
Journal of Artificial Intelligence Research 80 (2024) 475-516 Submitted 10/2023; published 06/2024

General Policies, Subgoal Structure, and Planning Width

Blai Bonet bonetblai@gmail.com
Universitat Pompeu Fabra, Spain

Hector Geffner hector.geffner@ml.rwth-aachen.de

RWTH Aachen University, Germany

Linköping University, Sweden

Abstract

It has been observed that many classical planning domains with atomic goals can
be solved by means of a simple polynomial exploration procedure, called IW, that runs
in time exponential in the problem width, which in these cases is bounded and small.
Yet, while the notion of width has become part of state-of-the-art planning algorithms
such as BFWS, there is no good explanation for why so many benchmark domains have
bounded width when atomic goals are considered. In this work, we address this question by
relating bounded width with the existence of general optimal policies that in each planning
instance are represented by tuples of atoms of bounded size. We also define the notions of
(explicit) serializations and serialized width that have a broader scope, as many domains
have a bounded serialized width but no bounded width. Such problems are solved non-
optimally in polynomial time by a variant of the Serialized IW algorithm. Finally, the
language of general policies and the semantics of serializations are combined to yield a
simple, meaningful, and expressive language for specifying serializations in compact form
in the form of sketches, which can be used for encoding domain control knowledge by hand
or for learning it from examples. Sketches express general problem decompositions in terms
of subgoals, and terminating sketches of bounded width express problem decompositions
that can be solved in polynomial time.

1. Introduction

Width-based search methods exploit the structure of states to enumerate the state space in
ways that are different than “blind” search methods such as breadth-first and depth-first
(Lipovetzky & Geffner, 2012). This is achieved by associating a non-negative integer to each
state generated in the search, a so-called novelty measure, which is defined by the size of the
smallest factor in the state that has not been seen in previously generated states. States are
deemed more novel and hence preferred in the exploration search when this novelty measure
is smaller. Other types of novelty measures have been used in reinforcement learning for
dealing with sparse rewards and in genetic algorithms for dealing with local minima (Tang
et al., 2017; Pathak et al., 2017; Ostrovski et al., 2017), but the results are mostly empirical.
In classical planning, where novelty measures are part of state-of-the-art search algorithms
(Lipovetzky & Geffner, 2017b, 2017a), there is a solid body of theory that relates a specific
type of novelty measures with a notion of problem width that bounds the complexity of
planning problems (Lipovetzky & Geffner, 2012).

The basic width-based planning algorithms are simple and assume a fixed number of
Boolean state features F that in classical planning are given by the atoms in the problem.
The procedure IW(1) is a breadth-first search that starts in the given initial state and prunes

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Bonet & Geffner

all the states that do not make a feature from F true for the first time in the search. IW(k)
is like IW(1) but using conjunctions of up to k features from F instead. Alternatively, IW(k)
can be regarded as a breadth-first search that prunes states s with novelty measures that
are greater than k, where the novelty measure of s is the size of the minimum conjunction
(set) of features that is true in s but false in all the states generated before s.

For many benchmark domains, it has been shown that IW(k) for a small value of k
suffices to compute plans, and indeed optimal plans, for any atomic goal (Lipovetzky &
Geffner, 2012). State-of-the-art planning algorithms like BFWS (Lipovetzky & Geffner,
2017b, 2017a) make use of this property for serializing conjunctive goals into atomic ones,
an idea that is also present in algorithms that pre-compute atomic landmarks (Hoffmann
et al., 2004) and use them as counting heuristics (Richter & Westphal, 2010).

An important open question in the area is why these width-based methods are effective,
and in particular, why so many domains have a small width when atomic goals are consid-
ered. Is this a property of the domains? Is it an accident of the domain encodings used? In
this work, we address these and related questions. For this, we bring the notion of general
policies; policies that solve multiple instances of a planning domain all at once (Srivastava
et al., 2008; Bonet & Geffner, 2015; Hu & De Giacomo, 2011; Belle & Levesque, 2016;
Segovia et al., 2016), while using the formulation of general policies expressed in terms of
finite sets of rules over a fixed set of Boolean and numerical features (Bonet & Geffner,
2018).

In this paper, a class of instances is shown to have bounded width when there is a general
optimal policy for the class which can be “followed” in each instance by just considering
atom tuples of bounded size, without assuming knowledge of the policies or the features
involved. The existing planning domains that have been shown to have bounded width can
be all characterized in this way. In addition, the notion of general policies is extended to
comprise serializations that split problems into subproblems. A serialization has bounded
width when the resulting subproblems have bounded width and can be solved greedily
for reaching the problem goal. A general policy turns out to be a serialization of width
zero; namely, one in which the subproblems can be solved in a single step. Finally, the
syntax of general policies is combined with the semantics of serializations to yield a simple,
meaningful, and expressive language for specifying serializations succinctly in the form of
sketches, which can be used to encode domain control knowledge by hand, or for learning
it from examples (Drexler et al., 2021, 2022).

The paper is organized as follows. We review first the notions of planning, width, and
general policies, and relate width with the size of the tuples of atoms that are needed to
apply such policies. We then introduce serializations, the more general notion of serialized
width, the relation between general policies and serialized width, and policy sketches. We
finally summarize the main contributions, discuss extensions and limitations, related work,
and conclusions.

2. Planning

A classical planning problem is a pair P = 〈D, I〉 where D is a first-order domain, such as
a STRIPS domain, and I contains information about the instance (Geffner & Bonet, 2013;
Ghallab et al., 2016; Haslum et al., 2019). The domain D has a set of predicate symbols

476

General Policies, Subgoal Structure, and Planning Width

p and a set of action schemas with preconditions and effects given by atoms p(x1, . . . , xk),
where p is a predicate symbol of arity k, and each xi is an argument of the schema. The
instance information is a tuple I = 〈O, Init, G〉 where O is a set of object names ci, and Init
and G are sets of ground atoms p(c1, . . . , ck) denoting the initial and goal situations.

A classical problem P = 〈D, I〉 encodes a state model S(P) = 〈S, s0, SG,Act, A, f〉 in
compact form where the states s ∈ S are sets of ground atoms from P (assumed to be the
true atoms in s), s0 is the initial state Init, SG is the set of goal states s such that G ⊆ s,
Act is the set of ground actions in P , A(s) is the set of ground actions whose preconditions
are (true) in s, and f(a, s), for a ∈ A(s), represents the state s′ that follows action a in
the state s. An action sequence σ = a0, a1, . . . , an is applicable in P if ai ∈ A(si) and
si+1 = f(ai, si), for i = 0, . . . , n. The states si in such a sequence are said to be reachable in
P , and states(P) denotes the set of reachable states in P . The applicable action sequence
σ = a0, a1, . . . , an is a plan if sn+1 ∈ SG. The cost of a plan is given by its length, and a
plan is optimal if there is no shorter plan. If there is a plan for P , the goal G of P is said to
be reachable, and P is said to be solvable. The cost of P , cost(P), is the cost of an optimal
plan for P , if such a plan exists, and infinite otherwise. A reachable state s is a dead-end if
the goal is not reachable in the problem P [s] that is like P but with s as the initial state.

We refer to subsets of ground atoms in a planning problem P as tuples of atoms, or
atom tuples. An atom tuple t is reachable in P if there is a reachable state s in P that
makes true all the atoms in t. The cost of a reachable state s is the minimum cost of an
applicable action sequence that reaches s, the cost of a reachable tuple t is the minimum
cost of a state that makes t true, and the cost of a state or tuple that is unreachable is
infinite.

3. Width

While the standard definition of width is based on the consideration of sequences of atom
tuples (Lipovetzky & Geffner, 2012), the formulation below is slightly more general and
more convenient for our purposes.

Definition 1 (Admissible tuple set). A set T of reachable atom tuples in a planning
problem P is admissible if

1. some tuple in T is true in the initial state of P , and

2. any optimal plan for a tuple t in T , that is not an optimal plan for P , can be extended
into an optimal plan for another tuple t′ in T by adding a single action.

The definition takes the goal of the problem into account as the second clause refers to
the optimal plans of P . Lipovetzky and Geffner (2012) say that a sequence (t0, t1, . . . , tn)
of atom tuples is admissible if t0 is true at the initial state, any optimal plan for ti can be
extended with one action into an optimal plan for ti+1, 0 ≤ i < n, and any optimal plan for
tn is an optimal plan for P . It is easy to show that in such a case, the set T = {t0, t1, . . . , tn}
is admissible according to the new definition of admissibility. There cases, however, where
all optimal plans for a fixed tuple t in T can be extended with a single action into plans
that are optimal for either t′ or t′′ but not for a unique tuple of the same size. In such
cases, the width of a problem can be smaller according to the new definition.

477

Bonet & Geffner

For a tuple t and a set of tuples T , |t| denotes the number of atoms in t, |T | denotes the
number of tuples in T , and size(T) denotes the maximum |t| for a tuple t in T . The width
of a problem P is the size of a minimum-size set of tuples T that is admissible:

Definition 2 (Width). The width of a STRIPS planning problem P is w(P)
.
= minT size(T)

where T ranges over the sets of tuples that are admissible in P . If P is solvable in zero
or one step, w(P) is set to 0, and if P is not solvable at all, w(P) is set to ∞.

The definition of width for classes of problems Q is then:

Definition 3 (Width of Q). The width w(Q) of a collection Q of STRIPS problems is the
minimum integer k such that w(P) ≤ k for each problem P in Q, or ∞ if no such k exists.

The reason for defining the width of P as 0 or ∞ according to whether P is solvable in
one step or not solvable at all, respectively, is convenience. Basically, problems are solvable
in time exponential in their width, and hence, w(P) = 0 implies that P can be solved in
constant time, if a constant branching factor is assumed. At the same time, a bounded width
for a class of problems implies that all the problems in the class are solvable, something
which is not ensured by setting w(P) to N + 1, where N is the number of problem atoms
(Lipovetzky & Geffner, 2012).

Example 1 (The Blocksworld domain).

• QBlocks is the class of all Blocksworld problems over the standard domain specification
with 4 operator schemas: stack/unstack and pick/putdown operators. This class of
problems has unbounded width as shown in Example 2.

• QClear is the subclass of QBlocks made of the problems P whose goal is the single atom
clear(x), for some block x, and where the gripper is initially empty.

Let P be a problem in QClear, let B1, . . . , B` be the blocks above x, from top to bottom
in the initial state of P , and let us consider the set of tuples T = {t0, t1, . . . , t2`−1}
where

– t0 = {clear(B1)}, and

– t2i−1 = {hold(Bi)} and t2i = {ontable(Bi)} for 1 ≤ i ≤ `.

It is easy to check that the two conditions in Definition 1 hold for T . Hence, w(P) ≤ 1,
and since w(P) > 0, as the goal cannot be reached in zero or one step in general,
w(P) = 1 and w(QClear) = 1.

• QOn is the subclass of QBlocks made of the problems whose goal is the single atom
on(x, y) for two blocks x and y.

Let us calculate the width of an arbitrary instance P in QOn with the assumption that
the blocks x and y are initially at different towers. Let B1, . . . , B` (resp. D1, . . . , Dm)
be the blocks above x (resp. y), in order from top to bottom, in the initial state. Let
us consider the set T = {t0, . . . , t2`, t′0, . . . , t′2m, t′′0, t′′1} of tuples where

– ti for 0 ≤ i ≤ 2` same as above,

478

General Policies, Subgoal Structure, and Planning Width

Algorithm 1: IW(T) Search

1: Input: Planning problem P with N ground atoms
2: Input: Set T of atom tuples from P

3: Initialize perfect hash table H for storing the tuples in T on which the operations of
insertion and look up take constant time

4: Initialize FIFO queue Q on which the enqueue and dequeue operations take constant time

5: Enqueue node for the initial state s0 of P
6: While Q is not empty:
7: Dequeue node n for state s
8: If s is a goal state, return the path to node n (Solution found)
9: If s makes true some tuple t from T that is not in H:

10: Insert all tuples from T made true by s in H
11: Enqueue a node n′ for each successor s′ of s

12: Return FAILURE (T is not admissible for P)

Figure 1: IW(T) is a breadth-first search that prunes nodes that do not satisfy a tuple in T
for the first time in the search. Algorithm IW(k) is IW(T) where T is the set of conjunctions
of up to k atoms in T . Conditions for the completeness and optimality of IW(T) are given
in Theorem 4.

– t′2i = {hold(Di), clear(x)} for 0 ≤ i ≤ m,

– t′2i−1 = {ontable(Di), clear(x)} for 0 ≤ i ≤ m,

– t′′0 = {hold(x), clear(y)}, and

– t′′1 = {on(x, y)}.

It is not difficult to check that T is admissible. Later, we will show that w(P) > 1 and
thus w(P) = 2. If the two blocks x and y are in the same tower in the initial state, a
different set of tuples must be considered but the width is still bounded by 2. Hence,
w(QOn) = 2.

3.1 Algorithms IW(T), IW(k), and IW

If T is an admissible set of tuples for P , there is a very simple algorithm IW(T) that solves
P optimally by expanding no more than |T | states. The algorithm, shown in Fig. 1, carries
out a forward, breadth-first search where every newly generated node that does not make
a tuple in T true for the first time in the search is pruned.

Theorem 4 (Completeness of IW(T)). If T is an admissible set of atom tuples in problem
P , IW(T) finds an optimal plan for P . Moreover, IW(T ′) finds an optimal plan for P for
any set T ′ that contains T .

Proof. The first claim is a special case of the second. Let us assume that T ′ contains
an admissible set T , and that T is minimal; i.e., an admissible set T that ceases to be
admissible if some tuple is removed. Then, by Definition 1, the cost of any plan for P
cannot be strictly less that the (optimal) cost of any tuple in the minimal admissible set T .

479

Bonet & Geffner

We show with induction the following invariant: at the beginning of each iteration of
IW(T ′), the queue Q contains at least one node that represents either an optimal plan for
some tuple in T , not yet in the hash table H, or an optimal plan for P . Such a node in Q
is called a witness.

For the base case, at the beginning of the first iteration, H is empty and Q only contains
a node for the initial state s0 that makes true some tuple in T .

Let us assume that the invariant holds up to iteration k; i.e., Q contains a witness n∗.
Let n be the node dequeued at such iteration for state s. We will show that either IW(T ′)
terminates with an optimal plan for P , or the invariant holds for the next iteration. We
consider three cases, in order:

1. The state s is a goal state. Since the nodes are ordered by their costs, the cost of a plan
for P is at most the cost of a tuple in T . By above observation, n must represents an
optimal plan for P , and IW(T ′) terminates with an optimal plan for P .

