example 1, but the synthesis
of such goals from norms has not been explored so far. As for OffGR, preferences over goals
derive from conflicting norms under a given logic and are aimed at resolving moral or legal
dilemmas; any temporal constraints over goals are addressed by GR itself. Closer to our
methodology, Ghallab et al. (2016) provide a planning-based approach to GR. Continual
planning, in a similar vein, makes use of plan repair techniques when an agent receives new
goals at runtime; see the work by Chien et al. (2000) or Krogt and Weerdt (2005). In the
present article we characterize a simple plan repair technique (replanning) for offline GR.

Deontic Logic studies reasoning about obligations and permissions from norms that ex-
press conditional obligations or permissions, see Gabbay et al. (2013). Traditionally, deontic
logics consist of modal logics based on a betterness relation on states (Chellas, 1980; Hans-
son, 2013). Monadic modalities Oq = it is obligatory that q are studied in (Goble, 2005) to
reason about contrary-to-duty (CTD) obligations. CTDs are secondary obligations arising
from the violation of a primary norm, such as to apologize after breaking a promise. Dyadic
obligations O(q|p) = q is obligatory conditional on p have also been studied in connection
with the detachment principles (FD)–(DD) and variants thereof (Hansson, 1969; Loewer &
Belzer, 1983; Prakken & Sergot, 1997; Carmo & Jones, 2002, 2013; Straßer, 2011; Parent
& van der Torre, 2018). A second group of deontic logics took a non-monotonic turn to
address norm conflicts and CTD obligations, see the work by Horty (2012). Non-monotonic
systems include: prioritized default logics by Brewka (1989) and Hanssen (2008); defeasible
logics by Governatori et al. (2018); adaptive logics in Van de Putte et al. (2019), and argu-
mentation systems as in Pigozzi and van der Torre (2018). While goals can be obligations
or desires, deontic logics can still be recruited to generate goal functions. See the study of
Doyle et al. (1991) on the relation between desires, obligations and goals.

1709

Pardo & Strasser

Normative Systems (Gabbay et al., 2013) study reasoning with norms or about norms.
Certain systems derive norms from an initial set of norms, as in input/output logics (Par-
ent & van der Torre, 2018). Closer to our aims are systems that detach goals from norms
and facts, such as default logics (Brewka, 1989; Hansen, 2008) or structured argumenta-
tion (Pigozzi & van der Torre, 2018). Norm conflicts can be resolved by balancing their
priorities (a promise to go out vs. saving a drowning child), or because one norm cancels the
other (as in legal exceptions); see van der Torre and Tan (1995); arguably, norm violations
only take place in the former case, a distinction made in structured argumentation with
undercutting attacks (Modgil & Prakken, 2013). Pigozzi and Van der Torre (2018) also
consider constitutive norms for the detachment of institutional facts, i.e. claims that an
object or event has certain legal or moral status (being a vehicle, constituting a threat).

Machine Ethics studies the moral regulation of artificial agents such as selfdriving cars or
smart speakers. Baum (2020) argues that all relevant stakeholders (persons and institutions
affected by the agent) should have a say in its regulation. Moor (2006) and Dyrkolbotn et
al. (2018) distinguish between implicit and explicit ethical agency, depending on whether
immoral choices are ruled out by some external labelling or resp. internal reasoning. These
mechanisms may involve learning moral judgements from examples, as in Anderson and
Anderson (2014), or be based on some deontic logic or argumentation system, as in Liao et
al. (2023). Offline GR can accommodate either mechanism in the goal component.

Preference Elicitation and Representation is the problem of obtaining an agent’s pref-
erences and expressing them in compact ways, see Brafman and Domshlak (2009). Tradi-
tional representations include goal descriptions, preferences over states and utility functions.
Braziunas and Boutilier (2007) propose a regret-based approach under utilities. Haddawy
et al. (2003) address the elicitation problem with machine learning. Normative systems offer
a compact representation for drives and dispositions, from which qualitative preferences or
goals can be inferred. For a quantitative approach, one can assign numerical values (prior-
ities) to norms or soft goals, which can be used to aggregate preferences (Brewka, 2004) or
calculate the cost or negative utility of a plan (van den Briel et al., 2004).

Practical Reasoning is the formal study of rational behaviour. Bratman (1991) proposes a
planning-based theory of intentions, understood as goals that persist unless extreme circum-
stances occur. Our memoryless goal functions, in contrast, assume a much weaker notion of
intention. Bratman’s belief-desire-intention model inspired many logics for reasoning about
intentions such as BDI (Rao & Georgeff, 1991; Meyer et al., 2015). BDI implementations
rely on planners or plan libraries (Meneguzzi & De Silva, 2015), or plan databases (Shoham,
2009; van Zee et al., 2020). Other BDI architectures incorporate norms (Meneguzzi et al.,
2015), obligations (Broersen et al., 2005), or address goal-plan-actions interactions by ex-
ploring an AND/OR graph for these interactions (Thangarajah & Padgham, 2011).

3. The OffGR System

Let L be a propositional language over a finite set of atoms At = {p, . . .} that includes the
true constant >. (Equivalently, one can see At as a set of ground atoms in a function-free
first-order language.) Define the set of literals ` by Lit = At ∪ {¬p : p ∈ At}. Negation
for literals −` is expressed by −p = ¬p and −¬p = p. For a set X ⊆ Lit, we also define
−X = {−` : ` ∈ X}. We will henceforth opt for this negation −p over ¬p in literals.

1710

Offline Goal Reasoning with Norms

s0 s1

s2 s3

buySnacks

goParty

Figure 2: The running example (Examples 1–9). Solid arrows express action transitions.
Action labels apply to all arrows with the same direction. Dotted arrows si · · ·>sj
express that sj satisfies all the goals you have at si. Observe also the loop at s3.

A state s = {`, . . . , `′} is a consistent and complete set of literals s ⊆ Lit. S = {s, . . .}
is the finite set of all states over At. The satisfaction relation |= ⊆ S × L is defined by:

s |= > ⇔ always s |= B ∧ C ⇔ s |= B and s |= C
s |= p ⇔ p ∈ s s |= B ∨ C ⇔ s |= B or s |= C
s |= ¬B ⇔ s 6|= B s |= B → C ⇔ s |= B implies s |= C.

The set of states satisfying a given formula ψ ∈ L or set X ⊆ L are defined by:

‖ψ‖ = {s ∈ S : s |= ψ} and ‖X‖ =
⋂
ψ∈X ‖ψ‖.

An action α = (name(α), pre(α), eff (α)) is a tuple such that: name(α) is an identifier for
α; pre(α), the precondition for α, is an L-formula or a set of literals; and eff (α) ⊆ Lit is
the set of effects of α. All actions α in our examples will also be introduced as follows:

{`, . . .} name(α) {`′, . . .} denoting pre(α) name(α) eff (α).

We denote by A = {α, . . .} the set of all available actions, and use the conventions:

· π = π[1..n] = (α1, . . . , αn) a plan π, i.e. a finite sequence of actions in A
·A∗ = {∅, . . . , π, . . .} the set of all plans built from A, incl. the empty plan ∅
· g ∈ G = P(Lit) a goal g = {`1, . . . , `k}; the set of all goals G
· Σ = (S,A) a planning domain with states S and actions A
· P = (S,A, s0, g) a classical (planning) problem6 P

with planning domain (S,A), initial state s0 and goal g.

Example 4. A planning domain Σ = (S,A) for Example 2 (see also Figure 2) consists of:

S =

s0 = {−meet ,−party ,−snacks}
s1 = {−meet ,−party , snacks}
s2 = {meet , party ,−snacks}
s3 = {meet , party , snacks}

 A =

{
{−party} goParty {party ,meet}

{−party ,−snacks} buySnacks {snacks}

}

6. The axioms that define classical planning are: finite domains; neither external nor concurrent actions
or events; implicit time; deterministic actions and full state observability. See (Ghallab et al., 2004) for
details. The same assumptions are made by the OffGR system.

1711

Pardo & Strasser

state

goal

plan

s = γ(·, π)

g = β(s)

π = ϕ(s, g)ϕ

γ

β
state

goal

plan

state

goal

plan

FD

DD

`0 `n+1

Figure 3: (Left) The (β, ϕ, γ)-cycle for OffGR: goals, plans and updates. (Center) Depen-
dencies among the elements of a GR cycle. (Right) A decomposition of the goal
function β that obtains from the detachment principles (Definitions 2–3).

Cox (2017) defines the Online GR cycle (3) with a goal function β, a planning function ϕ
and an execute-observe function γ, and describes equations governing the relations between
goals, plans and states. Our formulation of these functions for the Offline GR cycle (4) is
simpler, so that β ignores previous goals and ϕ ignores the plan history so far.7

Definition 1 (GR functions, simplified). The update function γ, goal function β and plan-
ning function ϕ in OffGR are functions of the following form (see also Figure 3):

γ : S ×A∗ → S state γ(s, π) results from executing π at s

β : S → G β(s) is the goal g acquired by being at s

ϕ : S ×G→ A∗ ϕ(s, g) is the selected plan for goal g at state s.

A GR problem is a tuple P = (S,A, s0, β) describing: a planning domain (S,A), an
initial state s0 ∈ S and a goal function β.

Example 5. The GR problem P = (S,A, s0, β) capturing Ex. 2 contains: the planning
domain (S,A) from Example 4, the initial state s0 = {−party ,−snacks,−meet} and

the goal function β =

(
β(s0) = β(s1) = {meet}
β(s2) = β(s3) = {meet , snacks}

)
.

We describe next the three functions γ, β, ϕ from Definition 1 in detail.

Update function γ. Our update function is that from classical planning in set-theoretic
representation (Ghallab et al., 2004). An action α = (name(α), pre(α), eff (α)) is called
executable in a state s if s |= pre(α), and in such case γ(s, α) is defined by an update �:

γ(s, α) = s � eff (α) = (s \ −eff (α)) ∪ eff (α)

7. Cox (2017) considers goal functions of the form β : S ×G→ G. This permits the new goal g′ = β(s, g)
to be partly defined from the previous goal g, although no particular definition is provided to this end.
Cox also defines planning functions of the form ϕ : S×G×A∗ → A∗. That is, the new plan is a function
of the previous plan (plus the goal and the state), and so ϕ acts as a plan revision function. For a
comparison, we delegate all plan revision tasks to a global function ψ (Definition 9).

1712

Offline Goal Reasoning with Norms

also written s.α = γ(s, α). For plans, the update function γ : S ×A∗ → S is defined by:

γ(s, ∅) = s and γ(s, α.π) = γ
(
γ(s, α), π

)
.

The action transition relation R ⊆ S × S in a planning domain (S,A) is defined as:

R =
⋃
α∈A
{(s, γ(s, α)) : s |= pre(α)}.

We also write s
α−−→ s.α and s

π−−→ s.π = γ(s, π) for actions and resp. plan transitions.
Given a GR problem P = (S,A, s0, β), we abbreviate the set of reachable states as
S∗ = R∗(s0, ·). Finally, the trace of a plan π on state s is the sequence of all states visited
during its execution:

γ̂(s, π) = 〈s, s.π[1], . . . , s.π[1..n])〉
(Note that we will also use γ̂(s, π) for the set, rather than sequence, of these states.)

Goal function β. The value of β(s) expresses the all–things–considered goals: if s is the
current state, β(s) lists the agent’s current goals, and otherwise it describes the goals the
agent would have at a possible future state s.

A goal function is formally defined as an arbitrary function β : S → G assigning a
goal β(s) = {C, . . .} ∈ G to each state s. We also define the goal relation Rβ ⊆ S × S by:

Rβ(s, ·) = ‖β(s)‖ (5)

and call any state s′ ∈ Rβ(s, ·) a goal state for s. (A goal relation is displayed in Figure 2.)
A goal function β is consistent if each set β(s) is consistent. Observe that β is consistent
iff the relation Rβ is serial, i.e. there always exists a desirable or goal state s′ ∈ Rβ(s, ·).8

Goal functions can be generated in three ways: by manual labour, by a computational
implementation of an ethical or legal theory, or from a normative system. We opt for the
latter and use norms to represent the agent’s drives, ethical claims and legal codes.

A norm is a pair (B,C) of conjunctions of literals (`1 ∧ . . . ∧ `k, `′1 ∧ . . . ∧ `′m).9 We
indistinctly see a norm as a pair of sets of literals ({`1, . . . , `k}, {`′1, . . . , `′m}), and so let
N ⊆ P(Lit)×P(Lit) be the set of all norms. An unconditional norm is of the form (>, C).
We denote by G ⊆ N the set of norms of an agent. The goals this agent can detach from
its norms G depend on the detachment principles this agent adopts.

Definition 2 (Detachable goals). Let G ⊆ N be a set of norms and let s be a state. We
inductively define the goals C detachable at s (from G) as follows:

s `0 C iff there is a norm (B,C) ∈ G such that s |= B (FD)
s `n+1 C iff there is (`1 ∧ . . . ∧ `k, C) ∈ G such that s `≤n `1, . . . , s `≤n `k (DD)

where `≤n=
⋃
k≤n `k. We also define `=

⋃
n `n as the logic based on (FD)+(DD).

8. Seriality expresses a consistency condition also for deontic modal logics based on partial orders. Unlike
partial orders, though, goal relations Rβ are in general not transitive, and neither reflexive nor irreflexive.
Hence, goal relations differ from both non-strict � and strict ≺ preferences over states.

9. The language of norms (B,C) can be extended with disjunctive formulas, e.g. (B∨ . . .∨B′, C ∨ . . .∨C′),
with a caveat. Being obligatory is not closed under classical consequence, so that inferences of the form
if p is obligatory, so is p∨q are rejected by many contemporary systems (Ross, 1941). Deontic paradoxes
involving disjunction (e.g. Ross paradox) are not addressed in the present article.

1713

Pardo & Strasser

Using `0 or `, one can just define each value β(s) as the set of all goals detachable at
s. This goal function β reduces all–things–considered goals to prima facie goals, and so for
typical sets G of norms, β will be inconsistent (see fn. 17 or Section 8.5). Still, for most of
our our examples, goal functions defined by `0 and ` will suffice.

Definition 3 (Goal functions βg, β0 and βω). We define three types of goal function:

• βg(s) = g constant functions βg : S → {g} defined by a goal g ∈ G

• β0(s) = {C ∈ L : s `0 C} the (FD) goal function

• βω(s) = {C ∈ L : s ` C} the (FD)+(DD) goal function.

A deontic logic, for the present purposes,10 is a relation |∼ ⊆ (S×P(N))×L satisfying
|∼ ⊆ `. Using an infix notation for deontic logics |∼, instead of (s,G , C) ∈ |∼ we write:

(s,G) |∼ C C is a goal at s based on logic |∼ and norms G .

Thus, condition |∼ ⊆ ` states that all goals are detachable: (s,G) |∼ C ⇒ (s,G) ` C.11

A normative system is a pair (|∼,G) consisting of a deontic logic |∼ and a set of norms
G . Each normative system (|∼,G) produces an induced goal function β : S → G, namely

β(s) =
⋃
{C ⊆ Lit : (s,G) |∼ C} (6)

Goal functions induced by deontic logics |∼ from the literature are studied in Section 8.5.

Fact 1. Normative systems (|∼,G) are as expressive as goal functions β : S → G when
defined over the same set Lit of literals.

Example 6. Recall the norms G = {(>,meet), (party , snacks)} from Ex. 1. The normative
system (`0,G) induces the following goal function β0 and goal relation Rβ0(s, ·) = ‖β0(s)‖:

‖−party‖ = {s0, s1}
β0−−−−→ {meet} ‖·‖−−−→ {s2, s3}

‖party‖ = {s2, s3}
β0−−−−→ {meet , snacks} ‖·‖−−−→ {s3}.

This β0 is just the function β piecewise defined in Example 5. The goal relation Rβ0 is also
depicted in Figure 2. Its reflexive edge Rβ0(s3, s3) means that state s3 fulfils the goal at
this state: s3 |= β(s3). Reflexive edges of Rβ will define the solution concept in OffGR.

Planning function ϕ. Plans are the third ingredient of the offline GR cycle. As in online
GR, classical plans will suffice. A plan for P = (S,A, s, g) is a plan π ∈ A∗ satisfying:

γ(s, π) |= g (7)

and in such case we also say that π solves P . Similarly to Cox (2017), we generalize
condition (7) to our (β, ϕ, γ)-cycle. Each call to the planner ϕ should return, if possible, a

10. Traditionally, a deontic logic is a consequence relation |=O ⊆ P(LO)× LO over a language LO with an
obligation modality O(·). One can write norms G and facts s as LO-formulas and use them as premises
to induce a goal function: β(s) = {C ∈ L : s∪G |=O O(C)}. In this case, β(s) is an infinite set of goals.

11. Another condition that could be imposed to deontic logics |∼ is subgoal closure: if (B,C) ∈ G is used for
some (DD)-detachment (s,G) |∼C, then also (s,G) |∼B. This property holds for deontic modal logics.

1714

Offline Goal Reasoning with Norms

Algorithm 1 Classical∗ % a depth first search forward planner

Input: a problem (S,A, s0, g)
Output: a plan π or failure

1: if s0 |= g then
2: return ∅
3: end if
4: Let s = s0 and π = ∅
5: while s 6|= g or Choice do % calls Algorithm 2
6: A′ = {α ∈ A : s |= pre(α) and γ(s, α) /∈ γ̂(s0, π)} % never visit a state twice
7: if A′ = ∅ then
8: return failure
9: else

10: choose α ∈ A′
11: set s← γ(s, α) π ← π.α
12: end if
13: end while
14: return π

Algorithm 2 Choice % a non-deterministic choice
Output: a value true or false

1: choose value ∈ {true, false}
2: return value

plan π = ϕ(s, β(s)) from s to the goal β(s). In principle, ϕ can be any function satisfying
the soundness condition:

γ(s, ϕ(s, β(s))) |= β(s) (8)

Equation (8) does indeed capture the minimum requirements of executability and goal
fulfilment we wish to impose on ϕ. So now the question is: what should ϕ be? Online
GR algorithms typically rely on a classical forward search planner, here simply called
Classical, whereas we will mainly consider a slight variant of it, that we call Classical∗.
Thus, as the planning domain (S,A) will be clear from the context, we will just write:

ϕ(s, g) = Classical∗(S,A, s, g) (9)

Algorithm 1 defines this planner. Classical∗ deviates from Classical in that it might
not stop at the first plan that solves a classical problem P = (S,A, s0, g). Instead, every
time Classical∗(P) finds a non-empty plan π for P , it calls Algorithm 2 to choose between
two options: (1) to return π or (2) to expand π into another plan for g. (Classical is
Algorithm 1 after removing the underlined text in line 5 and the now redundant lines 1–3.)

