
Journal of Artificial Intelligence Research 80 (2024) 665-718 Submitted 10/2023; published 06/2024

Using Constraint Propagation to Bound Linear Programs

Tomáš Dlaskhttps://orcid.org/0000-0002-1944-6569 dlaskto2@fel.cvut.cz

Tomáš Wernerhttps://orcid.org/0000-0002-6161-7157 werner@fel.cvut.cz

Machine Learning Group, Department of Cybernetics,

Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

We present an approach to compute bounds on the optimal value of linear programs
based on constraint propagation. Given a feasible dual solution, we apply constraint prop-
agation to the complementary slackness conditions and, if propagation succeeds to prove
these conditions infeasible, the infeasibility certificate (in the sense of Farkas’ lemma) is
reconstructed from the propagation history. This certificate is a dual-improving direction,
which allows us to improve the bound. As constraint propagation need not always detect
infeasibility of a linear inequality system, the method is not guaranteed to converge to a
global solution of the linear program but only to an upper bound, whose tightness depends
on the structure of the program and the used propagation method. The approach is suited
for large sparse linear programs (such as LP relaxations of combinatorial optimization prob-
lems), for which the classical LP algorithms may be infeasible, if only for their super-linear
space complexity. The approach can be seen as a generalization of the Virtual Arc Con-
sistency (VAC) algorithm to bound the LP relaxation of the Weighted CSP (WCSP). We
newly apply it to the LP relaxation of the Weighted Max-SAT problem, experimentally
showing that the obtained bounds are often not far from optima of the relaxation and
proving that they are exact for known tractable subclasses of Weighted Max-SAT.

1. Introduction

Although linear programs are solvable in polynomial time, solving very large (though possi-
bly sparse) instances can be challenging in practice. Such linear programs occur in many ar-
eas, a prominent example being linear programming (LP) relaxations of hard combinatorial
optimization problems, used to compute bounds in branch-and-bound search. For example,
even verifying feasibility of LP relaxations of some hard combinatorial problems may require
significant amount of time, maybe even exceed the overall time limit for solving the origi-
nal (non-relaxed) combinatorial problem (Devriendt, Gleixner, & Nordström, 2021, Section
3.2). As another example, LP instances originating in computer vision may have millions of
constraints and variables (Yanover, Meltzer, Weiss, Bennett, & Parrado-Hernández, 2006),
(Savchynskyy, 2019, Example 4.2). Solving such large instances by traditional LP algo-
rithms such as simplex and interior point methods is sometimes inefficient or even impossi-
ble (due to super-linear space-complexity of these methods) (Yanover et al., 2006; Swoboda,
Kuske, & Savchynskyy, 2017; Swoboda & Andres, 2017; Haller, Prakash, Hutschenreiter,
Pietzsch, Rother, Jug, Swoboda, & Savchynskyy, 2020; Pr̊uša & Werner, 2019). Subgra-
dient and first-order iterative methods (such as ADMM) tend to converge slowly (Szeliski,
Zabih, Scharstein, Veksler, Kolmogorov, Agarwala, Tappen, & Rother, 2008; Kappes, An-
dres, Hamprecht, Schnörr, Nowozin, Batra, Kim, Kausler, Kröger, Lellmann, Komodakis,
Savchynskyy, & Rother, 2015) and re-converge slowly when warm-started after a small

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Dlask & Werner

change of the problem (a significant drawback in branch-and-bound search). Since solving
LP relaxations of many NP-hard problems is not easier than solving the general linear pro-
gramming problem (Pr̊uša & Werner, 2019), it is unlikely that any specialized methods will
ever beat the general LP algorithms to exactly solve these LP relaxations. This calls for
the development of approximate but more efficient methods.

In this article, we propose one such method. Given a pair of mutually dual linear
programs, by weak duality the value of the dual objective at any feasible dual solution
bounds the common optimal value. Our method iteratively improves a given feasible dual
solution as follows. A feasible dual solution is optimal if and only if the complementary
slackness conditions, which is a system of linear inequalities in the primal variables, are
feasible. This system is infeasible if and only if its alternative system (in the sense of Farkas’
lemma) is feasible, so any solution of this alternative system is a certificate of infeasibility
of the complementary slackness system. This certificate is also an improving direction for
the dual, which can be used to improve the current dual solution and hence the bound.
Since proving infeasibility of the complementary slackness system (and possibly finding its
infeasibility certificate) can be still too hard for large instances, we propose to do it more
efficiently by constraint propagation. The cost for this is that constraint propagation need
not always detect infeasibility (i.e., it is refutation incomplete), so the method can converge
only to a suboptimal solution. In the examples that we consider, the space complexity of
this method is linear in the number of non-zeros of the instance.

This approach can be seen as a generalization of the Virtual Arc Consistency (VAC)
algorithm (Cooper, de Givry, Sanchez, Schiex, Zytnicki, & Werner, 2010) and the closely
related Augmenting DAG algorithm (Koval & Schlesinger, 1976; Werner, 2007, 2005) to
compute a bound on the LP relaxation of the Weighted CSP (WCSP) (Schlesinger, 1976;
Werner, 2007; Živný, 2012; Savchynskyy, 2019). In this particular case, the complementary
slackness conditions describe the LP relaxation of a CSP (defined by the current feasible
dual solution) and the constraint propagation is arc consistency.

Another method closely related to ours is the primal-dual algorithm (Papadimitriou &
Steiglitz, 1998, Section 5), proposed to efficiently solve LP formulations of some tractable
combinatorial optimization problems. Given a feasible dual solution, it considers the so-
called restricted problem, which minimizes infeasibility of the complementary slackness
conditions. This is a linear program simpler than the original one, thus often amenable
to combinatorial algorithms. Optimal solutions to the dual restricted problem are then
dual-improving directions. Many classical algorithms, e.g., for solving shortest paths, max-
imum flow, or assignment problem, can be seen as examples of the primal-dual algorithm
(Papadimitriou & Steiglitz, 1998). The difference to our approach is that the restricted
problem is an optimization one (a linear program) rather than a feasibility one (a linear
inequality system) and that it is solved exactly (using, e.g., the simplex method) rather
than approximately (using constraint propagation). To our knowledge, the VAC/AugDAG
algorithms have never been related to the primal-dual algorithm.

Our next source of inspiration was the logic-theoretic view on Farkas’ lemma and LP
duality (Matoušek & Gärtner, 2006, Section 6.4), (Hooker, 2000). However, our approach is
not directly related to inference duality introduced by Hooker (2000, Chapter 17) because
we use inference (constraint propagation) in an iterative scheme.