2. All tuples in T ′ made true by s are already in H. Then, the node n is pruned, H is left
intact, and Q is updated by only removing the node n. However, Q still contains n∗ that
continues to be a witness for the next iteration.

3. The node n makes true some tuple in T ′ \H. We consider two subcases:

a) The node n is a witness. By Definition 1, a node n′ for a successor s′ of s that
represents an optimal plan for a tuple t′ in T is inserted into Q. Such a tuple cannot
be in H as all the tuples in H have costs strictly less that cost(t′). Therefore, n′

becomes a witness for the next iteration.

b) The node n is not a witness. The queue Q is updated by adding nodes for all the
successors of s, and the hash table H is updated by adding the tuples in {t ∈ T ′ :
s � t}. We claim that the update on H cannot invalidate any witness in Q; e.g., n∗.
Indeed, if t∗ is a tuple in T \ H reached optimally by n∗, and s � t∗, then n also
reaches t∗. On the other hand, cost(n) ≤ cost(n∗) as n is dequeued before n∗. Hence,
n reaches t∗ optimally, and n is also a witness. As this contradicts the assumption,
the update on H cannot invalidate any witness.

The invariant is thus satisfied across all iterations. Therefore, IW(T ′) cannot return FAIL-
URE, and must end with an optimal plan for P .

To obtain simple expressions that bound the time and space used by IW(T), and other
algorithms, we make the following assumptions on the time/space required by the basic
operations on states and tuples. For some domains, these bounds can be attained by suitable
modifications of the algorithms, like clever choice of data structures, and preprocessing that
can be amortized. For other domains, the time/space complexities given in this paper may
need to be adjusted for deviations from these assumptions.

Assumption (Simple time and space analyses). For any planning problem P and reachable
state s in P , the generation of the set Succ(s) of its successor states takes time propor-
tional to |Succ(s)|, and checking whether s is a goal state or makes true a given atom tuple
t takes constant time. Likewise, each such state can be stored in a constant amount

480

General Policies, Subgoal Structure, and Planning Width

of memory. These complexities are independent of the numbers of ground atoms and
actions in P , and the size of the tuple t.

Under this assumption, the time and space requirements of IW(T) can be expressed as:

Theorem 5 (Complexity of IW(T)). Let P be a planning problem with branching factor
bounded by b, and let T be a set of atom tuples. Then,

1. IW(T) expands and generates at most |T | and b|T | nodes, respectively, thus running in
O(bT 2) time and O(bT) space (where the T inside the O-notation refers to |T |).

2. If P has N ground atoms, the number of atoms that “flip” value across a transition in
P is known and bounded by a constant (as in STRIPS domains), and size(T) ≤ k,
then a running time of O(bTNk−1) can be obtained.

Proof. Recall that a node is generated if it is inserted into the queue (cf. lines 5 and 11),
and it is expanded if its successor nodes are generated (cf. line 11). A node is expanded
if it makes true some tuple in T for the first time in the search (cf. line 9). Thus, IW(T)
expands and generates up to |T | and b|T | nodes, respectively.

The construction of the hash table in line 3 requires time and space linear in the number
|T | of keys to be stored.

The test in line 8 requires checking whether some tuple t in T that belongs to the state
s is not in the hash table. This can be done in O(T) time by iterating over each tuple
in T and checking whether it belongs to s and the hash table. Hence, assuming constant
time and space for the generation of successor states and the check of tuple satisfiability by
states, IW(T) runs in O(bT 2) time and O(bT) space.

For obtaining the bound described in 2. an implementation that keeps track of the set of
atoms ∆ that change value when a successor state s′ of s is generated is needed. Then, a
tuple t true in s′ is novel iff it contains some atom in ∆ as the tuples true in s′ that do not
contain such atoms are also true in s. If all the tuples in T are of size at most k, and the
size of ∆ is bound by a constant (omitted in the O-notation), the number of tuples that
need to be checked in line 8 is at most O(Nk−1).

The algorithm IW(k) (Lipovetzky & Geffner, 2012) is a special case of IW(T) where T
is the set T k of all conjunctions of up to k atoms.1 Versions of IW(T) have been used before
for planning in a class of video-games (Geffner & Geffner, 2015), where IW(1) explored too
few nodes and IW(2) too many. The set T was then defined to comprise a selected class of
atoms pairs. The properties of IW(k) are:

Theorem 6 (Lipovetzky and Geffner, 2012). Let P be a planning problem with N atoms,
branching factor bounded by b, and where the number of atoms that “flip” value across a

1. There is a minor difference between the algorithm IW(k) of Lipovetzky and Geffner (2012) and the
version that results from IW(T) when T is set to T k. In the first case, non-novel nodes are pruned once
they are generated and thus not enqueued during the search. In the second case, a node is pruned when
it is selected for expansion if it is not novel and it is not a goal. This difference does not affect the
formal properties of the algorithm (optimality and time/memory complexity) except in a “border case”,
ensuring that IW(0) is complete and optimal for problems of width zero, solvable in one step, according
to the new definition.

481

Bonet & Geffner

Algorithm 2: IW Search

1: Input: Planning problem P with N ground atoms

2: For k = 0, 1, . . . , N do:
3: Run IW(k) on P
4: If IW(k) finds a plan for P , return the plan

5: Return “no plan exists for P” (P has no solution)

Figure 2: IW performs multiple IW(k) searches for increasing values of k = 0, 1, . . . , N ,
whereN is the number of ground atoms inN . The completeness of IW is given in Theorem 7.

transition is known and bounded. For each non-negative integer k, IW(k) expands up to Nk

nodes, generates up to bNk nodes, and runs in O(bN2k−1) time and O(bNk) space. IW(k)
is guaranteed to solve P optimally (shortest path) if w(P) ≤ k.

Proof. Direct from Theorems 4 and 5.

Finally, the algorithm IW, shown in Fig. 2, runs IW(k) for increasing values k =
0, 1, . . . , N stopping when a plan is found, or when no plan is found after k = N , where N
is the number of atoms in P .

Theorem 7 (Completeness of IW). If w(P) ≤ k, IW finds a plan for P , not necessarily
optimal, in time and space bounded by O(bN2k−1) and O(bNk) respectively.

Proof. If w(P) ≤ k, IW(k) finds an optimal plan for P , but a sub-optimal plan may be found
by IW(i) for i < k. In either case, by Theorem 6, IW(i) runs in time and space O(bN2i−1)
and O(bN i), respectively, for i = 1, . . . , k, which are dominated by the expressions with
i = k.

It is not always necessary to execute all the iterations in the loop in IW. Indeed, if
the call to IW(k), for k = i, ends up pruning only duplicate states, the search is already
complete and further calls of IW(k) for k = i+1, i+2, . . . , N , will expand and prune exactly
the same sets of nodes expanded and pruned by IW(i).

The procedure IW solves problems P of width bounded by k in polynomial time but
not necessarily optimally. IW(k) solves such problems optimally:

Theorem 8. Let Q be a collection of problems of bounded width. Then, any problem P
in Q is solved in polynomial time by the IW algorithm. If w(Q) ≤ k, IW(k) optimally solves
any instance in Q in polynomial time.

Proof. Let w(Q) = k. For any planning problem P in Q, IW runs IW(i) until i = k when
IW(k) is guaranteed to find a plan for P . Each run of IW(i) takes polynomial time as k is
fixed for any problem P in Q. If the bound k is known, IW(k) can be run instead, solving
each problem P in Q optimally.

Example 2 (IW(k) for Blocksworld instances).

• If w(QBlocks) ≤ k, every problem P in QBlocks would be optimally solvable in polyno-
mial time by IW(k), Theorem 8. Since computing optimal plans for arbitrary instances

482

General Policies, Subgoal Structure, and Planning Width

of Blocksworld is NP-hard (Chenoweth, 1991; Gupta & Nau, 1992), the width ofQBlocks

must be unbounded, unless P = NP.

• Any transition in a Blocksworld instance flips at most 5 atoms. Hence, since
w(QClear) = 1 (resp. w(QOn) = 2), IW(1) (resp. IW(2)) is guaranteed to find an
optimal plan for any problem P in QClear (resp. QOn) with N ground atoms in O(N)
time and space (resp. O(N3) time and O(N2) space).

From now on, we assume that the actions in the instances for a class Q flip at most
a constant number of atoms, which is actually the case when the instances come from a
STRIPS domain.

4. General Policies

General policies over a class Q of problems P are defined semantically first, then syn-
tactically. Semantically, a policy π is regarded as a relation on state pairs (s, s′) that are
state transitions. A state transition is a pair of states (s, s′) such that there is an action a
that is applicable in s and which maps s into s′. The reason for policies to be defined as
relations on state pairs and not on state-action pairs (e.g., as in RL and MDPs) is that the
set of actions changes across the instance in Q. Policies π expressed as relations on state
transitions (s, s′) specify the possible actions to do in s indirectly and non-deterministically
(Bonet & Geffner, 2018): if (s, s′) is a state transition in the relation π, any action a that
maps s into s′ is allowed by π and can thus be applied at the state s.

Definition 9 (Policies). A policy π for a class of problems Q is a binary relation on
∪P∈Qstates(P); i.e., on the reachable states of the problems in Q, such that a state pair
(s, s′) is in π only if (s, s′) is a state transition in P . Furthermore,

1. A state transition (s, s′) in P is a π-transition if (s, s′) ∈ π, and s is not a goal state
in P .

2. A π-trajectory in P is a sequence s0, s1, . . . , sn of states in P such that (si, si+1) is a
π-transition, 0 ≤ i < n, and s0 is the initial state of P . The state s is π-reachable if
there is a π-trajectory that ends at s.

3. A π-trajectory s0, s1, . . . , sn in P is maximal if there are no π-transitions (sn, s) in P ,
or sn = si for some 0 ≤ i < n. In the latter case, the trajectory is called cyclic.

4. The policy π solves P if every maximal π-trajectory s0, s1, . . . , sn ends in a goal state
(i.e., sn is a goal state).

5. The policy π solves P optimally if every maximal π-trajectory reaches a goal state in
n steps, where n is the cost of P .

6. The policy π solves Q if π solves each problem P in Q, and it is optimal for Q if it
solves each problem in Q optimally.

Sufficient and necessary conditions for a general policy π to solve a class of problems Q
can be expressed with suitable notions that apply to each of the instances in Q:

483

Bonet & Geffner

Definition 10 (Policy concepts). Let Q be a class of problems, and let π be a policy for Q.
Then,

1. π is closed in Q if there is a π-transition (s, s′) from every π-reachable state s in P ∈ Q
that is not a goal state.

2. π is acyclic in Q if there is no cyclic π-trajectory starting in an initial state for P ∈ Q.

Theorem 11 (Requirements for solvability). A policy π solves a class of problems Q iff π
is closed and acyclic in Q.

Proof. Direct. If π is closed and acyclic, π solves every problem in Q. Conversely, if π is
either not closed or acyclic, there is at least one problem P in Q that π does not solve.

Example 3 (General (semantic) policy for QClear).

• Let π be the general policy for QClear defined as the set of transitions (s, s′) such that:

a) for a block y above x, s � clear(y) ∧ hand-empty and s′ � hold(y), or

b) s � hold(y) and s′ � ontable(y).

To show that π solves all the instances in QClear one needs to show that π is closed and
acyclic. For closedness, it is easy to see that in every reachable state s in an instance P
in Q that is not a goal state, there are successors s′ for which condition (a) or (b) holds.
Finally, π is acyclic because in any transition of a π-trajectory, one of the blocks that
is initially above x is unstacked or placed on the table, and no block is ever stacked
above x, so every π-trajectory must be finite.

4.1 Rule-based Policies

General policies are relations over the state transitions, and following Bonet and Geffner
(2018), these relations can be defined in a compact way with rules of the form C 7→ E, that
maps a condition C to an effect E, over a fixed set Φ of Boolean and numerical features
over Q.

Definition 12 (Features). A Boolean (resp. numerical) feature for a problem P is a function
that maps reachable states into Boolean values (resp. non-negative integers). A feature for
a class Q of problems is a feature that is defined on each problem P in Q. The value of
feature φ at state s is denoted by φ(s).

When providing time bounds, we will be interested in linear features defined as follows:

Definition 13 (Linear features). A feature φ for problem P with N ground atoms is linear
if for any reachable state s in P , the value φ(s) can be computed in O(N) time (i.e., linear
time), and if φ is numerical, the size of {φ(s) : s ∈ states(P)} is O(N). A set Φ of features
is a set of linear features for P if each φ in Φ is linear for P , and it is a set of linear
features for a class Q, if Φ is a set of linear features for each problem P in Q.

The form of the rules that make use of the features is as follows:

484

General Policies, Subgoal Structure, and Planning Width

Definition 14 (Rules). Let Φ be a set of features. A Φ-rule is a rule of the form C 7→ E
where the condition C is a set (conjunction) of Boolean feature conditions and the effect
E is a set (conjunction) of feature value changes. A Boolean feature condition is of the
form p, ¬p, n = 0, and n > 0 for Boolean and numerical features p and n in Φ. Feature
value changes are of the form p, ¬p, p? for Boolean p, and n↓, n↑, and n? for numerical n.

A collection of rules defines a binary relation over the states in the problems in Q. While
we consider rule-based policies first that define policies, we will also use rules to define
another type of binary relation, serializations. While policies select state transitions (s, s′)
from states s, serializations select state pairs (s, s′) where s′ is not necessarily reachable from
s through a single action:

Definition 15. A state pair (s, s′) satisfies the condition C of a Φ-rule C 7→ E if the
feature conditions in C are all true in s. The transition (s, s′) satisfies the effect E if the
values for the features in Φ change from s to s′ according to E; i.e.,

1. if p (resp. ¬p) is in E, then p(s′) = 1 (resp. p(s′) = 0),

2. if n↓ (resp. n↑) is in E, then n(s) > n(s′) (resp. n(s) < n(s′)),

3. if p? (resp. n?) is in E, then any change in value is allowed, and

4. if p (resp. n) is not mentioned in E, then p(s) = p(s′) (resp. n(s) = n(s′)).

The state pair (s, s′) is compatible with a rule C 7→ E if s satisfies C, and the pair satisfies
E. The pair is then also said to satisfy the rule itself. The state pair is compatible with a
set R of rules if it is compatible with at least one rule in the set. The pair (s, s′) is then
said to be an R-pair, or to be in R.

A set of rules R defines a policy in the following way:

Definition 16 (Rule-based policies). Let Q be a collection of problems and let Φ be a set
of features for Q. A set of rules R over Φ defines the policy πR for Q in which a state pair
(s, s′) over an instance P ∈ Q is in πR iff (s, s′) is a state transition in P that satisfies a
rule in R. The set of rules R solves Q iff the policy πR solves Q.