While this variant Classical∗ makes little sense for classical planning or online GR,
for offline GR it avoids getting trapped in local maxima, such as s in the next illustration:

s0 s s′

initial
state

unpromising
goal state

useful
goal state

π π′

1715

Pardo & Strasser

Local maxima are explained in Section 8.2. Classical∗ provides OffGR planners with
better completeness classes, among other advantages (also explained in Section 8.2).

To ensure termination, Algorithm 1 keeps track of all nodes expanded by the plan (i.e. its
trace) to to prevent visiting them twice in an execution of Classical∗(P). Because of this,
the next completeness result focuses on non-redundant plans. A plan π for P = (S,A, s0, g)
is non-redundant if the states in the (sequence) trace γ̂(s0, π) are pairwise different.

Proposition 2. Let P = (S,A, s0, g) be a classical problem. (Soundness.) If Classical∗(P)
returns π, then π is a classical plan for P . (Strong completeness.) If s0 6|= g, then for any
non-redundant plan π for P , there is an execution of Classical∗(P) that returns π. (Ter-
mination.) Any execution of Classical∗(P) terminates after a finite number of steps.

Observe that strong completeness implies completeness (that is, the planner returns a
solution if one exists). For a comparison, Classical is complete but not strongly complete.

Fact 3. The soundness condition γ(s, ϕ(s, β(s))) |= β(s) in (8) holds for classical planning
if we interpret ϕ = Classical or ϕ = Classical∗.

How is ϕ used in OffGR? Recall the cycle goals → plan → update → goals in the offline
GR cycle (4). Every time one updates the current state (γ), a new goal might exist (β), in
which case a new call to the planning function can be made (ϕ).

Example 7. Let us formalize Example 3. After the initial goal β(s0) = {meet}, the first
invocation of ϕ returns either:

ϕ(s0, β(s0)) = goParty or ϕ(s0, β(s0)) = buySnacks.goParty.

• goParty leads to state s2 = {party ,meet ,−snacks} with goal β(s2) = {meet , snacks}.
At this point, a new invocation of ϕ returns ϕ(s2, β(s2)) = failure.

• buySnacks.goParty leads to s3 = {party ,meet , snacks}, a state that already fulfils
the goals it generates. Any further call to ϕ would be pointless: ϕ(s3, β(s3)) = ∅.

At every run of the Oflline GR cycle (4), ϕ acts as a local function possibly returning
a classical plan. This plan can be seen as a piece of a bigger plan obtained from a succession
of calls made to ϕ. We address next the construction of such a global plan. This global
plan will exit the cycle in (4) and so it will be the plan recommended for execution.

4. OffGR Planners: General View

As mentioned before, OffGR replaces a goal specification g by a goal function β.

Definition 4 (GR problem, simplified). A GR problem is a tuple P = (S,A, s0, β) con-
taining: a planning domain (S,A), an initial state s0 ∈ S and a goal function β : S → G.
The class of all GR problems is denoted P.

Definition 5 (OffGR planner). An OffGR planner is a (non-deterministic) function:

Planner: P→ A∗ ∪ {failure}

1716

Offline Goal Reasoning with Norms

that returns for each GR problem P = (S,A, s0, β) either a sequence π ∈ A∗ or ‘failure’.
Abusing notation, we also denote by Planner(P) the set of possible outputs π ∈ A∗

returned by some execution of a non-deterministic algorithm for Planner with input P .12

This definition does not specify how β is to be used by particular OffGR planners. To
this end, notice that each goal function β determines a (possibly empty) set of states that
are “fixed points” of β, i.e. states with reflexive edges in Rβ. Any such fixed point s is called
a solution state, and so we define the set β? ⊆ S of solution states (w.r.t. β) as follows:

s ∈ β? ⇔ s |= β(s) (10)

Given a GR problem P = (S,A, s0, β), a solution for P is a plan π to a solution state:

γ(s0, π) |= β(γ(s0, π)). (11)

Fact 4 (Classical to GR). Each classical problem (S,A, s0, g) reduces to the GR problem
(S,A, s0, βg) defined by the constant goal function βg(s) = g, for any s ∈ S.

Example 8. The plan buySnacks.goParty from Example 7 is a solution as it leads to a
state s3 satisfying s3 |= β(s3). The plan goParty is not a solution since s2 6|= β(s2).

Our solution concept is motivated by the fact that an agent reaching the region β? needs
not act any further. (This does not mean, though, that all solutions are equally good.)

Fact 5. Let ϕ = Classical or ϕ = Classical∗. Then, s ∈ β? iff ϕ(s, β(s)) = ∅.

Finding a plan to β? is thus our condition for exiting the offline GR cycle in (4) and
proceed to execute the plan. This will be the ultimate target of all OffGR planners, and in
fact they will stop at the first solution they encounter. Thus, the search space S′ ⊆ S will
consist of states that can be reached without traversing any (other) solution state:

S′ =
{
γ(s0, π) ∈ S : γ̂(s0, π) ∩ β? ⊆ {γ(s0, π)}

}
.

Definition 6 (Soundness). An OffGR planner Planner is sound for a GR problem P iff

if Planner(P) returns π, then π is a solution for P .

We also say that Planner is sound for a class P′ ⊆ P iff it is sound for each P ∈ P′.

Definition 7 (Completeness). An OffGR planner Planner is complete for some P ∈ P iff

if a solution exists for P , there is an execution of Planner(P) that returns a solution.

We also say that Planner is complete for a class P′ ⊆ P if it is complete for each P ∈ P′.
The completeness class of Planner is the ⊆-maximal class P′ ⊆ P for which it is complete.

Finally, we just say that Planner is sound (complete) if it is sound (resp. complete) for P.

Definition 8 (Termination). An OffGR planner Planner has the termination property if
for any GR problem P , any execution of Planner(P) terminates after finitely-many steps.

12. Classical∗(P) and Classical(P) (and Planner.T (P) in Section 8.4) will analogously denote the corre-
sponding sets of possible plans returned by these algorithms for a given classical problem P = (S,A, s0, g).

1717

Pardo & Strasser

Algorithm 3 ψ-Planner lfp(ψ(P))

Input: a function ψ : A∗ → A∗; a GR problem P = (S,A, s0, β)
Output: a plan π or failure.

1: Let π = ∅.
2: repeat
3: π ← ψ(π)
4: until ψ(π) = π
5: return π

For mathematical convenience, OffGR planners will be defined as non-deterministic al-
gorithms. One can make them deterministic as usual, by imposing both a search order
on the set A for node expansion and a search strategy. This suffices for the next result.
(An analogous result for non-determinstic algorithms can be shown as well under the mild
assumption of computational fairness. We omit any details for the sake of brevity.)

Fact 6. If Planner is sound, complete and satisfies termination (Definitions 6–8), then a
determinstic execution of Planner(P) returns a solution for P iff a solution for P exists.

Henceforth, all OffGR planners based on Classical∗ will be named with an asterisk
(e.g. Append∗), and without an asterisk if based on Classical (e.g. Universal). In the
next sections we will study OffGR planners of both types, built upon different principles:
(i) a blind search for the β? region, (ii) a continual search for goal states, or (iii) an attempt
to discover a β?-state before the planning phase. Our planners thus divide into:

(i) α-methods. Explore the search space, one action α at a time, and check for goal-
and/or solution states. Planners: {βClassical∗, Universal, UniClass∗}.

(ii) β-methods. Compute the current goal β(s). Invoke the ϕ function towards β(s).
Repeat until β? is reached. Planners: {Append∗, Replan∗}.

(iii) β-saturation methods. Update the current state s with goals β(s), until a solution
state is found. Invoke ϕ to this state. Planner: {βSaturate}.

As a matter of fact, each of these six OffGR planners is also equivalent to the search for
a fixpoint of a plan revision function ψ. That is, a function that maps plans to plans:

ψ :A∗ → A∗ after constructing plan π, revise it into π′ = ψ(π).

All of our OffGR planners will first be introduced this way using Algorithm 3. Their equiv-
alent programs can be found as Algorithms 4–9 in the Appendix.

Definition 9 (ψ function, ψ-plan). A ψ function is a map ψ : P 7−→ ψ(P) from each GR
problem P to a plan revision function ψ(P) just denoted ψ : A∗ → A∗. (Here the set A∗

includes ‘failure’ as well.) A ψ-plan for P is any fixed point π = ψ(π) of this function.13

Algorithm 3 takes as inputs a ψ function and a GR problem and returns lfp(ψ(P)) = π,
a least fixed point (lfp) of ψ. This way, once we fix ψ, we get an OffGR planner (Def. 5):

lfp(ψ(·)): P 7−→ π (12)

13. We also stipulate that ψ(failure) = failure but this “fixed point” does not count as a ψ-plan.

1718

Offline Goal Reasoning with Norms

In general, OffGR planners will use the input P = (S,A, s0, β) as follows in Equation (12):

(A) the available actions obviously constrain how plans π can be revised into ψ(π).
(s0) the initial state is needed for ψ(∅) to be well-defined, i.e. executable at s0.
(β) revisions π 7−→ ψ(π) may be motivated by the goal after π or the region β?.

Needless to say, we want ψ functions whose outputs for P (the ψ-plans) are solutions for P .
For these ψ functions, solving offline GR problems reduces to solving a fixpoint equation
π = ψ(π). As one might expect, the recursive fixpoint equation for online GR (Cox, 2017,
Eq. 7) is way more complex than the equations for OffGR (see e.g. Defs. 13–14).

For the sake of comparison, we adapt Online GR and BDI algorithms to simplified GR
problems (Definition 4), and call the adjusted algorithms OnlineGR and BDI. Let us observe
that the execution step 3, essential to these algorithms, is not part of OffGR algorithms,
as the latter only return plans (Algorithm 3). For a unified treatment, in the examples any
final output plan (executed or not) is identified as the plan returned by the algorithm.

5. OffGR Planners: α-Methods

We call α-methods those planners that consider one action α at a time —hence the name.
βClassical∗ is a formal version of Naive (1). Universal is an exhaustive search method
focused on the β? region. And UniClass∗ combines features from these two planners.

5.1 βClassical∗

Following the naive method (1), βClassical∗ settles for the initial value β(s0) and then
invokes ϕ = Classical∗. No revision of goals or plans occur, and the ψ-function is trivial.

Definition 10 (βClassical∗). βClassical∗ is defined as lfp(ψ(·)) under the ψ function:

ψ(π) =

{
ϕ(s0, β(s0)) if π = ∅
π otherwise.

Notice that a fixed point ψ(π) = π = ψ(∅) is always achieved after the first call to ϕ.
(With detail: if ∅ is a solution, then ϕ(s0, β(s0)) = ∅ and so ψ(∅) = ∅; otherwise, we get
π = ϕ(s0, β(s0)) 6= ∅ and then ψ(π) = π after a single step.)

Lemma 7. Let ψ be as in Definition 10 and let βClassical∗ be the planner from Algo-
rithm 4 (in the Appendix). For any GR problem P = (S,A, s0, β),

lfp(ψ(P)) = Classical∗(P ′) = βClassical∗(P)

where P ′ = (S,A, s0, β(s0)) is the transformation of P into a classical problem.

Proposition 8. βClassical∗ has the termination property but is neither sound nor com-
plete for P. In fact,

(i) βClassical∗ is sound for P iff P ∈ P′ = {(S,A, s0, β) : ‖β(s0)‖ ∩R∗(s0, ·) ⊆ β?}.

1719

Pardo & Strasser

s0 •• workbrowse

browse

Figure 4: Akrasia, from Example 10.

(ii) βClassical∗ is complete for P iff if a solution for P exists then a solution to some
state in ‖β(s0)‖ also exists.

As a consequence, (iii) classical planning is subsumed by βClassical∗.

Example 9. Let P be as in Example 6. We verify that βClassical∗ is not sound for P :
‖β(s0)‖ ∩ S′ = {s2, s3} 6⊆ {s3} = β? (Proposition 8). More generally, we have:

• {βClassical∗, OnlineGR, BDI} return goParty or buySnacks.goParty.

• all other OffGR planners (Algorithms 5–9) return the solution buySnacks.goParty.

5.2 Universal

This exhaustive search method performs a local search itself (does not call ϕ) and tests if
each state is a solution state, ignoring all previous goals along the path.

Definition 11 (Universal). Universal is defined as lfp(ψ(·)) under the ψ function:

ψ(π) =

π if γ(s0, π) ∈ β?

π.α if γ(s0, π) /∈ β? for an executable α with γ(s0, π.α) /∈ γ̂(s0, π)

failure if γ(s0, π) /∈ β? and no such α exists.

Lemma 9. For any GR problem P , it holds that lfp(ψ(P)) = Universal(P), where ψ is
as in Definition 11 and Universal is Algorithm 5.

Fact 10. Universal is sound and complete for P, and has the termination property.

Despite being complete, the main disadvantage of Universal is that it never aims at the
current goals —except at solution states. This is problematic for weakness of will problems.

Example 10 (Akrasia). When you are not browsing the internet, you can and want to
work. When you are browsing the internet, you desire not to work. Thus, either working
or browsing the internet leave you in a state of satisfaction. Now you find yourself neither
working nor browsing the internet. Let us formalize these elements:

s0 = {−work ,−internet}

G =

{
(−internet ,work),

(internet ,−work)

}
A=

{
{>} browse {internet},
{−internet} work {work}

}

1720

Offline Goal Reasoning with Norms

Let β = β0 be induced by the normative system (`0,G) and define the GR problem
P = (S,A, s0, β). The two plans for P are the akrasia-friendly solution browse or the more
intuitive solution work that fulfils the initial goal. See Figure 4 for an illustration of this.
Based on the informal description you seem to keep akrasia under control, while in fact:

• Universal (Algorithm 5) returns either browse or work.

• OnlineGR, BDI and the other OffGR planners (Algorithms 4, 6–9) return work.

5.3 UniClass∗

UniClass∗ aims for an initial goal state (like βClassical∗) but also adds a test for β? (like
Universal). This makes it sound and also to return the best solution in Example 10.

Definition 12 (UniClass∗). UniClass∗ is defined as lfp(ψ(·)) under the ψ function:

ψ(π) =

ϕ(s0, β(s0)) if π = ∅
π if π 6= ∅ and γ(s0, π) ∈ β?

failure otherwise.

Lemma 11. For any GR problem P , it holds that lfp(ψ(P)) = UniClass∗(P), where ψ is
as in Definition 12 and UniClass∗ is Algorithm 6.

Corollary 12. UniClass∗(P) ⊇ βClassical∗(P) ∩ Universal(P), for any P ∈ P.

The completeness class of UniClass∗ (see next) is that of βClassical∗ (Prop. 8(ii)).

Theorem 13. UniClass∗ is sound and has the termination property. UniClass∗ is com-
plete for P = (S,A, s0, β) iff whenever β? ∩ S∗ 6= ∅, then also β? ∩ S∗ ∩ ‖β(s0)‖ 6= ∅.

Corollary 14. UniClass∗ is complete for all problems P = (S,A, s0, β) satisfying (i)–(ii):

(i) β is decreasing from s0 Rβ(s0, s) implies β(s0) ⊇ β(s)

(ii) all initial goal states are reachable Rβ(s0, ·) ⊆ R∗(s0, ·).

6. OffGR Planners: β-methods

When should an agent reconsider its goal? According to OnlineGR, this should be done
‘upon any relevant surprise’ while for BDI ‘only after the current intention is fulfilled or
abandoned’.14 In OffGR there is ‘not much to reconsider upon a solution state’ (Eq. 10,
Fact 5). Still, a pure search for solution states can fail to achieve obvious goals (Ex. 10).

This tension between solutions and goals has been observed elsewhere in studies of
practical rationality.15 Among OffGR planners, this tension manifests itself as a trade-off
between completeness class and goal-enforcing power.

14. Thus, BDI agents dismiss short-term goals (e.g. to indulge oneself) as they might render one’s intention no
longer desirable or achievable (e.g. to recover from an addiction). An opposite policy enables OnlineGR

to address highly uncertain scenarios with some prospects for goal fulfilment.
15. Game theorists have also observed a similar tension in the prisoner’s dilemma: the overall best state for

the two players (solution) is incompatible with their strategic incentives (goals).

1721

Pardo & Strasser

s0 s s?
π1 π2

Append∗π3

Replan∗

Figure 5: Append∗ and Replan∗ update goals after each successful call to ϕ. In this figure,
both planners find first a plan π1 to an initial goal state s. Append∗ finds then a
plan π2 from s to s? ∈ β? and returns π1.π2. Replan∗ instead discards π1, finds a
new plan π3 from s0 to s? and returns π3. (Note that π3 = π1.π2 is also possible).

On the latter, certainly there are advantages to plans that regularly pursue tangible
goals, as these plans (1) comply with the norms that trigger such goals, (2) are better
motivated and (3) their search can speed up with the use of heuristic functions.

Going back to our initial question, β-methods are OffGR planners that reconsider the
goal after every plan, but not inside each plan. The two β-methods we study differ on what
to do with the current plan. Append∗ keeps this plan and expands it after each goal update.
Replan∗, in contrast, drops the plan after each goal update and starts a new search from
the initial state aimed the new goal. See Figure 5 for a comparison.

6.1 Append∗

Let us consider first an OffGR planner that appends plan after plan.

Definition 13 (Append∗). Append∗ is defined as lfp(ψ(·)) under the ψ function:

ψ(π) = π.ϕ
(
γ(s0, π), β(γ(s0, π))

)
.

Observe that the initial value for this function ψ is just ψ(∅) = ϕ(s0, β(s0)).16

Lemma 15. For any GR problem P , it holds that lfp(ψ(P)) = Append∗(P), where ψ is as
in Definition 13 and Append∗ is Algorithm 7.

Observe that Append∗ might get stuck alternating between two (mutually reachable)
goal states, and so it might not terminate.

Theorem 16. Append∗ is sound but does not have the termination property. Append∗ is
complete for P = (S,A, s0, β) iff (Rβ ∩R∗)∗(s0, ·)∩β? 6= ∅ whenever a solution for P exists.

As a consequence of Theorem 16, Append∗ is complete for any problem whose solution
states can be achieved while pursuing goals.