666

Using Constraint Propagation to Bound Linear Programs

Since constraint propagation need not always detect infeasibility of a system of linear
inequalities, our method in general converges only to a suboptimal dual solution. The
tightness of the corresponding bound depends on how ‘well’ the complementary slackness
constraints propagate, which in turn depends on the structure of the linear program and the
used propagation method. One can expect that practically useful bounds can be obtained for
sparse and highly structured linear programs, such as LP relaxations of some combinatorial
optimization problems. To illustrate this on a problem different from the WCSP, we apply
our method to the LP relaxation of the Weighted Max-SAT problem (Vazirani, 2001). We
experimentally show that the obtained bounds are often not far from global optima of the
LP relaxation and we prove that they are exact for known tractable subclasses of Weighted
Max-SAT.

Compared to the conference version of this paper (Dlask & Werner, 2020), we extended
the current paper in the following ways:

• We recall the well-known bounds propagation (which turns out to be equivalent to
enforcing arc consistency) and show how to compute infeasibility certificates whenever
propagation of bounds detects infeasibility (Section 3.1). We also mention the not-so-
known activity propagation and state sufficient conditions for it to be equivalent to
bounds propagation (Section 3.3 and Appendix A).

• We comment on the fixed points of the proposed method, state sufficient conditions that
guarantee its finiteness, and discuss convergence (Sections 4.1 and 4.2).

• We re-run the experiments to gather more data and provide a detailed analysis that
shows the achievable trade-offs between runtime and quality of the obtained bound
when applied to LP relaxation of Weighted Max-SAT (Section 6.4).

• In many places throughout our exposition, we provide more detailed comments and
insights and also illustrate the theory by additional examples to improve readability.

2. Inference in Systems of Linear Inequalities

A linear inequality in n real variables x = (x1, . . . , xn) ∈ Rn is the predicate aTx ≤ b where
a = (a1, . . . , an) ∈ Rn and b ∈ R. Here, aT denotes the transposition of vector a, so that
aTx = a1x1 + · · · + anxn. A system of linear inequalities1 aTi x ≤ bi, i ∈ {1, . . . ,m} = [m]
can be written in matrix form as Ax ≤ b where A = [aij] ∈ Rm×n is the matrix with rows
aT1 , . . . , a

T
m and b = (b1, . . . , bm) ∈ Rm.

Inference in a system of constraints is a process to derive new (not present in the system)
constraints that are implied by the system. We say that an inequality cTx ≤ d is implied
by (or inferred from, or valid for) an inequality system Ax ≤ b if cTx ≤ d holds for all x
satisfying Ax ≤ b. There are two obvious inference rules for linear inequalities:

1. Make a non-negative linear combination of existing inequalities. Precisely, for any
vector y ≥ 0, a system Ax ≤ b implies the inequality yTAx ≤ yT b. We call y the cause
vector of the new inequality (w.r.t. the system Ax ≤ b).

1. We will speak about a system of linear inequalities even if it contains also linear equalities, as a linear
equality aTx = b can be represented by two linear inequalities aTx ≤ b and −aTx ≤ −b.

667

Dlask & Werner

x1

x2

x2 ≤ 1

2x
1
+
x
2 ≤

3 2x
1
+
x
2 ≤

8

−x
1
+
x 2
≤
2

2x
1 +

2x
2 ≤

4

−x1
+ 2x2

≤ 4

Figure 1: Illustration of Example 1. Half-planes defined by the initial inequalities (1) (solid
lines, their intersection is shaded) and by the three inferred inequalities (dashed lines).

2. Loosen the right-hand side of an existing inequality. Precisely, an inequality aTx ≤ b
implies aTx ≤ c if b ≤ c.

Example 1. Let m = 3, n = 2 and the system Ax ≤ b read

2x1 + x2 ≤ 3, x2 ≤ 1, −x1 + x2 ≤ 2. (1)

Using the first rule, we can, e.g., sum the first and second inequality to infer the in-
equality 2x1 +2x2 ≤ 4, whose cause vector w.r.t. the system (1) is thus y = (1, 1, 0). Or we
can infer the inequality −x1 + 2x2 ≤ 4 with cause vector y = (14 ,

1
4 ,

3
2).

Using the second rule, from the first inequality in (1) we can infer, e.g., 2x1 + x2 ≤ 8.
These three inferred inequalities, as well as the polyhedron defined by (1), are depicted

in Figure 1.

A system of linear inequalities is feasible if it has at least one solution, and infeasible
if it has no solution. It follows from the first rule that if the inequality yTAx ≤ yT b is
infeasible (i.e., yTAx > yT b for all x) for some y ≥ 0, then the system Ax ≤ b is infeasible.
In that case, we call the cause vector y a certificate of infeasibility of the system Ax ≤ b.

Example 2. Let the system Ax ≤ b read

x1 − 2x2 ≤ −1, −x1 ≤ 0, x2 ≤ 0. (2)

Using the cause vector y = (1, 1, 2), we infer the inequality 0 ≤ −1 (which we can also write
as 0x1 + 0x2 ≤ −1). As this inequality is infeasible, system (2) is infeasible and y is its
certificate of infeasibility.

668

Using Constraint Propagation to Bound Linear Programs

The celebrated lemma by Farkas says that the condition above is also necessary:

Theorem 1. A system Ax ≤ b is feasible if and only if the inequality yTAx ≤ yT b is feasible
for every y ≥ 0.

Farkas’ lemma is usually stated in a slightly different form (Schrijver, 1998, Section 7.3)
(Matoušek & Gärtner, 2006, Section 6.4): a system Ax ≤ b is infeasible if and only if there
exists y ≥ 0 such that yTA = 0 and yT b < 0. To see equivalence with Theorem 1, just
notice that an inequality yTAx ≤ yT b is infeasible if and only if yTA = 0 and yT b < 0.

As our interest in this paper is to prove infeasibility of linear inequality systems rather
than general inference, we will actually never use the second inference rule. Nevertheless, for
completeness we state also the so-called affine form of Farkas’ lemma, which says that any
inequality valid for a linear inequality system can be inferred from this system by combining
the two inference rules:

Theorem 2. The following are equivalent:

(a) Ax ≤ b implies cTx ≤ d.

(b) There exists y ≥ 0 such that yTAx ≤ yT b implies cTx ≤ d.

