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Abstract

Counterfactual inference considers a hypothetical intervention in a parallel world that
shares some evidence with the factual world. If the evidence specifies a conditional dis-
tribution on a manifold, counterfactuals may be analytically intractable. We present an
algorithm for simulating values from a counterfactual distribution where conditions can be
set on both discrete and continuous variables. We show that the proposed algorithm can
be presented as a particle filter leading to asymptotically valid inference. The algorithm is
applied to fairness analysis in credit-scoring.

1. Introduction

A counterfactual distribution is the probability distribution of a random variable under a
hypothetical scenario that differs from the observed reality. “What would have been the
outcome for this individual if they had received a different treatment?” is an example of a
counterfactual question. Here the personal data of the individual constitute the evidence
that specifies the observed reality, and the interest lies in the distribution of the outcome
under a hypothetical treatment.

Counterfactual questions belong to the third and highest level in the causal hierarchy
(Shpitser & Pearl, 2008) and are in general more difficult than associational (first level) or
interventional (second level) questions. Algorithms for checking the identifiability of coun-
terfactual queries from observational and experimental data have been developed (Shpitser
& Pearl, 2007; Shpitser & Sherman, 2018; Correa, Lee, & Bareinboim, 2021) and imple-
mented (Tikka, 2023). In many practical cases, the queries may be non-identifiable (Wu,
Zhang, Wu, & Tong, 2019).

Counterfactuals are often linked with questions about fairness, guilt, and responsibil-
ity. Notably, the fairness of prediction models has become a major concern in automated
decision-making (Wachter, Mittelstadt, & Russell, 2018; Pessach & Shmueli, 2022) where
the requirement for fairness often arises directly from the legislation. A classic example of
the fairness requirement in decision-making is credit-scoring where the bank’s decision to
lend must not depend on sensitive variables such as gender or ethnicity (Bartlett, Morse,
Stanton, & Wallace, 2022).

Several definitions and measures of fairness have been proposed (Mehrabi, Morstatter,
Saxena, Lerman, & Galstyan, 2021; Caton & Haas, 2023; Carey & Wu, 2022). Among these
proposals, counterfactual definitions of fairness (Kusner, Loftus, Russell, & Silva, 2017; Nabi
& Shpitser, 2018; Chiappa, 2019; Wu et al., 2019; Richens, Beard, & Thompson, 2022) are
intuitively appealing as they compare whether an individual decision would remain the same
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in a hypothetical counterfactual world. Note that the term “counterfactual explanations”
(Guidotti, 2022) is sometimes used in the literature on explainable artificial intelligence
(XAI) and interpretable machine learning (Burkart & Huber, 2021) in contexts where the
term “contrastive explanations” proposed by Karimi, Schölkopf, and Valera (2021) would
be more appropriate.

We consider the problem of simulating observations from a specified counterfactual dis-
tribution. Given a structural causal model (SCM) and a counterfactual of interest, the
counterfactual distribution can be derived in three steps (Pearl, 2009). First, the distri-
bution of the latent background variables is updated given the evidence expressed as a set
of conditions on the observed variables. Second, the causal model is modified according to
the hypothetical intervention. Third, the counterfactual distribution of the target variable
is calculated in the model that represents the counterfactual scenario under the updated
distribution. These three steps require the full knowledge of the causal model in the func-
tional form, i.e. the structural equations and the distributions of the background variables
must be known.

The problem of simulating counterfactuals is similar to the problem of simulating ob-
servations from a given distribution. The challenges are related to the first step of counter-
factual inference which requires determining a multivariate conditional distribution. This
can be done analytically only in special cases where, for instance, all the variables are either
discrete or normally distributed. Evidence that includes continuous variables leads to a
conditional distribution concentrated on a manifold, which is generally difficult to simulate.

In this paper, we present an algorithm for simulating counterfactual distributions. The
algorithm is applicable in settings where the causal model is fully known in a parametric
form and the structural equations for continuous variables have an additive error term
or, more generally, are strictly monotonic with respect to an error term. The algorithm is
essentially tuning-free. Unlike Karimi et al. (2021) and Javaloy, Sánchez-Mart́ın, and Valera
(2023), we allow the SCM to contain background variables that affect two or more observed
variables, which makes it significantly harder to simulate the counterfactual distribution.

The algorithm processes the conditioning variables one by one in a topological order and
obtains an approximate sample from the updated distribution of the background variables
(step 1). The challenge of continuous conditioning variables is overcome by using binary
search to find solutions that satisfy the conditions and then applying sequential Monte Carlo
to calibrate the distribution of these solutions. Discrete conditioning variables are processed
by resampling observations that satisfy the condition. Next, the causal model is modified
(step 2) and a sample from the counterfactual distribution is acquired by simulating the
modified causal model with the obtained sample of the background variables (step 3).

We show that the conditional simulation at step 1 can be interpreted as a particle
filter/sequential Monte Carlo (e.g., Gordon, Salmond, & Smith, 1993; Doucet, Godsill, &
Andrieu, 2000; Del Moral, 2004; Cappé, Moulines, & Rydén, 2005; Chopin & Papaspiliopou-
los, 2020). Theoretical results from the particle filter literature guarantee good asymptotic
properties of the sample. In particular, we state a mean square error convergence rate and
a central limit theorem for samples obtained with the proposed algorithm.

In real-world applications, the full knowledge of the causal model may not be available.
Despite this serious restriction, we argue that the simulation-based counterfactual inference
may still have its role in fairness evaluation. Consider a prediction model that is used for
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decision-making in a situation where the underlying causal model is unknown. To ensure
fairness in this situation, the prediction model should be fair under any reasonable causal
model. This implies that an analyst evaluating the fairness of the prediction model could
choose some reasonable causal models for the evaluation. Deviations from fairness under
any of these causal models indicate that the prediction model is not fair in general.

We use the counterfactual simulation algorithm as the main component in a fairness
evaluation algorithm of prediction models. We simulate data from specified counterfactual
distributions and compare the predictions for these settings. We demonstrate with a credit-
scoring example how the fairness evaluation algorithm can be applied to opaque AI models
without access to real data. As a result, we find out if an AI model is fair in the tested
setting, and if not, learn how large differences there are in the outcome under different
counterfactual interventions.

The rest of the paper is organized as follows. The notation and the basic definitions are
given in Section 2. In Section 3, the counterfactual simulation algorithm and the fairness
evaluation algorithm are introduced, and the conditional simulation is presented as a particle
filter. In Section 4, the performance of the simulation algorithm is tested in benchmark cases
where the counterfactual distributions can be derived analytically. In Section 5, the fairness
evaluation algorithm is applied to a credit-scoring example. Section 6 concludes the paper.