Corollary 17. Append∗ is complete for any GR problem P ∈ P satisfying the inclusion
β? ⊆ (Rβ ∩R∗)∗(s0, ·).

Despite the negative result in Theorem 16, one can enforce the termination property on
Append∗ with a slight modification: that it maintains a list of visited goal states.

16. With detail, ψ(∅) = ∅.ϕ(γ(s0, ∅), β(γ(s0, ∅))) = ϕ(s0, β(s0)).

1722

Offline Goal Reasoning with Norms

s0 s1

s3s2

cook

clean

Figure 6: The Möbius Strip from Example 11. The action transitions {(si, s1)}1≤i≤3 for
cook and {(s0, s0), (s2, s2)} for clean are omitted for clarity.

Lemma 18. Append∗, as defined by Algorithm 7 with %-lines, has the termination property.

Append∗ performs better than UniClass∗ whenever the progression towards a solution
does increase the goals. This is the case under the so-called Möbius strip: a chaining of
norms such as (>, p), (p, q), (q ,¬p) with a conflict between its first and last norms.17

Example 11 (Möbius Strip). If you are hungry then you ought to cook (and eat). After
cooking, you should clean up. After cleaning up, you ought (temporarily) not to cook. You
find yourself hungry, you have not cooked, and the kitchen is clean. (Makinson, 1999). Let
us formalize this scenario as follows:

s0 = {hungry , clean,−cook}

A =

{
{>} cook {−hungry , cook ,−clean},
{−clean} clean {clean,−cook}

}
G =

(hungry , cook),

(cook , clean),

(clean,−cook)

Note that clean resets the variable cook to false. Let P = (S,A, s0, β) be the GR problem

induced by the above elements and the intuitive goal function β defined by:

s0
β−−−→ {cook} s1 = s0.cook

β−−−→ {clean}
s2 = {hungry , cook , clean} β−−−→ {−cook} s3 = s0.cook.clean

β−−−→ {−cook}.

See also Figure 6 for an illustration. The OffGR planners give the following outputs:

• {βClassical∗, UniClass∗} return cook resp. failure after a call ϕ(s0, β(s0)) = cook.

• {Append∗, Replan∗, Universal, OnlineGR, BDI} return the solution cook.clean.

• {βSaturate} returns failure as it cannot reach the desired (saturated) state s2.

6.2 Replan∗

This planner searches for a new plan from scratch after every goal update s 7−→ β(s).

Definition 14 (Replan∗). Replan∗ is defined as lfp(ψ(·)) under the ψ function:

ψ(π) = ϕ
(
s0, β(γ(s0, π))

)
.

17. The chaining in a Möbius strip illustrates the detachment of inconsistent goals under deontic detachment
(DD). The logic ` based on (FD)+(DD) gives here the inconsistent goal {p, q,¬p}.

1723

Pardo & Strasser

s0 •

• •

buySnacks

goParty

Figure 7: Unwilling Snacks, from Example 12.

Lemma 19. For any GR problem P , it holds that lfp(ψ(P)) = Replan∗(P), where ψ is as
in Definition 14 and Replan∗ is Algorithm 8.

Again, Replan∗(P) might not terminate when cycles exist in the goal relation Rβ.

Theorem 20. Replan∗ is sound but does not have the termination property. Replan∗ is
complete for P = (S,A, s0, β) iff whenever a solution for P exists, then T (s0, ·) ∩ β? 6= ∅,
where T is the relation inductively defined by:

T0 = IdS and Tn+1 = (Tn | Rβ) ∩R∗ and T =
⋃
n∈ω Tn.

Let us call a state in R∗β(s, ·) a state remotely desirable at s. It suffices for Replan∗ to
be complete that solution states are remotely desirable, and that the latter are reachable.

Corollary 21. Replan∗ is complete for P whenever β? ⊆ R∗β(s0, ·) ⊆ R∗(s0, ·).

Replan∗ outperforms Append∗ when every solution reached by goal pursuits needs to be
revised at some point. Consider the next variant of the running example.

Example 12 (Unwilling Snacks). Let us revise the party scenario (Ex. 5) as follows. You
dislike the idea of bringing snacks (even after buying them!). Only at the party you will
realize that bringing snacks was a nice gesture. Let the set of norms now be:

G =

(>,meet),

(−party ,−snacks),
(party , snacks)

Define P = (S,A, s0, β) as in Examples 4–6 except that β = β0 is now induced by the set G
just defined. See Figure 7 for an illustration. Note that the initial and solution states are
path-connected twice: via R (

�

) and via Rβ (

�

). Alas, these two paths are disjoint.
Now, both {Append∗, Replan∗} consider the plan goParty first. After updating the

goal, Append∗ cannot expand this plan into a solution while Replan∗ does revise it into
buySnacks.goParty. Considering also the other algorithms, we have:

• {βClassical∗, UniClass∗, Append∗} return failure.

• {OnlineGR, BDI} execute goParty and then return failure.

• {Universal, Replan∗, βSaturate} return buySnacks.goParty.

Finally, one can also modify Replan∗ as usual so as to enforce the termination property.

Lemma 22. Replan∗, as defined by Algorithm 8 with %-lines, has the termination property.

1724

Offline Goal Reasoning with Norms

s0 s s?
α(s0) α(s)

π

Figure 8: βSaturate updates s0 with α(·)-actions to produce states that are remotely de-
sired at s0. If this procedure reaches a solution state s?, then ϕ is invoked over
the original domain Σ for a plan towards this state s?.

7. OffGR Planners: β-saturation

The third class of OffGR planners incorporate a search for β’s fixed points before planning.
To this end, one defines an inductive method for the the goal ¤ in the naive pipeline (1).

7.1 βSaturate

For a GR problem P = (S,A, s0, β), βSaturate(P) iteratively updates each state s (initially
s = s0) with its goals β(s) up to a solution state, at which point an invocation of ϕ =
Classical is made. The solution state thus obtains by saturating s0 with goals (Figure 8).

Technically, this is done by relaxing the original problem P . We expand the planning
domain (S,A) into a domain (S,A ∪ A′) containing new actions A′ = {α(s) : s ∈ S}. This
set A′ contains a (nameless) dummy action α(s) that produces β(s) only on state s:

α(s) =
(
pre(α(s)), eff (α(s))

)
= (s, β(s)).

Observe that if s ∈ β?, then α(s) = (s, β(s)) is an idle action, equivalent to (s, ∅).
Henceforth, we identify any such idle action α(s) with the (sub)plan ∅.

Definition 15 (βSaturate). βSaturate is defined as lfp(ψ(·)) under the ψ function:

ψ(π) =

π.α(γ(s0, π)) if γ(s0, π) /∈ β?

ϕ(s0, γ(s0, π)) if γ(s0, π) ∈ β? and π /∈ A∗

π if γ(s0, π) ∈ β? and π ∈ A∗

The βsaturation of s0, denotedR�(s0), is the⊆-minimal set containing s1 = γ(s0, α(s0))
and closed under the map sn 7−→ sn+1 = γ(sn, α(sn)). Observe that R�(s0) ⊆ R+

β (s0, ·).

Example 13 (Forget the Snacks!). Let us revise once more the party scenario (Ex. 5).
You are too considerate, and while at home you cannot conceive not bringing snacks to the
party —even worse, the shops are closed now. This attitude is unfounded, though, as all
party-goers (and you, once at the party) agree that snacks are lame. Let us expand the
language L from Ex. 5 with a new atom open (= the snack shop is open) and define:

s0 = {−open,−party ,−snacks,−meet}

A =

{
{−party} goParty {party},
{open} buySnacks {snacks}

}
G =

(>,meet),

(−party , snacks),

(party ,−snacks)

1725

Pardo & Strasser

s0 •

• •

goParty

Figure 9: Forget the Snacks! from Example 13.

Let P = (S,A, s0, β) be defined from these elements and the goal function β = β0. Figure 9
shows how βSaturate(P) identifies the solution state by following the Rβ-path from s0.
Other planners fail as the solution state is not a goal state of any reachable goal state:

• {βClassical∗, UniClass∗, Append∗, Replan∗, OnlineGR, BDI} return failure.

• {Universal, βSaturate} return the solution goParty.

Lemma 23. For any GR problem P , it holds that lfp(ψ(P)) = βSaturate(P), where ψ is
as in Definition 15 and βSaturate is Algorithm 9.

βSaturate is complete for GR problems containing a solution state in R�(s0) that is
reachable. Observe that at most one solution state exists in any such set R�(s0).

Theorem 24. βSaturate is sound but does not terminate. βSaturate is complete for
P = (S,A, s0, β) iff whenever a solution exists, R∗(s0, ·) ∩ β? ∩R�(s0) 6= ∅.

Once more, one can slightly modify the planner βSaturate so as to satisfy termination.

Lemma 25. βSaturate, defined by Algorithm 9 with %-lines, has the termination property.

7.2 A Variant of βSaturate

While βSaturate solves the above Example 13, it fails at the following simple example.

Example 14 (Omelette). Suppose everytime an egg is in your fridge, you desire to cook an
omelette. There is exactly one egg in your fridge, and the shops are closed. Let us define:

s0 = {egg ,−omelette}
G = {(egg , omelette)}
A =

{
{egg} cook {−egg , omelette}

}
Here, β(s0) = {omelette}. β? = ‖β(s0)‖ = {s1, s2} where s1 = {egg , omelette} and s2 =
{−egg , omelette}. Goal saturation R�(s0) contains a unique state s1 = γ(s0, α(β(s0))), but
this state is unreachable as you cannot buy an egg now. Thus,

• {βSaturate} returns failure.

• OnlineGR, BDI and all other OffGR planners return the solution cook.

1726

Offline Goal Reasoning with Norms

s0 s2

−egg
omelette

s1

egg
omelette

cookR�

R�

Figure 10: Omelette, from Example 14. The β-saturation steps are labeled with R�.

One can turn βSaturate into a less naive planner by removing the remains of the initial
state from the β-saturated state s? ∈ β?. This variant is defined by the ψ function:

ψ(π) =

π.α(γ(s0, π)) if γ(s0, π) /∈ β? and (π = ∅ or π /∈ A∗)
ϕ(s0, γ(s0, π) \ s0) if γ(s0, π) ∈ β? and π /∈ A∗

π if γ(s0, π) ∈ β? and π ∈ A∗

failure if γ(s0, π) /∈ β? and π ∈ A∗ \ {∅}

Example 15 (Omelette, cont’d). The planner lfp(ψ(·)) based on the above ψ function
solves Example 14. It turns the saturated state s1 = {egg , omelette} into a goal:

{omelette} = s1 \ s0 = {egg , omelette} \ {egg ,−omelette}.

When this goal is supplied to the local planner, ϕ(s0, {omelette}) returns the solution cook.

Observe that the classical plan π returned by the invocation ϕ(s0, s
?\s0) might not lead

to a solution state. This is why we add a β?-membership test in the modified ψ function.
This test preserves the soundness of βSaturate into this variant.

8. Discussion

Let us start with a recap in Table 1 of the performance of GR algorithms on the examples.
This Table illustrates the trade-off between goals (‘Norm viol.’) and solution states (‘No’),
particularly among sound OffGR planners. With more detail:

• {Universal, βSaturate} outperform β-methods when pursuing goals is futile (Ex. 13).

• Most OffGR planners are incomplete but fulfil goals better than Universal (Ex. 10).

• Append∗(P) can be expected to fulfil more goals than Replan∗(P) when both algo-
rithms are complete for P , but Replan∗ seems to solve more GR problems (Ex. 12).

• βSaturate displays an erratic behaviour: from successful (Ex. 13) to naive (Ex. 14).

• OnlineGR and BDI cannot predict (nor react) to certain norm violations (Ex. 6, 12).

The next sections address pending questions: (8.1) How the completeness classes relate
to each other. (8.2) The impact of the local function ϕ. (8.3) Techniques for combining OffGR

planners. (8.4) On the reducibility of OffGR to classical planning (question Q2). (8.5) The
application of GR to deontic logic.

1727

Pardo & Strasser

Table 1: A comparison of GR algorithms on examples. The values read as follows: (Yes)
The planner returns a solution. (No) The planner returns failure. (Unsound) The
planner may return a non-solution plan. (Norm viol.) The plan returned might
violate an active norm. For all OffGR planners, we use their terminating versions.

Ex. OnlineGR, BDI βClassical∗ Universal UniClass∗ Append∗ Replan∗ βSaturate

6 Unsound Unsound Yes Yes Yes Yes Yes
10 Yes Yes Norm viol. Yes Yes Yes Yes
11 Yes Unsound Yes No Yes Yes No
12 Unsound No Yes No No Yes Yes
13 No No Yes No No No Yes
14 Yes Yes Yes Yes Yes Yes No

8.1 A Hierarchy of Completeness Classes

One can first compare OffGR planners by their effective range in the class of GR problems.

Proposition 26. The classes of GR problems for which Algorithms 4–9 are complete can
be arranged as follows:

βClassical∗ = UniClass∗ ⊂ Append∗ ⊂ Replan∗ ⊂ Universal

and βSaturate ⊂ Universal. βSaturate is incomparable with all other planners.

Secondly, one can compare the computational cost of generating a solution.

Remark 2. A quick look at the definitions Algorithms 4–9 also shows that these planners
demand an increasing number of steps in order to generate a (worst case) solution π for a
GR problem P = (S,A, s0, β). These steps consist of computing:

(Algorithm 4) βClassical∗ (1) one value of β(·) + (2) a classical plan.
(Algorithm 6) UniClass∗ (1) + (2) plus (3) a β?-membership test.
(Algorithm 5) Universal (2) + an o(|π|) number of steps (3)
(Algorithm 7) Append∗ an o(|π|) number of steps (1)–(3).
(Algorithm 8) Replan∗ an o(|π|2) number of steps (1)–(3).
(Algorithm 9) βSaturate an o(|S|) number of steps (1) + one step (2).

These complexities partly depend on the parameter β(·). For goal functions defined from
a normative system (|∼,G), computing β(s) reduces to the model checking problem for the
deontic logic |∼, which is a function of the size of the state s and the set of norms G .

8.2 Classical vs. Classical∗

In Section 3, we claimed that Classical∗ brings some advantages to OffGR planners, when
compared to their Classical-based counterparts. Let us define those counterparts first.

Definition 16 (ψ functions based on Classical). For each ψ function from Definitions 10,
12, 13, 14, we define the corresponding ψ function simply by interpreting ϕ = Classical.

Definition 17 (OffGR planners based on Classical). Define the planners {βClassical,
UniClass, Append, Replan} by interpreting ϕ = Classical in Algorithms 4, 6, 7 and 8
respectively.

1728

Offline Goal Reasoning with Norms

Local maxima. The first advantage we mentioned in Section 3 was about local maxima.
A local maximum is: (1) a goal state that is not a solution state (for βClassical, UniClass)
or, more generally, (2) a goal state from which no solution state is remotely desirable
(for Append, Replan) or, finally, (3) a goal state that closes an Rβ-cycle back to s0 (for
Replan). Classical-based OffGR planners do get trapped when all solutions traverse a
local maximum.

Example 16. Let Planner ∈ {UniClass, Append, Replan} and consider the GR problem
P described by the following search space:18

s0 s s?
α1 α2

State s is a local maximum. Since ϕ = Classical, any call ϕ(s0, β(s0)) within an execution
of Planner(P) will return the plan α1. The only solution α1.α2 traverses state s, and so

• UniClass(P), in any execution, will return failure, since state s is not in β?.

• Append(P) also returns failure. The first call to ϕ returns α1. At state s, the goal
state is s0 but this state cannot be reached from s, so the second call returns failure.

• Replan(P), in any execution, gets stuck between the plans α1 = ϕ(s0, β(s0)) and
∅ = ϕ(s0, β(s)). The terminating version of Replan(P) necessarily returns failure.

In contrast, some executions of {UniClass∗(P), Append∗(P), Replan∗(P)} return the so-
lution α1.α2 and the rest return failure (for the terminating version of Replan∗). These
Classical∗-based counterparts thus avoid getting trapped in the local maximum s.

Better completeness classes. A second advantage we mentioned in Section 3 is that
Classical∗ provides stronger completeness classes to our OffGR planners.

Proposition 27. For each Planner ∈ {UniClass, Append, Replan}, its completeness class
satisfies: Planner ⊂ Planner∗.

These inclusions are depicted in Figure 11. The completeness class of Planner∗ does
not only properly extend that of Planner, it also enjoys a more elegant characterization.
Without going into too much detail, the completeness class for Planner obtains by restrict-
ing the class of Planner∗ to those GR problems that contain solution states that are also
goal states, of a suitable kind, and can be reached without traversing any other goal state.
(For UniClass, suitable = all. For Append, suitable = remote and reachable.)

18. For details, let (S,A) be generated by the set At = {p, q, r} and the set A = {α1, α2} with the actions:

{p,¬q} α1 {¬p, q , r} {¬p, q , r} α2 {p, q}.

The GR problem P = (S,A, s0, β) is then given by s0 = {p,¬q,¬r} and the goal function β = β0 induced
by the set of norms G = {(p, q), (p, r), (¬p,¬q), (¬p,¬r)}.

1729

Pardo & Strasser

UniClass Append Replan Universal

UniClass∗ Append∗ Replan∗ Universal

Figure 11: Completeness classes of OffGR planners based on Classical∗ (top line) and
resp. Classical (bottom line). Arrows → denote proper inclusions ⊂.

A more intuitive hierarchy. A final advantage is that the completeness classes arrange
in a more intuitive way under the interpretation ϕ = Classical∗. See again Figure 11 (top
line vs. bottom line) for a comparison under the two interpretations of ϕ.

Intuitively, a solution π = π1. · · · .πn returned by appending subplans can be recon-
structed by replanning (recall Figure 5). This reconstruction proceeds by a series of plans
from scratch that happen to coincide at an initial fragment:

(Append∗) π1.π2. · · · .πn −→ (Replan∗) π1 7→ π1.π2 7→ · · · 7→ π1.π2. · · · .πn.

This intuition is verified if we interpret ϕ = Classical∗, as shown by the proof of Append∗ ⊆
Replan∗ (Proposition 26), but fails under the interpretation ϕ = Classical.

Proposition 28. The completeness classes of {UniClass, Append, Replan} arrange as:

UniClass ⊂ {Append, Replan} ⊂ Universal.

The completeness classes of Append and Replan are incomparable.