Example 4 (General policy for QClear).

• A general policy for QClear can be expressed using rules over the set Φ = {H,n} of two
features, where H is the Boolean feature that is true when the gripper holds a block,
and n is the numerical feature that counts the number of blocks above x. The policy
has the two rules:

{¬H,n> 0} 7→ {H,n↓} ,
{H} 7→ {¬H} .

The first rule says that when the gripper is empty and there are blocks above x, an
action that decreases n and makes H true must be chosen, while the second rule says
that when the gripper holds a block, an action that makes H false and does not affect

485

Bonet & Geffner

n must be selected. This policy is slightly more general than the one in the previous
example as a block being held can be put “away” in any position except above x.

• As we saw before, w(QClear) = 1 and this policy solves any instance QClear.

Example 5 (The Grid domain).

• The Grid domain involves an agent that moves in a rectangular grid of arbitrary but
finite size, and its goal is to reach a specific cell in the grid. Any instance in Grid is
encoded with objects for the cells in the grid, and a unary predicate pos(c) that is true
when the position of the agent is cell c. The class of Grid problems is denoted by QGrid.

The Grid2 domain is like Grid except that positions are encoded with horizontal and
vertical coordinates. For a m × n grid, there are m (resp. n) objects to encode the
vertical (resp. horizontal) coordinates, and two unary predicates hpos(h) and vpos(v)
to encode that the agent is at column h and row v in the grid. The class of Grid2

problems is denoted by QGrid2.

• Observe that each reachable state in a problem P in QGrid (resp. QGrid2) makes
true exactly 1 (resp. 2) atoms. Since all problems are solvable, w(QGrid) ≤ 1 and
w(QGrid2) ≤ 2. On the other hand, problems in QGrid cannot be solved in one step,
in general, and thus w(QGrid) = 1. We show below that w(QGrid2) > 1 which implies
w(QGrid2) = 2.

• For either encoding, an optimal general policy can be expressed with a single rule over
the singleton Φ = {d} of features where d measures the distance to the goal cell:

{d> 0} 7→ {d↓} .

Clearly, any transition (s, s′) compatible with the rule moves the agent one step closer
to the goal, and the policy solves optimally any problem in QGrid or QGrid2. The feature
d is linear in QGrid but quadratic in QGrid2.

Example 6 (The Delivery domain).

• The Delivery domain D involves an agent that moves in a rectangular grid, and packages
spread over the grid that can be picked up or dropped by the agent, which can hold
one package at a time. A state for the domain thus specifies the position of the agent
(i.e., a cell on the grid), and positions for the different packages, where the position of
a package can be either a cell in the grid, or the agent’s gripper. The task of the agent
is to “deliver” all packages, one at a time, to a designated “target” cell.

The position of the agent can be encoded using a single unary predicate as for the Grid
domain, or two unary predicates as for the Grid2 domain. For simplicity, we assume
an encoding of positions using a single predicate.

An instance for Delivery consists of objects for the different cells in the grid, and objects
for the different packages. The atoms are as follows: pos(c) (resp. ppos(p, c)) that is
true when the agent (resp. the package p) is in cell c, holding(p) that is true when the
agent is holding package p, and empty that is true when the agent holds no package.

486

General Policies, Subgoal Structure, and Planning Width

Under this encoding, the goal can be expressed as the conjunction
∧

i ppos(pi, target)
where pi is the ith package, target is the target cell, and the conjunction is over all the
packages.

• The class of all Delivery problems in denoted by QD, while QD1 denotes the class of
Delivery problems with exactly one package. In Example 9, we show that the width of
QD is unbounded, and w(QD) > 1. On the other hand, if s is a state in a problem
P in QD1, s either makes true exactly two atoms of form pos(c) and holding(p), for
the unique package p, or makes true exactly three atoms of form pos(c), ppos(p, c),
and empty. However, the atom empty is determined by the atoms ppos(p, c) and
holding(p): holding(p) ⇒ ¬empty, and ppos(p, c) ⇒ empty for any cell c. This fact
allows the construction of an admissible set T of size 2 for any problem P in QD1. Thus,
w(QD1) = 2.

• A set of meaningful features for Delivery is Φ = {H, p, t, u} that capture whether the
agent is holding a package, the distance to a nearest undelivered package (zero if the
agent is holding a package, or no package to be delivered remains), the distance to the
target cell, and the number of undelivered packages, respectively. The following set R
of rules define a policy πR:

{¬H, p> 0} 7→ {p↓, t?} ,
{¬H, p= 0} 7→ {H} ,
{H, t> 0} 7→ {t↓} ,
{H, t= 0, u> 0} 7→ {¬H,u↓, p?} .

The first rule says that when holding no package and undelivered packages remain in
the grid, the agent must move closer to a nearest undelivered package. The second that
when the agent holds no package and is at the same cell of an undelivered package, the
agent must pick the package. The third that when holding a package and the agent is
not at the target cell, it must move closer to the target cell. The last rule says that
when the agent holds a package and is at the target cell, it must drop the package at
the cell (i.e., deliver it).

It is not difficult to see that the policy R solves any problem P in both QD and QD1.

5. Envelopes

We address next the relation between general policies and problem width by introducing
the notion of envelopes. An envelope for a binary relation µ over the states in a problem P
is a set of reachable states E that obeys certain closure properties. Recall that we are in
the unit-cost setting where optimal trajectories refer to trajectories of minimum-length.

Definition 17 (Envelopes). Let P be a problem, and let µ be a binary relation on states(P).
A subset E ⊆ states(P) is an envelope of µ for P , or simply a µ-envelope iff

1. the initial state s0 of P belongs to E, and

487

Bonet & Geffner

2. if s is a non-goal state in E, there is a state s′ in E such that (s, s′) is a µ-transition;
i.e., a state transition in P that is also in µ.

The envelope is backward-closed, abbreviated as closed, iff for each state s′ in E that
is not the initial state, there is a state s in E such that (s, s′) is a µ-transition. E is an
optimal envelope iff each maximal µ-trajectory contained in E that starts at a non-goal
state s in E is a suffix of an optimal trajectory for P .

Notice that if π is a policy that solves P , the set of states reached by π in the way of
the goal form a µ-envelope for µ = π, and similarly, the set of states in any non-empty set
of π-trajectories also form a µ-envelope. These envelopes are actually closed, and indeed,
for any state s in these envelopes there is a µ-trajectory that reaches the goal and passes
through s. If the policy π is optimal for P , the envelopes based on the relation µ = π are
optimal too.

Envelopes can be defined in ways that do not involve policies however. In particular,
cost-envelopes are defined in terms of a binary relation µ =≺cost that appeals to cost
considerations. For this, optimal state costs and the binary ≺cost relation are defined as
follows:

Definition 18 (Optimal state costs and cost relation). The cost of a state s in P , cost(s),
is the cost (length) of a min-cost plan for reaching s from the initial state s0, and ∞ if there
is no such plan. The optimal cost of a state s in P , cost∗(s), is cost(s) if s is a non-goal
state, and the cost of P (i.e., the cost of an optimal plan for P) if s is a goal state. The
cost relation ≺cost is the set of state pairs (s, s′) from P such that cost∗(s) < cost∗(s′) <∞.
If (s, s′) is in ≺cost, we write s ≺cost s

′.

The reason that the optimal cost of goal states is defined as the cost of the problem
P is to have a correspondence between goal reaching trajectories that are optimal and
≺cost-trajectories:

Lemma 19 (≺cost-trajectories). Let P be a planning problem with initial state s0, and let
τ = s0, s1, . . . , sn be a goal-reaching state trajectory in P . Then, τ is a ≺cost-trajectory
iff τ is an optimal trajectory for P .

Proof. (⇒) Let us assume that τ is a ≺cost-trajectory. We use induction on i to show that
the prefix τi

.
= s0, s1, . . . , si is an optimal trajectory for si, 0 ≤ i ≤ n. The claim is true for

i = 0. Let us assume that it holds for i = k, and let us consider the trajectory τk+1 leading
to state sk+1. By assumption, cost∗(sk) < cost∗(sk+1). On the other hand, the existence
of the trajectory implies cost(sk+1) ≤ 1 + cost(sk). Therefore, cost(sk+1) = 1 + cost(sk)
and the trajectory τk+1 is optimal for sk+1. Finally, τ must be an optimal trajectory for
P since otherwise cost∗(sn) < cost(sn) = 1 + cost(sn−1) = 1 + cost∗(sn−1) which implies
cost∗(sn) ≤ cost∗(sn−1), and thus sn−1 6≺cost sn.

(⇐) Let us assume that τ is an optimal trajectory for P . By the principle of optimality, the
trajectory τi must be optimal for si, 0 ≤ i < n. Therefore, cost(s0) = 0 and cost(si+1) =
1 + cost(si), 0 ≤ i < n. Observe that sn must be a closest goal state to s0 and thus
cost∗(sn) = cost(sn). Hence, τ is a ≺cost-trajectory.

488

General Policies, Subgoal Structure, and Planning Width

A property of cost-envelopes, i.e., ≺cost-envelopes, is that they are optimal, and that
optimal µ-envelopes are cost-envelopes independently of the relation µ:

Theorem 20 (Optimality of cost-envelopes). Let P be a planning problem, and let E be a
subset of reachable states in P . If E is an optimal envelope for some binary relation µ on
states(P), then it is a cost-envelope. Likewise, if E is a cost-envelope, then it is an optimal
envelope.

Proof. (⇒) Let us assume that E is an optimal envelope for some relation µ. We need to
show that E satisfies the two conditions in Definition 17 for the relation ≺cost. The first
condition is direct since the initial state s0 of P belongs to E as E is a µ-envelope. For the
second condition, let s be a non-goal state in E. By the optimality of E, there is an optimal
trajectory for P of form τ = s0, s1, . . . , s`, . . . , sn such that s` = s and {s`, s`+1, . . . , sn} ⊆ E.
Since τ is optimal, cost∗(si) = i for i = 0, 1, . . . , n, and thus the transition (s, s`+1) is a
≺cost-transition with s`+1 ∈ E.

(⇐) Let us assume that E is a cost-envelope, and let τ1 = s`, s`+1, . . . , sn be a maximal
≺cost-trajectory contained in E that starts at state s`. In particular,

cost∗(s`) < cost∗(s`+1) < · · · < cost∗(sn) < ∞ .

Since s` is a reachable state in P , there is an optimal trajectory τ2 = s0, s1, . . . , s` from s0

to the state s` which satisfies, by its optimality,

cost∗(s0) < cost∗(s1) < · · · < cost∗(s`) .

Therefore, the combined trajectory τ = τ2, τ1 is a goal-reaching ≺cost-trajectory. By
Lemma 19, τ is an optimal trajectory for P that contains τ1 as a suffix. Since τ1 is ar-
bitrary, the envelope E is optimal.

We will see that a relation between the width of a problem and optimal policies can be
established by considering cost-envelopes defined by tuples of atoms.

5.1 Cost Envelopes and Problem Width

For a set T of reachable atom tuples over P , the set OPT (T) is the set of min-cost
states that reach the tuples in T :

Definition 21 (Optimal states for T). Let P be a problem, let t be a reachable atom tuple
in P , and let T be a set of such tuples. OPT (t) is the set of optimal states for t in P ,
i.e., the set of min-cost states where t is true, and OPT (T)

.
= ∪{OPT (t) : tuple t is in T}.

It turns out that OPT (T) is a cost-envelope iff T is admissible:

Theorem 22 (Admissibility and cost-envelopes). Let P be a planning problem, and let
T be a set of reachable atom tuples in P . Then, T is admissible for P iff OPT (T) is a
cost-envelope.

Proof. (⇒) Let us assume that T is admissible for P , and let s0 be the initial state of P .
We need to show that OPT (T) is a cost-envelope:

489

Bonet & Geffner

1. Since T is admissible, there is tuple t in T with s0 � t. Hence, s0 belongs to OPT (T).

2. Let s be a non-goal state in OPT (T); i.e., there is tuple t in T with s � t, and there
is an optimal trajectory τ for t that ends in s. Using that T is admissible, it is easy to
show that τ can be extended into an optimal trajectory τ, s1, . . . , sn for P , where the
trajectories τ, s1, . . . , si are optimal for tuples ti in T ; i.e., the states s1, s2, . . . , sn all
belong to OPT (T). On the other hand, by Lemma 19, τ, s1, . . . , sn is a ≺cost-trajectory.
Hence, (s, s1) is a ≺cost-transition.

(⇐) Let us assume that OPT (T) is a cost-envelope. We need to show that T is admissible;
namely, that the two conditions in Definition 1 hold for T .

1. Since OPT (T) is an envelope, it contains the initial state s0 of P . Hence, there is a tuple
t ∈ T such that s0 � t.

2. Let τ be an optimal trajectory for a tuple t ∈ T that ends in a non-goal state s. We need
to show that τ can be extended with a single step into an optimal trajectory for a tuple
t′ ∈ T . Since OPT (T) is a cost-envelope and s ∈ OPT (T), there is a ≺cost-trajectory
s, s′, τ ′ entirely contained in OPT (T) that starts at s, transitions to s′, and ends in
a goal state. Hence, there is a tuple t′ ∈ T such that s′ ∈ OPT (t′), and the joined
trajectory τ, s′, τ ′ is a goal-reaching ≺cost-trajectory that starts at s0. By Lemma 19,
the trajectory τ, s′ is optimal for s′, and thus for the tuple t′ in T .

Therefore, optimal plans for P can be found by running the IW(T) algorithm, provided
that there is a subset of tuples T ′ ⊆ T such that OPT (T ′) is a cost-envelope:

Theorem 23. The algorithm IW(T) finds an optimal plan for P if OPT (T ′) is a cost-
envelope for some T ′ ⊆ T . Likewise, IW(k) finds an optimal plan for P if OPT (T) is a
cost-envelope for some set T of conjunctions of up to k atoms in P .

Proof. If OPT (T ′) is a cost-envelope, T ′ is admissible by Theorem 22, and IW(T) finds an
optimal plan by Theorem 4. The second claim follows from the first and Theorem 6.

The width of a problem P can thus be related to the min size of a tuple set T for which
OPT (T) is a cost-envelope for P :

Theorem 24. Let P be a planning problem, and let T be a set of atom tuples in P . If
OPT (T) is a cost-envelope, w(P) ≤ size(T).

Proof. By Theorem 22, T is admissible, and hence, by Definition 2, w(P) ≤ size(T).