2. Notation and Definitions

We use uppercase letters to denote variables, lowercase letters to denote values, and bold
letters to denote sets of variables or values. The primary object of counterfactual inference
is a causal model (Pearl, 2009):

Definition 1 (SCM). A structural causal modelM is a tuple (V,U,F, p(u)), where

(1) V is a set of observed (endogenous) variables that are determined by other variables
in the model.

(2) U is a set of background variables that are unobserved random variables.

(3) F is a set of functions {fV | V ∈ V} such that each fV is a mapping from U ∪ (V \ {V })
to V and such that F forms a mapping from U to V. Symbolically, the set of equations
F can be represented by writing V = fV (Pa

∗(V )), where Pa∗(V ) ⊂ U ∪ (V \ {V }) is
the unique minimal set of variables sufficient for representing fV .

(4) p(u) is the joint probability distribution of U.

An SCM is associated with a directed graph G where there is an edge W → V if and only
if W ∈ Pa∗(V ). In other words, Pa∗(V ) denotes the (observed and unobserved) parents of
V in graph G. We will consider only recursive SCMs where the set F defines a topological
order of the variables V∪U, i.e., an order where Pa∗(Z) < Z for all Z ∈ V∪U. The graph
associated with a recursive SCM is a directed acyclic graph (DAG). Notation τ(V ) refers
to the variables that precede V in the topological order meaning variables W ∈ V∪U such
that W < V . We assume that variables U precede V in the topological order. Notation
Pa(V ) is a shorthand notation for Pa∗(V ) ∩ V meaning the observed parents. Similarly,
An∗(V ) denotes the ancestors of V in G and An(V ) = An∗(V )∩V. Notations τ(v), Pa∗(v),
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Pa(v), An∗(v) and An(v) refer to the values of the variables τ(V ), Pa∗(V ), Pa(V ), An∗(V )
and An(V ), respectively.

Data can be simulated from an SCM by generating the values u of the background
variables U from the distribution p(u) and then applying the functions F in the topological
order to obtain values v of V. For a data matrix D with named columns (variables), the
following notation is used: D[i, ] refers to the ith row, D[C = c, ] where C is a column name
of D refers to rows where condition C = c is fulfilled, D[,S] refers to data on variables S,
i.e., columns whose variable names are in the set S, and D[i,S] refers to the ith row of
variables S. The notation is similar to many high-level programming languages.

An intervention do(X = x) targeting SCM M induces a submodel (Pearl, 2009), de-
noted by Mdo(X=x), where those functions in M that determine the variables X are re-
placed by constant functions that output the corresponding values x. We also use the
subscript do(X = x) to distinguish variables in the submodel from the original variables,
e.g., Wdo(X=x) is the set of variables W inMdo(X=x). The joint distribution of Vdo(X=x)

in the submodelMdo(X=x) is known as the interventional distribution or causal effect. The
effects of interventions typically relate to interventional considerations such as the effect
of a treatment on a response, but they also facilitate the analysis of counterfactuals that
consider hypothetical actions that run contrary to what was observed in reality.

For an SCM where all variables are discrete, a counterfactual distribution can be eval-
uated by marginalizing over those values of the background variables that result in the
specified evidence. More specifically, the probability distribution of a set of observed vari-
ables W ⊂ V \ X in the submodel Mdo(X=x) conditional on a set of observations (the
evidence) C = c such that C,X ⊆ V can be written as

p(Wdo(X=x) = w |C = c) =
∑

{u | f◦
W(u)=w}

p(U = u|C = c),

where f◦
W denotes the functions of Wdo(X=x) in the submodelMdo(X=x) expressed in terms

of U (such functions always exist due to property (3) of Definition 1). The distribution can
be also expressed as

p(Wdo(X=x) = w |C = c) =
∑
u

I(f◦
W(u) = w)p(U = u|C = c).

This formulation generalizes to the scenario where the variables U are continuous as follows

p(Wdo(X=x) ∈ A |C = c) =

∫
I(f◦

W(u) ∈ A)p(U = u|C = c) du.

where A is some event.
The submodel Mdo(X=x) and the updated distribution p(U = u |C = c) together

define a parallel world where the state of the background variables is shared with the non-
interventional world. In contrast to interventional distributions, the sets of variables C and
X defining the evidence C = c and the intervention do(X = x) need not be disjoint for
a counterfactual distribution. If the sets are disjoint, a counterfactual distribution simply
reduces to a conditional interventional distribution.

We follow the general procedure introduced by Pearl (2009) to evaluate counterfactual
distributions.
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Definition 2 (Evaluation of a counterfactual distribution). Let M = (V,U,F, p(u)) be
a recursive SCM and let C,X ⊆ V and W ⊆ V \ X. The counterfactual distribution
p(Wdo(X=x) = w |C = c) can be evaluated using the following three steps.

1. Update p(U = u) by the evidence C = c to obtain p(U = u |C = c) (Bayes’ Theorem)

2. Construct the submodelMdo(X=x) corresponding to the counterfactual scenario.

3. Use the submodelMdo(X=x) and the updated distribution p(U = u |C = c) to compute
p(Wdo(X=x) = w |C = c).

In practice, however, this procedure may not be directly applicable because it is often
not possible to analytically compute p(Wdo(X=x) = w |C = c) in the third step, for example
when some of the variables in the conditioning set C are continuous. A simple illustration
of counterfactual inference in a case where the distribution p(Wdo(X=x) = w |C = c) can
be derived analytically is presented in Online Appendix 1.

Our objective is to simulate observations from counterfactual distributions given an
SCM in the general case where an analytical solution is not available. Before the evaluation
of a counterfactual distribution, the SCM can be pruned similarly to what is done by causal
effect identification algorithms (Tikka & Karvanen, 2018) by restricting our attention to
only those variables that are relevant to the task. For this purpose, we define an ancestral
SCM as follows:

Definition 3 (Ancestral SCM). Let M = (V,U,F, p(u)) be a recursive SCM and let
Z ⊆ V ∪U. Then MZ = (V′,U′,F′, p(u′)) is the ancestral SCM of M with respect to Z
where V′ = V∩(An(Z)∪Z), U′ = U∩(An∗(Z)∪Z), and F′ is the subset of F that contains
the functions for V′.

To evaluate a counterfactual distribution, it suffices to restrict our attention to the
relevant ancestral SCM.