Example 17 (Append 6⊆ Replan). Consider a GR problem P with search space:19

s0 s s?
α1 α2

• Append(P): the first call gives α1 = ϕ(s0, β(s0)) and the second α2 = ϕ(s, β(s)); any
execution of Append(P) thus returns the solution α1.α2.

• Replan(P): any execution gets stuck in a replanning cycle between α1 = ϕ(s0, β(s0))
and ∅ = ϕ(s0, β(s)). (For the terminating version, Replan(P) returns failure at this
point, as ∅ is visited twice.)

These arguments on local maxima, completeness classes and the OffGR hierarchy support
the conclusion that offline GR problems are better addressed by the variant Classical∗.

19. With more detail, let (S,A) be generated by the set At = {p, q} and a set A = {α1, α2} with the actions:

{p,¬q} α1 {¬p, q} {¬p, q} α2 {p, q}

Define P = (S,A, s0, β0) by the above (S,A) plus s0 = {p,¬q} and the set of norms G = {(p, q), (q , p)}.

1730

Offline Goal Reasoning with Norms

8.3 Unions and Fusions of OffGR Planners

One way to mitigate the weaknesses of individual OffGR planners is to combine them with
the hope of obtaining a better completeness class. An immediate way to combine planners
is to use (non-deterministic) choice, denoted (Planner1∪Planner2), so that

• an execution of (Planner1∪Planner2)(P) is either an execution of Planner1(P) or
an execution of Planner2(P).

From the semantics of choice (Fischer & Ladner, 1979) it follows that for incomparable
completeness classes Planner1 6⊆, 6⊇ Planner2, this operation improves upon each original
completeness class:

Planner1, Planner2 ⊂ Planner1∪Planner2.

Consider Append∗ ∪ βSaturate for an illustration. All the examples in Table 1 are solved
by this combined OffGR planner. But can we do better than choice? Let us consider the
piecewise combination of the corresponding ψ functions, that we call fusion.

Definition 18 (Fusion). Let ψ1, ψ2 be ψ functions. Their fusion is defined by:

(ψ1 ⊗ ψ2)(π) = (ψ1(π) ∪ ψ2(π)).

Let us show that ψ1⊗ψ2 is a well-defined ψ function. Rephrase the original ψ functions
ψ1, ψ2 as a set of pairs (map, case condition) = (ϕi(π), θi) of the form:

ψ1(π) = {(ϕi(π), θi)}i≤k and ψ2(π) = {(ϕ′j(π), θ′j)}j≤m.

Then, the fusion (ψ1 ⊗ ψ2)(π) from Definition 18 is explicitly defined by the set of pairs:(
ψ1⊗ψ2

)
(π) =

{(
(ϕi ∪ ϕ′j)(π), θi ∧ θ′j

)}
i≤k, j≤m

Now, the set {θi}i≤k induces a partition of the logical space S. That is, it splits S into
classes that are: mutually exclusive ‖θi‖ ∩ ‖θi′‖ = ∅ for any i 6= i′, and jointly exhaustive
S =

⋃
i≤k ‖θi‖. And similarly for the set {θ′j}j≤m. Hence, the same is true for their

combination, the set {θi ∧ θ′j}i≤k, j≤m. As a consequence, ψ1⊗ψ2 is also a ψ function.

For incomparable completeness classes, say Planner1 6⊆, 6⊇ Planner2, fusion does indeed
improve on choice:

Planner1∪Planner2 ⊂ Planner1⊗Planner2

For the inclusion ⊆, note that an execution of Planner1(P) is obviously an execution of
Planner1 ⊗ Planner2 that systematically chooses ϕi over ϕ′j whenever the corresponding
condition θi∧θ′j holds. (And similarly for Planner2(P).) That any such inclusion is proper
⊂ can be shown by constructing a suitable example.

While we leave for future work experimental studies of fusions of OffGR planners, one
can expect that each planner contributes to a fusion in its own way, such as an increase in the
number of goals fulfilled (Append∗) or an expansion of the completeness class (Universal).

1731

Pardo & Strasser

8.4 On the Reducibility of Offline GR to Classical Planning

Let us finally address question (Q2) on whether offline GR reduces to classical planning
or some extension thereof. Can one compile a GR problem P into a norm-free planning
problem P ′ and then solve P ′ with existing planners? Our results will map the class P0 of
all β0-based GR problems into the class P.T of planning problems defined by conditional
effects and derived predicates —that is, a fragment of PDDL (Haslum et al., 2019). We
denote by Planner.T a generic planner for this class P.T .

Definition 19 (Conditional effect). A conditional effect of an action α is any expression
of the form ε = θ . `, where θ ⊆ L and ` is a literal. In this case, we write ε ∈ eff (α).

A conditional effect θ . ` of α is interpreted as follows: if θ was true before executing the
action (s |= θ), ` becomes true afterwards (γ(s, α) |= `). Otherwise, ` is not affected by α.

Definition 20 (Derived predicate). A derived predicate is an axiom in implication form
` → `′, read as: `′ derives from `. A set of derived predicates, or theory, T is part of the
planning domain, e.g. Σ = (S,A, T), and restricts the possible states to the set S = ‖T‖.

The update function γ is revised to accommodate the conditional effects θ.` of each α (if
s |= θ then γ(s, α) |= `) and all derived predicates `→ `′ (if γ(s, α) |= ` then γ(s, α) |= `′).

Our compilations of a GR problem P = (S,A, s0, β0) expand its language L 7−→ L.T
and produce planning problems P ′ in P.T with a fixed goal g = {final}, and auxiliary
actions A′ = {end, . . .} expressing different ways to achieve this goal g. A plan π for P ′ is
translated back into a plan for P by removing all the auxiliary actions. Let then:

π � A = the subsequence of π that contains only its A actions.

Ideally, π � A ∈ A∗ will be a solution for P .

Definition 21 (Compilation of GR). A compilation is a map (·)′ : P −→ P.T satisfying:

(Soundness) if π is a plan for P ′, then π � A is a solution for P .

A map (·)′ : P0 → P.T that is only defined for GR problems of the form P = (S,A, s0, β0)
is called a compilation for β0.

Our compilations for a particular β0 encode the (or some) set of norms G that defines this
function β0 (Def. 2, Fact 1) and consist of maps of the form:

P = (S,A, s0, β0) 7−→ P ′ = (S′, A ∪A′, T, s′0, {final})

Example 18. Let P = (S,A, s0, β0) be as in Example 5. First, we add two atoms: At′ =
At ∪ {needSnacks, final}. Now we define P ′ = (S′, A ∪A′, T, s′0, g) by:20

S′ = P(At′) ∩ ‖T‖ T =
{

party → needSnacks
}

s′0 = {¬p : p ∈ At′} g = {final}

A ∪A′ =

{¬party} goParty {meet , party}
{¬party} buySnacks {snacks}
{meet} end {(needSnacks, snacks) . final}
{meet} end2 {(¬needSnacks) . final}

20. This compilation of Example 2 was suggested to us by an anonymous reviewer.

1732

Offline Goal Reasoning with Norms

The search for plans in an execution of Planner.T (P ′) can be summarized as follows:

(goParty.end). goParty produces needSnacks, but end has no effects since snacks is false.

(goParty.end2). Similarly, but now end2 has no effects since ¬needSnacks is false.

(buySnacks.goParty.end). The A-actions produce snacks and resp. needSnacks, so that
end activates the effect (needSnacks, snacks) . final , producing the goal final .

(buySnacks.goParty.end2). The goal final is not produced since ¬needSnacks fails.

The map π 7−→ π � A thus preserves plans that solve P ′ into solutions for P .

Let us generalize the transformation in Example 18 into a compilation for β0. First, aux-
iliary actions in A′ = {end, end2, . . .} take as precondition the initial goals β0(s0) (e.g. meet).
Secondly, each conditional norm in G , say (party , snacks), is rephrased into: a derived predi-
cate (party → needSnacks) and a set of conditional effects for norm compliance. Henceforth,
we introduce the new atoms as goal(snacks) instead of needSnacks in Example 18.

Definition 22 (Compilation A). Let P = (S,A, s0, β0) be a GR problem defined over At,
and with β0 induced by a normative system (G ,`0). Define P ′ = (S′, A ∪A′, T, s′0, g) by:

At′ = At ∪ {final} ∪ {goal(`′)}(·,`′)∈G S′ = ‖T‖
A′ = {end1, . . . , endk} for k = 2|T | s′0 = s0 ∪ {¬p : p ∈ At′ \ At}
T = {`j → goal(`′j) : (`j , `

′
j) ∈ G and `′j /∈ β(s0)} g = {final}.

Action endj is defined by pre(endj) = β0(s0) and eff (endj) = {(θ1, . . . , θ|T |) . final} where

θj =

{
either: ¬goal(`j)

or: goal(`j), `
′
j

and
eff (end1), . . . , eff (endk) jointly contain
all combinations of values for θ1, . . . , θ|T |.

For the (FD)-based logic `0, solution states coincide with the condition no norm viola-
tions, expressed by formulas of the form ¬` ∨ `′ = ¬(` ∧ ¬`′), one for each norm (`, `′).

Lemma 29. Let P = (S,A, s0, β0) be a GR problem, with β0 induced by (G ,`0). Then,

s ∈ β? iff s |= {(¬` ∨ `′)}(`,`′)∈G .

Remark 3 (Plan minimality). Auxiliary actions endi in A′ prevent the map π 7−→ π � A
from preserving plan minimality from P ′ to P . That is, Planner.T (P ′) can return a minimal
plan π1.π2.endi even when a subplan π1 extends into some π1.endj that already solves P ′.
Since the solution π1.π2 for P is not minimal, it cannot be returned by OffGR planners.

To fix this, we impose a deterministic search order on Planner.T that lists all A′ actions
before all A actions. This suffices to preserve the plan minimality of π into π � A.

Proposition 30 (Compilation A). For any P = (S,A, s0, β0), the map P 7−→ P ′ in Defini-
tion 22 is a compilation for β0 satisfying, moreover, Planner.T (P ′) � A ⊆ UniClass∗(P).

Let us finally consider a variant of Compilation A. Compilation B encodes all norms
into the language L.T , not just those norms that did not detach an initial goal into β(s0).

1733

Pardo & Strasser

Definition 23 (Compilation B). Let P = (S,A, s0, β0) be a GR problem defined over At,
and with β0 induced by (G ,`0). Define P ′ = (S′, A ∪A′, T, s′0, g) as follows:

At′ = as in Definition 22 S′ = ‖T‖
A′ = {end1, . . . , endk} for k = 2|G | s′0 = s0 ∪ {¬p : p ∈ At′ \ At}
T = {`j → goal(`′j) : (`j , `

′
j) ∈ G} g = {final}.

Each endj is defined by pre(endj) = > and eff (endj) = {(θ1, . . . , θ|G |) . final} where again
the effects of all endj actions jointly contain all combinations of values of θ1, . . . , θ|G |.

Proposition 31 (Compilation B). For any P = (S,A, s0, β0), the map P 7−→ P ′ in Defini-
tion 23 is a compilation for β0 satisfying, moreover, Planner.T (P ′) � A = Universal(P).

In sum, we studied two intuitive compilations and proved that they: (1) correspond
to α-methods that have a small completeness class (UniClass∗) or are goal oblivious
(Universal); (2) could only be proved to exist for the (FD) logic `0; and (3) are defined
over a language with conditional effects. In this respect:

(1) Even if compilations exist that correspond to Append∗ or Replan∗, they might well be
impractical. Encoding goal states requires a greater number of auxiliary landmark
atoms and landmark actions (akin to final resp. end) that are also exponential in |G|.

(2) Extending the current compilations to deontic logics beyond `0 seems also unlikely.
Non-monotonic deontic logics (see Section 8.5) deal with intricate norm conflicts that
cannot be represented by soft goals or in preference-based planners.

(3) Conditional effects can in turn be compiled away into classical planning, but these trans-
formations either require an exponential number of actions or, following Nebel (2000),
do not preserve the delete relaxation heuristics —but see also Katz (2019).

Our results support the claim that the most interesting OffGR methods do not reduce to pure
planning, at least for any significant decrease in complexity —computational or analytical.

8.5 Applications in Deontic Logic

Solving deontic puzzles equipped only with logical tools leads often to intricate systems.
Offline GR can relieve these deontic logics from some of their complexity, as shown below
for two well-known puzzles. In OffGR, solving the Chisholm paradox no longer needs (DD),
as (FD) is enough. And for the Order puzzle, the Brewka-Eiter goal is achieved by pursuing
(the much simpler) PDL goals. OffGR further solves these two puzzles without restricting
(FD) to contexts. A context is a set τ ⊆ s0 of handpicked facts, so that only τ -facts trigger
factual detachment:

[τ -fact] p ∈ τ
[norm] q if p

[goal] q
(FD)[τ]

1734

Offline Goal Reasoning with Norms

s0 s1

s2 s3

tell

help

s0 s1

s2 s3

tell

help

Figure 12: The Chisholm paradox, as a GR problem. (Left) The CTD scenario, where you
prefer not to help. (Right) The ATD scenario where you prefer to help.

Chisholm paradox. You ought to help your neighbours with some task. If you decide to
help them, you should call and tell them in advance. If you decide not to help them, you
should not call. You decide you are not going to help them. (Chisholm, 1963).

(Logic.) This scenario features a CTD obligation (not to call) under the norms and facts:

G = {(>, help), (help, tell), (−help,−tell)} s0 = {−help,−tell}.

We also consider an alternative scenario where You decide to help, featuring an according-
to-duty (ATD) goal (to call). Since for both scenarios (FD)+(DD) gives an inconsistent
goal, this logic is patched into (FD)[τ]+(DD) with a context τ ⊆ s0 for each scenario:

τ = s0 CTD : τ = {−help} ATD : τ = ∅
βω(s0) = {help, tell ,−tell} βω(τ) = {−tell} βω(τ) = {help, tell}

(Offline GR.) Let us rewind the story and model the preexisting conflict to help or not
before any decision is made. We add your desire to not help and define two actions in A:

G+ = G ∪ {(>,−help)} {−help} help {help} {−tell ,−help} tell {tell}.

For our deontic logic, define two preference relations ≺⊆ G×G , so that the CTD scenario
will occur when the norm (>,−help) is preferred over (>, help), and viceversa for the ATD
scenario. Select the ≺-maximal elements of G+ in each case, i.e. the sets Gctd ,Gatd ⊆ G+:

Gctd = {(>,−help), (help, tell), (help,−tell)} Gatd = {(>, help), (help, tell), (help,−tell)}.

Applying (FD) only to the selected norms induces a goal function β = βctd or β = βatd
—see Figure 12. Define a GR problem P = (S,A, s0, β) from each β. Then, the planners
Replan∗(P) or βSaturate(P) return the intuitive solution in each scenario:

(CTD): π = ∅ (ATD): π = tell.help.

Order puzzle. Corporal O’Reilly has to follow commands from three superior officers:
(1) the Captain orders that in winter the heat should be turned on; (2) the Major orders
that in winter the window should be closed; and (3) the Colonel orders that whenever the
heat is on the window should be opened. (Horty, 2007). Let (k): (·, ·) denote a norm (·, ·)
with priority k ∈ N, where the greater k the stronger the norm. Those commands are then:

1735

Pardo & Strasser

−h, o −h,−o

h, o h,−o

−h, o −h,−o

h, o h,−o

−h, o −h,−o

h, o h,−o

Figure 13: The Order puzzle and the goal relations induced by PDL (left), Hanssen (center)
and Brewka-Eiter (right) over states (where o = open and h = heat).

G = {(1): (winter , heat), (2): (winter,−open), (3): (heat, open)}.

A prioritized default logic |∼, in its deontic variant,21 selects, for a context τ ⊆ Lit,
a consistent set of norms G′ ⊆ G based on their strength. The logic |∼ then detaches all
goals from the selected norms G′. (In general, different selections might exist that output
rival goal sets, but not under total orders of priorities, like (1) ≺ (2) ≺ (3) above.)

(Logic.) Let us sketch how different logics answer to the puzzle, under context τ = {winter}:

PDL (Brewka, 1989). Iteratively select the strongest applicable and consistent norm, up to
an inconsistent goal. PDL selects norm (2) and then (1). The goal is {heat ,−open}.

Hansen (Hansen, 2008). Iteratively select the strongest norm, up to an inconsistent goal
detachment. The norms selected are (3) then (2). The goal is {−open}.

Brewka-Eiter (Brewka & Eiter, 2000). Guess a goal X ⊆ G such that X is also the PDL
output for the pair (τ �X,G).22 The goal is {heat , open}.

Under each logic, the use of a context τ thus makes the goal state-invariant.

(Offline GR.) Without a specified context, (FD)+(DD) applies to all facts of a state s. See
Figure 13 for the goal functions {βpdl , βha , βbe} induced by the above logics on the search
space S′ = ‖winter‖. Notice how the PDL and Hansen goals vary from state to state, but
the Brewka-Eiter goal is still state-invariant. For a GR approach, define a set A containing
the actions on the window and the heating system:

{−open} open {open} {−heat} heatOn {heat}
{open} close {−open} {heat} heatOff {−heat}.

The action transition relation R consists of all horizontal and vertical edges in Figure 13
(not depicted), any two states are mutually reachable. Since no initial state is specified for
this puzzle, we let s0 be any element of ‖winter‖.

21. For deontic applications, a prioritized default logic differs from its original definition in that the state or
context is not part of the output; i.e. the logic |∼ only concludes goals, not known or inferred facts.

22. The deontic variant of Brewka-Eiter (Liao et al., 2016) drops the requirement that the output X is also
a PDL output of (τ,G). Our definition is a further generalization of it from contexts (τ ∪X) to states
(τ �X). An update τ �X = (τ \ −X) ∪X prevents τ -facts from contradicting the guessed goal X.

1736

Offline Goal Reasoning with Norms

Fact 32. Let Planner ∈ {Append∗, Replan∗, βSaturate, Universal} and s ∈ S′ be arbi-
trary. Define also Ppdl = (S,A, s, βpdl) and Pha = (S,A, s, βha). Then,

(i) for any π ∈ Planner(Ppdl), it holds that s.π |= open ∧ heat
(ii) for any π ∈ Planner(Pha), either s.π |= open ∧ heat or s.π |= −open ∧ −heat

In other words, (i) most OffGR planners lead a PDL-guided agent to the Brewka-Eiter
goal state. This is a remarkable fact, since the complexity of PDL is Ptime for simple
ordered defaults (Kautz & Selman, 1991, Thm. 3), while the complexity of Brewka-Eiter is
co-NP-complete (Brewka & Eiter, 1999, Thm. 7.7).