5.2 Optimal Policies and Problem Width

A sufficient condition for OPT (T) to be a cost-envelope is for OPT (T) to be a π-envelope
of an optimal policy π for a class Q of problems that includes the problem P :

Theorem 25 (Envelopes for optimal policies). Let P be a planning problem, let π be an
optimal policy for a class Q that includes P , and let E be a subset of reachable states in
P . Then, E is a cost-envelope in P if E is a closed π-envelope in P .

490

General Policies, Subgoal Structure, and Planning Width

Proof. By Theorem 20, it is sufficient to show that E is an optimal envelope. However, this
is direct since for any maximal π-trajectory τ1 that is contained in E and that starts at
some state s, by closedness, there is a π-trajectory τ2 from the initial state of P to the state
s. Hence, the trajectory τ = τ2, τ1 is a goal-reaching π-trajectory from the initial state that
must be optimal as π is an optimal policy.

A closed π-envelope is an envelope formed by the states in a (non-empty) set of π-
trajectories, starting in the initial state of the problem and ending at a goal state. The
theorem implies that if OPT (T) is a closed π-envelope, then OPT (T) is a cost-envelope,
and then from Theorem 24, that the width of P is bounded by the size of T :

Theorem 26 (Optimal policies and width). Let Q be a class of planning problems, and let
π be an optimal policy for Q. Then,

1. If P is a planning problem in Q, and T is a set of atom tuples in P such that OPT (T)
is a closed π-envelope, then w(P) ≤ size(T).

2. If k is a non-negative integer such that for any problem P in Q, there is a set T of atom
tuples in P such that size(T) ≤ k and OPT (T) is a closed π-envelope, then w(Q) ≤ k.

Proof. The first claim follows by Theorems 24 and 25 as the former establishes that w(P) ≤
size(T) if OPT (T) is a cost envelope, and the latter that OPT (T) is a cost envelope if it
a π-envelope of an optimal policy π. The second claim follows from the first since for any
problem P in Q, w(P) ≤ k by the first claim and the assumed T .

This theorem is important as it sheds light on the notion of width and why many
standard domains have bounded width when atomic goals are considered. Indeed, in such
cases, the classes of instances Q admit optimal policies π that in each instance P in Q can
be “followed” by considering a set of tuples T over P . If OPT (T) is a closed-envelope of
π, it is possible to reach the goal of P optimally through a π-trajectory without knowing
π at all: one can then pay attention to the set of tuples in T only and just run the IW(T)
algorithm. Indeed:

Theorem 27. Under the assumptions of Theorem 26, IW(T) reaches the goal of P opti-
mally, through a π-trajectory; i.e., there is a goal-reaching π-trajectory τ = s0, s1, . . . , sn
seeded at the initial state s0 of P such that all the states si are expanded by IW(T), except
the goal state sn that is selected for expansion but is not expanded.

Proof. As shown in the proof of Theorem 26, OPT (T) is a cost-envelope given the assump-
tions and T is an admissible set for P . Therefore, by Theorem 4, IW(T) finds an optimal
path τ = s0, s1, . . . , sn for P ; that is, IW(T) expands nodes ni that represent the prefixes
τi = s0, s1, . . . , si for 0 ≤ i < n, and selects for expansion the node that represents the path
τ . Since sn is a goal state, IW(T) returns the path τ .

When the conditions in Theorem 26 hold, the IW(T) algorithm reaches the goal of
the problem P ∈ Q, optimally through a π-trajectory, even if the policy π or the features
involved in the policy are not known. We say in this case, that the set of tuples T represents
the policy π in the problem P , as the IW(T) search delivers then a π-trajectory to the goal,
and it is thus “following” the policy. Notice however that even in this case, it is not necessary

491

Bonet & Geffner

for the set of tuples T to capture all the possible π-trajectories to the goal. It suffices for
T to capture one such trajectory. The goal of P then can be reached optimally through
IW(T) by expanding no more than |T | nodes (cf. Theorem 5).

It is also not necessary for the set of tuples T to be known for solving the problem P
optimally. If the conditions in Theorem 26 hold for some set T of tuples of size k, i.e.,
k = size(T), the algorithm IW(k) will deliver an optimal π-trajectory to the goal as well.
On the other hand, if there is an upper bound k on the size of the tuples, but its value is
not known, the algorithm IW would solve the problem in time and space exponential in
k but not necessarily through an optimal π-trajectory, because non-optimal solutions can
potentially be found by IW(k′) for k′ < k (cf. Theorem 7).

5.3 Lower Bound on Width

Finally, the following result provides a lower bound on width:

Theorem 28 (Necessary conditions for bounded width). Let P be a planning problem, let
k be a non-negative integer, and let T be the set of all atom tuples in P of size at most k. If
for every optimal trajectory τ for P , τ has a state that is not in OPT (T), then w(P) > k.

Proof. We show the contrapositive of the claim. Namely, if w(P) ≤ k, then there is an
optimal trajectory τ for P that is entirely contained in OPT (T). Thus, let P be a problem
such that w(P) ≤ k, and let T ′ be an admissible set for P with size(T ′) ≤ k. We construct
an optimal trajectory τ = s0, s1, . . . , sn inductively, using the admissible set T ′. Indeed, T ′

contains a tuple t0 that is made true by the initial state s0, and thus s0 ∈ OPT (T ′). For
the inductive step, assume that we have already constructed the prefix τi = s0, s1, . . . , si
such that τi ⊆ OPT (T ′) and τi is an optimal trajectory for si. In particular, there is a
tuple ti in T ′ such that si ∈ OPT (ti). By admissibility, τi can be extended with one step
into an optimal trajectory for a tuple t′ in T ′; i.e., there is a state si+1 and tuple ti+1 such
that si+1 in OPT (ti+1) and τi+1

.
= τi, si+1 is an optimal trajectory for ti+1. By definition of

admissible sets, this process can be continued until τi becomes an optimal trajectory for P .
At such moment, by construction, τi ⊆ OPT (T ′). To finish the proof, observe that T ′ ⊆ T
since size(T ′) ≤ k.

Example 7 (Width for the class QOn).

• Let P be a problem in QOn where in the initial state the blocks x and y are not clear
and in different towers.

• Let T be the set of all atoms in P (i.e., all atom tuples of size 1). Any optimal trajectory
for P contains a state s in which both x and y are clear, just before moving x on top
of y. This state s is not in OPT (T); e.g., it does not belong to OPT (clear(x)) because
any optimal trajectory for clear(x) does not move any block above y. By Theorem 28,
w(P) > 1 and thus w(QOn) > 1. As we saw before, w(QOn) ≤ 2. Hence, w(QOn) = 2.

Example 8 (Width for Grid problems, classes QGrid and QGrid2).

• The states in problems for QGrid (resp. QGrid2) make true exactly one (resp. two)
atom(s); i.e., the subset of atoms that identify the position of the agent.

492

General Policies, Subgoal Structure, and Planning Width

• Let π be an optimal policy for QGrid (resp. QGrid2), let P be a problem in QGrid, and
let τ be a goal-reaching π-trajectory seeded at the initial state of P . Let us consider
the set of atom tuples T

.
= {atoms(s) : s ∈ τ} where atoms(s) refers to the subset

of atoms made true at the state s. It is easy to show that T is a closed π-envelope,
and size(T) = 1 (resp. size(T) = 2). Therefore, by Theorem 26, w(QGrid) ≤ 1 and
w(QGrid2) ≤ 2.

• Likewise, w(QGrid) = 1 as there are problems that require more than one step.

• Let P be a problem in QGrid2 in which the initial and target cells are not in the same
row or the same column. Any optimal trajectory for P contains some state s where
the agent is at a row and column different than those at the initial state. Such a state
does not belong to OPT (T), where T is the set of all atoms in P . By Theorem 28,
w(QGrid2) > 1. Therefore, w(QGrid2) = 2.

Example 9 (Width for Delivery problems, classes QD1 and QD).

• Problems in QD1 involve the agent and a single package. We showed before that
w(QD1) = 2.

• The class QD has unbounded width, however. The intuition is that any admissible
set of atom tuples must “track” the position of an arbitrary number of packages, those
that have been already delivered. We make this intuition formal in the following.

• Let P be a problem in QD with k + 2 packages, let π be an optimal policy for P , and
let T be the set of all atom tuples in P of size at most k. Without loss of generality,
we assume that the packages p1, p2, . . . , pk+2 must be delivered in such an order to
guarantee optimality.

• Let s be the state along an optimal trajectory τ for P in which the packages
p1, p2, . . . , pk+1 have been delivered, and the agent is at the target cell (just after de-
livering pk+1). We now show that s does not belong to OPT (T). Indeed, the tuples
in T can only track the position of at most k objects in the set {p1, p2, . . . , pk+1} of
k + 1 objects. Hence, no matter which tuple t in T is considered, the state s does not
belong to OPT (t) as no state in OPT (t) has k + 1 distinct packages at the target cell.
Therefore, by Theorem 28, w(P) > k.

• Since QD contains problems with an arbitrary number of packages, w(QD) =∞.

5.4 Algorithm IWΦ

The results above shed light on the power of the algorithms IW(T) and IW(k) for problems
that belong to classes Q for which there is a general optimal policy π. Indeed, if the set
of optimal T -states, OPT (T), forms a closed π-envelope, the algorithm IW(T) is complete
and optimal for P , and moreover, reaches the goal of P through π-trajectories, even if π is
not known.

There is, however, a variant of IW(T) that does not use tuples of atoms or other par-
ticular details about the encoding for P , and uses instead a set Φ of features. The new

493

Bonet & Geffner

Algorithm 3: IWΦ Search

1: Input: Planning problem P with N atoms
2: Input: Set Φ of features, and function f to compute its valuation on states in P

3: Initialize hash table H for storing feature valuations
4: Initialize FIFO queue Q on which enqueue and dequeue operations take constant time

5: Enqueue node n0 for the initial state s0 of P
6: While Q is not empty:
7: Dequeue node n for state s
8: If s is a goal state, return the path to node n (Solution found)
9: If f(s) is not in H:

10: Insert the feature valuation f(s) in H
11: Enqueue a node n′ for each successor s′ of s

12: Return FAILURE (No suitable cost-envelope, cf. Theorem 29)

Figure 3: An IWΦ search is like an IW(T) search but instead of tracking the tuples in
T , it tracks feature valuations, and prune nodes whose valuation have been already seen.
Guarantees for completeness and optimality are given in Theorem 29.

algorithm, called IWΦ and shown in Fig. 3, is like IW(T) but works with feature valuations
over Φ rather than with atom tuples. That is, IWΦ does a breadth-first search that prunes
the states s whose feature valuation f(s) has been seen before during the search.

The question is the following. Assuming that π is an optimal rule-based policy that
solves a class Q that includes P , and that Φ is the set of features used by the policy: does
IWΦ solve P optimally?

It turns out that without extra conditions, the answer to this question is no. One
reason is that a policy π may solve a problem by using a number of feature valuations that
is smaller (possibly, exponentially smaller) than the number of states required to reach the
goal. In these cases, the IWΦ search cannot get to the goal because any plan must involve
sequences where the same feature valuation repeats. For example, a policy for the Gripper
domain where a number of balls have to be carried from Room A to Room B, one by one,
can be defined in terms of a set Φ of three Boolean features encoding whether the robot is
in Room A, whether there are balls still left in Room A, and whether a ball is being held
by the robot. The number of possible feature valuations is 8 but the length of the plans
grows linearly with the number of balls.

We have the tools at our disposal however to provide conditions that ensure that the
algorithm IWΦ solves any problem P ∈ Q optimally if the policy π does. For a set of feature
valuations F over the features in Φ, let OPT (F) stand for the set of min-cost states s in
P with feature valuation f(s) in F . Sufficient conditions that ensure the completeness and
optimality of IWΦ can be expressed then as follows:

Theorem 29 (Completeness and optimality of IWΦ). Let Φ be a set of features for a
planning problem P , and let F be a set of feature valuations over Φ. Then,

1. If OPT (F) is a cost-envelope, IWΦ finds an optimal plan for P .

2. If π is an optimal policy for a class Q, and OPT (F) is a closed π-envelope for P in Q,
IWΦ finds an optimal plan for P .

494

General Policies, Subgoal Structure, and Planning Width

In either case, if the features in Φ are linear (cf. Definition 13), IWΦ finds a plan of length
O(N `) using O(bN `) time, where ` is the number of numerical features in Φ, N is the
number of atoms in P , and b bounds the branching factor in P .

Proof. Essentially, the proof involves a similar but more complex invariant that the one
used in the proof for the completeness of IW(T) (cf. Theorem 4). We provide full details
in what follows. The invariant that must be shown is: at the start of each iteration, the
queue contains a node n such that n[state] is in OPT (F) and n[cost] = cost∗(n[state]),
where n[state] denotes the state associated with the node n, n[cost] denotes the cost of n,
and cost∗(s) is the state function in Definition 18. We do an induction on the number of
iterations:

1. The claim is true for the first iteration as Q only contains the node n0 for the initial
state s0 which is in OPT (F), and n0[cost] and cost∗(s0) are both equal to zero.

2. Suppose that the claim holds at the start of iteration k. That is, Q contains a node n
such that n[state] is in OPT (F), and n[cost] = cost∗(n[state]). We consider 4 cases:

a) The node n is not dequeued. It then remains in Q and the invariant holds for the
next iteration.

b) The node n is dequeued and n[state] is a goal state. Then, IWΦ terminates with a
goal-reaching path.

c) The node n is dequeued, n[state] is not a goal state, and the node is not pruned
(cf. line 9 in IWΦ). Since n[state] belongs to OPT (F), a node n′ is enqueued for a
successor s′ of n[state] such that s′ is in OPT (F). On the other hand, since OPT (F) is
a cost-envelope, there is a goal-reaching ≺cost-trajectory s0, . . . , n[state], s′, . . . which
is an optimal trajectory for P by Lemma 19. Therefore,

n′[cost] = 1 + n[cost] = 1 + cost∗(n[state]) = cost∗(s′) = cost∗(n′[state])

where the third equality is by the principle of optimality. Hence, the invariant holds
for the next iteration.

d) The node n is dequeued, n[state] is not a goal state, and the node is pruned. Another
node n′ with f(n′[state]) = f(n[state]) was previously dequeued and expanded. Then,

cost∗(n′[state]) ≤ n′[cost] ≤ n[cost] = cost∗(n[state]) ≤ cost∗(n′[state])

where the second inequality is due to the nodes being ordered by costs in the queue,
and the last inequality since f(n[state]) = f(n′[state]) and n[state] ∈ OPT (F). There-
fore, equality holds throughout, cost∗(n′[state]) = cost∗(n[state]), and thus n′[state]
is in OPT (F). As in the previous case, at the iteration where the node n′ is de-
queued, a node n′′ for a successor state of n′[state] with n′′[state] in OPT (F) and
n′′[cost] = cost∗(n′′[state]) is generated and enqueued. Thus, the invariant holds for
the next iteration because n′′ is still in the queue since n[cost] = n′[cost] < n′′[cost].