Theorem 1. Let M = (V,U,F, p(u)) be a recursive SCM and let η = p(Wdo(X=x) =
w |C = c) be a counterfactual distribution such that W ∪X ∪ C ⊆ V. Then η evaluated
via Definition 2 in M is equivalent to η evaluated via Definition 2 in the ancestral SCM
MW∪X∪C.

Proof. Consider a variable Y /∈ An∗(W ∪X ∪C). As Y is not an ancestor of W, X, or C,
it does not have any impact in steps 1–3 of Definition 2.

This type of pruning is a useful operation because it often reduces the number of variables
in the SCM and thus allows for more efficient simulation.

The main application of counterfactual simulation is counterfactual fairness for which
different definitions have been proposed. Let S be a sensitive variable (sometimes referred
to as a protected variable), Y the outcome of interest, and Ŷ an estimator of Y . Kusner
et al. (2017) define Ŷ to be counterfactually fair if

p(Ŷdo(S=s) |X = x, S = s) = p(Ŷdo(S=s′) |X = x, S = s) (1)
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under any context X = x and for any values s and s′ of S. In other words, the evidence
X = x and S = s has been observed and in this situation, the distribution of Ŷ should be
the same under the intervention do(S = s) and the counterfactual intervention do(S = s′).

Other authors (Nabi & Shpitser, 2018; Chiappa, 2019) have found the definition of
Equation (1) too restrictive and have instead considered path-specific counterfactual infer-
ence where the sensitive variable may affect the decision via a fair pathway. For instance,
even if gender affects education, it would be fair to use education in a recruitment deci-
sion. However, it would be discriminatory to base the recruitment decision on gender or
its proxies such as the given name. The recognition of fair and unfair pathways requires
an understanding of the underlying causal mechanisms. Along these lines, we will use the
following definition.

Definition 4 (Counterfactual fairness). Let (V,U,F, p(u)) be an SCM where S ⊂ V is the
set of sensitive variables and Y ⊂ V is the set of outcome variables. Define W = Pa(Y)\S
and Z = V \ (Y ∪W ∪ S), and let the conditioning variables be C = W ∪ Z ∪ S. The
decisions based on an estimator Ŷ are counterfactually fair if

p(Ŷdo(S=s,W=w) |W = w,Z = z,S = s) = p(Ŷdo(S=s′,W=w) |W = w,Z = z,S = s)

under any context W = w, Z = z, and for any values s and s′ of S.

Definition 4 fixes the non-sensitive parents W of the outcome to their observed values
under any counterfactual intervention of the sensitive variables. In the recruitment example,
this would mean that a counterfactual intervention on gender could change the given name,
but education would remain unchanged because it has a direct effect on job performance.
This kind of definition is mentioned by Wu et al. (2019) who call it “individual indirect
discrimination”.

3. Algorithms

We proceed to construct an algorithmic framework for counterfactual simulation and fair-
ness evaluation. The general principle of the counterfactual simulation is straightforward:
the proposed simulation algorithm randomly generates the values of some background vari-
ables and numerically solves the rest of the background variables from the conditions. The
obtained candidate observations are iteratively resampled with unequal probabilities so that
the selected sample is an approximate random sample from the conditional distribution of
the background variables. The counterfactual distribution is approximated using this sam-
ple of background variables together with the intervened SCM.

This section is organized as follows. First, the assumptions and some basic results are
presented in Section 3.1. Next, the formal algorithms are presented in Sections 3.2 and
3.3. Finally, in Section 3.4 we show that the simulation algorithm leads to asymptotically
consistent inference and can be interpreted as a sequential Monte Carlo algorithm.

3.1 Assumptions and Basic Results

The starting point of counterfactual simulation is an SCMM = (V,U,F, p(u)) where the
functions F and the distribution p(u) are fully known, and the objective is to simulate
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values from counterfactual distribution p(Wdo(X=x) = w |C = c). In order to simulate
counterfactuals in cases where the set of conditioning variables C contains continuous vari-
ables, we refine the definition of the SCM by imposing some restrictions on background
variables. First, we define a special type of background variable:

Definition 5 (Dedicated error term). In an SCM M = (V,U,F, p(u)), a background
variable U ∈ U is a dedicated error term if it is independent of the other background
variables and has exactly one child. If an observed variable V ∈ V has only one dedicated
error term, it is denoted by UV , and the notation ξV (u) = pUV

(u) is used for the density

function of UV .

With this definition, the background variables can be divided into two categories, U
and Ũ, where U is the set of dedicated error terms and Ũ is the set of other background
variables which we call global background variables henceforth, and U = U ∪ Ũ. Further,
let UC and UV\C represent the dedicated error terms of variables in C and in V \ C,
respectively. From the independence of dedicated error terms, it follows that

p(u) =
∏
U∈U

pU (u).

The variables Ũ act as unobserved confounders while each dedicated error term only affects
the variation of one specific observed variable. We will often consider the dedicated error
terms separately from other parents of a variable and for this purpose, we introduce the
notation Pa◦(V ) = Pa∗(V ) ∩ (V ∪ Ũ) = Pa∗(V ) \ {UV }.

Our SCMs of interest have dedicated error terms with a monotonic effect in their re-
spective functions.

Definition 6 (u-monotonic SCM). A recursive SCMM = (V,U,F, p(u)) is u-monotonic
with respect to a set of continuous variables W ⊆ V if it has the following properties:

(a) Each V ∈ V is univariate and has exactly one dedicated error term that is a continuous
univariate random variable.

(b) For all W ∈ W, it holds that given Pa◦(W ), the value of W is determined as w =
gW (uw) = gW (uw; Pa

◦(w)) = fW (uw,Pa
◦(w)) where gW is a continuous, differentiable

and strictly increasing function of dedicated error term uw, and the parameters of the
function are Pa◦(W ).

The inverses (in their domain) and derivatives of the function gW exist and they are
denoted by g−1

W and g′W , respectively. Cases where gW would be a strictly decreasing
function can be accommodated to Definition 6 by redefining uneww = −uw and gnewW (u) =
gW (−u). The second property of Definition 6 is trivially fulfilled in the important special
case, the additive noise model

w = fW (uw,Pa
◦(w)) = f∗

W (Pa◦(w)) + uw,

where f∗
W is some function that does not depend on uw. The formulation of Definition 6

permits gW (uw; Pa
◦(w)) to be a complicated function, which allows for heteroscedastic noise

models.
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The first step of Definition 2 involves deriving the conditional distribution p(U = u |C = c).
The following results characterize conditional distributions in a u-monotonic SCM.