As for (ii), the goal function βha is the least stable, as it can lead the agent to radically
different solution states. (This is even worse for a purely logical approach: a direct plan to
the Hansen goal {−open} can lead to a heat state that violates the strongest norm.)

As a final remark, let us comment on what systems are covered by our notion of deontic
logic (Section 3). In a nutshell, OffGR can recruit any logic for pure deontic reasoning (con-
taining only obligation, permission and constitutive rules). This includes deontic variants
of: default logics,23 defeasible logics, input/output logics, structured argumentation, among
many other non-monotonic logics, and perhaps even modal logics (fn. 10). Our goal func-
tions exclude: logics of obligatory actions, and all epistemic or dynamic deontic logics, with
observations or preference upgrades. Observations and actions in OffGR are extremely sim-
ple, as they are taken from classical planning (fn. 6). Classical planning similarly prevents
logics with temporal goal specifications: in OffGR any temporal constraint between goals
or actions (Chisholm paradox) derives from the norms and actions’ internal structure. An
expansion of OffGR with any of these concepts faces the dilemma of modelling the concept
as part of the goal selection task (reasoning) or the action selection task (search).

9. Conclusions

We presented the OffGR system for offline goal reasoning and argued that it plays an im-
portant role, complementary to that of online goal reasoning, for autonomous agency. The
need for OffGR is especially manifest when goals obtain from reasoning about conflicting
hedonistic, moral and legal norms. The use of norms also proved convenient for eliciting and
encoding the preferences of an agent. After defining a natural solution concept for OGRe, we
designed and studied six algorithms for the joint selection of goals and plans. Each algo-
rithm is defined first as the search for solutions of a fixed point equation, and then proved
equivalent to an explicit planning program. Some of these search strategies were found to
be better built not upon a classical planner but upon a variant of it. We characterized
the soundness, completeness and termination of these algorithms, and compared them both
theoretically and under a variety of examples. Our preliminary study suggests that plan
expansions and replanning might be overall the best strategies for balancing the double
aim of intermediate goals and solution states. Finally, we also proved results that strongly
suggest the irreducibility of offline GR to planning with conditional effects.

23. Goal functions, by definition, demand a unique goal g to be defined at each state. This condition
corresponds to deontic logics that always return a single answer. For rankings of norms, or partial
orders, non-monotonic logics can return multiple answers, say β(s) ∈ {g1, . . . , gk}. In such cases, one
can still reason skeptically and define a goal function β∩(s) =

⋂
β(s) = g1 ∩ · · · ∩ gk

1737

Pardo & Strasser

Offline GR planners cannot, still, foresee all norm violations by themselves, and neither
can online GR or BDI algorithms react in time to these violations. Our results thus motivate
the search for a switch mechanism between offline and online goal reasoning. This is, we
believe, a key problem for the development of agents in our norm-based societies.

Future work. For applications in AI ethics and law, we need to study the impact of OffGR
planners in deontic logics. As these logics do not study the formation of intentions, it is
quite possible that doing so steers current debates on what detachment principles apply to
law, ethics or desires. For deontic logics that assign priorities or ordinal utilities, moreover,
it is an open debate what aggregation principles should apply. Thus, experimental studies
in GR might decide if the priority of the top goal in a chaining of norms can be defined as
the priority of the top norm (last link) or the minimum priority among all norms (weakest
link). A related topic is the consideration of constitutive rules (Pigozzi & van der Torre,
2018), from which one can detach a legal (or moral) status to particular objects or events;
e.g. what legally counts as a vehicle, or as a threat. As such claims are subject to legal
debates, this form of reasoning cannot captured by derived predicates in planning.

As a study in GR, the solutions returned by OffGR planners can be further improved
with plan repair techniques that increase the number of goals addressed. At a theoretical
level, a study of goal functions with memory in offline GR is also an important task. As
noticed elsewhere (Cox, 2017; Aha, 2018), diachronic goal inconsistencies might require goal
revision policies such as a preference for earlier- over later-detached goals. It is noteworthy
that deontic logics do not address this problem, as most systems cannot balance goals
detached from different timepoints. All these questions on prioritized goals might have in
turn an impact on current work in oversubsrciption or preference-based planning.

Another gap in OffGR is that solution states do not necessarily exist. What necessarily
exists, though, are solution orbits, i.e. paths in the goal relation Rβ that end up in a
cycle. Cyclic plans are indeed part of our daily routines, and in fact we spend considerable
thought to optimize these routines, say by minimizing daily norm violations. Adapting
OffGR planners to return plan orbits is thus also left for future work.

Finally, combining offline and online search is a problem shared by all disciplines that
involve thinking and acting. A formal model for the decision (and wisdom) to switch between
these two reasoning modes would mark a milestone for intelligent autonomous agency.

Acknowledgements The authors are thankful to two anonymous reviewers. Their in-
sights helped us correct a proof and improve on the overall content of this article.

Appendix A. Proofs and Algorithms

This Appendix contains explicit definitions of search algorithms (Algorithms 4–9) that
correspond each to a ψ-planner lfp(ψ(·)) (Definitions 10–15, respectively). We also provide
in this appendix proofs of all results from Sections 3–8.

The OffGR System.

Fact 1. Normative systems (|∼,G) are as expressive as goal functions β : S → G when
defined over the same set Lit of literals.

1738

Offline Goal Reasoning with Norms

Proof. Let NormSys be the class of normative systems (|∼,G) with a (single-extension) logic
|∼ ⊆ ` over Lit. Let also GoalFun be the class of (memoryless) goal functions β : S → G
with S ⊆ P(Lit) and G = P(Lit). Let t : (|∼,G) 7−→ β be the function defined in Equation
(6):

t((|∼,G))(s) = β(s) =
⋃
{C ⊆ Lit : (s,G) |∼ C}.

(t[NormSys] ⊆ GoalFun.) Immediate from the definition of the induced goal function: β(s) =
{C ⊆ Lit : (s,G) |∼C} ⊆ Lit = G for each s. Hence, β is a map of the form β : S → G.

(GoalFun ⊆ t[NormSys].) Let β : S → G be arbitrary. It suffices to show that there is
(|∼,G) ∈ NormSys such that t((|∼,G)) = β. Consider the (FD) logic |∼ =`0 and the set of
norms Gβ = {(s, β(s)) : s ∈ S}. Then:

t((`0,Gβ))(s) =
⋃
{C ⊆ Lit : (s,Gβ) `0 C} (Def. t, Eq. 6)

=
⋃
{C ⊆ Lit : s |= B for some (B,C) ∈ Gβ} (Def. `0)

=
⋃
{β(s) : s |= s} ((B,C) = (s, β(s)) in Gβ)

=
⋃
{β(s)} = β(s).

We just proved that t((`0,Gβ))(s) = β(s) holds for arbitrary s, and so we conclude that
t((`0,Gβ)) = β. As a consequence, β ∈ t[NormSys] and we are done.

Proposition 2. Let P = (S,A, s0, g) be a classical problem. (Soundness.) If Classical∗(P)
returns π, then π is a classical plan for P . (Strong completeness.) If s0 6|= g, then for any
non-redundant plan π for P , there is an execution of Classical∗(P) that returns π. (Ter-
mination.) Any execution of Classical∗(P) terminates after a finite number of steps.

Proof. (Soundness) The soundness of Classical∗ follows from one of the conditions for
Algorithm 1 to exit the while loop and return a plan π, namely that s |= g where s takes
the value s = γ(s0, π).

(Strong completeness.) Let π[1..m] = (α1, . . . , αm) be a non-redundant plan for P . Let
also the trace of this plan be γ̂(s0, π) = (s0, . . . , s) and consider the set of ‖g‖-states
{s1, . . . , sn} = γ̂(s0, π) ∩ ‖g‖ listed in increasing order in the trace, i.e. γ̂(s0, π) =
(s0, . . . , s1, . . . , sn). Let us show that an execution of Classical∗ exists that returns π. To
this end, we prove by induction on k that each subtrace of the form γ̂(s0, πk) = (s0, . . . , sk)
is a run of the while loop of an execution of Classical∗(P). (Base case 1.) Since s1 is the
first state in γ̂(s0, π) satisfying (·) ∈ ‖g‖, all previous states s in (s0, . . . , s1) satisfy s 6|= g
and so they satisfy the disjunctive condition of the while loop condition. (Inductive case
k 7→ k + 1.) Assume that an execution exists that expands all nodes in (s0, . . . , s1, . . . , sk).
Since sk |= g, a call is made to Choice. Consider the execution where this call returns
true. Hence, the disjunctive condition of the while loop is true, and so this execution con-
tinues the search towards a ‖g‖-state by expanding (s0, . . . , sk, s

′) if an executable action
exists at sk —which we know is true in view of π. Since π is non-redundant, this execution
of Classical∗(P) can be extended by expanding the nodes from the above sequence into
(s0, sk, . . . , sk+1). Observe again that only the last node satisfies the condition (·) |= g.

This inductive proof concludes with an execution that expands (s0, . . . , sn). At this
point, another call to Choice is made when the current variable s = sn satisfies s |= g.

1739

Pardo & Strasser

The execution that returns false from this invocation of Choice exits the while loop and
returns π, as desired.

(Termination.) Observe that any execution of Classical∗(P) maintains a list e of expanded
nodes and returns failure when a node is visited twice (i.e. when the current node s is already
listed in e). This and the fact that the search space is finite jointly imply that an arbitrary
execution of Classical∗(P) will terminate in a finite number of steps (and return either
failure or a plan π).

Fact 3. The soundness condition (8) γ(s, ϕ(s, β(s))) |= β(s) holds for classical planning if
we interpret ϕ = Classical or ϕ = Classical∗.

Proof. Observe that Condition (8) reduces to (7) γ(s, π) |= g after we interpret β and ϕ
classically: β as the constant function βg(·) = g (see Definition 3) and π = ϕ(s, g) for either
ϕ = Classical or ϕ = Classical∗. Thus, in order to prove (8) it suffices to prove (7).

(ϕ = Classical.) Consider the classical problem P = (S,A, s, g). Then, (7) simply
follows from the soundness of the classical forward planner Classical(P) = ϕ(s, g) for, in
particular, the classical problem P .

(ϕ = Classical∗.) Now we interpret β = βg as before and ϕ = Classical∗ as in (9).
(Case s0 |= g.) The output of ϕ(s0, g) is now π = ∅, which clearly satisfies (7) for s = s0

and hence also (8). (Case s0 6|= g.) ϕ(s, g) returns a value π when Choice returns false

and s = γ(s0, π) |= g. Thus, the condition s |= g that exits the while loop in Algorithm 1
amounts to γ(s0, π) |= g which is just Equation (7). Thus, we conclude that Equation (8)
holds for the classical planner Classical∗ under the reading β(·) = βg(·) = g.

OGRe Planners: General View.

Fact 4 (Classical to GR). Each classical problem (S,A, s0, g) reduces to the GR problem
(S,A, s0, βg) defined by the constant goal function βg(s) = g, for any s ∈ S.

Proof. One can reason as follows (we omit the condition π ∈ A∗ at every step):

π is a solution for (S,A, s0, βg(s0)) ⇔ s0.π |= βg(s0.π) (Def. solution)

⇔ s0.π |= g (βg(·) = g)

⇔ π is a plan for (S,A, s0, g) (Def. plan for P).

Fact 5. Let ϕ = Classical or ϕ = Classical∗. Then, s ∈ β? iff ϕ(s, β(s)) = ∅.

Proof. Recall that s ∈ β? iff s |= β(s). Consider the classical problem P = (Σ, s, β(s)) with
goal g = β(s).

(ϕ = Classical.) (⇒) This follows from the exit condition s |= β(s) for the while

loop in Classical(Σ, s, β(s)) = ϕ(s, β(s)). (⇐) By the soundness of the forward planner
Classical over classical planning problems (see e.g. (Ghallab et al., 2004) for a proof).

(ϕ = Classical∗.) (⇒) If s |= β(s) = g, then Classical∗ immediately returns π = ∅ and
so ϕ(s, β(s)) = ∅. (⇐) By the soundness property in Proposition 2, we obtain s = γ(s, ∅) |=
β(s) and so s ∈ β?.

1740

Offline Goal Reasoning with Norms

Algorithm 4 βClassical∗

Input: (S,A, s0, β)
Output: a plan π or failure

1: set g ← β(s0)
2: π ← Classical∗(S,A, s0, g)
3: return π

Fact 6. If an OffGR planner Planner is sound, complete and satisfies termination (Def-
initions 6–8), then a determinstic execution of Planner(P) returns a solution for P iff a
solution for P exists.

Proof. (⇒) This is immediate: the solution returned is a witness that a solution exists.
(⇐) Suppose a solution for P exists. By completeness, an execution of Planner(P) exists
that returns a solution π. By termination, all possible runs of Planner(P) terminate after
finitely-many steps, and a quick look at any OffGR planner shows that it returns either a
plan or failure. Consider an exhaustive execution of runs of Planner(P) —each run chosen
based on the deterministic search method and an ordering of A. If a run of Planner(P)
returns a plan, then by soundness this plan is a solution and so Planner(P) returns a
solution. If a run of Planner(P) returns failure, the algorithm proceeds to the next try.
Since the number of possible runs is countable, eventually the algorithm will terminate and
return a solution for P .

βClassical∗.

Lemma 7. Let ψ be the function from Definition 10 and let βClassical∗ be the planner
from Algorithm 4. For any GR problem P = (Σ, s0, β),

lfp(ψ(P)) = Classical∗(P ′) = βClassical∗(P)

where P ′ = (Σ, s0, β(s0)) is the transformation of P into a classical problem.

Proof. Let us observe first that ψ(∅) is a fixed point; that is, ψ(ψ(∅)) = ψ(∅), which is
immediately clear from Definition 10 (case π 6= ∅). From this, we obtain that lfp(ψ(P))
must consist of one step ψ(π) = π = ψ(∅), thereby returning ψ(∅) = ϕ(s0, β(s0)). Given the
definition of P ′ and that ϕ = Classical∗, we just showed that lfp(ψ(P)) = Classical∗(P ′).
The remaining identity can be verified by comparing the two algorithms Classical∗(P ′) and
βClassical∗(P). Indeed, βClassical∗(P) reduces to Classical∗(P ′) when one replacing
β ∈ P by the goal g = β(s0) ∈ P ′ in the input of Algorithm 4.

Proposition 8 (βClassical∗). βClassical∗ has the termination property but is neither
sound nor complete for P. In fact,

(i) βClassical∗ is sound for P iff P ∈ P′ = {(S,A, s0, β) : ‖β(s0)‖ ∩R∗(s0, ·) ⊆ β?}.

(ii) βClassical∗ is complete for P iff if a solution for P exists then a solution to some
state in ‖β(s0)‖ also exists.

As a consequence, (iii) classical planning is subsumed by βClassical∗.

1741

Pardo & Strasser

Algorithm 5 Universal % a search for the β? region

Input: (S,A, s0, β)
Output: a plan π or failure

1: Let s = s0 and π = ∅ and e = {s0} % e is a list of nodes expanded by π
2: while s 6|= β(s) do
3: A′ = {α ∈ A : s |= pre(α) and γ(s, α) /∈ e}
4: if A′ = ∅ then
5: return failure
6: else
7: choose α ∈ A′
8: set s← γ(s, α) and π ← π.α and e← e ∪ {s}
9: end if

10: end while
11: return π

Proof. For termination, ψ(∅) = ϕ(s0, β(s0)) is always a fixed point. From this and the
termination property of Classical∗ (Proposition 2), the termination of βClassical∗ fol-
lows immediately. The failure of soundness and completeness is shown by Example 9.
βClassical∗ may return goParty which is not a solution; in addition, a solution exists.

For (i). We use the abbreviation S∗ = R∗(s0, ·). (⇒) Suppose βClassical∗ is sound
for P , and let s ∈ ‖β(s0)‖ ∩ S∗ be arbitrary. From s ∈ S∗, there is a plan π with s0.π = s.
Since βClassical∗ makes a call to Classical∗, we can ignore all ‖β(s0)‖-states before s
(assume Algorithm 2 always chooses true for them). Since s ∈ ‖β(s0)‖, Algorithm 4’s
terminating condition holds, so βClassical∗(P) may return π. But then by soundness,
s ∈ β?, as desired. (⇐.) Suppose that ‖β(s0)‖ ∩ S∗ ⊆ β? for a given P = (S,A, s0, β). Let
then π ∈ A∗ be an arbitrary output returned by βClassical∗(P) and also let s = γ(s0, π).
The terminating condition of Algorithm 4 implies that the node s satisfies s |= β(s0) and,
also clearly, s = s0.π ∈ S∗. By these two facts and the assumption P ∈ P′, we have that
s ∈ β?. Since π was an arbitrary output, we conclude that βClassical∗ is sound for P .

For (ii). (⇒) Suppose that βClassical∗ is complete for P , and moreover that a solution
for P exists. Hence, βClassical∗(P) returns a solution π; by the terminating condition we
also have that s0.π ∈ ‖β(s0)‖. Hence, a solution π leading to a ‖β(s0)‖-state also exists.
(⇐.) Let P be an GR problem and assume that a solution for P exists. Hence, a solution
π also exists that leads to ‖β(s0)‖. This implies that a classical plan π exists for the trans-
formation P ′ = (S,A, s0, β(s0)) of P . By Proposition 2, an execution of Classical∗(P ′)
returns π. Finally, by Lemma 7, an execution of βClassical∗(P) also returns π, which we
know is a solution for P .

(iii) Consider the transformation map from classical to GR problems (S,A, s0, g) 7−→
(S,A, s0, βg), where βg(·) = g is a constant goal function. Observe that any such constant
function βg(·) = g verifies the condition ‖β(s0)‖ = β?. The latter trivially implies two
conditions: ‖β(s0)‖ ∩ R∗(s0, ·) ⊆ β? (soundness); and also that R∗(s0, ·) ∩ β? 6= ∅ implies
R∗(s0, ·) ∩ β? ∩ ‖β(s0)‖ 6= ∅ (completeness). Hence, for any classical problem (S,A, s0, g)
for which Classical is sound and complete (that is, the class of all classical problems),
βClassical∗ is sound and complete for the corresponding GR problem (S,A, s0, βg).