As the queue Q is non-empty at the start of each iteration, and the number of feature
valuations is finite, the loop must terminate when a node for a goal state is dequeued (cf.
line 8). We now show that the path found by IWΦ is optimal. Let n∗ be the last node
dequeued by IWΦ; i.e., n∗[state] is a goal state. There are two complementary cases:

495

Bonet & Geffner

• n∗[state] is in OPT (F) and n∗[cost] = cost∗(n∗[state]). Then, the path leading to n∗ is
an optimal trajectory for P by Lemma 19.

• The negation of the first case. By the claim, at the time when n∗ is dequeued, the queue
contains another node n such that n[state] ∈ OPT (F) and n[cost] = cost∗(n[state]). On
one hand, n[cost] ≤ C∗ where C∗ is the cost of P . On the other hand, n∗[cost] ≤ n[cost]
since n∗ is dequeued before n. Combining both inequalities, n∗[cost] ≤ C∗ which means
that the path found by IWΦ of cost n∗[cost] is an optimal trajectory for P .

The second claim in the statement of the theorem is implied by the first since OPT (F) is a
cost-envelope by Theorem 25. Finally, for the complexity bounds, notice that the number
of nodes expanded by IWΦ is bounded by the number of different feature valuations, which
is O(N `) if the features in Φ are linear and the number of numerical features in Φ is `.
Thus, the plan length is O(N `) while the number of generated nodes is O(bN `), if b bounds
the branching factor. On the other hand, the operations on the hash table can be done in
constant time on a perfect hash. Hence, IWΦ runs in O(bN `) time and space.

Notice that IWΦ provides complexity bounds for the solvability of classes of problems,
independently of the underlying structure of states. That is, IWΦ does not know
about atoms at all, only about feature valuations. Two encodings that are different syntac-
tically but equivalent semantically will yield the same behaviour in IWΦ, like two encodings
of Blocksworld, one using clear as a primitive predicate and one using it as a derived
predicate.

The set Φ of features in Theorem 29 does not need to be the set of features on which the
policy π is defined. If this is so, however, and if F is the set of feature valuations reached
by π, and Reachable(π, P) is the set of states reachable by using π in P , IWΦ is optimal
provided that the policy π is optimal and OPT (F) = Reachable(π, P):

Theorem 30. Let π be a rule-based policy defined over the features in Φ which is opti-
mal for P , and let F be the set of feature valuations reached by π in P . If OPT (F) =
Reachable(π, P), then OPT (F) is a closed π-envelope, and thus IWΦ finds an optimal plan
for P .

Proof. By Theorem 29, it is enough to show that OPT (F) is a closed π-envelope. Clearly,
the initial state s0 belongs to OPT (F). If s is a state in OPT (F), then 1) there is a π-
trajectory for s (as s is π-reachable), 2) there is a π-transition (s, s′) (as π solves P), and
3) s′ belongs to OPT (F) (as s′ is reached by π). Closedness is direct by (1).

If different states have different feature valuations, IWΦ reduces to a breadth-first search,
as only nodes for duplicate states are pruned. The interesting uses of the theorem however
are on settings where the number of possible feature valuations is exponentially smaller
than the number of states, as illustrated in the next two examples.

Example 10 (IWΦ search on QClear).

• Let us consider the policy π for QClear previously defined in Example 4 over the set
of features Φ = {H,n}. Fix a problem P in QClear, and let F be the set of feature

496

General Policies, Subgoal Structure, and Planning Width

valuations reached by π on P . The policy π is optimal and OPT (F) = Reachable(π, P).
By Theorem 30, IWΦ finds an optimal plan for problem P . Notice that if P has
N blocks, there are 2N different feature valuations, but an exponential number of
configurations for the N blocks.

Example 11 (The Marbles domain).

• The Marbles domain M involves boxes and marbles. Boxes can be on the table and
marbles inside boxes. Problems are specified with atoms ontable(b) to tell that box b
is on the table, and in(r, b) to tell that marble r is in box b. The goal is to remove all
boxes from the table, where a box can be removed only if it is empty. Marbles thus
must be removed from boxes one at a time, in no specific order. The collection of all
problems over the Marbles domain is denoted by QM , while QM1 ⊆ QM denotes the
class of such problems with exactly one box.

• Marbles is not a STRIPS domain as the goal must be specified with negative literals;
i.e., as

∧
b ¬ontable(b), where the conjunction is over all boxes b in the problem.

• Yet there is a simple optimal policy π for QM defined over the set Φ = {n,m} of
numerical features where n counts the number of boxes still on the table, and m counts
the number of marbles in the “first box” among those still on the table, where a static
ordering of the boxes is assumed. A general optimal policy π over Φ can be expressed
as follows:

{m> 0} 7→ {m↓} ,
{m= 0, n> 0} 7→ {n↓,m?} .

The first rule says to remove a marble from the first box on the table when such a box
is not empty, while the second rule says to take an action that decreases the number
of boxes on the table. The policy π solves any problem in QM or QM1 optimally, as
any optimal plan must execute a number of actions that is equal to the total number
of marbles in all boxes plus the number of boxes.

• The policy π is optimal for QM and OPT (F) = Reachable(π, P). By Theorem 30,
IWΦ finds an optimal plan for P in O(N3) time, where N is the number of atoms in
P , since the features in Φ are linear, and the branching factor in P is bounded by N .
The total number of states, however, is exponential in N .

6. Serializations

The problem of subgoal structure is critical in classical planning, hierarchical planning, and
reinforcement learning although in most cases the problem has not been addressed formally.
We draw on the language for general policies to express decompositions into subproblems,
and on the notion of width for expressing and evaluating such decompositions and the
subgoal structures that result. We start with the notion of serializations which are defined
semantically as binary relations on states that are acyclic.

497

Bonet & Geffner

Definition 31 (Serializations). A serialization over a collection of problems Q is a binary
relation ‘≺’ over the states in ∪P∈Qstates(P) that is acyclic in Q, meaning that there is
no set {s0, s1, . . . , sn} of reachable states in P , where s0 is the initial state, such that
si+1 ≺ si for i = 0, . . . , n− 1, and sj ≺ sn for some 0 ≤ j ≤ n.

For binary relations ‘≺’ that express serializations, the notation s′ ≺ s expresses in infix
form that the state pair (s, s′) is in ‘≺’. There is no assumption that the state pair (s, s′)
is a state transition; namely, that s′ is one step from s, and the meaning of s′ ≺ s is that
s′ is a possible subgoal state from state s. There is also no assumption that s′ ≺ s implies
that the state s′ must be reachable from s, nor that ≺ must be non-empty. Acyclicity, on
the other hand, avoids looping behavior on subproblems.

A serialization ‘≺’ over Q splits a problem P in Q into subproblems. For a reachable
state s in P , the subproblem P≺[s] is like P but with two changes: the initial state is s,
and the goal states are the states s′ such that s′ is a goal state of P , or s′ ≺ s.

Definition 32 (Subproblems). Let ≺ be a serialization over a class Q, and let P be a
problem in Q. The class of subproblems induced by ≺ on P , denoted by P≺, is the smallest
class that satisfies:

1. P≺[s0] is in P≺ for the initial state s0 of P , and

2. P≺[s′] is in P≺ if P≺[s] in P≺, s′ ≺ s, and s′ is not a goal state. If cost(P≺[s]) = 1,
however, s′ must also be a successor state of s.

In case 2 above, the subproblem P≺[s] is said to induce the subproblem P≺[s′]. For this
to hold, s′ must be a possible subgoal from s and not be a top goal state of P (else the
subproblem P≺[s′] would not need a plan at all). It is not required for s′ to be a closest
subgoal state to s except when the subproblem P≺[s] can be solved in one step.

Intuitively, a serialization is “good” if it results in subproblems that have small, bounded
width that can be solved greedily on the way to the goal.

Definition 33 (Serialized width). Let ‘≺’ be a serialization over a class of problems Q,
and let P ∈ Q. Then,

1. The (serialized) width of P , denoted as w≺(P), is the minimum non-negative integer
k that bounds the width w(P≺[s]) of all the subproblems P≺[s] in P≺.

2. The (serialized) width of Q, denoted as w≺(Q), is the minimum non-negative integer
k that bounds the serialized width w≺(P) of the problems P in Q.

Starting from a problem P in Q, a serialization may lead to state s if the subproblem
P≺[s] belongs to the subclass P≺ of subproblems induced by≺. Hence, if for a dead-end state
s, the subproblem P≺[s] belongs to P≺, by definition, w(P≺[s]) = ∞ and thus w(Q) = ∞
as well.

Interestingly, serializations of zero width are policies, and vice versa, policies are serial-
izations of zero width.

Theorem 34 (Zero-width serializations and policies). Let Q be a class of problems, and let
≺ be a binary relation on ∪P∈Qstates(P). Then, ≺ is a serialization of zero width for Q iff
≺ is a policy that solves Q.

498

General Policies, Subgoal Structure, and Planning Width

Proof. In this proof, we write s ≺ s′ to denote that the pair (s, s′) is in the relation ≺,
either when ≺ denotes a serialization or a policy.

(⇒) Assume that ≺ is a serialization of zero width for Q. Clearly, ≺ is a policy as it is a
binary relation on ∪P∈Qstates(P). It remains to show that for any problem P in Q, every
maximal ≺-trajectory seeded at the initial state s0 of P is goal reaching.

Let τ = s0, s1, . . . , sn, . . . be one such trajectory; i.e., si+1 ≺ si for i ≥ 0. Since states(P)
is a finite set and ≺ is acyclic in P , τ must be of finite length. Let us assume that it ends at
sn. If sn is not a goal state, the subproblem P≺[sn] belongs to P≺ by Definition 32. Then,
w(P≺[sn]) = 0 since ≺ is of zero width. This means that there is a successor state s′ of
sn such that s′ ≺ sn. Hence, τ is not a maximal trajectory contradicting the assumption.
Therefore, sn must be a goal state.

(⇐) Assume that ≺ is a policy that solves Q. We first show that ≺ is acyclic in Q, and
then that its width is zero.

Let P be a problem in Q, and let s0, s1, . . . , sn be a set of reachable states in P such that
s0 ≺ s1 ≺ · · · ≺ sn. We need to show that there is no index 0 ≤ j ≤ n such that sn ≺ sj . Let
us suppose that there is such an index j. Then, the trajectory τ = s0, s1, . . . , sj , . . . , sn, sj
would be a maximal ≺-trajectory in P . As τ is not goal reaching, ≺ does not solve Q as
assumed. Therefore, sn ≺ sj does not hold.

If P≺[s] is a subproblem in the class P≺, the state s is reachable through a ≺-trajectory from
the initial state s0 of P ; i.e., there is a ≺-trajectory s0, s1, . . . , sn with sn = s. Indeed, if
P≺[s] is in P≺, there is a state sequence s0, s1, . . . , sn such that sn = s, and the subproblem
P≺[si] induces P≺[si+1] for 0 ≤ i < n. However, ≺ is only defined on state transitions as it
is a policy. Therefore, such a state sequence is a state trajectory.

Let us compute the width of a subproblem P≺[s] in P≺. By the claim, there is a ≺-
trajectory s0, s1, . . . , sn such that sn = s, and by definition of subproblem, sn is not a goal
state. Then, since ≺ is a policy that solves Q, there is a state transition (s, s′) such that
s ≺ s′. Hence, w(P≺[s]) = 0, which implies w≺(P) = 0 and w≺(Q) = 0.

Example 12 (Zero-width serializations for different classes).

• The rule-based policies given for the classes QClear, QGrid, QM , and QD represent
serializations of zero width, as determined by Theorem 34.

An important property of serializations of bounded width is that they permit the de-
composition of a problem into subproblems which can be solved greedily in polynomial time
without the need to backtrack. This property is exploited by the algorithm SIW≺ shown
in Fig. 4.

Theorem 35 (Completeness of SIW≺). Let ‘≺’ be a serialization for a class Q of problems.
If w≺(Q) ≤ k, then any problem P in Q can be solved by SIW≺. Moreover, the IW search in
line 5 of SIW≺ takes O(bN2k−1) time and O(bNk) space, where N is the number of atoms,
and b bounds the branching factor in P .

Proof. Let s0 be the initial state of a problem P in Q, and let τ = s0, s1, . . . , sn be a state
sequence in P where all states, except perhaps sn, are non-goal states. We say that τ is

499

Bonet & Geffner

Algorithm 4: SIW≺ Search

1: Input: Testable serialization ‘≺’ for class Q
2: Input: Planning problem P in class Q
3: Initialize state s to initial state s0 for P
4: While s is not a goal state of P :
5: Do an IW search from s to find s′ that is either a goal state or s′ ≺ s

(i.e., the goal test in line 9 of IW(k) is augmented with s′ ≺ s where
s′ is the state for the dequeued node n in line 7)

6: If s′ is found, set s← s′. Else, return FAILURE (Serialized width of P is ∞)

7: Return the path from s0 to the goal state s (Solution found)

Figure 4: SIW≺ solves a problem P by using the serialization to decompose P into subprob-
lems, each one that is solved with an IW search. Testable serialization means that there is
an algorithm for testing s′ ≺ s for any pair of states. The completeness of SIW≺ is given
in Theorem 35.

a ≺-sequence iff for each index 0 ≤ i < n, the state si+1 is reachable from the state si and
si+1 ≺ si, but if the state si+1 is not a successor of si, then si has no successor s′ such that
s′ ≺ si. Observe that if τ is a ≺-sequence, then a simple inductive argument shows that
the subproblem P≺[si] induces the subproblem P≺[si+1], 0 ≤ i < n. If sn is a goal state,
the sequence is called a ≺-solution.

If τ = s0, s1, . . . , sn is a ≺-sequence for P , there is a ≺-solution τ ′ for P that extends τ .
Indeed, if sn is a goal state, τ is already a ≺-solution. Otherwise, the subproblem P≺[sn]
belongs to P≺. Since w≺(P) ≤ k, there is a state sn+1 reachable from sn that is either a
goal state, or sn+1 ≺ sn; i.e., the sequence τ, sn+1 is a ≺-sequence. Iterate until finding an
extension τ ′ of τ that ends in a goal state, which can be done because ≺ is acyclic, and the
number of states in P is finite.

It is easy to see that at the start of each iteration of the loop, SIW≺ has discovered
a ≺-sequence τ = s0, s1, . . . , sn that ends at the current state sn = s. Hence, since ≺ is
acyclic, the loops eventually ends. The time and space bounds for each call of IW in line 5
of SIW≺ follow directly from Theorem 4.