Lemma 1. Let W be a continuous variable in a u-monotonic SCM with respect to a set W
such that W ∈W. The conditional density of W | (Pa◦(W ) = Pa◦(w)) is

p
(
w |Pa◦(w)

)
=


ξW (uW=w)

g′W (uW=w; Pa
◦(w))

, if a < w < b,

0, otherwise,

where (a, b) is the domain of gW ( · ; Pa◦(w)) and uW=w = g−1
W (w; Pa◦(w)). The notation

ωW (uW=w) = p
(
w |Pa◦(w)

)
is used to assign a weight for uW=w.

Proof. The conditional density of UW | Pa◦(W ) is, by independence, ξW , the uncon-
ditional density of UW . The conditional distribution W | Pa◦(W ) is a point mass at
gW (UW ; Pa◦(W )). Therefore, by the standard transformation formula, W has the density

pW (g−1(w))(g−1)′(w) =
ξW (g−1(w))

g′(g−1(w))
,

for all w in its domain, and zero elsewhere.

Lemma 1 tells that the value of the dedicated error term uW=w is determined by the
value w and the values of other parents of W via the function g−1

W (w; Pa◦(w)). The parents

Pa◦(w) may include global background variables Ũ. When the parents Pa◦(w) are fixed, the
distribution of W is obtained from the distribution uW=w by the standard transformation
formula. Note that for an additive noise model, we simply have ωW (uW=w) = ξW (uW=w).
The next lemma describes the conditional distribution of the background variables.

Lemma 2. In a u-monotonic SCM, the conditional density of Ũ,UV\C | (C = c) satisfies:

p(ũ,uV\C | c) ∝ p(ũ)

 ∏
U∈UV\C

p(u)

(∏
C∈C

ωC(uC=c)

)
,

where terms ωC(uC=c) = p
(
c |Pa◦(c)

)
in the last product are defined in Lemma 1.

Proof. The expression on the right is the joint density of (Ũ,UV\C,C), written by the
chain rule:

p(ũ)

 ∏
U∈UV\C

p(u | ũ, τ(u) ∩ uV\C)

(∏
C∈C

p(c | ũ,uV\C, τ(c) ∩ c)

)
.

The claim follows by applying the mutual independence of dedicated error terms to the first
product and Lemma 1 to the second product.

Combining the results above, the conditional distribution for all background variables
can be written as follows:
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Corollary 1. The conditional distribution of (Ũ,U,Y) | (C = c), where Y = V \C, is:

p(ũ,uV\C | c) dũduV\C

(∏
C∈C

I(g−1
C (c; Pa◦(c)) ∈ duc)

)(∏
Y ∈Y

I(gY (uY ; Pa
◦(y)) ∈ dy)

)
,

where I(·) is an indicator function. In other words, ũ and uV\C have a density, and uC

and y depend on them deterministically as above.

3.2 Algorithms for Conditional Simulation

Next, we will consider algorithms that simulate observations from a u-monotonic SCM un-
der given conditions (step 1 of Definition 2). First, we will present simulation algorithms
for the cases with a single conditioning variable. Algorithm 1 considers the case of a con-
tinuous conditioning variable and Algorithm 2 the case of a discrete conditioning variable.
Algorithm 3 processes multiple conditioning variables and calls Algorithms 1 and 2. The
full workflow of counterfactual inference is implemented later in Algorithm 4. Algorithm 5
applies Algorithm 4 in fairness evaluation.

3.2.1 Continuous Condition

We describe the operation of Algorithm 1. On lines 3 and 5, the procedure SimulateSCM
is called. The unconditional call on line 5 first simulates n realizations of the background
variables from p(u) and then applies functions F to obtain the values of the observed
variables V. The conditional version on line 3 is similar, but the values of the variables in
D0 are not generated but taken directly from D0. As a result of line 3 or line 5, the data
matrix D contains n rows and the values of all variables in V and U. In practice, it is not
necessary to simulate the descendants of UC on lines 3 or 5 because these variables will be
updated later.

Algorithm 1 An algorithm for simulating n observations from a u-monotonic SCMM =
(V,U,F, p(u)) on the condition that the value of a continuous variable C is c. The optional
argument D0 is an n-row data matrix containing the values of some variables V0 ⊂ V,
U0 ⊂ U that precede C in the topological order and have already been fixed.

1: function SimulateContinuousCondition(n,M, C = c, D0)
2: if D0 exists then
3: D← SimulateSCM(n,M, D0)
4: else
5: D← SimulateSCM(n,M, ∅)
6: for i = 1 to n do
7: D[i, UC ]← FindRoot(M, D[i, ], UC , C, c)
8: ω[i]← ωC(D[i, UC ])
9: D← Sample(D, n, ω)

10: D← SimulateSCM(n,M, D[,U])
11: return D

Starting from line 6, the values of the error term UC in the data matrix D are modified
so that the condition C = c is fulfilled. The procedure FindRoot on line 7 uses binary
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search to find the value ui of UC so that

fC(ui,D[i,Pa◦(C)]) = c, (2)

where fC ∈ F is the function that determines the value C in the u-monotonic SCM M.
Due to the monotonicity assumption, there is at most one value ui that solves Equation (2),
and if the solution exists it can be found by binary search. If a solution cannot be found,
D[i, UC ] is set as “not available”. The binary search is not needed for additive noise models,
where ui can be solved analytically. On line 8, the sampling weights are calculated with
function ωC defined in Lemma 1. If D[i, UC ] is not available, ω[i] will be set as 0.

On line 9, a re-sample is drawn with the weights ω = (ω[1], . . . ,ω[n]) (it is assumed here
that at least one of the weights is positive). The sampling is carried out with replacement
which leads to conditionally independent but non-unique observations. Uniqueness could
be achieved by adding low-variance noise to the background variables before line 10 but
this would lead to a small divergence from the required condition C = c. On line 10, the
observed variables ofM are updated because the change in UC affects its descendants.

3.2.2 Discrete Condition

Next, we consider the case of a single discrete conditioning variable and describe the opera-
tion of Algorithm 2. Lines 3 and 5 are similar to lines 3 and 5 of Algorithm 1, respectively.
On line 6, n observations are sampled with replacement from those observations that fulfill
the target condition C = c.

Algorithm 2 An algorithm for simulating n observations from causal model M =
(V,U,F, p(u)) on the condition that the value of discrete variable C is c. The optional
argument D0 is an n-row data matrix containing the values of some variables V0 ⊂ V,
U0 ⊂ U that precede C in the topological order and have been already fixed.