Again, this is usually stated in a different form (Schrijver, 1998, Section 7.6), which we
recover by noting that yTAx ≤ yT b implies cTx ≤ d if AT y = c and yT b ≤ d (the second
inference rule).2

Proof. Direction (b)⇒(a) is obvious. To prove (a)⇒(b), suppose (a) holds, i.e., the system

Ax ≤ b, −cTx ≤ −d− δ

is infeasible for some δ > 0. By Farkas’ lemma, this implies that there are a vector y ≥ 0
and a scalar z ≥ 0 such that the inequality (yTA− zc)x ≤ yT b− z(d+ δ) is infeasible, i.e.,
yTA− zc = 0 and yT b− z(d+ δ) < 0.

If z = 0, this reads yTA = 0 and yT b < 0. In this case, the inequality yTAx ≤ yT b is
infeasible (i.e., the system Ax ≤ b is infeasible), hence it implies anything.

If z > 0, we substitute y := y/z to obtain yTA = c and yT b < d+ δ, hence (b) holds.

2.1 Composing Multiple Inference Steps

Inference can be split to multiple steps: from a subset of the initial inequalities we infer
(by taking their non-negative combination) a new inequality and add it to the initial set of
inequalities, then we infer another inequality from this enlarged set of inequalities, etc. It is
easy to see that the composition of such steps is equivalent to taking a single non-negative
combination of the initial inequalities. If we obtain an infeasible inequality in this way, we
have proved that the initial system was infeasible and the certificate of infeasibility w.r.t. the
initial system can be reconstructed from the cause vectors of the intermediate inequalities.
We illustrate this with an example.

2. Theorem 2 is trivially equivalent to strong duality for the LP pair (12). Assuming that the primal and
dual problem (12) are both feasible and bounded, indeed (a) says that the optimal value of the primal is
at most d and (b) means that the optimal value of the dual is also at most d. Since this holds for every d,
Theorem 2 is equivalent to equality of the optimal values of the primal and dual problem in (12).

669

Dlask & Werner

1

1

1

1
1

2
3

1

1

1

1

ϕ1 : 3x1 + x2 ≤ −2

ϕ2 : x3 ≤ 1

ϕ3 : −x1 − 2x3 ≤ 0

ϕ4 : x1 + x4 ≤ 1

ϕ5 : −x2 − x4 ≤ −9

ϕ6 : −x1 ≤ 2

ϕ7 : x2 ≤ 4

ϕ8 : x4 ≤ 3

ϕ9 : −x1 + x2 ≤ 6

ϕ10 : 0 ≤ −2

Figure 2: Propagation in a system of linear inequalities. The inequalities are indexed by
1–10. Inequalities 1–5 are initial, inequalities 6–10 are inferred. Edge weights indicate the
coefficients of non-negative combinations.

Example 3. Consider m = 5 initial inequalities on the left in Figure 2, where we denote
the i-th inequality by ϕi. From inequalities ϕ2 and ϕ3, we infer inequality ϕ6 = 2ϕ2 + ϕ3

(i.e., ϕ6 is obtained by multiplying ϕ2 by 2 and summing it with ϕ3). This derivation is
depicted in the figure by arrows with numbers which are the coefficients of the non-negative
combination. Next, we gradually infer inequalities ϕ7 = ϕ1+3ϕ6, ϕ8 = ϕ4+ϕ6, ϕ9 = ϕ6+ϕ7,
and finally ϕ10 = ϕ5 + ϕ7 + ϕ8. Inequality ϕ10 reads 0 ≤ −2, which is infeasible, therefore
the initial system ϕ1, . . . , ϕ5 was infeasible.

Let us now reconstruct the cause vector yi of each inequality ϕi w.r.t. the initial inequal-
ities ϕ1, . . . , ϕ5. For any i ≤ 5, we trivially have yi = ei, the i-th standard-basis vector
of R5. The cause vector of inequality ϕ6 is y6 = 2e2 + e3 = (0, 2, 1, 0, 0). Further we have
y7 = e1 + 3y6, y8 = e4 + y6, y9 = y6 + y7, and finally y10 = e5 + y7 + y8 = (1, 8, 4, 1, 1) is a
certificate of infeasibility of the initial system ϕ1, . . . , ϕ5.

In later sections, we will often write a single inference step in a table. We illustrate this
here with inferring ϕ7 = ϕ1 + 3ϕ6:

3x1 + x2 ≤ −2 y1 = e1 = (1, 0, 0, 0, 0) (3a)

−3x1 ≤ 6 3y6 = (0, 6, 3, 0, 0) (3b)

x2 ≤ 4 y7 = (1, 6, 3, 0, 0). (3c)

In the first and second column, we write the inequalities and the cause vectors, respectively.
The input entities are above the line and the output below it.

The history of inference is represented by an edge-weighted directed acyclic graph (DAG)
(V,E,w) where V is the index set of all (initial and inferred) inequalities, U ⊆ V is the index
set of initial inequalities (so in Example 3 we have V = {1, . . . , 10} and U = {1, . . . , 5}),
and E ⊆ V × V is a set of directed edges with non-negative weights w : E → R+ so that
each inferred inequality ϕi (i.e., i ∈ V \ U) is given by ϕi =

∑
j∈N+

i
wijϕj where N+

i =

{ j ∈ V | (i, j) ∈ E }. By composing inference steps, each inequality ϕi can be expressed in

670

Using Constraint Propagation to Bound Linear Programs

terms of the initial inequalities as ϕi =
∑

j∈U yijϕj where yi ∈ RU
+ is the cause vector of ϕi

w.r.t. the initial inequalities. For any initial inequality ϕi, we have yi = ei where ei is the
i-th standard-basis vector of RU . For any inferred inequality ϕi, we have y

i =
∑

j∈N+
i
wijy

j .

As we need the cause vector only for the final (infeasible) inequality (ϕ10 in the example),
storing all cause vectors explicitly in the memory can be wasteful. In addition, some inferred
inequalities may not be needed for the proof of infeasibility (ϕ9 in the example). We show
that any single cause vector can be computed more efficiently by dynamic programming.

Let ϕi, for i ∈ U , be an initial inequality and ϕk, for k ∈ V \U , be an inferred inequality.
Then yki is the sum of weight-products of all directed paths from node k to node i in the
DAG. By the weight-product of a path, we mean the product of all edge weights along the
path. If we want to compute yk for some single k, we can consider only the subgraph of the
DAG reachable from node k along directed paths. We introduce auxiliary variables zj to
store the sum of weight-products of all directed paths from node k to node j. Initially, we
set yk = 0, zk = 1, and zj = 0 for all j ̸= k. Then we process the nodes i of the subgraph in
a topological order as follows: if N+

i = ∅ then set yki := zi, otherwise update zj := zj+wijzi
for all j ∈ N+

i . Eventually we have yki = zi for all i ∈ U . The time and space complexity
of this algorithm is linear in the size of the graph.