However, even if the subproblems are solved greedily and in polynomial time by IW,
the total number of calls to IW, and hence the total running time of SIW≺, cannot be
bounded without extra assumptions on the structure of the serialization. Indeed, there
are serializations that split a problem into an exponential number of subproblems, like the
Hanoi example below. However, once we move to serializations expressed by means of rules
akin to those used to express policies, we will be able to provide conditions and bound the
running time of SIW≺.

Example 13 (The Hanoi domain).

• QHanoi is the class of Towers of Hanoi problems involving 3 pegs, numbered from 0 to 2,
and any number of disks, where the initial and goal states correspond to single towers

500

General Policies, Subgoal Structure, and Planning Width

at different pegs, respectively. Recently, Liu et al. (2023) refer to a general strategy
that solves problems of moving a single tower from peg 0 to peg 2:

Alternate actions between the smallest disk and a non-smallest disk. When
moving the smallest disk, always move it to the left. If the smallest disk is on
the first pillar, move it to the third one. When moving a non-smallest disk,
take the only valid action.

• This strategy can be expressed as a rule-based policy using three Boolean features pi,j ,
1 ≤ i < j ≤ 3, that are true if the top disk at peg i is smaller than the top disk at peg
j. However, in order to account for the alternation of movements, it must be assumed
that the planning encoding adds an extra atom e that is true initially, and that flips
with each movement. Provided then with a Boolean feature q that tracks the value of
e, a general policy for Hanoi can be expressed with the following set R of rules over the
features Φ = {q, p1,2, p1,3, p2,3}:

% Movements of the smallest disk

{q, p1,2, p1,3} 7→ {¬q, p1,2?,¬p1,3,¬p2,3} (Move the smallest from peg 1 to peg 3)

{q,¬p1,2, p2,3} 7→ {¬q, p1,2, p1,3, p2,3?} (Move the smallest from peg 2 to peg 1)

{q,¬p1,3,¬p2,3} 7→ {¬q,¬p1,2, p1,3?, p2,3} (Move the smallest from peg 3 to peg 2)

% Movements of the other disk

{¬q, p1,2, p1,3, p2,3} 7→ {q,¬p2,3} (Move the other from peg 2 to peg 3)

{¬q, p1,2, p1,3,¬p2,3} 7→ {q, p2,3} (Move the other from peg 3 to peg 2)

{¬q,¬p1,2, p1,3, p2,3} 7→ {q,¬p1,3} (Move the other from peg 1 to peg 3)

{¬q,¬p1,2,¬p1,3, p2,3} 7→ {q, p1,3} (Move the other from peg 3 to peg 1)

{¬q, p1,2,¬p1,3,¬p2,3} 7→ {q,¬p1,2} (Move the other from peg 1 to peg 2)

{¬q,¬p1,2,¬p1,3,¬p2,3} 7→ {q, p1,2} (Move the other from peg 2 to peg 1)

• In problems with an odd, respectively even, number of disks, the policy moves a single
tower at peg i to peg j, where j = (i− 1 mod 3), resp. j = (i+ 1 mod 3). By moving
the smallest disk to the right rather than to the left, the target peg changes to j = (i+1
mod 3), resp. j = (i− 1 mod 3).

• The policy πR defined by rules in R is thus general for the class QHanoiOdd that contains
the problems with an odd number of disks, initial situation with a single tower at peg
0, and goal situation with a single tower at peg 2. A general policy for QHanoi can be
obtained by considering additional Boolean features that tell the parity of the number
of disks, and the pegs for the initial and final towers.

• The policy πR defines a serialization of zero width by Theorem 34. This serialization
splits a problem P in QHanoiOdd into an exponential number of subproblems as 2n − 1
steps are needed to solve a Hanoi problem with n disks. The algorithm SIWR solves
any problem P in QHanoiOdd, but not in polynomial time.

501

Bonet & Geffner

6.1 Rule-Based Serializations: Sketches

As with policies, the binary relations that encode serializations can be compactly represented
by means of rules. The syntax of the rules is exactly the syntax of policy rules, and the
only difference is in the semantics of the rules where state pairs (s, s′) are not limited to
state transitions:

Definition 36 (Sketches). Let Q be a collection of problems, let Φ be a set of features for
Q, and let R be a set of rules over Φ. The rules in R define the binary relation ≺R over
the states in ∪P∈Qstates(P) given by s′ ≺R s iff the state pair (s, s′) is compatible with some
rule in R. If ≺R is acyclic in Q, ≺R is a serialization over Q.

The rules that define serializations are called sketch rules, and sets of such rules are
called sketches. The sketch width of Q given a sketch R is the serialized width of Q under
the serialization ≺R defined by R.

Definition 37 (Sketch width). Let R be a set of rules that define a serialization ≺R over
a class Q of problems. The sketch width of R over Q, denoted by wR(Q), is wR(Q)

.
=

w≺R(Q).

A rule-based policy π that solves Q is a sketch R for Q of zero width:

Theorem 38 (Rule-based policies and sketches). Let R be a set of rules defined in terms
of a set of features Φ for a class Q of problems. Then, R is a rule-based policy that solves
Q iff R is a sketch of zero width for Q.

Proof. Straightforward using Theorem 34.

6.2 Algorithms

If R is a sketch of bounded width over a class Q, the problems in Q can be solved by the
SIWR algorithm, shown in Fig. 5, where s′ ≺R s is tested by checking if some rule in R
is compatible with the state pair (s, s′). However, to bound the complexity of SIWR, a
bound in the total number of subproblems that need to be solved is needed. A simple way
to bound such a number is to require that the subgoal states s0, . . . , sn in state sequences
compatible with a sketch R have different feature valuations:

Definition 39 (Feature-acyclic sketches). Let Q be a class of problems, and let R be a set
of rules for Q defined on a set Φ of features that define a binary relation ≺R. The relation
≺R, or simply R, is said to feature-acyclic over Q if it is so for each problem P in Q,
where the latter means that there is no set {s1, s2, . . . , sn} of reachable states in P such that
s1 ≺R s2 ≺R · · · ≺R sn, and f(si) = f(sj) for some 1 ≤ i < j ≤ n.

Clearly, if R is feature-acyclic over Q, then ≺R is (state) acyclic over Q, and hence ≺R is a
serialization, and R is a sketch. The complexity bound for algorithm SIWR follows:

Theorem 40 (Completeness of SIWR). Let R be a feature-acyclic sketch for a class Q
of problems of width bounded by k. SIWR solves any problem P in Q in polynomial time
(exponential only k, not in the size of P). In particular, if the features are linear, P is

502

General Policies, Subgoal Structure, and Planning Width

Algorithm 5: SIWR Search

1: Input: Sketch R that defines relation ≺R

2: Input: Planning problem P in collection Q
3: Initialize state s to initial state s0 for P
4: While s is not a goal state of P :
5: Do an IW search from s to find s′ that is either a goal state or f(s′) ≺R f(s)

(i.e., the goal test in line 9 of IW(k) is augmented with f(s) ≺R f(s′) where
s′ is the state for the dequeued node n in line 7)

6: If s′ is found, set s← s′. Else, return FAILURE (Serialized width of P is ∞)

7: Return the path from s0 to the goal state s (Solution found)

Figure 5: SIWR is SIW≺ with the serialization ≺R induced by the sketch R. The complete-
ness and complexity of SIWR is given in Theorem 40.

solved by SIWR in O(N `(Nk+1 + bN2k−1)) time and O(bNk) space, producing a plan of
length O(N `+k), where N is the number of atoms in P , b bounds the branching factor in
P , and ` is the number of numerical features in Φ.

Proof. The SIWR algorithm is the SIW≺ algorithm that uses the serialization ‘≺R’ induced
by the sketch R. Hence, by Theorem 35, SIWR solves any problem P in Q, and each call
to IW in line 5 of SIWR takes O(bN2k−1) time and O(bNk) space.

As ≺R is feature-acyclic, the number of subproblems to solve is bounded by the max-
imum number of feature valuations that can appear when solving P . In the case of linear
features, this number is O(N `). For each expanded state in each call to IW, the value of
the features are computed in O(|Φ|N) = O(N) time. Thus, the total running time of SIWR

is O(N `(Nk+1 + bN2k−1)).
For the space required by SIWR, since the solutions to the subproblems produced by

IW do not need to be stored, the space complexity of SIWR is is the space complexity of
the IW calls; namely, O(bNk). The length of the overall plan, however, is bounded by the
number of subproblems times their maximum possible lengths as O(N `+k).

Example 14 (Sketches for the Delivery domain).

Table 1 contains different sets of rules over the set Φ = {H, p, t, u} of features for the
Delivery domain. For each such set, the table indicates whether the set is feature-acyclic,
and contains the sketch width for the classes QD1 and QD. The width is only specified for
sets that are acyclic. We briefly explain the entries in the table without providing formal
proofs, but all the details can be easily filled in with the results in the paper.

• R0 is the empty sketch whose width is the same as the plain width.

• The rule {H} 7→ {¬H, p?, t?} in R1 does not help in initial states that do not satisfy
H, and hence the width remains 2 and ∞ for QD1 and QD, respectively.

• The rule {¬H} 7→ {H, p?, t?} in R2 says that a state s where ¬H holds can be “im-
proved” by finding a state s′ where H holds, while possibly affecting p, t, or both. This
rule splits every problem P in QD1 into two subproblems: achieve H first and then the
goal, reducing the sketch width of QD1 to 1.

503

Bonet & Geffner

Sketch width

Rule set Acyclic QD1 QD

R0 = { } 3 2 ∞
R1 = {{H} 7→ {¬H, p?, t?}} 3 2 ∞
R2 = {{¬H} 7→ {H, p?, t?}} 3 1 ∞
R3 = R1 ∪R2 7 — —
R4 = {{u> 0} 7→ {u↓, H?, p?, t?}} 3 2 2
R5 = R2 ∪R4 3 1 1
R6 = {{¬H, p> 0} 7→ {p↓, t?}} 3 2 ∞
R7 = {{H, t> 0} 7→ {t↓}} 3 2 ∞
R8 = R2 ∪R4 ∪R6 ∪R7 3 0 0

Table 1: Different sketches for the Delivery domain, one rule set per line. The table shows
whether each rule set is feature-acyclic and also upper bounds the width for sketch for the
classes QD1 and QD of Delivery problems. The rule set R3 is not a proper sketch as it is not
acyclic; hence, the entries marked as ‘—’. For feature-acyclic sketches of bounded width,
SIWR solves any instance in the class in polynomial time.

• The rule set R3 is not acyclic and thus not a proper sketch.

• The sketch R4 decomposes problems using the feature u that counts the number of
undelivered packages, reducing the width of QD to 2, but not affecting the width of
QD1. The reduction occurs because each problem P in QD is split into subproblems,
each one for delivering a single package, similar to the problems in QD1.

• R5 combines the rules in R2 and R4. Each problem in QD is decomposed into subprob-
lems, each one like a problem in QD1, and each problem in QD1 is further decomposed
into two subproblems of width 1 each. The combined result is that the sketch width of
QD1 and QD both get reduced to 1.

• The sketches R6 and R7 do not help to reduce the width for either class. The rule in R6

generate subproblems of zero width until reaching a state where ¬H and p= 0 holds,
for which the remaining problem has width 2 or ∞ for either QD1 or QD, respectively.
R5, on the other hand, does not help as the initial states do not satisfy H.

• Finally, the sketch R8 yields a serialization of zero width, and hence a full policy, where
each subproblem is solved in a single step.

6.3 Acyclicity and Termination

The notion of acyclicity appears in three places in our study. First, if a policy π is closed
and acyclic in a problem P , then π solves P . Second, serializations must be acyclic, as
otherwise, even if subproblems have small, bounded width, the SIW≺ procedure may get
stuck in a cycle. Third, feature acyclicity has been used above to provide runtime bounds.

504

General Policies, Subgoal Structure, and Planning Width

Interestingly, there are structural conditions on the set of rules R that ensure that the
resulting binary relation on pairs of states (s, s′) is feature-acyclic by virtue of the form
of the rules and the features involved, independently of the domain.

This is the case, for example, if R only contains the rules r1 = {¬H} 7→ {H,n↓} and
r2 = {H} 7→ {¬H}. A sequence of states s0, s1, s2, . . . compatible with R cannot contain
infinite state pairs (si, si+1) compatible with rule r1, because such a rule requires feature
n to decrease but n cannot decrease below zero and no rule allows n to increase. Then,
since rule r1 cannot be “applied” infinitely often, neither can rule r2 which requires r1 to
restore the truth of the condition H. This analysis is independent of the underlying planning
problem and the semantics of the features.

The notion of termination as captured by the Sieve algorithm for QNPs (Srivastava
et al., 2011b; Bonet & Geffner, 2020) can be used to check, among other things, that a
rule-based policy or sketch is feature-acyclic. Indeed, if R is a terminating set of rules over
the features in Φ, as determined by Sieve, s0, s1, s2, . . . is a state sequence compatible with
R, and si and sj , with i < j, are two states with identical valuation over the Boolean
conditions defined by Φ (see below), then there is a numerical feature n such that its values
satisfy n(sj) < n(si) and n(sk) ≤ n(si) for i ≤ k ≤ j. This condition ensures that R is
feature-acyclic, and thus that it is acyclic over any class Q.

The Sieve algorithm, shown in Fig. 6, receives as input a directed and edge-labeled
graph G = 〈V,E, `〉, where the edge labels `(e) contain effects over Boolean and numerical
features; i.e., expression of the form p, ¬p and p? for Boolean features p, and expressions of
the form n↓, n↑, and n? over numerical features n. Sieve iteratively computes the strongly
connected components (SCCs) of a graph G′, initially set to the input graph G, and removes
edges from the graph until it becomes acyclic, or no more edges can be removed. The graph
is accepted iff it becomes acyclic, otherwise is rejected. An edge e in a component C of
G′ can be removed if some feature n is decreased in e (i.e. n↓ ∈ `(e)), and is not increased
in any other edge e′ in the same component (i.e. n↑ 6∈ `(e′) and n? 6∈ `(e′)).

The graph G(R) = 〈V,E, `〉 that is passed to Sieve as input is constructed from a set
R of rules over a set Φ of features as follows. The vertices in V correspond to the 2|Φ|

valuations v for the conditions p and n= 0 for the Boolean and numerical features p and n
in Φ, and there is an edge (v, v′) in E if the pair of valuations v and v′ is compatible with
some rule C 7→ E in R. A set of rules R is terminating iff Sieve accepts the graph G(R).
In our setting, this means the following:

Theorem 41 (Srivastava et al., 2011b, Bonet and Geffner, 2020). Let Φ be a set of features,
and let R be a set of rules over Φ for a class Q of problems. If Sieve accepts G(R), then
the binary relation ≺R is feature-acyclic over Q, and therefore, R is a sketch that defines a
serialization ≺R for Q.