1: function SimulateDiscreteCondition(n,M, C = c, D0)
2: if D0 exists then
3: D← SimulateSCM(n,M, D0)
4: else
5: D← SimulateSCM(n,M, ∅)
6: D← Sample(D[C = c, ], n)
7: return D

3.2.3 Multiple Simultaneous Discrete and Continuous Conditions

When multiple conditions are present in the counterfactual, sequential calls of Algorithms 1
and 2 are needed. Algorithm 3 presents the required steps where the type of the condi-
tioning variable decides whether Algorithm SimulateContinuousCondition or Simu-
lateDiscreteCondition is called. On lines 3 or 5, the data are simulated according to
the condition that is the first in the topological order. Starting from line 6, the remaining
conditions are processed in the topological order. On line 7, the set S contains variables
that have already been processed. On lines 9 or 11, the data are simulated according to
each condition in the topological order taking into account that the variables in S have been
already fixed in D.
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Algorithm 3 An algorithm for simulating n observations from a u-monotonic SMCM =
(V,U,F, p(u)) with respect to all continuous variables in C1, . . . , CK under the conditions
C = (C1 = c1) ∧ · · · ∧ (CK = cK). The topological order of the variables in the conditions
is C1 < C2 < · · · < CK . The batch size n∗ = n is used in Algorithm 2.

1: function SimulateMultipleConditions(n,M, C)
2: if C1 is continuous then
3: D← SimulateContinuousCondition(n,M, C1 = c1)
4: else
5: D← SimulateDiscreteCondition(n,M, C1 = c1, n)
6: for k = 2 to K do
7: S← (C1 ∪An∗(C1)) ∪ · · · ∪ (Ck−1 ∪An∗(Ck−1))
8: if Ck is continuous then
9: D← SimulateContinuousCondition(n,M, Ck = ck, D[,S])

10: else
11: D← SimulateDiscreteCondition(n,M, Ck = ck, n, D[,S])
12: return D

3.3 Algorithms for Counterfactual Inference and Fairness

Next, we present high-level algorithms that use Algorithm 3 to simulate data from a multi-
variate conditional distribution. Algorithm 4 simulates observations from a counterfactual
distribution. The input consists of a u-monotonic SCM, conditions that define the situation
considered, an intervention to be applied, and the number of observations. The algorithm
has three steps that correspond to the three steps of the evaluation of counterfactuals in
Definition 2. On line 2, data are simulated using Algorithm 3. On line 3, an intervention
do(X = x) is applied. In practice, the functions of variables X in the SCM are replaced by
constant-valued functions. On line 4, counterfactual observations are simulated from the
intervened SCM with the background variables simulated on line 2.

Algorithm 4 An algorithm for simulating n observations from a counterfactual distribution
under the conditions C = (C1 = c1) ∧ · · · ∧ (CK = cK) in an SCM M = (V,U,F, p(u))
that is u-monotonic with respect to all continuous variables in the set {C1, . . . , CK}. The
topological order of the variables in the conditions is C1 < C2 < · · · < CK .

1: function SimulateCounterfactual(M, C, do(X = x), n)
2: D0 ← SimulateMultipleConditions(n,M, C)
3: Mx ← Intervene(M, do(X = x))
4: D← SimulateSCM(n,Mx, D0[,U])
5: return D

Algorithm 5 evaluates the fairness of a prediction model based on Definition 4. The
input consists of a prediction model, an SCM, a set of sensitive variables, a case to be
evaluated, and the size of the data to be simulated. The prediction model can be an opaque
AI model where the user is unaware of the functional details of the model and has only
access to the predictions.
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Algorithm 5 An algorithm for evaluating the fairness of a prediction model Ŷ (·) in a
u-monotonic SCMM with sensitive variables S and response variables Y. The case to be
considered is defined by conditions W and C where W = (W1 = w1) ∧ · · · ∧ (WM = wM )
denotes the conditions for Pa(Y) \ S (the non-sensitive observed parents of the responses
Y), and C = (C1 = c1) ∧ · · · ∧ (CK = cK) denotes the conditions for some other variables
(which may include S). The argument n defines the number of simulated counterfactual
observations.

1: function EvaluateFairness(Ŷ (·),M, S, W ∧ C, n)
2: for all s in dom(S) do
3: Ds ← SimulateCounterfactual(n,M, W ∧ C, do(S = s,W))
4: Ŷs ← Ŷ (Ds)
5: return CheckResponse({Ŷs})

Algorithm 5 loops over the possible values of the sensitive variables (line 2). If some
sensitive variables are continuous, the values to be considered must be specified by the user.
On line 3, data are simulated for the intervention do(S = s,W) that intervenes the sensitive
variables but keeps the parents (outside of S) of the responses fixed to their original values.
On line 4, the prediction model is applied to the simulated data. On line 5, the fairness
of the obtained predictions is evaluated, i.e., it is checked that all the predictions are the
same regardless of the intervention applied to the sensitive variables. Algorithm 5 is usually
called many times with different conditions C. Algorithms 1–5 are implemented in the R
package R6causal (Karvanen, 2024) which contains R6 (Chang, 2021) classes and methods
for SCMs.

Algorithms for alternative counterfactual definitions of fairness could be implemented
similarly. For instance, the definition given in Equation (1) emerges if the intervention
do(S = s,W) is replaced by the intervention do(S = s) in Algorithm 5.

3.4 Conditional Simulation as a Particle Filter

We show that Algorithm 3 can be interpreted as a particle filter. This interpretation allows
us to study the theoretical properties of the simulated sample. The notation used in this
section is conventional for particle filters and differs from the rest of the paper. More
specifically, we assume without loss of generality the topological order V1 < V2 < · · · < VJ

which implies Pa(Vj) ⊆ {V1, . . . , Vj−1}. We also assume that U j , j = 1, . . . , J is the
dedicated error term of Vj . We introduce a shortcut notation V1:j = {V1, . . . , Vj} and use
V i
j to denote the ith observation of Vj . We will first review a basic particle filter algorithm

and then show how it corresponds to Algorithm 3.