2.2 Other Versions of Farkas’ Lemma

So far, we have assumed linear inequality systems in the general form Ax ≤ b. Farkas’ lemma
can be formulated for inequality systems in other forms and these versions can be easily
proved from one another (Matoušek & Gärtner, 2006, Proposition 6.4.3). The composition
algorithm from the previous section can then be easily adapted to these versions. Since it
is often convenient to work with a different version, we state some of them:

Theorem 3. A system Ax = b, x ≥ 0 is feasible if and only if the system yTAx = yT b,
x ≥ 0 is feasible for every y ∈ Rm.

Theorem 4. A system Ax ≤ b, x ≥ 0 is feasible if and only if the system yTAx ≤ yT b,
x ≥ 0 is feasible for every y ≥ 0.

Sometimes it is convenient to ‘dualize’ only some of the constraints, considering the
convex polyhedron defined by the remaining constraints as our ‘universe’. Note that the
following theorem subsumes Theorems 3 and 4:

Theorem 5. A system Ax ≤ b, Cx ≤ d is feasible if and only if the system yTAx ≤ yT b,
Cx ≤ d is feasible for every y ≥ 0.

Proof. The ‘only if’ direction is obvious. To prove the ‘if’ direction, we proceed by contra-
positive and suppose the system Ax ≤ b, Cx ≤ d is infeasible. By Theorem 1, this means
there exist vectors y, z ≥ 0 such that the inequality yTAx+ zTCx ≤ yT b+ zTd is infeasible.
For such y, the system yTAx ≤ yT b, Cx ≤ d is thus also infeasible.

Yet other versions can be obtained by combining the versions above. Formulating and
proving these is just an exercise on linear programming duality, see, e.g., Matoušek and
Gärtner (2006).

671

Dlask & Werner

3. Constraint Propagation in Systems of Linear Inequalities

In the constraint satisfaction problem (CSP), we are given domains D1, . . . , Dn and a set of
relations (constraints) over subsets of domains and we want to find a solution (x1, . . . , xn) ∈
D1×· · ·×Dn satisfying all the relations. A popular heuristic to tackle the CSP is constraint
propagation, where we iteratively delete some tuples from some relations (or, as a special
case, delete some elements from some domains, i.e., unary relations) without changing the
solution set. If some domain or relation becomes empty, the initial CSP was infeasible.
Constraint propagation is a form of inference because deleting a tuple is equivalent to
inferring a new constraint from the current constraint set and adding it to the constraint
set. Instead of inferring all constraints implied by the constraint set, only a small set of
simple inference (or propagation) rules is used, able to generate only a subset of all implied
constraints. In that case, the procedure may be refutation incomplete: it need not infer an
empty relation if the CSP is infeasible.

A system of linear inequalities can be seen as a CSP with the domains D1 = · · · =
Dn = R and the constraints being the linear inequalities. Though such a system can be
proved infeasible by linear programming algorithms, for large systems this may be too time
consuming or memory demanding. In such a case, constraint propagation can be a more
efficient option, despite the fact that it need not always detect infeasibility.

Constraint propagation in CSPs with numeric variables is well-studied (Benhamou &
Granvilliers, 2006) but typically assumes finite integral domains and/or non-linear con-
straints (Belotti, Cafieri, Lee, Liberti, et al., 2010; Bordeaux, Katsirelos, Narodytska, &
Vardi, 2011; Schulte & Stuckey, 2005; Harvey & Stuckey, 2003; Puranik & Sahinidis, 2017).
Perhaps the closest to our setting are CSPs with linear equality/inequality constraints over
integer variables, see, e.g., Bordeaux et al. (2011), Harvey and Stuckey (2003), Yuanlin
and Yap (2000). Although linear inequality systems over real variables are occasionally
mentioned in the CSP literature (Bordeaux et al., 2011; Schulte & Stuckey, 2005; Sofranac,
Gleixner, & Pokutta, 2022; Yuanlin & Yap, 2000), they were given limited attention because
of their relative simplicity.

Next, we discuss examples of constraint propagation methods applicable to systems
of linear inequalities over real variables. We do not aim to give a comprehensive survey of
such methods, instead we focus on construction of cause vectors and infeasibility certificates,
which have not been studied before in connection with constraint propagation.

3.1 Bounds Propagation

The propagation of lower and upper bounds for numeric variables in CSPs is well-known
(Bordeaux et al., 2011; Schulte & Stuckey, 2005; Benhamou & Granvilliers, 2006; Harvey
& Stuckey, 2003; Sofranac et al., 2022; Belotti et al., 2010) and, among other applications,
finds its use in practical presolve methods that are used to simplify linear programs before
a general solver is invoked (Brearley, Mitra, & Williams, 1975; Achterberg, Bixby, Gu,
Rothberg, & Weninger, 2014, 2020).

Suppose each variable xj has a lower bound lj ∈ R ∪ {−∞} and upper bound uj ∈
R∪ {+∞} with lj ≤ uj , so that its domain Dj ⊆ R is the interval {xj ∈ R | lj ≤ xj ≤ uj}.3

3. E.g., for lj , uj ∈ R, the domain Dj is the finite interval [lj , uj]. For lj ∈ R and uj = +∞, Dj is the
left-bounded interval Dj = [lj ,+∞).

672

Using Constraint Propagation to Bound Linear Programs

Before propagation, the bounds are initialized to lj = −∞ and uj = +∞ for all j. In every
iteration, the algorithm tightens the bounds on a single variable xj based on a single linear
inequality4 aTi x ≤ bi with aij ̸= 0. Namely, we have the bound (Puranik & Sahinidis, 2017,
Section 5.1)

aijxj ≤ bi −
∑

j′∈[n]\{j}
aij′xj′ ≤ bi −

∑
j′∈[n]\{j} : aij′>0

aij′ lj′ −
∑

j′∈[n]\{j} : aij′<0

aij′uj′︸ ︷︷ ︸
r

(4)

where5 the first inequality is aTi x ≤ bi and the second inequality follows from the bounds.
If aij > 0, then (4) implies xj ≤ r/aij , so we have derived an upper bound u′j = r/aij . If
aij < 0, then (4) implies xj ≥ r/aij , so we have a lower bound l′j = r/aij .