Proof. If Sieve accepts G(R), τ = s0, s1, s2, . . . is a state sequence that is compatible with
R, and the states si and sj , i < j, have identical valuation over the Boolean conditions
for Φ, then there must be a numerical feature n that is decremented in the path τi,j =
si, si+1, . . . , sj and is not incremented in τi,j (Srivastava et al., 2011b; Bonet & Geffner,
2020). Therefore, f(si) 6= f(sj). This implies that there is no such state sequence τ that
contains two different states s and s′ such that f(s) = f(s′).

505

Bonet & Geffner

Algorithm 6: Sieve

1: Input: Directed edge-labeled graph G = 〈V,E, `〉, where the labels contain feature effects
2: Output: Either accept or reject G

3: Initialize the graph G′ ← G

4: Repeat
5: Compute the SCCs of graph G′

6: Choose SCC T and numerical feature n that is decreased but not increased in T ; i.e.,
– T contains some edge e such that n↓ ∈ `(e), and
– T contains no edge e′ such that n↑ ∈ `(e′) or n? ∈ `(e′)

7: Remove the edges in T where n is decreased
8: until G′ is acyclic or no such SCC exist

9: ACCEPT if G′ is acyclic, REJECT otherwise

Figure 6: The Sieve algorithm takes as input a directed edge-labeled graph G that is either
accepted or rejected. The graph G is the graph G(R) constructed using the feature-based
rules in a set R. If G is accepted, the binary relation on feature valuations induced by R is
deemed as terminating, and thus R is feature-acyclic (cf. Theorem 41).

Example 15 (Sieve for different sketches for the Delivery domain).

Let us consider the Delivery domain with the set of features Φ = {H, p, t, u} discussed
in Example 6. We consider different sets of rules that define different input graphs for
Sieve:

• First, let us consider the set R3 of rules in Table 1 made of {H} 7→ {¬H, p?, t?} and
{¬H} 7→ {H, p?, t?}. The graph G(R3) contains many cycles as the first rule connects
all nodes in which H holds to all nodes in which ¬H holds, and the second rule does
the opposite. As no edge is labeled with a decrement, Sieve cannot remove any edge,
and thus the graph is rejected.

• Consider now the set R5 in Table 1 with {¬H} 7→ {H, p?, t?} and {u> 0} 7→
{u↓, H?, p?, t?}. In the graph G(R5), the numerical feature u is decreased in some
edges, but no edge contains u↑ or u? in its label. Hence, Sieve removes all edges that
contain u↓ in its label. This renders the graph acyclic as the only edges left connect
nodes where ¬H holds to nodes where H holds. Sieve accepts the input graph G(R5),
and thus R5 can be used as an sketch for QD by Theorem 41.

• Finally, let us consider the policy π given in Example 6. Figure 7 shows (part of)
the graph G(π) that is given to Sieve. The graph contains three strongly connected
components C1, C2, and C3, with C1 being the only one with cycles. In C1, the feature
u is decreased but not increased. Sieve then removes all edges whose label contains u
↓, splitting C1 into the components {Ci : i = 4, 5 . . . , 8}; see caption of Fig. 7. Of these
components, only C4 and C8 contain cycles. In C4 (resp. C8), all edges are labeled with
{p↓, t?} (resp. {t↓}). Hence, Sieve removes all edges from C4 and C8, leaving the graph
acyclic. By Theorem 41, π defines a feature-acyclic sketch for QD.

506

General Policies, Subgoal Structure, and Planning Width

n0 : H, p> 0, t= 0, u> 0 n2 : H, p= 0, t= 0, u> 0 n4 : H, p= 0, t= 0, u> 0 n6 : H, p= 0, t= 0, u= 0

n1 : H, p> 0, t > 0, u> 0 n3 : H, p= 0, t > 0, u> 0 n5 : H, p= 0, t > 0, u> 0 n7 : H, p> 0, t= 0, u= 0

{p↓, t?}

{p↓, t?} {p↓, t?}

{p↓, t?} {H} {¬H,u↓, p?}

{¬H,u↓, p?} {¬H,u↓, p?}

{¬H,u↓, p?}

{p↓, t?}

{p↓, t?}

{p↓,
t?}

{p↓, t?} {H}

{t↓}

{t↓}

Figure 7: Relevant part of the graph G(π) that is passed to Sieve for the policy π for
the Delivery domain that contains the rules {¬H, p> 0} 7→ {p↓, t?}, {¬H, p= 0} 7→ {H},
{H, t> 0} 7→ {t↓}, and {H, t= 0, u> 0} 7→ {¬H,u↓, p?}. Red nodes and edges stand for
nodes and transitions in the policy graph that do not exist in instances of Delivery. G(π)
has three strongly connected components C1 = {n0, n1, . . . , n5}, C2 = {n6}, and C3 = {n7}.
In C1, the numerical feature u is decreased but not increased. Sieve then removes all the
edges whose label contains u↓, resulting in a graph where C1 is split into the components
C4 = {n0, n1}, C5 = {n2}, C6 = {n3}, C7 = {n4}, and C8 = {n5}. Of these components,
only C4 and C8 contain cylces. C8 contains only one edge with label {t↓} that is removed
by Sieve. C4 contains two nodes and four edges, all labeled with {p↓, t?}. Sieve removes
all such edges, splitting C4 into two acyclic and singleton components, and accepts G(π).

7. Summary of Results and Meaning

In this section, we summarize the main ideas and results of the paper. For simplicity, we do
not restate the conditions of the theorems in full and focus instead on their meaning and
the story that they reveal. While the work builds on an earlier paper (Bonet & Geffner,
2021), most of the results are new and convey a simpler, more meaningful narrative. Three
key changes are: a slightly more general and convenient definition of admissibility based on
sets of tuples and not sequences, the new notion of envelopes, and the definition of both
policies and serializations as binary relations on states, expressed syntactically by means of
rules. In addition, serializations are no longer assumed to be transitive relations. As usual,
P is a planning instance from a class Q, π is a general policy, T is a set atom tuples over P ,
and T k denotes the set of conjunctions of up to k atoms. A summary of the main theorems
above and their meaning follows:

• Theorems 4–7. If T is admissible, IW(T) finds an optimal plan and w(P) ≤ size(T). If
w(P) ≤ k, IW(k) finds an optimal plan, and IW finds a (not necessarily optimal) plan.

• Theorem 22: T admissible iff OPT (T) is a cost-envelope.

• Theorem 23: IW(T) is optimal if T contains T ′ such that OPT (T ′) is a cost-envelope,
and IW(k) is optimal if such T ′ is contained in T k.

Meaning. If T is admissible and hence a cost envelope, P is solved optimally by IW(T)
which expands up to |T | nodes and also by IW(T ′) if T ′ ⊆ T . The width of P , w(P), is the
minimum size(T) of an admissible T , and IW(k) solves P optimally if w(P) ≤ k. IW(k) is
equivalent to IW(T k).

507

Bonet & Geffner

• Theorem 25: OPT (T) is a cost-envelope in P if it is a closed π-envelope of an optimal
policy π for Q, P ∈ Q.

• Theorem 27 and corollaries: If OPT (T) is a closed π-envelope of an optimal policy π,
and T ⊆ T k, IW(k) reaches the goal of P through an optimal π-trajectory.

• Theorem 28: w(P) > k if every optimal plan for P contains a state outside OPT (T k).

Meaning. These results and the ones above explain why many standard planning domains
have bounded width when goal atoms are considered (Lipovetzky & Geffner, 2012; Drexler
et al., 2021). The reason is that such classes of problems admit general optimal policies π
that can be “applied” in an instance P by just considering tuples of atoms of bounded size.
If this bound is k, IW(k) finds the goal of P in polynomial time through a π-trajectory,
without having to know π at all. The width of P is greater than k if no optimal plan “goes
through” states that are all in OPT (T k).

• Theorem 29: IWΦ is optimal if OPT (F) is a closed π-envelope for some set F of feature
valuations, and π is optimal.

• Theorem 30: OPT (F) is a closed π-envelope if π is optimal and reaches all and only the
states in OPT (F).

Meaning. The IWΦ procedure is like IW(T) but with the feature valuations over Φ playing
the role of the atom tuples in T . The procedure is meaningful because in many tasks the
number of possible feature valuations for a given Φ is exponentially smaller than the number
of states (e.g., QClear above). Two relevant questions are what sets of features Φ ensure that
IWΦ solves a problem (optimally) and whether the features used by a policy π that solves
the problem do. The general answer to this last question is no: as shown in the example
for Towers of Hanoi, one can define general policies in terms of a bounded and small set of
Boolean features Φ, yet the length of any plan for Hanoi will grow exponentially with the
number of disks. This simple combinatorial argument rules out Φ as a good set of features
for IWΦ in Hanoi, even when Φ supports a solution policy. The results above provide a
more general argument that cuts in both ways. Namely, if no subset F of feature valuations
results in OPT (F) being a closed cost-envelope (as in Hanoi), then IWΦ will not solve P
optimally in general, and if F is one such set of feature valuations, then IWΦ will solve P
optimally.

The definition of policies and serialization as binary relation on states, expressed in com-
pact form by the same type of rules, makes the relation between policies and serializations
direct:

• Theorem 34: Policy π solves Q iff π is a serialization over Q of width zero (semantics).

• Theorem 38: Rule-based policy R solves Q iff R is a rule-based serialization (sketch) over
Q of width zero (syntax).

• Theorem 35: A serialization of width k over Q implies that problems P in Q can be solved
by solving subproblems of width bounded by k, greedily, with the SIWR procedure. The
number of subproblems to be solved, and hence the running time of SIWR, however, is
not necessarily polynomial (e.g., Hanoi).

508

General Policies, Subgoal Structure, and Planning Width

• Theorem 40 and 41: A terminating rule-based serialization (sketch) of bounded width
over Q, implies that problems P in Q are solved in polynomial time by SIWR.

• Theorem 41: Termination of rule-based serializations and policies can be checked in time
exponential in the number of features by Sieve.

Meaning. A general policy is a general serialization of zero width; namely, a particular,
type of serialization in which the subproblems can be solved greedily in a single step. Seri-
alizations of bounded width result in subproblems that can be solved greedily in polynomial
time, while terminating rule-based serializations always result in a polynomial bounded of
number of subproblems. The direct correspondence between policies and serializations is
new and important, although it has not been recognized before. The reasons have been the
lack of general and flexible formal accounts of serializations, compact languages for describ-
ing them, and width-like measures for bounding the complexity of subproblems. Policies
have been formulated as binary relations on states and not as mapping from states to ac-
tions because actions do not generalize across instances. This choice has also helped to
make the relation between policies and serializations more explicit. Finally, termination is
a property of the set of rules and has nothing do with the class of problems. Introduced
by Srivastava et al. (2011b), termination gives us state acyclicity, needed in the definition
of serializations, and feature-value acyclicity, needed for the polynomial bound N ` on the
number of subproblems (provided that features are linear), where N is the number of atoms
in the problem and ` is the number of numerical features used in the rules. If a terminating
sketch has bounded width over a class Q of problems, the problems P in Q are solved
greedily by SIWR in polynomial time.

8. Extensions, Variations, and Limitations

We have presented a framework that accommodates policies and serializations, and have
established relations between width and policies, on the one hand, and policies and serial-
izations, on the other. Extensions, variations, and limitations of this framework are briefly
discussed next.

Optimality and width. In the definition of an admissible set of tuples T and, hence, in
the definition of width that follows, it is said that if an optimal plan σ for a tuple t in T is
not an optimal plan for P , then an optimal plan for another tuple t′ in T can be obtained
by appending a single action to σ. A similar condition appears in the original definition
of admissibility and width for sequences of tuples (Lipovetzky & Geffner, 2012). If the
condition that “σ is not an optimal plan for P” is replaced by “σ is not a plan for P ,” the
resulting definition of width (size of a min-size admissible set T) still guarantees that P is
solved by IW(k) if the width of P is bounded by k, but not that P is solved optimally by
IW(k). In the serialized setting, where optimal solutions of subproblems do not translate
into optimal solution of problems, this relaxation of the definitions of admissibility (and
width) makes sense, and it has been used for learning sketches of bounded width more
effectively (Drexler et al., 2022).

Syntax of policy and sketch rules. The features and rules provide a convenient, com-
pact, and general language for expressing policies and serializations, while the choice of

509

Bonet & Geffner

features, Boolean and numerical, follow the type of variables used in qualitative numeri-
cal planning problems (QNPs) for defining bounds and termination conditions (Srivastava
et al., 2011b; Bonet & Geffner, 2020). In QNPs, it is critical that numerical variables
change via “qualitative” increments and decrements, as reasoning with arbitrary numerical
variables is undecidable (Helmert, 2002). Still, the restriction that numerical features n can
only appear in effect expressions of the form n↑, n↓ or n? is somewhat arbitrary, and other
effect expressions like ¬n↑, ¬n↓, n= 0, or n> 0 can be accommodated with minor changes.

Non-deterministic sketches and policies. Policies and sketches are non-deterministic
in the sense that many state transitions and pairs (s, s′) can be compatible with a policy
or sketch rule. If a policy π solves a problem P , it is because all π-transitions lead to the
goal, and in the case of a bounded-width sketch, it is because the achievement of any such
subgoal s′ leads to the goal. This means that in a state s, one can pick any (policy or sketch)
rule C 7→ E such that C is true in s, and move from s to any state s′ that satisfies the rule.
If the sketch has bounded width (a policy is a sketch of zero width), then at least one such
rule exists. In certain cases, however, it is convenient to guarantee that there is one such
state s′ for any rule C 7→ E whose antecedent C is true at s, so that one can choose the
rule to “apply” in a state without having to look ahead for the existence of such states s′.
Sketches that have this additional property have been called modular, as the sketch rules
are considered independently of each other. One can then talk about the width of a sketch
rule C 7→ E as the maximum width of the problems with initial state s and goal states s′

such that the state pair (s, s′) satisfies the rule. Modular sketches are useful for learning
hierarchical policies, where a sketch rule representing a class of problems of width greater
than k is decomposed into sketch rules of width bounded by k, and so on iteratively, until
sketch rules are obtained with width zero (Drexler et al., 2023).

Non-deterministic domains. The notion of width and the type of general policies consid-
ered are for deterministic planning domains. It is not yet clear how to extend the width no-
tion to non-deterministic domains while preserving certain key properties like that bounded
width problems can be solved in polynomial time, and that large classes of benchmark do-
mains fall into such a class for suitable types of goals. The extension of general policies
to non-deterministic domains, however, has been recently considered (Hofmann & Geffner,
2024).