Universal.

1742

Offline Goal Reasoning with Norms

Lemma 9. For any GR problem P , it holds that lfp(ψ(P)) = Universal(P), where ψ is
as in Definition 11 and Universal is as in Algorithm 5.

Proof. Let P = (S,A, s0, β) be a GR problem. We prove by induction on trace length that
the set of nodes that can be expanded by ψ(π) is identical to the set of nodes that can be
expanded by Universal(P) upon s = s0.π. With detail, we show that this set is generated
by the same conditions, such as executability and novelty of the new node. (Base case.)
For length 0, the only plan is π = ∅ and both methods coincide on the unique node s0.
(Inductive case.) Assume the claim holds for π. The proof is by cases on ψ(π) in Def. 11:

(Case: ψ(π) = π.) In Definition 11, this case implies γ(s0, π) ∈ β?. This corresponds to
the terminating condition s |= β(s) for the current node s = γ(s0, π) in Algorithm 5. These
methods then reach the fixed point π = ψ(π) and resp. return the value π. In the former,
no further aplication ψ(π) generates new states; in the latter, the execution terminates.

(Case: ψ(π) = π.α.) The conditions here are: γ(s0, π) /∈ β? and α is executable and
leads to a new state. The first condition implies A′ 6= ∅ which corresponds to the else
case (line 6). The second condition γ(s0, π.α) /∈ γ̂(s0, π) is equivalent to γ(s0, π.α) /∈ e in
Algorithm 5, since the list e keeps track of visited nodes (lines 1,8). The two conditions
upon α are jointly equivalent to node α being in A′ (α ∈ A′, line 3). Thus, the nodes that
can be expanded in this case are the same as in the else case (line 7).

(Case γ(s0, π) /∈ β? and no executable α leads to a new state.) A quick look to both
methods shows that they return failure.

This concludes the inductive proof. From this we obtain that for each possible output
π, there is a trace generating π in Algorithm 5 iff π is the value returned by an execution
of lfp(ψ(P)), with ψ as in Definition 11. Thus, lfp(ψ(P)) = Universal(P).

Fact 10. Universal is sound and complete for P, and has the termination property.

Proof. (Soundness) Suppose Universal(P) returns a plan π ∈ A∗. Let s = γ(s0, π). In
Algorithm 3, the terminating condition for π 6= failure is: s |= β(s). From this, it follows
that γ(s0, π) ∈ β?. (Completeness) This follows from the search space S′ being always finite
for any OffGR problem P . (Termination) This property follows from the finite character
of S′ and the fact that an execution of Universal(P) will never expand the same node
twice.

UniClass∗.

Lemma 11. For any GR problem P , it holds that lfp(ψ(P)) = UniClass∗(P), where ψ is
as in Definition 12 and UniClass∗ is Algorithm 6.

Proof. Let π ∈ A∗ be an arbitrary plan. We prove first that ψ(π) is identical to a run of
the while loop in UniClass∗(P).
(Case π = ∅.) The first case of the ψ function for UniClass∗ (Definition 12) is identical
to that for βClassical∗ (Definition 10), namely ψ(∅) = ϕ(s0, β(s0)). Using the proof of
Lemma 7, we obtain that γ(s0, π) |= β(s0), or failure if no classical plan exists. In any case,
the value of π becomes ϕ(s0, β(s0)) for both Algorithm 6 and Definition 12.
(Case π 6= ∅.) The remaining cases for ψ in Definition 12 split further into two.
(Subcase γ(s0, π) ∈ β?.) This is the condition for UniClass∗ to return π. Together with
π 6= ∅, it is also the condition for ψ to reach a least fixed point ψ(π) = π.

1743

Pardo & Strasser

Algorithm 6 UniClass∗

Input: (S,A, s0, β)
Output: a plan π or failure

1: set g ← β(s0)
2: π ← Classical∗(S,A, s0, g)
3: if s 6|= β(s) then
4: return failure
5: else
6: return π
7: end if

(Subcase γ(s0, π) /∈ β?.) This equivalent to the condition for the if case (line 5) to return
failure. Together with π 6= ∅, it is also the condition for Definition 12 to return failure.

Corollary 12. UniClass∗(P) ⊇ βClassical∗(P) ∩ Universal(P), for any P ∈ P.

Proof. A quick inspection of Algorithm 6 reveals that UniClass∗ returns a plan π under
two conditions: (i) s = γ(s0, π) |= β(s0) (lines 1–2); and (ii) s |= β(s) (else case, line 5).
But these are precisely the terminating conditions for Algorithm 4 and resp. Alg. 5 to return
π. All other cases return failure.

The other direction UniClass∗(P) ⊆ βClassical∗(P) ∩ Universal(P) need not hold:
a plan π ∈ UniClass∗(P) will satisfy π ∈ βClassical∗(P) and γ(s0, π) ∈ β?, but such π
need not be minimal with the latter property, in which case π /∈ Universal(P).

Theorem 13. UniClass∗ is sound and has the termination property. UniClass∗ is com-
plete for P = (S,A, s0, β) iff whenever β? ∩ S∗ 6= ∅, then also β? ∩ S∗ ∩ ‖β(s0)‖ 6= ∅.

Proof. (Termination) This follows from the termination property of βClassical∗ in Propo-
sition 8(i), and the decidability of testing the condition s |= β(s).

(Soundness) Let π ∈ A∗ be returned by UniClass∗(P). Algorithm 6’s else case (line 5)
implies that state s = s0.π is a solution state.

(Completeness) (⇒) Let UniClass∗ be complete for P = (S,A, s0, β) and assume that a
solution exists, as otherwise we are done. That is, β? ∩ S∗ 6= ∅. We show that β? ∩ S∗ ∩
‖β(s0)‖ 6= ∅. By the completeness for P , UniClass∗(P) returns a solution. Let then π be an
arbitrary solution returned by UniClass∗(P). (1) By the soundness of Classical∗, the plan
π returned by the invocation of Classical∗(S,A, s0, β(s0)) must satisfy γ(s0, π) ∈ ‖β(s0)‖.
Let then s? = γ(s0, π). (2) Algorithm 6 returns π only if s? |= β(s?). From (1)–(2)
we obtain that s? |= β(s0) ∪ β(s?), and together with s∗ = γ(s0, π), we conclude that
s∗ ∈ β? ∩ S∗ ∩ ‖β(s0)‖, so this set is not empty.

(⇐) Suppose that the righthand condition β?∩S∗∩‖β(s0)‖ 6= ∅ holds for a GR problem P .
This clearly implies that a solution for P exists, and so we must prove that an execution of
UniClass∗(P) returns a solution. Let s? be an element in the above set, and since s? ∈ S∗
let π be such that s? = γ(s0, π). Without loss of generality, assume that no other solution
state exists in γ̂(s0, π). From s? ∈ ‖β(s0)‖∩S∗ and the strong completeness of Classical∗

(Proposition 2), an execution of Classical∗(S,A, s0, β(s0)) returns π. From s? ∈ β?, this
node s? passes the test s? |= β(s?), and so an execution of Algorithm 6 returns π.

1744

Offline Goal Reasoning with Norms

Algorithm 7 Append∗ (add %-lines for termination)

Input: (S,A, s0, β)
Output: a plan π or failure

1: Let s = s0 and π = ∅ % and e = {s0}.
2: while s 6|= β(s) and π 6= failure do
3: π ← π.ϕ(s, β(s))
4: s← γ(s, π)
5: % Test expanded(s)
6: end while
7: return π

Algorithm 7b Test expanded(s)

Input : a node s
Output : failure (or nothing)

1: if s ∈ e then
2: return failure
3: else e← e ∪ {s}
4: end if

Corollary 14. UniClass∗ is complete for the class of problems P = (S,A, s0, β) satisfying
(i) and (ii):

(i) β is decreasing from s0: Rβ(s0, s) implies β(s0) ⊇ β(s)

(ii) s0’s goal states are reachable: Rβ(s0, ·) ⊆ R∗(s0, ·).

Proof. We show first that (i) implies (i’) Rβ(s0, ·) ⊆ β?. Let s ∈ Rβ(s0, ·) be arbitrary.
Since β is decreasing from s0, β(s) ⊆ β(s0) and by the definition of Rβ(s0, s), s |= β(s0);
by the previous inclusion, s |= β(s); that is, s ∈ β?. This shows (i’).

Next we show completeness from (i’) and (ii), so assume that a solution for P ex-
ists. First, note that UniClass∗(P) does not return failure: let s ∈ Rβ(s0, ·). By (ii)
s ∈ R∗(s0, ·) and so a plan π exists to s. By strong completeness, an execution of
Classical∗(S,A, s0, β(s0)) returns π, and by s ∈ β?, an execution of UniClass∗(P) re-
turns π. Hence UniClass∗ is complete for P .

Append∗.

Remark 4. For the Append∗ planner, expressions of the form π.failure are henceforth
identified with failure. Similarly we stipulate that γ(s, failure) = s.

These two conventions apply to Algorithm 7 to grant that Append∗ exits the while loop
anytime an invocation of ϕ returns failure. These conventions also apply to the function ψ
from Definition 13 for the management of all values failure.

Lemma 15. For any GR problem P , it holds that lfp(ψ(P)) = Append∗(P), where ψ is as
in Definition 13 and Append∗ is Algorithm 7.

1745

Pardo & Strasser

Proof. We prove a correspondence between the possible values (plans) of ψ and the (goal)
states that can be expanded by Append∗(P) for a given GR problem P . The proof is by
induction on the number n of applications of ψ. Let ψ1 = ψ and ψn+1 = ψ ◦ ψn. (Base
case ψ1.) The initial value is the empty plan ∅. We omit this proof as it is similar to
the proof of the inductive case (with s = s0, first and last cases only). (Inductive Case:
ψn 7→ ψn+1.) Suppose as inductive hypothesis that the possible values π of ψn(∅) coincide
with the possible plans generated by Append∗(P) at the n-th iteration of the while loop in
Algorithm 7. Let π = ψn(∅) be an arbitrary value and let also s = γ(s0, π).

(Case s |= β(s).) This case exits the while loop in Algorithm 7, and Append∗(P)
then returns π, so no new plans are generated at this point. On the other hand, since
ϕ = Classical∗ we can apply Fact 5 and obtain: ∅ = ϕ(s, β(s)) = ϕ(γ(s0, π), β(γ(s0, π))).
Using Definition 13 we reach a least fixed point: ψ(π) = π.ϕ(s, β(s)) = π.∅ = π. Again, no
new values are generated by ψn+1(∅).

(Case π = failure.) That is, π = π′.failure. This condition also exits the while loop in
Append∗ to return π = failure. Since line 3 of Algorithm 7 is equivalent to the step ψn(∅) 7−→
ψn+1(∅), we also have for s′ = γ(s0, π

′) that ψn+1(∅) = ψ(ψn(∅))) = π′.ϕ(s′, β(s′)) =
π′.failure = failure.

(Case s 6|= β(s) and π 6= failure.) Both ψn+1(∅) and Append∗(P) (line 3 of Algorithm 7)
reduce in this case to a single application of ψ in ψn(∅) 7−→ ψn+1(∅). The possible values
that the expression π.ϕ(s, β(s)) can take in Algorithm 7 are exactly the same, namely
ψ(π) = π.ϕ(γ(s0, π), β(γ(s0, π))) = π.ϕ(s, β(s)).

This concludes the inductive case. In all cases, the values of ψn+1(∅) = ψ(π) coincide
with those for π in the (n+1)-th iteration of while in Algorithm 7. Thus, we just showed
that lfp(ψ(P)) = Append∗(P).

Theorem 16. Append∗ is sound but does not have the termination property. Append∗ is
complete for P = (Σ, s0, β) iff (Rβ ∩R∗)∗(s0, ·) ∩ β? 6= ∅ whenever a solution for P exists.

Proof. (Lack of termination) Let P be the GR problem defined as follows. S = {s0, s1} is a

state space such that s0, s1 are: (i) mutually reachable, say with the actions s0
α0−→ s1

α1−→ s0,
and (ii) they are goal states of each other: ‖β(s0)‖ = {s1} and ‖β(s1)‖ = {s0}. All
executions of Append∗(P) have the same form: each iteration of the while loop alternates
between adding α0 and adding α1 to the current plan. Hence, Append∗(P) keeps producing
all the initial (finite) fragments of the infinite sequence (α0.α1)∗ = (α0, α1, α0, α1, . . .).

(Soundness) The soundness of Algorithm 7 is granted by the condition s |= β(s) for exiting
the while loop, which is also the terminating condition.

(Completeness.) (⇐) Suppose a solution exists and so let s? ∈ R∗(s0, ·)∩β?. The assumption
implies there is a sequence of states (s0, s1, . . . , sn) such that for each pair (sk, sk+1),

(1) (sk, sk+1) ∈ R∗ (2) (sk, sk+1) ∈ Rβ and also (3) sn = s? ∈ β?.

Without loss of generality, suppose sn is the only state in the sequence satisfying (3).
(Case n = 0.) This simply gives a sequence (s0) whose unique element satisfies (3) s0 ∈
β?. Append∗(P) here returns the solution ∅. (Case n 6= 0.) Since s0 /∈ β? any trace of
Append∗(Σ, s0, β) calls ϕ(s0, β(s0)) = Classical∗(Σ, s0, β(s0)). Let us prove by induction
that an execution of Append∗ exists that expands each node sk with 0 ≤ k ≤ n. (Base

1746

Offline Goal Reasoning with Norms

case 0.) Clearly, any execution of Append∗(P) expands s0 from the start. (Inductive case
k 7→ k + 1.) Suppose as inductive hypothesis that an execution expands each node in
(s0, . . . , sk) in this order, with each node expanded after a πj+1 = ϕ(sj , β(sj)) for each
j < k satisfying γ(sj , πj+1) = sj+1. By the above assumption, k < n implies sk /∈ β?, so
this execution calls ϕ(sk, β(sk)). By (1), a plan πk+1 exists from sk to sk+1, and by (2)
πk+1 is a classical plan for (Σ, sk, β(sk)). By the strong completeness of ϕ = Classical∗,
an execution of ϕ(sk, β(sk+1)) returns πk+1 and so this execution of Append∗(P) can be
extended by expanding the node sk+1.

This concludes the inductive proof: this execution of Append∗(P) expands sn, at which
point (3) implies that Append∗ terminates and returns π1. · · · .πn. Thus, an execution of
Append∗(P) exists that returns a solution for P . Thus, Append∗ is complete for P .

(⇒) Suppose Append∗ is complete for P = (Σ, s0, β) and that a solution for P exists. By
completeness, an execution of Append∗(P) returns a solution π = π[1..n]. We split the plan
π in this execution of Append∗(P) as follows:

• π0 = ϕ(s0, β(s0)) is the value returned by the first invocation of ϕ, and

• πj+1 = ϕ(sj , β(sj)) is the value returned by the (j+1)-th invocation of ϕ, where
sj = γ(s0, π0. · · · .πj) and (π0, . . . , πj) are the values successively returned by ϕ.

We prove that this sequence satisfies conditions (1)–(3) defined above in the proof of
(⇐). Clearly, (1) (sj , sj+1) ∈ R∗ follows from the fact that γ(sj , πj) = sj+1 by the soundness
of Classical∗. Also, (sj , sj+1) ∈ Rβ follows from the fact that (sj , . . . , sj+1) = γ̂(sj , πj+1)
for a plan of the form πj+1 = ϕ(sj , β(β(sj)) and the soundness of ϕ = Classical∗. Finally,
sn = sknn follows from the fact that π is a solution leading to sn and the soundness of
Append∗.

Corollary 17. Append∗ is complete for any GR problem P ∈ P satisfying the inclusion
β? ⊆ (Rβ ∩R∗)∗(s0, ·).

Proof. Let P = (Σ, s0, β) satisfy the condition β? ⊆ (Rβ ∩ R∗)∗(s0, ·). Assume moreover
that a solution π exists for P , as otherwise we are done. We prove that an execution of
Append∗(P) exists that returns a solution. Let s? = γ(s0, π) with s? ∈ β?. By the assumed
condition, we also have that s? ∈ (Rβ ∩ R∗)∗(s0, ·). So there is a sequence of elements
(s0, s1, . . . , sn) that satisfies the conditions: (1) (sk, sk+1) ∈ R∗, (2) (sk, sk+1) ∈ Rβ and (3)
sn = s? ∈ β?. This rest of the proof is the same proof as that of Theorem 16 (completeness,
⇒). From it, we obtain that Append∗ is complete for P .

Lemma 18. Append∗, as defined by Algorithm 7 with %-lines, has the termination property.

Proof. For each invocation of ϕ in Algorithm 7, we know that Classical∗ has the ter-
mination property. For the nodes (goal states) directly expanded by the while loop in
Algorithm 7, the auxiliary Algorithm keeps track of the nodes (goal states) expanded by
Append∗. Given the finite character of the search space, this implies that the while loop
in Algorithm 7 cannot run indefinitely, and so this version of Append∗ has the termination
property.

1747

Pardo & Strasser

Algorithm 8 Replan∗ (add %-lines for termination)

Input: (S,A, s0, β)
Output: a plan π or failure

1: Let s = s0 and π = ∅ % and e = {s0}.
2: while s 6|= β(s) and π 6= failure do
3: π ← ϕ(s0, β(s))
4: s← γ(s0, π)
5: % Test expanded(s)
6: end while
7: return π

Replan∗.

Lemma 19. For any GR problem P , it holds that lfp(ψ(P)) = Replan∗(P), where ψ is as
in Definition 14 and Replan∗ is Algorithm 8.

Proof. The proof is analogous to that of Lemma 15 for Append∗. One just needs to replace
everywhere π.ϕ(·, ·) by ϕ(·, ·) and π.failure by failure.

Theorem 20. Replan∗ is sound but does not have the termination property. Replan∗ is
complete for P = (S,A, s0, β) iff whenever a solution for P exists, then T (s0, ·) ∩ β? 6= ∅,
where T is inductively defined by:

T0 = IdS and Tn+1 = (Tn | Rβ) ∩R∗ and T =
⋃
n∈ω Tn.

Proof. (Lack of termination.) Let P be the same counterexample in the proof of Theo-
rem 16. Recall that S = {s0, s1} has two states that are:

(i) mutually reachable s0
α0−→ s1

α1−→ s0 and (ii) goal states of each other.