For each inferred bound, i.e., inequality of the form xj ≤ uj or −xj ≤ −lj , we will
denote the corresponding cause vector of this inequality by yj and yj , respectively. Next,
we describe one iteration of bounds propagation. We assume that if some upper or lower
bound is finite, it has been derived in some previous iteration, including its cause vector.

To derive the new bound inequality along with its cause vector, we need to express this
inequality as a non-negative combination of the used inequalities. We write this in a table
together with the cause vectors of the involved inequalities (like in Example 3). We assume
aij > 0 (for aij < 0 we would analogically obtain a lower bound):

aTi x/|aij | ≤ bi/|aij | ei/|aij | (5a)

−aij′xj′/|aij | ≤ −aij′ lj′/|aij | aij′y
j′/|aij | ∀j′ ∈ [n] \ {j} : aij′ > 0 (5b)

−aij′xj′/|aij | ≤ −aij′uj′/|aij | − aij′y
j′/|aij | ∀j′ ∈ [n] \ {j} : aij′ < 0 (5c)

xj ≤ u′j y′j . (5d)

Here, (5a) is the inequality aTi x ≤ bi divided by |aij |, (5b) are lower-bound inequali-
ties −xj′ ≤ −lj′ multiplied by aij′/|aij | > 0, and (5c) are upper-bound inequalities xj′ ≤ uj′

multiplied by −aij′/|aij | > 0. The resulting inequality and its cause vector in (5d) are the
sum of the entities above them. We see that the cause vector y′j of the derived inequality
xj ≤ u′j is

y′j =
(
ei +

∑
j′∈[n]\{j} : aij′>0

aij′y
j′ −

∑
j′∈[n]\{j} : aij′<0

aij′y
j′
)
/|aij |. (6)

Since it suffices to keep only the so-far best bound for each variable, we update the bound
(by setting uj := u′j and yj := y′j) only if it has improved (i.e., u′j < uj).

Note, a necessary condition for the bounds to get updated from the initially infinite
values is that the constraint system contains at least one unary constraint, i.e., a constraint
involving only a single variable.

4. If our constraint is a linear equality, aT
i x = bi, the propagation update is the same as the updates for

two inequalities aT
i x ≤ bi and −aT

i x ≤ −bi (Bordeaux et al., 2011, Section 3.3).
5. In more complex settings (such as non-linear constraints), interval arithmetic is often used to compute

the updates (Yuanlin & Yap, 2000; Benhamou & Granvilliers, 2006; Schulte & Stuckey, 2005; Belotti
et al., 2010). However, in case of linear inequalities, both approaches yield identical bounds.

673

Dlask & Werner

Example 4. Consider the inequality −2x1 + x2 − 3x3 ≤ −5 and the domains D1 = [1, 3],
D2 = [2, 6], and D3 = [0, 1] (obtained, e.g., by applying the iteration to individual inequali-
ties −x1 ≤ −1, x1 ≤ 3, −x2 ≤ −2, x2 ≤ 6, −x3 ≤ 0, and x3 ≤ 1).

For j = 1, (4) reads −2x1 ≤ −5−x2+3x3 ≤ −5−l2+3u3 = −4 = r, which yields x1 ≥ 2
and we increase the lower bound of x1 to l1 = max{1, 2} = 2. Following (5), one can derive
this formally as

−x1 +
1
2x2 −

3
2x3 ≤ −5

2
1
2e

i (7a)

−1
2x2 ≤ −1 1

2y
2 (7b)

3
2x3 ≤

3
2

3
2y

3 (7c)

−x1 ≤ −2 y′
1

(7d)

where y′1 = 1
2e

i + 1
2y

2 + 3
2y

3.
Next, for j = 2, we obtain x2 ≤ −5 + 2x1 + 3x3 ≤ 4, which decreases the upper bound

of x2 to u2 = min{6, 4} = 4. Finally, for j = 3, the inequalities −3x3 ≤ −5+2x1−x2 ≤ −1
imply x3 ≥ 1

3 , which improves the previous lower bound to l3 = max{0, 13} = 1
3 . The new

domains thus are D1 = [2, 3], D2 = [2, 4], D3 = [13 , 1].

If during propagation we get lj > uj (i.e., Dj = ∅, ‘domain wipe-out’) for some j ∈ [n],
then the initial CSP is infeasible. This contradiction is inferred as follows:

−xj ≤ −lj yj (8a)

xj ≤ uj yj (8b)

0 ≤ uj − lj y = yj + yj . (8c)

Due to uj − lj < 0 the inferred inequality (8c) is infeasible, therefore its cause vector yj +yj

is a certificate of infeasibility of the system Ax ≤ b.
An established form of local consistency in this setting is bound(R) consistency (Bor-

deaux et al., 2011; Schulte & Stuckey, 2005; Harvey & Stuckey, 2003; Lhomme, 1993). As
we do not consider other forms of bounds consistency (such as bound(Z) consistency from
Bordeaux et al., 2011; Schulte & Stuckey, 2005), we call it simply ‘bounds consistency’. We
state its definition only for the case when all bounds are finite6 (i.e., for all j ∈ [n] we have
−∞ < lj ≤ uj < +∞):

Definition 1 (Bounds consistency). Domains Dj = [lj , uj], j ∈ [n] are bounds consistent
w.r.t. a given constraint if for each j ∈ [n] and xj ∈ {lj , uj} there exist values xj′ ∈ Dj′,
j′ ∈ [n]\{j} satisfying the constraint. The domains Dj, j ∈ [n] are bounds consistent w.r.t.
a set of constraints if they are bounds consistent w.r.t. each constraint in the set.

After executing the propagation update for each variable of a single inequality, the re-
sulting domains become bounds consistent w.r.t. that inequality (Yuanlin & Yap, 2000,
Section 3) (see Example 4). By iterating the updates for different inequalities of a system
Ax ≤ b, as in Algorithm 1, the domains gradually shrink. This process in general need

6. We did not find in the literature a definition of bounds consistency for the case when some bounds can
be infinite. We did not want to discuss this question here because it is not essential for the paper.

674

Using Constraint Propagation to Bound Linear Programs

inputs: matrix A ∈ Rm×n, vector b ∈ Rm

1 For each j ∈ [n], set lj := −∞ and uj := +∞.
2 while bounds change
3 Choose j ∈ [n] and i ∈ [m] with aij ̸= 0.
4 Set d := r/aij where r is defined in (4).
5 if aij > 0 and d < uj then
6 Set uj := d. Set yj as in (6).
7 else if aij < 0 and d > lj then
8 Set lj := d. Set yj analogically to (6).

9 if lj > uj then
10 return y = yj + yj . (System Ax ≤ b is infeasible, with certificate y.)