9. Related Work

We review a number of related research threads.

Width, general policies, and sketches. This paper builds on prior works that intro-
duced sketches (Bonet & Geffner, 2021), the language for expressing general policies in
terms of features and rules (Bonet & Geffner, 2018), and the notion of width and IW search
procedures (Lipovetzky & Geffner, 2012; Lipovetzky, 2021). Methods for learning general
policies and sketches of bounded width have also been developed (Frances et al., 2021;
Drexler et al., 2022), leading more recently to methods for learning hierarchical policies
(Drexler et al., 2023).

General policies. The problem of learning general policies has a long history (Khardon,
1999; Mart́ın & Geffner, 2004; Fern et al., 2006), and general policies have been formulated

510

General Policies, Subgoal Structure, and Planning Width

in terms of first-order logic (Srivastava et al., 2011a; Illanes & McIlraith, 2019), and first-
order regression (Boutilier et al., 2001; Wang et al., 2008; van Otterlo, 2012; Sanner &
Boutilier, 2009). More recently, general policies for classical planning have been represented
by neural nets and learned using deep learning methods (Groshev et al., 2018; Toyer et al.,
2018; Bueno et al., 2019; Rivlin et al., 2020; Karia et al., 2022; St̊ahlberg et al., 2023).

Hierarchical planning. While the subgoal structure of a domain is important for hand-
crafting effective hierarchical task networks, HTNs do not actually encode subgoal struc-
tures but general top-down solving strategies where (non-primitive) methods decompose
into other methods (Erol et al., 1994; Nau et al., 1999; Georgievski & Aiello, 2015). Tech-
niques for learning HTNs usually appeal to annotated traces that convey the intended
decompositions (Hogg et al., 2008; Zhuo et al., 2009). Other methods for deriving hier-
archical decompositions in planning include precondition relaxations (Sacerdoti, 1974) and
causal graphs (Knoblock, 1994).

Hierarchical RL and intrinsic rewards. Hierarchical structures have also been used
in reinforcement learning in the form of options (Sutton et al., 1999), hierarchies of ma-
chines (Parr & Russell, 1997) and MaxQ hierarchies (Dietterich, 2000). While this “control
knowledge” is often provided by hand, a vast literature has explored techniques for learn-
ing them by considering “bottleneck states” (McGovern & Barto, 2001), “eigenpurposes”
of the matrix dynamics (Machado et al., 2017), and width-based considerations (Junyent
et al., 2021). Intrinsic rewards have also been introduced for improving exploration leading
to exogenous rewards (Singh et al., 2010), and some authors have addressed the problem
of learning intrinsic rewards. Interestingly, the title of one of the papers raises the ques-
tion “What can learned intrinsic rewards capture?” (Zheng et al., 2020). The answer that
follows from our setting is clean and simple: intrinsic rewards should capture the general,
low-width subgoal structure of the domain. Lacking a language to talk about families of
problems and subgoal structure, however, the answer to the question found in the RL lit-
erature is experimental and less crisp: learned intrinsic rewards are just supposed to speed
up the convergence of (deep) RL.

Reward machines and sketches. A recent language for encoding subgoal structure in
RL is based on reward machines (Icarte et al., 2018) and the closely related proposal of
restraining bolts (De Giacomo et al., 2020). In these cases, the temporal structure of the
(sub)goals to be achieved results in an automata which is combined with the system MDP
to produce the so-called cross-product MDP. A number of RL algorithms for exploiting
the known structure of the subgoal automata have been developed (Icarte et al., 2022)
as well as algorithms for learning them (Toro Icarte et al., 2019). There is indeed a close
relation between reward machines and sketches, as both convey subgoal structure, but there
important differences too. First, reward machines usually encode the structure of explicit
temporal goals (e.g., do X, then Y , and finally Z), while sketches encode the structure
that is implicit in a reachability goal. Second, reward machines are defined in terms of
additional propositional variables; sketches, in terms of state features that do not require
cross-products. Third, sketches come with a theory of width that tells us where to split
problems into subproblems and why. Finally, sketches come with a notion of termination
that ensures that subgoaling cannot result in cycles.

511

Bonet & Geffner

10. Conclusions

We have established results that explain why many standard planning domains have bounded
width, and have introduced a number of notions, like policy and cost envelopes that shed
light on this relation and on the optimality and completeness of old and new IW-algorithms
like IW(T) and IWΦ. We have also reformulated the semantic and syntactic notions of
general policies and serializations slightly to make the relation between policies and serial-
izations direct and clean: a policy is indeed a particular type of serialization that gives rise
to subproblems of zero width which can be solved greedily on the way to the goal. This
relation between policies and problem decompositions has not been articulated before. The
paper is revised version of an earlier paper (Bonet & Geffner, 2021) that touched similar
themes. The goal has been to make the results more transparent, useful, and meaningful.

Acknowledgements

The research of H. Geffner has been supported by the Alexander von Humboldt Foundation
with funds from the Federal Ministry for Education and Research of Germany. The research
has also received funding from the European Research Council (ERC), Grant agreement
No. 885107, and Project TAILOR, Grant agreement No. 952215, under EU Horizon 2020
research and innovation programme, the Excellence Strategy of the Federal Government
and the NRW Länder, and the Knut and Alice Wallenberg (KAW) Foundation under the
WASP program.

References

Belle, V., & Levesque, H. J. (2016). Foundations for generalized planning in unbounded
stochastic domains. In Proc. KR, pp. 380–389.

Bonet, B., & Geffner, H. (2018). Features, projections, and representation change for gen-
eralized planning. In Proc. IJCAI, pp. 4667–4673.

Bonet, B., & Geffner, H. (2020). Qualitative numeric planning: Reductions and complexity.
Journal of Artificial Intelligence Research (JAIR), 69, 923–961.

Bonet, B., & Geffner, H. (2015). Policies that generalize: Solving many planning problems
with the same policy.. In Proc. IJCAI, pp. 2798–2804.

Bonet, B., & Geffner, H. (2021). General policies, representations, and planning width. In
Proc. AAAI, pp. 1764–11773.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-order
MDPs. In Proc. IJCAI, Vol. 1, pp. 690–700.

Bueno, T. P., de Barros, L. N., Mauá, D. D., & Sanner, S. (2019). Deep reactive policies
for planning in stochastic nonlinear domains. In AAAI, Vol. 33, pp. 7530–7537.

Chenoweth, S. V. (1991). On the NP-hardness of blocks world. In Proc. AAAI-91, pp.
623–628.

De Giacomo, G., Iocchi, L., Favorito, M., & Patrizi, F. (2020). Restraining bolts for rein-
forcement learning agents. In Proc. AAAI, pp. 13659–13662.

512

General Policies, Subgoal Structure, and Planning Width

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research (JAIR), 13, 227–303.

Drexler, D., Seipp, J., & Geffner, H. (2021). Expressing and exploiting the common subgoal
structure of classical planning domains using sketches. In Proc. KR, pp. 258–268.

Drexler, D., Seipp, J., & Geffner, H. (2022). Learning sketches for decomposing planning
problems into subproblems of bounded width. In Proc. ICAPS, pp. 62–70.

Drexler, D., Seipp, J., & Geffner, H. (2023). Learning hierarchical policies by iteratively
reducing the width of sketch rules. In Proc. KR, pp. 208–218.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proc. AAAI, pp. 1123–1123.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language
bias: Solving relational Markov decision processes. Journal of Artificial Intelligence
Research (JAIR), 25, 75–118.

Frances, G., Bonet, B., & Geffner, H. (2021). Learning general planning policies from small
examples without supervision. In Proc. AAAI, pp. 11801–11808.

Geffner, H., & Bonet, B. (2013). A Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers.

Geffner, T., & Geffner, H. (2015). Width-based planning for general video-game playing.
In Proc. AIIDE, pp. 23–29.

Georgievski, I., & Aiello, M. (2015). HTN planning: Overview, comparison, and beyond.
Artificial Intelligence, 222, 124–156.

Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge
U.P.

Groshev, E., Goldstein, M., Tamar, A., Srivastava, S., & Abbeel, P. (2018). Learning
generalized reactive policies using deep neural networks. In Proc. ICAPS, pp. 408–
416.

Gupta, N., & Nau, D. (1992). On the complexity of blocks-world planning. Artificial
Intelligence, 56 (2-3), 223–254.

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. (2019). An Introduction to the
Planning Domain Definition Language. Morgan & Claypool.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical
state variables.. In Proc. AIPS, pp. 44–53.

Hoffmann, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal
of Artificial Intelligence Research (JAIR), 22, 215–278.

Hofmann, T., & Geffner, H. (2024). Learning generalized policies for fully observable non-
deterministic planning domains. arXiv preprint arXiv:2404.02499, 2024.

Hogg, C., Munoz-Avila, H., & Kuter, U. (2008). HTN-Maker: Learning HTNs with minimal
additional knowledge engineering required.. In Proc. AAAI, pp. 950–956.

Hu, Y., & De Giacomo, G. (2011). Generalized planning: Synthesizing plans that work for
multiple environments. In Proc. IJCAI, pp. 918–923.

513

Bonet & Geffner

Icarte, R. T., Klassen, T., Valenzano, R., & McIlraith, S. (2018). Using reward machines
for high-level task specification and decomposition in reinforcement learning. In Proc.
ICML, pp. 2107–2116.

Icarte, R. T., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2022). Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research (JAIR), 73, 173–208.

Illanes, L., & McIlraith, S. A. (2019). Generalized planning via abstraction: arbitrary
numbers of objects. In Proc. AAAI, pp. 7610–7618.

Junyent, M., Gómez, V., & Jonsson, A. (2021). Hierarchical width-based planning and
learning. In Proc. ICAPS, pp. 519–527.

Karia, R., Nayyar, R. K., & Srivastava, S. (2022). Learning generalized policy automata
for relational stochastic shortest path problems. Advances in Neural Information
Processing Systems, 35, 30625–30637.

Khardon, R. (1999). Learning action strategies for planning domains. Artificial Intelligence,
113 (1–2), 125–148.

Knoblock, C. A. (1994). Automatically generating abstractions for planning. Artificial
intelligence, 68 (2), 243–302.

Lipovetzky, N., & Geffner, H. (2012). Width and serialization of classical planning problems.
In Proc. ECAI, pp. 540–545.

Lipovetzky, N. (2021). Planning for novelty: Width-based algorithms for common problems
in control, planning and reinforcement learning. In Proc. IJCAI, pp. 4956–4960.

Lipovetzky, N., & Geffner, H. (2017a). Best-first width search: Exploration and exploitation
in classical planning.. In Proc. AAAI, pp. 3590–3596.

Lipovetzky, N., & Geffner, H. (2017b). A polynomial planning algorithm that beats lama
and ff. In Proc. ICAPS, pp. 195–199.

Liu, A., Xu, H., Van den Broeck, G., & Liang, Y. (2023). Out-of-distribution generalization
by neural-symbolic joint training. In Proc. AAAI, pp. 12252–12259.

Machado, M. C., Bellemare, M. G., & Bowling, M. (2017). A Laplacian framework for
option discovery in reinforcement learning. In Proc. ICML, pp. 2295–2304.

Mart́ın, M., & Geffner, H. (2004). Learning generalized policies from planning examples
using concept languages. Applied Intelligence, 20 (1), 9–19.

McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proc. ICML, pp. 361–368.

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999). SHOP: Simple hierarchical ordered
planner. In Proc. IJCAI, pp. 968–973.

Ostrovski, G., Bellemare, M. G., Oord, A., & Munos, R. (2017). Count-based exploration
with neural density models. In Proc. ICML, pp. 2721–2730.

Parr, R., & Russell, S. (1997). Reinforcement learning with hierarchies of machines. In
Proc. NeurIPS, pp. 1043–1049.

514

General Policies, Subgoal Structure, and Planning Width

Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-driven exploration
by self-supervised prediction. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 16–17.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research (JAIR), 39 (1),
127–177.

Rivlin, O., Hazan, T., & Karpas, E. (2020). Generalized planning with deep reinforcement
learning. arXiv preprint arXiv:2005.02305, 2020.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial intelligence,
5 (2), 115–135.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for first-order MDPs.
Artificial Intelligence, 173 (5-6), 748–788.

Segovia, J., Jiménez, S., & Jonsson, A. (2016). Generalized planning with procedural domain
control knowledge. In Proc. ICAPS, pp. 285–293.

Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement
learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2 (2), 70–82.

Srivastava, S., Immerman, N., & Zilberstein, S. (2008). Learning generalized plans using
abstract counting. In Proc. AAAI, pp. 991–997.

Srivastava, S., Immerman, N., & Zilberstein, S. (2011a). A new representation and associ-
ated algorithms for generalized planning. Artificial Intelligence, 175 (2), 615–647.

Srivastava, S., Zilberstein, S., Immerman, N., & Geffner, H. (2011b). Qualitative numeric
planning. In Proc. AAAI, pp. 1010–1016.

St̊ahlberg, S., Bonet, B., & Geffner, H. (2023). Learning general policies with policy gradient
methods. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, pp. 647–657.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112 (1-2),
181–211.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., & Abbeel, P. (2017). #Exploration: a study of count-based exploration for
deep reinforcement learning. In Proc. NeurIPS, pp. 2753–2762.

Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., & McIlraith, S. (2019).
Learning reward machines for partially observable reinforcement learning. In Proc.
NeurIPS, Vol. 32.

Toyer, S., Trevizan, F., Thiébaux, S., & Xie, L. (2018). Action schema networks: Generalised
policies with deep learning. In AAAI, pp. 6294–6301.

van Otterlo, M. (2012). Solving relational and first-order logical markov decision processes:
A survey. In Wiering, M., & van Otterlo, M. (Eds.), Reinforcement Learning: State-
of-the-Art, pp. 253–292. Springer.

515

Bonet & Geffner

Wang, C., Joshi, S., & Khardon, R. (2008). First order decision diagrams for relational
MDPs. Journal of Artificial Intelligence Research (JAIR), 31, 431–472.

Zheng, Z., Oh, J., Hessel, M., Xu, Z., Kroiss, M., Van Hasselt, H., Silver, D., & Singh, S.
(2020). What can learned intrinsic rewards capture?. In Proc. ICML, pp. 11436–11446.
PMLR.

Zhuo, H. H., Hu, D. H., Hogg, C., Yang, Q., & Munoz-Avila, H. (2009). Learning HTN
method preconditions and action models from partial observations. In Proc. IJCAI,
pp. 1804–1809.

516