Particle filters are sequential Monte Carlo algorithms, which use sequentially defined
‘proposal distributions’ consisting of the initial distribution M0(dz0) on Z0 and transition
probabilities Mj(dzj | z1:j−1) to Zj , and non-negative ‘potential functions’ Gj(z0:j), where
j is the time index (cf. Del Moral, 2004). Algorithm 6 summarizes the basic particle
filter algorithm, which outputs (approximate and dependent) samples from the probability
distribution πJ(B) = γJ(B)/γJ(ZJ), where B ⊆ ZJ and the unnormalized ’smoothing
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Algorithm 6 ParticleFilter(M0:J , G1:J , n)

1: Draw Zi
0 ∼M0( · ) and set Zi

0 = Zi
0 for i = 1:n

2: for j = 1, . . . , J do
3: Draw Zi

j ∼Mj( · | Zi
j−1) for i = 1:n

4: Calculate weights W i
j =

W̃ i
j∑n

j=1 W̃
j
j

where W̃ i
j = Gj(Z

i
j−1, Z

i
j) for i = 1:n

5: Draw A1:n
j ∼ Categorical(W 1:n

j ) and set Zi
j = (Z

Ai
j

j−1, Z
i
j) for i = 1:n

6: output Z1:n
J

distribution’ γJ is defined as follows:

γJ(B) =

∫
M0(dz0)

J∏
j=1

Mj(dzj | z1:j−1)Gj(z0:j)I(z0:J ∈ B).

For the reader’s convenience, we state a mean square error convergence and central limit
theorem for particle filter estimates (Chopin & Papaspiliopoulos, 2020, Propositions 11.2
and 11.3).

Theorem 2. Assume that the potential functions are bounded: ∥Gj∥∞ = supzGj(z) <∞.
Then, there exist constants b, σh <∞ such that for any bounded test function h : Z0× · · ·×
ZJ → R the output of Algorithm 6 satisfies:

E
[
1

n

n∑
i=1

h(Zi
J)− πJ(h)

]2
≤ b
∥h∥2∞
n

, for all n ≥ 1,

1√
n

n∑
i=1

[
h(Zi

J)− πJ(h)
] n→∞−−−→ N(0, σ2

h), in distribution,

where πJ(h) stands for the expected value of h(X) where X follows distribution πJ .

Theorem 2 is stated for bounded test functions only. It is possible to prove similar results
for unbounded functions (e.g., Cappé et al., 2005; Rohrbach & Jack, 2022, and references
therein).

In order to cast Algorithm 3 as a particle filter, we need the following ingredients:

(a) Initial particle states contain the global background variables Z0 = Ũ,

(b) Initial distribution M0(dũ) = p(ũ)dũ on Z0 = dom(Ũ),

(c) The particle states for j ≥ 1 contain the observed variables and their dedicated error
terms Zj = (Vj , U j),

(d) If Vj ∈ C then the value of Vj is set to be vj ,

(e) Proposal distributions on Zj = R2:
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(i) If Vj is continuous and Vj /∈ C:

Mj(dvj ,duj | ũ,u1:j−1,v1:j−1) = p(uj)duj I(gVj (uj ; Pa
◦(vj)) ∈ dvj),

(ii) If Vj is continuous and Vj ∈ C:

Mj(dvj , duj | ũ,u1:j−1,v1:j−1) = I(g−1
Vj

(vj ; Pa
◦(vj)) ∈ duj)I(vj ∈ dvj),

(iii) If Vj is discrete:

Mj(dvj ,duj | ũ,u1:j−1,v1:j−1) = p(uj)duj ,

(f) Potentials:

(i) If Vj /∈ C: Gj ≡ 1,

(ii) If Vj ∈ C and Vj is continuous:

Gj(ũ,u1:j ,v1:j) =


ξVj (uj)

g′Vj
(uj ; Pa

◦(vj))
, if vj ∈ dom

(
gVj (uj ; Pa

◦(vj))
)
,

0, otherwise.

(iii) If Vj ∈ C and Vj is discrete:

Gj(ũ,u1:j ,v1:j) =

{
1, if I(vj ∈ dvj),

0, otherwise.

We conclude that Algorithm 3 is a particle filter algorithm and therefore Theorem 2 is
applicable:

Corollary 2. Let M = (V,U,F, p(u)) be a u-monotonic SCM and obtain a sample D by
calling D = SimulateMultipleConditions(n,M, C), where C is a set of conditions on
C ⊂ V. Further, let h : dom(V) → R be a bounded function and let πJ be the conditional
distribution of V given C. If the conditional density of Vj |Pa◦(Vj) = Pa◦(vj) is bounded for
all Vj ∈ C then the mean square error and central limit theorem as in Theorem 2 hold for
h(D) and πJ .

Proof. According to Theorem 2, the potential functions must be bounded. The potential
functions for Algorithm 1 are ξVj (uj)/g

′
Vj
(uj ; Pa

◦(vj)) which according to Lemma 1 give the

conditional density of Vj |Pa◦(Vj) = Pa◦(vj).

We conclude the section with some remarks about possible extensions and elaborations
of the algorithm. Algorithm 6 is similar to the seminal algorithm by Gordon et al. (1993),
which can be elaborated in a number of ways so that the algorithm remains (asymptotically)
valid. The resampling indices A1:n

j in step 5 need not be independent, as long as they form
an unbiased ‘sample’ from the categorical distribution (e.g., Douc & Cappé, 2005; Chopin,
Singh, Soto, & Vihola, 2022, and references therein). Furthermore, resampling can be
(sometimes) omitted, and replaced by cumulation of the weights, and this can be done
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in an adaptive fashion (Liu & Chen, 1995). As a special case of adaptive resampling, we
could omit the resampling on line 9 of Algorithm 1 entirely and return a weighted sample
instead. In Algorithm 3, the weights would be multiplied after processing each condition
and the resampling would be carried out only as the final step. However, this approach
may not work well with multiple conditions because, on line 9 of Algorithm 3, the current
data D[,S] would mostly contain observations with low weights. Resampling after each
condition makes sure that new data are simulated only for relevant cases.

The particle filter is known to be often efficient, if we are interested in the variables
ZJ only, or ZJ−ℓ for moderate lag ℓ. However, as we care also about Z0, large J often
causes the samples to contain only a few or one unique value for Z0. This is a well-known
problem, which is referred to as ‘sample degeneracy’ (Li, Sun, Sattar, & Corchado, 2014).
Algorithm 3 remains effective for an SCM with a high total number of variables, as long as
the number of conditioning variables J remains moderate.

4. Simulations

The critical part of Algorithm 4 is the quality of the sample returned by Algorithm 3. In this
section, the performance of Algorithm 3 is studied using randomly generated linear Gaussian
SCMs. Importantly, we can analytically derive the true distribution for comparison in this
particular scenario, see Online Appendix 2 for the details.

In the simulation experiment, we generate linear Gaussian SCMs with random graph
structure and random coefficients, apply Algorithm 3, and compare the simulated observa-
tions with the true conditional normal distribution. The parameters of the simulation and
the performance measures are explained in Online Appendix 3.