Algorithm 1: Bounds propagation in system Ax ≤ b.

not reach a fixed point in finite time7 (Davis, 1987, Section 9), (Puranik & Sahinidis, 2017,
Section 5.2), which may not matter in practice because the propagation is refutation incom-
plete anyway. To achieve termination in finite time, one option is to discretize the domains
(e.g., by using floating-point arithmetic) (Benhamou & Granvilliers, 2006; Bordeaux et al.,
2011; Lhomme, 1993), in which case the propagation takes pseudo-polynomial time (Bor-
deaux et al., 2011). Another option is to terminate the propagation before reaching a fixed
point (e.g., when the bounds do not change ‘too much’), which is related to the notion of
arc B(w)-consistency (Lhomme, 1993).

For this particular kind of propagation, it may be practical to store all cause vectors
explicitly, as opposed to Section 2.

3.2 Arc Consistency

Still assuming that the domains D1, . . . , Dn are real closed intervals, bounds consistency
is equivalent to (generalized) arc consistency (a.k.a. domain consistency, see Schulte &
Stuckey, 2005, Section 2.2 and Harvey & Stuckey, 2003). To show this formally, let us recall
the definition of arc consistency in this setting.

Definition 2 (Arc consistency, Benhamou & Granvilliers, 2006). Domains Dj, j ∈ [n] are
arc consistent w.r.t. a given constraint if for each j ∈ [n] and xj ∈ Dj there exist values
xj′ ∈ Dj′, j

′ ∈ [n]\{j} satisfying the constraint. The domains Dj, j ∈ [n] are arc consistent
w.r.t. a set of constraints if they are arc consistent w.r.t. each constraint in the set.

The only difference between Definitions 1 and 2 lies in whether we require xj ∈ {lj , uj}
or xj ∈ Dj , which is why bounds consistency was called arc B-consistency (‘bounds arc
consistency’) by Lhomme (1993, Section 3.1). It is easy to see that bounds consistency
and arc consistency are equivalent for constraints defined by linear inequalities because the

7. The bounds consistency closure can be in this case computed in polynomial time by solving a linear
program (Belotti et al., 2010, Section 4), (Bordeaux et al., 2011, Section 3.4.1). Unfortunately, this
linear program is even larger than the original system Ax ≤ b. It is an interesting question whether the
structure of this linear program would allow us to solve it efficiently (at least in some cases).

675

Dlask & Werner

feasible set is convex. We formalize this fact in Proposition 1. Analogous results were
shown for a slightly different setting by, e.g., Lhomme (1993, Corollary 1) or Yuanlin and
Yap (2000, Section 4) (also see Schulte & Stuckey, 2005).

Proposition 1. Interval domains D1, . . . , Dn are arc consistent w.r.t. a linear constraint ϕi

(given by aTi x ≤ bi), i ∈ [m] if and only if they are bounds consistent w.r.t. ϕi.

Proof. The ‘only if’ direction is obvious, so we proceed with the ‘if’ direction. Let j ∈ [n] and
let x and x be such that xj = lj , xj = uj , a

T
i x ≤ bi, and aTi x ≤ bi. For any value x∗j ∈ Dj ,

there exists α ∈ [0, 1] such that x∗j = αlj + (1 − α)uj . Consequently, x∗ = αx + (1 − α)x

satisfies aTi x
∗ ≤ bi.

Remark 1. Even if the initial domains are intervals, they need not be intervals after prop-
agating arc consistency for general (possibly non-convex) constraints. On the other hand,
the projections of any convex sets (in particular, polyhedral sets) onto individual coordinates
are intervals, which is why it is natural to restrict Definition 2 to intervals in this setting.

3.3 Activity Propagation

In Dlask and Werner (2023), we proposed a natural kind of constraint propagation in a
system Ax ≤ b of linear inequalities and called it activity propagation. Recall that an
inequality aTx ≤ b is active at point x ∈ Rn if it holds with equality at that point, i.e.,
aTx = b. An inequality aTi x ≤ bi in a system Ax ≤ b is always active if Ax ≤ b implies
aTi x = bi, i.e., the inequality aTi x ≤ bi is active at all points x ∈ Rn satisfying Ax ≤ b
(Freund, Roundy, & Todd, 1985). Clearly, if some inequality is always active in a subset of
the set of inequalities Ax ≤ b, then it is always active also in the whole set Ax ≤ b. In one
iteration of activity propagation, we choose a subset of the inequalities, infer which (if any)
of them are always active in this subset, and turn these inequalities to equalities.

To describe the activity propagator formally, suppose we already know that some of the
inequalities of the system Ax ≤ b (where A ∈ Rm×n), given by indices [m]\I where I ⊆ [m],
are always active. Then the system Ax ≤ b is equivalent to

aTi x ≤ bi ∀i ∈ I (9a)

aTi x = bi ∀i ∈ [m] \ I. (9b)

The activity propagator chooses a subset (‘block’)

aTi x ≤ bi ∀i ∈ B ∩ I (10a)

aTi x = bi ∀i ∈ B \ I. (10b)

of constraints (9) (determined by a set B ⊆ [m]), infers which of the inequalities (10a) are
always active in system (10), and removes the indices of these inequalities from I.

The algorithm starts with I = [m] (so that (9) reads Ax ≤ b) and then iterates the
activity propagator for different blocks B ⊆ [m], which progressively shrinks the set I. If
(10) becomes infeasible for some B, we know that the original system Ax ≤ b was infeasible.

If the blocks B are chosen from some collection B ⊆ 2[m] fixed in advance, activity
propagation leads to the following local consistency:

676

Using Constraint Propagation to Bound Linear Programs

Definition 3 (B-consistency, Dlask & Werner, 2023). For B ⊆ [m], a set I ⊆ [m] is
B-consistent w.r.t. a system Ax ≤ b if system (10) is feasible and does not contain any
always-active inequality. For B ⊆ 2[m], a set I ⊆ [m] is B-consistent w.r.t. the system
Ax ≤ b if it is B-consistent for all B ∈ B.

We proved in Dlask and Werner (2023) that, for any subset B ⊆ 2[m], activity propaga-
tion either detects infeasibility or attains B-consistency after a finite number of iterations,
assuming that each block from B is visited again after a finite number of iterations. Note
that rather than an equality aTi x = bi, it suffices that the propagator derives the inequality
−aTi x ≤ −bi because the inequality aTi x ≤ bi is already present in the system. The existence
of the cause vector for the newly derived inequality is guaranteed by Theorem 2. When-
ever infeasibility is detected, it is possible to compute a certificate of infeasibility from the
history of the propagation, according to Theorem 1. In general, the certificate can be also
computed by the algorithm outlined in Section 2.1 using the intermediate cause vectors.