Any execution of Replan∗(P) is a succession of calls of the form πk = ϕ(s0, β(sk)) where sk
and πk alternate between the following values for even and resp. odd values of k:

s2k = s0 s2k+1 = s1 π2k = ∅ π2k+1 = α1.

This sequence of calls (ϕ(s0, β(s0)), . . . , ϕ(s0, β(s2k)), ϕ(s0, β(s2k+1), . . .) never terminates
in this execution of Replan∗(P). As a consequence, Replan∗(P) does not terminate either.

(Soundness.) The proof is analogous to that of Theorem 16. The soundness of Algorithm 8
is granted by the condition s |= β(s) for exiting the while loop, which is also the terminating
condition.

(Completeness,⇒) Suppose Replan∗ is complete for P = (S,A, s0, β) and assume a solution
for P exists. By completeness, an execution of Replan∗(P) outputs a solution π, say
γ(s0, π) ∈ β?. Let (P0, . . . , Pn) be the classical problems such that a call of the form
Classical∗(Pk) is made in this execution, listed in increasing order. Let also πk = ϕ(s0, gk)
be the value returned at each call and let sk+1 = γ(s0, πk) (see line 4 of Algorithm 8), so
that this execution of Replan∗(P) satisfies for each 0 ≤ k < n:

gk = β(sk) and Pk+1 = (S,A, s0, β(sk)) and, by the soundness of ϕ, γ(s0, πk+1) |= β(sk).

1748

Offline Goal Reasoning with Norms

By the soundness of Replan∗(P), the returned plan πn is a solution: sn+1 ∈ β?. In summary,
for each 0 ≤ k < n, we have

(1) R∗(s0, sk+1) and (2) Rβ(sk, sk+1) and (3) sn+1 ∈ β?.

Let us check that (s0, s1, . . . , sn+1) is a T -path. For the base case, (s0, s0) ∈ T0 = IdS .
For the inductive case, assume (s0, sk) ∈ Tk. We prove that (s0, sk+1) ∈ Tk+1 = (Tk |
Rβ)∩R∗. Clearly, (s0, sk) ∈ Tk by assumption and (sk, sk+1) ∈ Rβ) by (2), so we are done.
The proof concludes with (s0, sn+1) ∈ Tn+1 ⊆ T . Together with (3) sn+1 ∈ β?, we finally
obtain that sn+1 ∈ T (s0, ·) ∩ β?, and so this set is not empty.

(Completeness, ⇐) Suppose that P = (Σ, s0, β) satisfies T (s0, ·)∩ β? 6= ∅. In case s0 ∈ β?,
any execution of Replan∗(P) calls Classical(Σ, s0, β(s0)) which will return the solution ∅
and so will Replan∗(P). Otherwise, the above condition amounts to Tn+1(s0, ·)∩β? 6= ∅ for
some n+1 > 0. Let us choose such a non-emptyset whose index n+1 is minimal. Let then
sn+1 ∈ Tn+1(s0, ·)∩β? be a solution state. We prove by induction that for each 0 ≤ k < n1
there exists sk+1 satisfying:

(i) (sk, sk+1) ∈ Rβ and (ii) (s0, sk+1) ∈ R∗ for all 0 ≤ k < n+1.

(Base Case 1.) From sn+1 ∈ Tn+1(s0, ·) and the construction of Tn+1, there is some s1

such that (s0, s1) ∈ T1 = (IdS |Rβ) ∩ R∗. Clearly, (i) (s0, s1) ∈ Rβ follows from (s0, s1) ∈
(IdS |Rβ) = Rβ. And (ii) is proved by (s0, s1) ∈ T1 ⊆ R∗.
(Inductive Case k 7→ k+1.) Suppose that there is sk such that (i) (sk−1, sk) ∈ Rβ and (ii)
(s0, sk) ∈ R∗. Since (s0, sk+1) ∈ Tk+1 ⊆ (Tk|Rβ), there must be some state sk satisfying
s0 Tk skRβsk+1 and also s0R

∗sk+1. These immediately give us (i) and resp. (ii).

The general claims (i)–(ii) that follow from this inductive proof permit us to define the
following execution of Replan∗(P): a sequence of n+1 calls of the form ϕ(s0, β(sk)) (for
0 ≤ k ≤ n) that return a plan πk+1. Let us show that this is indeed an execution of
Replan∗(P). By the minimality of 0 < n+1, we know that πk is not a solution for any
0 ≤ k ≤ n. Hence the call ϕ(s0, β(sk+1)) will be made after expanding sk+1 = γ(s0, πk). At
the (n+1)-th iteration of the while loop, the plan returned πn+1 is a solution, which exits
the loop and then Replan∗(P) returns πn+1. Hence Replan∗ is complete for P .

Corollary 21. Replan∗ is complete for P whenever β? ⊆ R∗β(s0, ·) ⊆ R∗(s0, ·).

Proof. Assume P satisfies: (1) β? ⊆ R∗β(s0, ·) and (2) R∗β(s0, ·) ⊆ R∗(s0, ·). Assume that
a solution π exists for P , and let s? = s0.π ∈ β?. By (1), there is a sequence of states
(s0, s1, . . . , sn) with sn = s? such that skRβsk+1 for each 0 ≤ k < n. Without loss of gener-
ality assume moreover that sn is minimal with the property sn ∈ β? among this sequence;
i.e. s1, . . . , sn−1 /∈ β?. We show by induction that there is an execution of Replan∗(P) that
expands exactly the nodes (s0, . . . , sn) and, as an auxiliary claim, that for each 0 ≤ k < n
a plan to sk+1 is returned, possibly by a call of the form ϕ(s0, β(sk)).

(Base case k = 0.) s0 is expanded by any execution of Replan∗(P), as it is the initial
value of s in Algorithm 8. Let us show the auxiliary claim. First consider the case s0 ∈ β?.
Then s? = s0 and so the above sequence is (s0) and the empty plan π = ∅ is returned
(lines 1–2). For the second case, assume otherwise: s1 6= s0 /∈ β?. From s0Rβs1, we have

1749

Pardo & Strasser

Algorithm 9 βSaturate (add %-line for termination)

Input: (S,A, s0, β)
Output: a plan π or failure

1: Let s = s0 and e = ∅.
2: while s 6|= β(s) and s /∈ e do
3: s← γ(s, α(s))
4: % e← e ∪ {s}
5: end while
6: if s /∈ e then
7: π ← ϕ(s0, s)
8: else
9: π ← failure

10: end if
11: return π

s1 ∈ β(s0). The rest of the proof of the auxiliary claim, that a plan π1 = ϕ(s0, β(s0)) is
returned, is as in the inductive case, and so we omit it.

(Inductive case k 7→ k + 1.) Assume that an execution of Replan∗(P) exists that
expands s0, . . . , sk and generates the corresponding plans π0, . . . , πk with sj = s0.πj (for
0 ≤ j ≤ k). Again, in case sk ∈ β?, this execution terminates with a solution πk (line
2). Assume then otherwise: sk /∈ β?. From s0Rβ . . . RβskRβsk+1 and (2), we obtain that
sk+1 ∈ R∗β(s0, ·) ⊆ R∗(s0, ·), so a plan πk+1 exists with sk+1 = s0.πk+1. Since sk /∈ β?, a call
of the form ϕ(s0, sk) is made (lines 2–3). By Proposition 2, we can extend this execution
of Replan∗(P) so that this call returns the value πk+1 = ϕ(s0, sk).

This completes the inductive proof. This execution of Replan∗(P) generates thus a plan
πn with sn = s0.πn ∈ β?, which fails the test sn 6|= β(sn) (line 2), exiting the while loop
and returning a plan πn to a solution state sn. Thus, Replan∗ is complete for P .

Lemma 22. Replan∗, as defined by Algorithm 8 with %-lines, has the termination property.

Proof. The proof is analogous to that of Lemma 18. Simply replace everywhere in this
proof Append∗(P) by Replan∗(P).

βSaturate.

Lemma 23. For any GR problem P , it holds that lfp(ψ(P)) = βSaturate(P), where ψ is
as in Definition 15 and βSaturate is Algorithm 9.

Proof. Observe first that Algorithm 9 (without the %-line) keeps the value e = ∅ during
all the execution, and so the condition for exiting the while loop amounts to s 6|= β(s), i.e.
s /∈ β?. Like Definition 15, this version then never returns π = failure. The proof of the
claim is by cases.

(Case s0 ∈ β?.) Then ψ(∅) = ∅.α(γ(s0, ∅)) = ∅.α(s0) = α(s0). By definition, α(s0) =
(s0, β(s0)) but because s0 = β?, α(s0) is an idle action (fn. ??) and so ψ(∅) = ∅ . Clearly,
in this case Algorithm 9 immediately exits the while loop and returns ∅ as well.

1750

Offline Goal Reasoning with Norms

(Case s0 /∈ β?.) Starting with π = ∅, ψ(π) keeps updating the (fictional) plan as follows
π 7−→ π.α(γ(s0, π)). Similarly, in Algorithm 9, these updates are exactly what the while
loop does. Consider the two subcases:

(Subcase: R� ∩ β? = ∅.) We prove that in this case Definition 15 enters a cycle
π.α(s). · · · .α(s). · · · . The reason for this is the following: as a consistent goal function
β induces a serial relation Rβ, one can always extend any Rβ-path one step further (maybe
with a reflexive edge). In finite vocabularies At, moreover, the state space S is finite, and so
by Dirichlet’s box principle the iteration of s 7−→ γ(s, α(s)) eventually encounters a solution
state or a cycle around some state sn = sn+k+1:

s0 · · · sn

sn+1sn+k

· · ·

α(s0)
α(sn)

α(sn+1)

α(sn+k)

Each finite fragment of the infinite plan π.(α(sn). · · · .α(sn+k))
∗ is thus generated by running

the while loop in Algorithm 9. Hence, βSaturate(P) does not terminate. In Definition 15,
this subcase implies that ψ(·) always stays in the first case γ(s0, π) /∈ β?, and so the same
cyclic behaviour is exhibited by the infinite updates π 7−→ π.α(γ(s0, π)).

(Subcase: R� ∩ β? 6= ∅.) Let s be the unique element in this non-empty set. Algo-
rithm 9 immediately exits the while loop with such s ∈ β? and some solution, say π1 with
s = γ(s0, π1), and then it returns a value of ϕ(s0, s). For Definition 15, after |R�|-many
applications π 7−→ ψ(π) under the first case, we obtain ψ(·) = π1. Using the above fact
γ(s0, π1) ∈ β?, together with π1 /∈ A∗, we have π(π1) = ϕ(s0, γ(s0, π)) (second case) which
will become a fixed point in the next application of ψ(·) (third case).

Theorem 24. βSaturate is sound but does not terminate. βSaturate is complete for
P = (S,A, s0, β) iff whenever a solution exists, R∗(s0, ·) ∩ β? ∩R�(s0) 6= ∅.

Proof. (Lack of termination.) This is partly discussed in the proof of Lemma 23 (first
subcase), but let us prove it with an example. Let (S,A) be defined by the two mutually
desirable states s0 = {p} and s1 = {¬p}, which are also mutually reachable. That is,

α(s0) = (s0, s1) and α(s1) = (s1, s0) and so {p} α(s0)−−−→ {¬p} α(s1)−−−→ {p}.

Starting with the empty plan ∅, the function ψ(·) keeps producing the following values:

∅ ψ−−→ α(s0)
ψ−−→ α(s0).α(s1)

ψ−−→ α(s0).α(s1).α(s0)
ψ−−→ . . .

From this, we conclude that the applications π 7−→ ψ(π) (first case) do not terminate, and
so neither does lfp(ψ(P)).

(Soundness.) Let P = (S,A, s0, β) be a GR problem. For Algorithm 9, any plan π returned
by βSaturate(P) results from a call of the form Classical(S,A, s0, s). This state s must
cause the execution of βSaturate(P) to exit the while loop (line 2) and for this, it must
satisfy s |= β(s), i.e. s ∈ β?. By the soundness of Classical, γ(s0, π) = s, and so π is a
solution for P .

1751

Pardo & Strasser

(Completeness, ⇐.) Let P = (S,A, s0, β) satisfy the righthand condition, and moreover
assume that a solution exists for P , so that R∗(s0, ·) ∩ β? ∩ R�β(s0) 6= ∅. Let then s? be
the unique element of this non-empty set. From s? ∈ R∗(s0, ·), (1) there is a plan π ∈ A∗
satisfying γ(s0, π) = s? and, without loss of generality, further assume that such a plan does
not traverse any node twice. From the fact that s? ∈ β?, any execution of βSaturate(P)
expanding this node will exit the while loop. Finally, from s? ∈ R�β(s0) we know that s?

obtains from s0 after finitely-many updates with actions α(s) ∈ A′. Algorithm 9 will exit
the while loop when it expands node s? and proceed to call ϕ. Combining (1), the non-
redundancy of π and the completeness of Classical, an execution of Classical(S,A, s0, s

?)
exists that returns π. In this execution, π will also be the output returned by this execution
of βSaturate(P). Hence, βSaturate is complete for P .

(Completeness,⇒.) Assume that βSaturate is complete for P = (S,A, s0, β) and moreover
that a solution exists for this problem P . Hence, a solution π is returned by some execution
of βSaturate(Σ, s0, β). Let s? = γ(s0, π). An inspection of Algorithm 9 shows that π must
be the classical plan returned by Classical(S,A, s0, s

?) and also that s? must result from
a finite number n of updates with actions α ∈ A′. We prove by cases that the righthand
condition holds.

(Case n = 0.) Then no such updates occur for s0 to reach s?. That is, s0 = s? and so
s0 ∈ β?, from which we conclude that the call returns the plan π = ∅. This case immediately
verifies: s0 ∈ R∗(s0, ·), and also s0 ∈ β? and, finally, s0 = γ(s0, α(s0)) ∈ R�(s0). That is,
s0 ∈ R∗(s0, ·) ∩ β? ∩R�(s0). Hence this set is non-empty.

(Case n > 0.) Let s1 = γ(s0, α(s0)). An easy induction shows that a sequence (s1, . . . , sn)
exists such that for each 0 < k < n,

sk+1 = γ(sk, α(sk)) |= β(sk) and so sk+1 ∈ R�(s0) provided that sk ∈ R�(s0).

From this, we conclude that s? = sn ∈ R�(s0). Since βSaturate(P) returns π, we also
have sn ∈ R∗(s0, ·). Finally. sn = s? ∈ β?. Putting these facts together, it follows that
sn ∈ R∗(s0, ·) ∩ β? ∩R�(s0) 6= ∅.

Lemma 25. βSaturate, defined by Algorithm 9 with %-lines, has the termination property.

Proof. Algorithm 9 in %-line 4 maintains a list e of nodes already expanded during the
while loop. Since the search space is finite, iterating the s 7−→ α(s) will eventually reach
a solution state or a node already visited. Any execution of βSaturate(P) thus eventually
exits the while loop and return a classical plan or failure (in the former case) or failure in
the latter.

A Hierarchy of Completeness Classes

Proposition 26. The classes of GR problems for which Algorithms 4–9 are complete can
be arranged as follows:

βClassical∗ = UniClass∗ ⊂ Append∗ ⊂ Replan∗ ⊂ Universal

and βSaturate ⊂ Universal. βSaturate is incomparable with all other planners.

1752

Offline Goal Reasoning with Norms

Proof. We show that: (1) each inclusion ⊆ holds, (2) the corresponding inclusions are proper
⊂ and finally, (3) the incomparability claims.

(1. Inclusions ⊆.)
(βClassical∗ ⊆ UniClass∗.) Corollary 12 showed that UniClass∗(P) ⊇ βClassical∗(P)∩
Universal(P), for any P ∈ P. From this, it is immediate that βClassical∗(P) ⊆
UniClass∗(P). Assume that βClassical∗ is complete for P and that a solution for P
exists, so that a solution is returned by an execution of βClassical∗(P). By the previous
inclusion, the same solution is also returned by an execution of UniClass∗(P), and so we
are done.

(UniClass∗ ⊆ βClassical∗.) Suppose that an execution of UniClass∗(P) returns a solu-
tion π. A quick look at Algorithms 4, 6 shows that an execution of βClassical∗(P) also
generates the same plan π. From the execution of UniClass∗(P), we know that π reaches
the goal state β(s0). Because of this, the execution of βClassical∗(P) that generates π
also terminates and returns π. Hence βClassical∗ is complete for P .

(UniClass∗ ⊆ Append∗.) Any execution of UniClass∗(P) that returns a solution π is
essentially an execution of Append∗(P) that exits the while loop after the first call to ϕ.
This execution returns the same solution π.

(Append∗ ⊆ Replan∗.) Let an execution of Append∗(P) return a solution π, with π generated
as a sequence of subplans π = π1.π2. · · · .πn. (That is, for πk being the value returned
by the call to ϕ in the k-th iteration of Algorithm 7’s while loop.) Consider the plans
π′k = π1. · · · .πk for each 1 ≤ k ≤ n. An execution of Replan∗(P) exists that generates
the value π′k at the k-th iteration of Algorithm 8’s while loop. Clearly, this execution of
Replan∗(P) returns π′n = π, which is a solution. Hence, Replan∗ is also complete for P .

(All OffGR planners ⊆ Universal). This simply follows from P being the class of all OffGR
problems and, at the same time, the completeness class of Universal (Lemma 9).

(2. Proper inclusions ⊂.) We refer to the examples discussed to prove that all the ⊆
inclusions shown above are indeed proper ⊂.

(Classical ⊂ UniClass∗) Ex. 9 (Append∗ ⊂ Universal) Ex. 13
(UniClass∗ ⊂ Append∗) Ex. 11 (Replan∗ ⊂ Universal) Ex. 13

(Append∗ ⊂ Replan∗) Ex. 12 (βSaturate ⊂ Universal) Ex. 14

(3. Incomparability.) The incomparability claims are all shown by the next pair of examples:

(βSaturate 6⊆, 6⊇ {βClassical∗, UniClass∗, Append∗, Replan∗} Ex. 13, Ex. 14.

Proposition 27. For each Planner ∈ {UniClass, Append, Replan}, its completeness class
satisfies: Planner ⊂ Planner∗.

Proof. Let Planner ∈ {UniClass, Append, Replan}.
Let us first show the inclusion Planner ⊆ Planner∗. Let P be an arbitrary GR problem.

Clearly, any execution of Planner(P) that returns a plan π corresponds to an execution of
Planner∗(P), namely one in which all invocations of Choice (Algorithm 2) returns true.
As a consequence, this execution of Planner∗(P) assigns the same value π after each call
to ϕ. Since this applies in particular to solution plans, whenever Planner(P) may return a
solution, so does Planner∗(P).