The key results are summarized in Table 1. The sample sizes in the simulation were
1000, 10000, 100000, and 1000000. For each setting, there were 1000 simulation rounds.
Case A with five observed variables and one condition is expected to be an easy task. Cases
B and C with ten observed variables represent moderate difficulty, and cases D and E with
fifty observed variables are expected to be challenging.

It can be seen that the percentage of unique observations decreases when the setting
becomes more challenging. The repeated observations originate from the resampling on
line 9 of Algorithm 1. In all cases, z, the mean of sample means was unbiased, and the
variation of sample means between simulation rounds decreased as the sample size increased.
The mean of sample standard deviations was close to the true value 1 in all cases except
in case E where the variation was too small in average. This was also reflected in the
Kolmogorov–Smirnov statistics that indicated major differences from the true distribution.
The correlation coefficients were unbiased or almost unbiased in all cases. The average
runtime per a simulation round in case E with n = 1000000 was 121 seconds. The simulation
code is available at https://github.com/JuhaKarvanen/simulating_counterfactuals.

5. Application to Fairness in Credit-Scoring

In this section, we show how Algorithm 5 can be used in the fairness analysis of a synthetic
scenario where the details of the prediction model are unknown and real data are not
available. We consider credit-scoring where the decision to grant a bank loan to a consumer
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Simulation cases and their parameters

Case |V| conditions mean neighbors mean |Ũ|/|V|
A 5 1 3 0
B 10 4 5 1
C 10 9 5 1
D 50 2 5 1
E 50 9 7 1

Simulation results
Case n uniq. % z z: min,max sz sz: min,max K-S diff. cor.
A 1000 49 0.00 (−0.32, 0.49) 1.00 (0.00, 1.13) 0.05 0.00
A 10000 49 −0.00 (−0.84, 0.09) 1.00 (0.74, 1.10) 0.02 0.00
A 100000 49 0.00 (−0.02, 0.04) 1.00 (0.97, 1.03) 0.00 −0.00
A 1000000 49 0.00 (−0.02, 0.01) 1.00 (0.99, 1.01) 0.00 −0.00
B 1000 17 −0.01 (−3.01, 2.13) 0.95 (0.00, 1.56) 0.17 0.00
B 10000 18 −0.00 (−1.24, 1.03) 0.99 (0.02, 1.48) 0.06 0.00
B 100000 17 −0.00 (−0.47, 0.25) 1.00 (0.60, 1.29) 0.02 0.00
B 1000000 16 −0.00 (−0.17, 0.09) 1.00 (0.93, 1.06) 0.01 −0.00
C 1000 18 −0.00 (−1.58, 1.11) 0.97 (0.07, 1.74) 0.16 —
C 10000 19 0.00 (−1.19, 0.86) 1.00 (0.55, 1.40) 0.06 —
C 100000 19 0.00 (−0.19, 0.15) 1.00 (0.90, 1.24) 0.02 —
C 1000000 20 0.00 (−0.04, 0.09) 1.00 (0.88, 1.04) 0.01 —
D 1000 14 −0.02 (−2.41, 2.14) 0.92 (0.00, 1.63) 0.19 −0.02
D 10000 13 0.00 (−1.01, 1.53) 0.98 (0.00, 1.67) 0.07 −0.00
D 100000 14 −0.00 (−0.99, 0.59) 1.00 (0.33, 1.27) 0.02 −0.00
D 1000000 13 −0.00 (−0.22, 0.07) 1.00 (0.89, 1.08) 0.01 0.00
E 1000 4 0.02 (−4.04, 4.05) 0.38 (0.00, 1.66) 0.60 −0.05
E 10000 4 −0.01 (−3.63, 2.96) 0.67 (0.00, 1.97) 0.41 −0.01
E 100000 4 0.01 (−2.98, 2.74) 0.84 (0.00, 2.21) 0.25 0.01
E 1000000 4 −0.02 (−1.76, 2.10) 0.95 (0.00, 1.70) 0.12 0.01

Table 1: The results of the simulation experiment. The first panel shows the SCM parame-
ters: the number of observed variables |V|, the number of conditions, the expected
number of neighbors for the observed variables, and the expected number of global
background variables per observed variable. The second panel reports the perfor-
mance measures for cases A–E with different sample sizes n. The measures are the
percentage of unique observations out of the total of n observations (column ‘uniq.
%’, ideally 100%), the mean of sample means of standardized variables (z, ideally
0) and its minimum and maximum, the mean of sample standard deviations (sz,
ideally 1) and its minimum and maximum, the average of Kolmogorov-Smirnov
statistics (K-S, ideally 0), and the average difference between the true and the
sample correlation coefficients (diff. cor., ideally 0).
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depends on personal data and the amount of the loan. The credit decision is made by an
automated prediction model that can be accessed via an application programming interface
(API) but is otherwise unknown to the fairness evaluator. The outcome of the prediction
model is the default risk. We consider three models:

A) The prediction model has no restrictions for the predictors.

B) The prediction model does not directly use sensitive variables.

C) The prediction model uses only non-sensitive variables that have a direct causal effect
on the outcome.

It is expected that the evaluation should indicate that only prediction model C is fair
according to Definition 5.

For the fairness evaluation, we constructed an SCM with the causal diagram shown
in Figure 1. We consider variables that are similar to those typically present in credit-
scoring datasets, such as Statlog (German Credit Data, Hofmann, 1994). Here, default is
the outcome variable that indicates whether the customer will repay the loan or not. The
annual income (in euros, continuous), the savings (in euros, continuous), the credit amount
(in euros, continuous), type of housing (categorical), level of education (ordinal), the type of
job (categorical), the length of employment (in months, discrete) and ethnicity (categorical)
have a direct effect on the probability of default. The marital status (categorical), the
number of children (discrete), age (in years, continuous), and gender (categorical) have only
an indirect effect on the risk of default. Ethnicity and gender are the sensitive variables.
The address does not have a causal effect on the risk of default but is included here as
a potential proxy of ethnicity. The causal diagram also has five unobserved confounders
U1, . . . , U5. The dedicated error terms are not displayed. The detailed structure of the
SCM is explained in Online Appendix 4 and the R code for the example is available in the
repository https://github.com/JuhaKarvanen/simulating_counterfactuals in the file
fairness example.R.

To set up the example, we simulated training data from an SCM corresponding to the
causal diagram of Figure 1 and fitted prediction models A, B, and C for the default risk
using XGBoost (Chen & Guestrin, 2016; Chen, He, Benesty, Khotilovich, Tang, Cho, Chen,
Mitchell, Cano, Zhou, Li, Xie, Lin, Geng, Li, & Yuan, 2023). These models are opaque AI
models for the fairness evaluator who can only see the probability of default predicted by
the models.