We described a procedure which computes the certificate in anti-chronological order of
the propagations (as opposed to the chronological approach from Section 2.1) in Dlask and
Werner (2023, Appendix A), but it considers a system in a different form, namely Ax = b,
x ≥ 0. Investigating the relation between the chronological method from Section 2.1 and
the anti-chronological method from Dlask and Werner (2023) is subject to further research.
We will also briefly comment on this later in Section 5.2.

In Appendix A, we show that, under precise additional conditions on the system Ax ≤ b
and the set of blocks B, bounds consistency (hence also arc consistency) coincides with
B-consistency.

3.4 Tightening Right-Hand Sides

Not only due to the relation between bounds/arc consistency and B-consistency, it may be
natural to ask whether there exists a common generalization of these consistencies. Here,
we propose one such local consistency. It is based on tightening the right-hand side (RHS)
of individual linear inequalities.

Definition 4 (B-RHS-consistency). Let A ∈ Rm×n. For B ⊆ [m], a vector b ∈ Rm is
B-RHS-consistent if, for every i ∈ B,

bi = max{aTi x | x ∈ Rn, aTi′x ≤ bi′ ∀i′ ∈ B}. (11)

For B ⊆ 2[m], a vector b ∈ Rm is B-RHS-consistent if it is B-RHS-consistent for all B ∈ B.

A propagator for B-RHS-consistency is simply the following one: for each i ∈ B, com-
pute the value (11), denote it by b′i, and update bi := b′i. It can be shown that after
processing all constraints from a set B, the vector b becomes B-RHS-consistent.

The proposed propagation generalizes bounds propagation because one can take ai = ej

or ai = −ej so that the right-hand side is tightened in xj ≤ bi or −xj ≤ bi, respectively. It
also generalizes activity propagation since we may have ai = −ai′ for i ̸= i′ and inferring
that aTi x ≤ d and aTi′x ≤ −d for some d ∈ R is then equivalent to deriving aTi x = d. One
might think that it would be more general to explicitly keep both upper and lower bound on
aTi x resulting in li ≤ aTi x ≤ ui as in (Sofranac et al., 2022; Belotti et al., 2010; Achterberg,
2007) – but this can be represented by two inequalities −aTi x ≤ −li and aTi x ≤ ui.

677

Dlask & Werner

The existence of cause vectors of the newly inferred (tightened) inequalities is guaranteed
by Theorem 2. To provide more details, if the system aTi′x ≤ bi′ , i

′ ∈ B implies aTi x ≤ b′i,
then we may formally add the constraint aTi x ≤ b′i into the system and replace the original
constraint aTi x ≤ bi by the new one in all sets B rather than update bi := b′i. However, the
difference is only semantic. If the system (11) is infeasible for some B, one can compute the
certificate of infeasibility w.r.t. the original system by the approach described in Section 2.1.
For this particular kind of propagation, each node in the DAG has at most maxB∈B |B| − 1
successors, so the graph is sparse if the sets in B are small.

Remark 2. We did not suggest how to choose the set of blocks B in activity propagation and
B-RHS-consistency. In general, it is desirable to choose the blocks such that the propagation
can be done efficiently, preferably without the need to invoke a general LP solver. In relation
to Remark 7 (stated later), a similar question can be asked for the related block-coordinate
descent method, see Remark 2 in Dlask and Werner (2023).

Remark 3. A similar method for tightening the RHSs of linear constraints is mentioned
by Puranik and Sahinidis (2017, Equation (14)) (also see Savelsbergh, 1994). However, this
method considers all the other inequalities, i.e., we have B = [m] in (11). This method
is not useful for our purposes because it requires to directly check feasibility of the whole
system Ax ≤ b, contradicting our focus on (simpler) local consistency techniques. Although
such a method can be useful for pre-processing constraints in (mixed) integer linear programs
(or LP relaxations of non-linear programs), it is also admitted by Puranik and Sahinidis
(2017) that solving such problems may be too expensive. Solving only a subproblem (as
in (11) for a smaller set B) may thus provide a certain trade-off, which was noted by
Achterberg et al. (2014, Section 6).

Another method related to bounds propagation with more constraints was proposed and
analyzed by Belotti (2013) where the new bounds for a variable are not inferred only from
a single linear inequality, but instead from a pair of linear inequalities, which can provide
tighter bounds at higher computational cost.

Remark 4. It is known that most local consistencies can be unified using the theory of
partially ordered sets (Apt, 1999; Bessiere, 2006; Dlask, 2022). Locally consistent CSP
instances (with a fixed structure) form a subset L of a complete lattice S, where L is closed
under the join operation. Enforcing the local consistency is a closure operator on S (namely,
the closure of s ∈ S is the join of the elements of L that are less than or equal to s).
Finally, the enforcing algorithm (constraint propagation) can be seen as chaotic applications
of propagators on S.

The described local consistencies fit into this framework. For bounds consistency (and arc
consistency), S is the set of boxes D1× · · ·×Dn where D1, . . . , Dn are real closed intervals,
partially ordered by inclusion (hence the join operation is the convex hull of union). For
activity propagation, S is the set of subsets of [m], partially ordered by inclusion (hence the
join is union) (Dlask & Werner, 2023). For B-RHS-consistency, S is Rm, partially ordered
by element-wise arithmetic ordering ≤ (hence the join is the element-wise maximum). For
all of these consistencies, it is easy to check that the set L of consistent elements of S is
closed under join.

678

Using Constraint Propagation to Bound Linear Programs

4. Linear Optimization by Constraint Propagation

In Sections 2 and 3, we showed how a certificate of infeasibility of a linear inequality system
can be obtained by constraint propagation. Here, we show how this certificate can be used
to improve a non-optimal feasible solution to a linear program. We will show this on the
pair of mutually dual linear programs

max cTx min bT y (12a)

Ax ≤ b y ≥ 0 (12b)

x ∈ Rn AT y = c (12c)

where we will refer to the problem on the left as primal and to the problem on the right as
dual. We assume that both problems are feasible and bounded.