Finally, Example 16 showed that these inclusions are proper: Planner ⊂ Planner∗.

1753

Pardo & Strasser

Proposition 28. The completeness classes of {UniClass, Append, Replan} arrange as:

UniClass ⊂ {Append, Replan} ⊂ Universal.

The completeness classes of Append and Replan are incomparable.

Proof. Each inclusion ⊆ is shown by a similar proof to that of Proposition 26, here omitted.
The same examples used in the proof of Proposition 26 show that these inclusions are proper
and also one direction of the incomparability claim; for the other, we use Example 17 above:

(UniClass ⊂ Append) Ex. 11
(Append ⊂ Universal) Ex. 13
(Replan ⊂ Universal) Ex. 13

(Append 6⊆ Replan) Ex. 17
(Replan 6⊆ Append) Ex. 12

On the Reducibility of OffGR to Classical Planning

Lemma 29. Let P = (S,A, s0, β0) be a GR problem, with β0 induced by (G ,`0). Then,

s ∈ β? iff s |= {(¬` ∨ `′)}(`,`′)∈G .

Proof. We use the following equivalences:

s |= {(¬` ∨ `′)}(`,`′)∈G
iff s |= ¬` ∨ `′ for all (`, `′) ∈ G
iff s |= ` ⇒ s |= `′ for all (`, `′) ∈ G (semantics)
iff s |= {`′ : (`, `′) ∈ G , s |= `}
iff s |= β(s) (def. β under `0)
iff s ∈ β? (def. β?).

Proposition 30 (Compilation A). For any P = (S,A, s0, β0), the map P 7−→ P ′ in Defini-
tion 22 is a compilation for β0 satisfying, moreover, Planner.T (P ′) � A ⊆ UniClass∗(P).

Proof. Let π′ ∈ Planner.T (P ′) be arbitrary. Clearly, π′ is of the form π′ = π.endi for some
endi ∈ A′ and with π ∈ A∗. The reason is that π′ solves P ′ so that γ(s′0, π

′) |= final . By the
plan minimality of π ∈ Planner.T (P ′), no other A′ action can occur in π, and so π′ � A = π.

(Planner.T (P ′) � A ⊆ βClassical∗(P).) Let us show first that π ∈ βClassical∗(P).
Since pre(endi) = β(s0), we have that γ(s0, π) |= β(s0). By Lemma 7, βClassical∗(P) =
Classical∗(P ′′) where P ′′ = (S,A, s0, β0(s0)). By Proposition 2, Classical∗ is strongly
complete, and so π ∈ Classical∗(P ′′) = βClassical∗(P).

(P 7−→ P ′ is a compilation for β0.) It suffices to prove that π = π′ � A satisfies γ(s0, π) ∈ β?.
In the previous claim, we showed that γ(s0, π) |= β(s0). That is, for any norm (`, `′) ∈ G , (1)
if `′ ∈ β(s0) then γ(s0, π) |= `′. On the other hand, (2) for each other norm (`, `′) ∈ G with
`′ /∈ β(s0), the definition of eff (endi) gives: either γ(s0, π) |= ¬` or γ(s0, π) |= goal(`′), `′.
Combining (1) and (2), we obtain that γ(s, π) |= ¬` ∨ `′ for each norm (`, `′) ∈ G . By
Lemma 29, we conclude that γ(s0, π) ∈ β?. Hence, π = π′ � A is a solution for P , and so
Definition 22 is a compilation for β0.

(Planner.T (P ′) � A ⊆ UniClass∗(P).) It follows from the last two claims that π ∈
βClassical∗(P) and s0.π ∈ β?. By Definitions 10–12, it holds that π ∈ UniClass∗(P).

1754

Offline Goal Reasoning with Norms

Proposition 31 (Compilation B). For any P = (Σ, s0, β0), the map P 7−→ P ′ in Defini-
tion 23 is a compilation for β0 satisfying, moreover, Planner.T (P ′) � A = Universal(P).

Proof. As in the proof of Proposition 30, we have that any output π′ ∈ Planner.T (P ′) is
of the form π′ = π.endi with π ∈ A∗.
(P 7−→ P ′ is a compilation for β0.) For each norm (`, `′) ∈ G , the definition of eff (endi)
gives: either γ(s0, π) |= ¬` or γ(s0, π) |= goal(`′), `′. Hence, γ(s, π) |= ¬` ∨ `′ for each norm
(`, `′) ∈ G . By Lemma 29, we conclude that γ(s0, π) ∈ β?. Hence, π = π′ � A is a solution
for P .

(Planner.T (P ′) � A ⊆ Universal(P).) We just showed that π is a solution for P . By
Remark 3, moreover, no subplan π1 of π extends into a plan π.endj solving P ′, i.e. satisfying
γ(s′0, π.endj) 6|= final . Hence, no such subplan π1 ∈ A∗ satisfies (¬` ∨ `′) for all norms
(`, `′) ∈ G . By Lemma 29, we conclude that γ(s0, π1) /∈ β?. A quick look at Algorithm 5
shows that an execution of Universal(P) exists that returns π.

(Planner.T (P ′) � A ⊇ Universal(P).) This inclusion is proved by reading the last proof
backwards: the minimality of plans for P ′ and solutions for P is preserved in both directions,
and Lemma 29 states an equivalence between no norm violations and β?-membership.

References

Aha, D. W. (2018). Goal reasoning: Foundations, emerging applications, and prospects. AI
Mag., 39 (2), 3–24.

Anderson, M., & Anderson, S. L. (2014). GenEth: A general ethical dilemma analyzer. In
Proceedings of the 28th AAAI Conference on AI, pp. 253–261.

Baier, J. A., & McIlraith, S. A. (2008). Planning with preferences. AI Mag., 29 (4), 25–36.

Baum, S. D. (2020). Social choice ethics in artificial intelligence. AI Soc., 35 (1), 165–176.

Behnke, G., Speck, D., Katz, M., & Sohrabi, S. (2023). On partial satisfaction planning
with total-order htns. In Koenig, S., Stern, R., & Vallati, M. (Eds.), Proceedings of
the Thirty-Third International Conference on Automated Planning and Scheduling,
July 8-13, 2023, Prague, Czech Republic, pp. 42–51. AAAI Press.

Bonassi, L., De Giacomo, G., Favorito, M., Fuggitti, F., Gerevini, A. E., & Scala, E. (2023).
Planning for temporally extended goals in pure-past linear temporal logic. In Koenig,
S., Stern, R., & Vallati, M. (Eds.), Proceedings of the Thirty-Third International Con-
ference on Automated Planning and Scheduling, Prague, Czech Republic, July 8-13,
2023, pp. 61–69. AAAI Press.

Brafman, R. I., & Domshlak, C. (2009). Preference handling - an introductory tutorial. AI
Mag., 30 (1), 58–86.

Bratman, M. E. (1991). Intention, Plans, and Practical Reason. David Hume Series. Center
for the Study of Language and Information.

Braziunas, D., & Boutilier, C. (2007). Minimax regret based elicitation of generalized
additive utilities. In Parr, R., & van der Gaag, L. C. (Eds.), UAI 2007, Proceedings
of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, Vancouver,
BC, Canada, July 19-22, 2007, pp. 25–32. AUAI Press.

1755

Pardo & Strasser

Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reason-
ing. In Sridharan, N. S. (Ed.), Proceedings of the 11th International Joint Conference
on Artificial Intelligence. Detroit, MI, USA, August 1989, pp. 1043–1048. Morgan
Kaufmann.

Brewka, G. (2004). A rank based description language for qualitative preferences. In
de Mántaras, R. L., & Saitta, L. (Eds.), Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pp. 303–307. IOS Press.

Brewka, G., & Eiter, T. (1999). Preferred answer sets for extended logic programs. Artificial
Intelligence, 109, 297–356.

Brewka, G., & Eiter, T. (2000). Prioritizing default logic. In Intellectics and computational
logic, pp. 27–45. Springer.

Broersen, J. M., Dastani, M., & van der Torre, L. (2005). Beliefs, obligations, intentions, and
desires as components in an agent architecture. Int. J. Intell. Syst., 20 (9), 893–919.

Carmo, J., & Jones, A. J. I. (2002). Deontic logic and contrary-to-duties. In Gabbay, D.,
& Guenthner, F. (Eds.), Handbook of Philosophical Logic (2nd edition), Vol. 8, pp.
265–343. Kluwer Academic Publishers.

Carmo, J., & Jones, A. J. I. (2013). Completeness and decidability results for a logic of
contrary-to-duty conditionals. J. Log. Comput., 23 (3), 585–626.

Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge University Press.

Chien, S. A., Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (2000). Using iterative
repair to improve the responsiveness of planning and scheduling. In Chien, S. A.,
Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems, Breckenridge, CO, USA, April
14-17, 2000, pp. 300–307. AAAI.

Chisholm, R. M. (1963). Contrary-to-duty imperatives and deontic logic. Analysis, 24 (2),
33–36.

Cox, M. T. (2007). Perpetual self-aware cognitive agents. AI Mag., 28 (1), 32–46.

Cox, M. T. (2017). A model of planning, action, and interpretation with goal reasoning.
Advances in Cognitive Systems, 5, 57–76.

Doyle, J., Shoham, Y., & Wellman, M. P. (1991). A logic of relative desire (preliminary
report). In Ras, Z. W., & Zemankova, M. (Eds.), Methodologies for Intelligent Systems,
6th International Symposium, ISMIS ’91, Charlotte, N.C., USA, October 16-19, 1991,
Proceedings, Vol. 542 of Lecture Notes in Computer Science, pp. 16–31. Springer.

Dyrkolbotn, S., Pedersen, T., & Slavkovik, M. (2018). On the distinction between implicit
and explicit ethical agency. In Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA, February 02-03, 2018,
pp. 74–80.

Fischer, M. J., & Ladner, R. E. (1979). Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18, 194–211.

1756

Offline Goal Reasoning with Norms

Gabbay, D., J. Horty, X. P., van der Meyden, R., & van der Torre, L. (Eds.). (2013).
Handbook of Deontic Logic and Normative Systems. College Publications.

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning - theory and practice.
Elsevier.

Ghallab, M., Nau, D. S., & Traverso, P. (2016). Automated Planning and Acting. Cambridge
University Press.

Goble, L. (2005). A logic for deontic dilemmas. J. Applied Logic, 3 (3-4), 461–483.

Governatori, G., Rotolo, A., & Riveret, R. (2018). A deontic argumentation framework
based on deontic defeasible logic. In Miller, T., Oren, N., Sakurai, Y., Noda, I.,
Savarimuthu, B. T. R., & Son, T. C. (Eds.), PRIMA 2018: Principles and Practice
of Multi-Agent Systems - 21st International Conference, Tokyo, Japan, October 29 -
November 2, 2018, Proceedings, Vol. 11224 of Lecture Notes in Computer Science, pp.
484–492. Springer.

Haddawy, P., Ha, V. A., Restificar, A. C., Geisler, B., & Miyamoto, J. (2003). Preference
elicitation via theory refinement. J. Mach. Learn. Res., 4, 317–337.

Hansen, J. (2008). Prioritized conditional imperatives: problems and a new proposal. Au-
tonomous Agents and Multi-Agent Systems, 17 (1), 11–35.

Hansson, B. (1969). An analysis of some deontic logics. Nous, 3 (4), 373–398.

Hansson, S. O. (2013). Alternative semantics for deontic logic. In Gabbay et al. (Gabbay
et al., 2013), pp. 445–497.

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. (2019). An Introduction to the
Planning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers.

Hawes, N. (2011). A survey of motivation frameworks for intelligent systems. Artif. Intell.,
175 (5-6), 1020–1036.

Horty, J. (2007). Defaults with priorities. Journal of Philosophical Logic, 36, 367–413.

Horty, J. (2012). Reasons as Defaults. Oxford University Press.

Jaidee, U., Muñoz-Avila, H., & Aha, D. W. (2011). Integrated learning for goal-driven
autonomy. In Walsh, T. (Ed.), IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pp. 2450–2455. IJCAI/AAAI.

Katz, M. (2019). Red-black heuristics for planning tasks with conditional effects. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pp. 7619–7626. AAAI Press.

Kautz, H. A., & Selman, B. (1991). Hard problems for simple default logics. Artif. Intell.,
49 (1-3), 243–279.

Klenk, M., Molineaux, M., & Aha, D. W. (2013). Goal-driven autonomy for responding to
unexpected events in strategy simulations. Comput. Intell., 29 (2), 187–206.

Knoblock, C. A. (1995). Planning, executing, sensing, and replanning for information gath-
ering. In Proceedings of the Fourteenth International Joint Conference on Artificial

1757

Pardo & Strasser

Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pp.
1686–1693. Morgan Kaufmann.

Liao, B., Oren, N., van der Torre, L., & Villata, S. (2016). Prioritized norms and defaults in
formal argumentation. In Roy, O., Tamminga, A., & Willer, M. (Eds.), Proceedings of
the 13th International Conference on Deontic Logic and Normative Systems (DEON
2016), pp. 139–154. College Publications.

Liao, B., Pardo, P., Slavkovik, M., & van der Torre, L. (2023). The jiminy advisor: Moral
agreements among stakeholders based on norms and argumentation. Journal of Arti-
ficial Intelligence Research, 77, 737–792.

Loewer, B., & Belzer, M. (1983). Dyadic deontic detachment. Synthese, 54, 295–318.

Makinson, D. (1999). On a fundamental problem of deontic logic. In McNamara, P., &
Prakken, H. (Eds.), Norms, Logics and Information Systems. New Studies in Deon-
tic Logic and Computer Science, Vol. 49 of Frontiers in Artificial Intelligence and
Applications, pp. 29–53. IOS Press.

Meneguzzi, F., & De Silva, L. (2015). Planning in bdi agents: a survey of the integration
of planning algorithms and agent reasoning. The Knowledge Engineering Review, 30,
1–44.

Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W. W., & Luck, M. (2015). BDI
reasoning with normative considerations. Eng. Appl. Artif. Intell., 43, 127–146.

Meyer, J.-J. C., Broersen, J., & Herzig, A. (2015). Bdi logics. In van Ditmarsch, H.,
Halpern, J., van der Hoek, W., & Kooi, B. (Eds.), Handbook of Logics for Knowledge
and Belief, chap. 10, pp. 453–498. College Publications.

Modgil, S., & Prakken, H. (2013). A general account of argumentation with preferences.
Artif. Intell., 195, 361–397.

Moor, J. H. (2006). The nature, importance, and difficulty of machine ethics. IEEE Intel-
ligent Systems, 21 (4), 18–21.

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. J. Artif. Intell. Res., 12, 271–315.

Paisner, M., Cox, M. T., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for
cognitive systems. In Bello, P., Guarini, M., McShane, M., & Scassellati, B. (Eds.),
Proceedings of the 36th Annual Meeting of the Cognitive Science Society, CogSci 2014,
Quebec City, Canada, July 23-26, 2014. cognitivesciencesociety.org.

Parent, X., & van der Torre, L. (2018). Introduction to Deontic Logic and Normative
Systems. College Publications.

Pigozzi, G., & van der Torre, L. (2018). Arguing about constitutive and regulative norms.
J. Appl. Non Class. Logics, 28 (2-3), 189–217.

Prakken, H., & Sergot, M. (1997). Dyadic deontic logic and contrary-to-duty obligations. In
Nute, D. (Ed.), Defeasible deontic logic, pp. 223–262. Kluwer Academic, Dordrecht-
Boston.

1758

Offline Goal Reasoning with Norms

Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a bdi-architecture.
In Allen, J. F., Fikes, R., & Sandewall, E. (Eds.), Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91). Cam-
bridge, MA, USA, April 22-25, 1991, pp. 473–484. Morgan Kaufmann.

Ross, A. (1941). Imperatives and logic. Theoria, 7, 53–71.

Shaparau, D., Pistore, M., & Traverso, P. (2006). Contingent planning with goal preferences.
In Proceedings, The Twenty-First National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-
20, 2006, Boston, Massachusetts, USA, pp. 927–935.

Shoham, Y. (2009). Logical theories of intention and the database perspective. J. Philos.
Log., 38 (6), 633–647.

Smith, D. E. (2004). Choosing objectives in over-subscription planning. In Zilberstein, S.,
Koehler, J., & Koenig, S. (Eds.), Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler,
British Columbia, Canada, pp. 393–401. AAAI.

Straßer, C. (2011). A deontic logic framework allowing for factual detachment. J. Applied
Logic, 9 (1), 61–80.

Thangarajah, J., & Padgham, L. (2011). Computationally effective reasoning about goal
interactions. J. Autom. Reason., 47 (1), 17–56.

Van De Putte, F., Beirlaen, M., & Meheus, J. (2019). Adaptive deontic logics. Handbook
of Deontic Logic and Normative Systems, 2, 367–459.

van den Briel, M., Nigenda, R. S., Do, M. B., & Kambhampati, S. (2004). Effective ap-
proaches for partial satisfaction (over-subscription) planning. In McGuinness, D. L., &
Ferguson, G. (Eds.), Proceedings of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence,
July 25-29, 2004, San Jose, California, USA, pp. 562–569. AAAI Press / The MIT
Press.

van der Krogt, R., & de Weerdt, M. (2005). Plan repair as an extension of planning. In Bi-
undo, S., Myers, K. L., & Rajan, K. (Eds.), Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005,
Monterey, California, USA, pp. 161–170. AAAI.

van Der Torre, L., & Tan, Y.-H. (1995). Cancelling and overshadowing two types of de-
feasibility in defeasible deontic logic. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2, IJCAI’95, pp. 1525–1532, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

van Zee, M., Doder, D., van der Torre, L., Dastani, M., Icard III, T. F., & Pacuit, E. (2020).
Intention as commitment toward time. Artif. Intell., 283, 103270.

1759

	Introduction
	Related Work
	The OffGR System
	OffGR Planners: General View
	OffGR Planners: -Methods
	Classical
	Universal
	UniClass

	OffGR Planners: -methods
	Append
	Replan

	OffGR Planners: -saturation
	Saturate
	A Variant of Saturate

	Discussion
	A Hierarchy of Completeness Classes
	Classical vs. Classical
	Unions and Fusions of OffGR Planners
	On the Reducibility of Offline GR to Classical Planning
	Applications in Deontic Logic

	Conclusions
	References