Algorithm 5 was applied to prediction models A, B, and C in 1000 cases that were again
simulated from the same SCM. In the algorithm, Ŷ (·) was one of the prediction models,
M was the SCM whose causal diagram is depicted in Figure 1, sensitive variables S were
gender and ethnicity, condition C contained all observed values of the case, and number of
observations was n = 1000. For each case and each model, the counterfactual probability
of default was estimated for all possible combinations of gender and ethnicity. For a fair
prediction model, these probabilities should be the same regardless of gender and ethnicity
as stated in Definition 4. Consequently, the difference between the largest and the smallest
probability was chosen as a measure of fairness. For instance, if the estimated counterfactual
probability of default was 0.09 for one combination of gender and ethnicity and 0.08 for all
other combinations, the counterfactual difference would be 0.09− 0.08 = 0.01.
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Figure 1: Causal model for the fairness of credit-scoring example. Ethnicity and gender
(red nodes) are the sensitive variables, and the risk of default (blue node) is the
outcome to be predicted. Gray nodes depict other observed variables and white
nodes are unobserved confounders.

The fairness results based on the 1000 cases are presented in Table 2. Only prediction
model C was evaluated to be fair. Even if the median counterfactual difference was close
to zero for models A and B, there were cases where the difference was very large. Con-
sequently, the use of models A and B in decision-making would potentially lead to illegal
discrimination.

It would have been interesting to compare the results of Algorithm 5 with other methods
of fairness evaluation but this was unattainable. Earlier works on counterfactual fairness
(Kusner et al., 2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al., 2019; Richens et al.,
2022) give some examples but do not provide a code that a user could directly apply to
a new problem. On the other hand, Fairlearn (Weerts, Dud́ık, Edgar, Jalali, Lutz, &
Madaio, 2023) is a general-purpose package for fairness evaluation but it does not currently
include counterfactual definitions or metrics.
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Model
Measure A B C

Zero difference (%) 18 27 100
Difference < 0.01 (%) 90 94 100
Median difference 0.00031 0.00032 0.00000
Maximum difference 0.57 0.25 0.00

Table 2: The fairness results for the credit-scoring models. The first row indicates the
percentage of cases where the counterfactual difference was exactly 0, i.e., the
fairness criterion held exactly. The second row shows the percentage of cases
where the difference was smaller than 0.01, i.e., the counterfactual probabilities
were not necessarily the same but close to each other. The third and fourth rows
report the median and maximum of the counterfactual difference, respectively.

6. Discussion

We presented an algorithm for simulating data from a specified counterfactual distribution
(Algorithm 4). The algorithm receives a known SCM and a counterfactual of interest
as inputs and simulates independent but non-unique observations from the counterfactual
distribution. The algorithm is intended to be a tool for simulation studies on counterfactual
inference and fairness evaluation. In Section 5, we demonstrate how the algorithm can be
used in fairness analysis when the prediction models are unknown and real data are not
available.

The proposed algorithm can be interpreted as a particle filter and it returns an approx-
imate sample that yields asymptotically valid inference. The algorithm possesses multiple
practical strengths. It is applicable to SCMs that may simultaneously have both contin-
uous and discrete variables and may also have unobserved confounders. The algorithm
solves the non-trivial problem of conditioning on continuous variables and operates rapidly
with SCMs of sizes typically found in the literature. A documented open-source software
implementation is available.

The counterfactual simulation algorithm has some requirements and limitations. The
knowledge of the full causal model is a strong assumption in practical applications. However,
counterfactual distributions cannot in general be simulated, for example, based on data
alone, unless the counterfactual distribution in question is identifiable from the available
data sources (Shpitser & Pearl, 2007; Tikka, 2023). Our approach could also be combined
with a sensitivity analysis where the counterfactual simulation is repeated for different
model parameters.

We presented the algorithm for SCMs which are u-monotonic with respect to contin-
uous conditioning variables. We do not consider this as a serious restriction because the
monotonicity requirement concerns only a subset of variables and offers flexibility for the
functional form of the dedicated error terms’ impact. Similar but more restrictive mono-
tonicity assumptions have been also used for causal normalizing flows (Javaloy et al., 2023).
In principle, the algorithms could be generalized to work with dedicated error terms that are
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piecewise monotonic. Then, the expression in Lemma 1 involves a sum of domain-restricted
terms, and the dedicated error terms are no longer uniquely determined, and need to be
simulated.

We note that our method can be generalized to multivariate observations (clustered vari-
ables, Tikka, Helske, & Karvanen, 2023) with multivariate dedicated error terms. Namely, if
the multivariate transformation is a differentiable bijection, we may modify Lemma 1 using
a multivariate transformation formula. However, in this case, the inverse transformation
and the Jacobian must be available for point-wise evaluations.

Sample degeneracy is a well-known problem of particle filters that also affects the coun-
terfactual simulation algorithm when the number of conditioning variables increases. The
literature on particle filters proposes ways to address the degeneracy problem. One possibil-
ity is to run independent particle filters and weigh their outputs, which leads to consistent
estimates (cf., Vihola, Helske, & Franks, 2018, Proposition 23). This is appealing because
of its direct parallelizability but leads to a weighted sample. Another, perhaps even more
promising approach, is to iterate the conditional particle filter (CPF, Andrieu, Doucet, &
Holenstein, 2010), which is a relatively easy modification of the particle filter algorithm,
and which defines a valid Markov chain targeting the desired conditional distribution.

When carefully configured, the CPF can work with other resampling algorithms (Chopin
& Singh, 2015; Karppinen, Singh, & Vihola, 2022). CPFs with adaptive resampling have
been suggested as well (Lee, 2011). We leave the practical efficiency of the CPF and its
variants for future research.

The significance of counterfactual simulation emerges from the context of fairness evalu-
ation. The fairness evaluation algorithm (Algorithm 5) uses simulated data, which extends
the scope of evaluation to encompass data that could be potentially encountered (Cheng,
Varshney, & Liu, 2021). We perceive the proposed fairness evaluation algorithm as comple-
mentary to methods that are based on real data. It is important to note that in addition
to Definition 4, the simulation algorithm can also be applied to other definitions of coun-
terfactual fairness. Other potential applications of the counterfactual simulation algorithm
include counterfactual explanations and algorithmic recourse (Karimi et al., 2021). Fur-
thermore, the conditional simulation (Algorithm 3) is applicable to Bayesian networks that
lack a causal interpretation.
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