By complementary slackness, a primal-feasible solution x and a dual-feasible solution y
are simultaneously optimal if and only if yT (Ax − b) = 0, i.e., for every i ∈ [m] we have
aTi x = bi or yi = 0 (or both), i.e., at least one of the two corresponding constraints on
line (12b) is active. Denoting by

I∗(y) = {i ∈ [m] | yi = 0} (13)

the set of dual constraints (12b) active at point y, this condition can be rewritten as follows:
a dual-feasible solution y is optimal for the dual if and only if the left-hand system in

bT ȳ < 0 (14a)

aTi x ≤ bi ȳi ≥ 0 ∀i ∈ I (14b)

aTi x = bi ȳi ∈ R ∀i ∈ [m] \ I (14c)

x ∈ Rn AT ȳ = 0 (14d)

is feasible for I = I∗(y). On the right in (14), we wrote Farkas’ alternative system to the
left-hand system.8 The left-hand system is infeasible if and only if the right-hand system
is feasible. In that case, any ȳ feasible for the right-hand system is not only a certificate
of infeasibility of the left-hand system but also a dual-improving direction from the current
point y, as given by the following proposition.

Proposition 2. Let y ∈ Rm be feasible for the dual (12) and ȳ be a solution to the right-
hand system (14) for I = I∗(y). Let

α∗ = min
i∈[m] : ȳi<0

−yi/ȳi. (15)

Then for every 0 < α ≤ α∗, the point y′ = y+αȳ is feasible for the dual (12) and bT y′ < bT y.

Proof. First, see that α∗ > 0 because ȳi < 0 implies i ∈ [m] \ I∗(y) by (14b), i.e., yi > 0 by
definition of I∗(y). Additionally, since we assume that both primal and dual are bounded,
the value α∗ is well-defined: if there was no i ∈ [m] with ȳi < 0, then the dual (12) would

8. The pair (14) corresponds to a more general version of Farkas’ lemma than the one considered in Theo-
rem 1 because the left-hand system contains also equality constraints (recall Section 2.2).

679

Dlask & Werner

be unbounded and α could be chosen arbitrarily large, making the dual objective bT y′

arbitrarily small.
To show feasibility, if i ∈ [m] is such that ȳi ≥ 0, then yi + αȳi ≥ 0 by yi, α ≥ 0. On

the other hand, if yi < 0, then α ≤ α∗ ≤ −yi/ȳi, i.e., yi + αȳi ≥ 0. This implies y′ ≥ 0
and AT y′ = AT y = c due to AT ȳ = 0. By bT ȳ < 0 and α > 0, the dual objective strictly
improves: bT y′ = bT y + αbT ȳ < bT y.

Note that the step size α = α∗ is optimal in the sense that, for the fixed improving
direction ȳ, it provides the largest possible improvement of the dual objective.

These properties can be used to iteratively optimize the dual linear program if an initial
dual-feasible solution y is provided. We construct the left-hand system (14) and, if it is
infeasible for I = I∗(y), find an improving direction ȳ satisfying the right-hand system,
update y := y + α∗ȳ, and improve the current objective while maintaining feasibility. By
repeating this iteration, one obtains a better and better bound on the common optimal value
of (12). Eventually, if the left-hand system becomes feasible for current y, y is optimal for
the dual. Note, even though the dual objective improves after each iteration, this general
scheme need not terminate in a finite number of steps or even converge to an optimal
solution.

Remark 5. This optimization scheme is related to the primal-dual algorithm (Papadim-
itriou & Steiglitz, 1998, Section 5), where complementary slackness conditions are not
enforced strictly, but their violation is minimized instead. This change ensures conver-
gence and finiteness of the algorithm. Note, in modern terminology, calling such a method
‘primal-dual’ can be seen as a misnomer because only a dual-feasible solution is maintained
(Papadimitriou & Steiglitz, 1998, Section 5.2).

Since deciding feasibility of the left-hand system (14) is in general as hard as solving
the general linear programming problem, it may be inefficient for large instances. We
propose that in such cases it can be desirable to do it by constraint propagation, despite
the fact that constraint propagation need not always detect infeasibility (i.e., is refutation
incomplete9). In one iteration of this scheme, we apply a suitable (problem-dependent) set
of constraint propagation rules for the left-hand system (14) and, whenever infeasibility is
detected, construct the certificate of infeasibility (the dual-improving direction) and use it
to improve the dual-feasible solution y. This is outlined in Algorithm 2. For constraint
propagation and construction of the improving direction, one can use, e.g., the approaches
reviewed in Section 3.

As constraint propagation need not always find a solution to the right-hand system (14)
even if it exists, points y returned by Algorithm 2 need not be optimal. However, even
non-optimal solutions can be useful in practice. As an example, if the primal (12) is an LP
relaxation of a hard combinatorial optimization problem, then any solution feasible for the
dual (12) provides an upper bound on the optimal value of the original combinatorial prob-
lem. Such bounds can be used in branch-and-bound search where it may not be necessary

9. Recall from Section 2 that we call a propagation method refutation complete (for a given class of prob-
lems) if it detects a contradiction in any infeasible/unsatisfiable problem from the class and refutation
incomplete otherwise. Synonymous terms to refutation-completeness are that the method is a decision
procedure (Cooper et al., 2010; Thapper & Živný, 2012; Cooper & Živný, 2016) or a complete refutation
method (Hooker, 2000, Section 3.2.1).

680

Using Constraint Propagation to Bound Linear Programs

inputs: instance of problem (12), dual-feasible solution y, constraint propagation
rules

1 repeat
2 Set I := I∗(y).
3 Try to detect infeasibility of left-hand system (14) by constraint propagation.
4 if left-hand system (14) is proved infeasible then
5 Find an improving direction ȳ satisfying right-hand system (14).
6 Compute (possibly non-optimal) step size α > 0 so that y + αȳ is feasible.
7 Update y := y + αȳ.

8 else
9 return y (At this point, we are unable to prove infeasibility.)

Algorithm 2: Iterative scheme for approximate optimization of the dual (12).

or efficient to solve the LP relaxation to global optimality, as there is a trade-off between
the time spent in computing the bound and the time spent in search. Note, we do not
use the computed bounds in branch-and-bound search in this paper, our focus is only on
computing the bounds.

4.1 Fixed Points and Faces

Let us now comment on the fixed points of Algorithm 2 (i.e., the points which it is unable
to improve) and show that these points cluster to the (relative interiors of) faces of the
feasible set of the dual (12).

Let
Y = {y ∈ Rm | y ≥ 0, AT y = c} (16)

denote the feasible set of the dual (12), which is a convex polyhedron. Recall that, for
any I ⊆ [m], the set

FI = {y ∈ Y | yi = 0 ∀i ∈ I} (17)

is a face of the polyhedron Y (Schrijver, 2004, Section 5.6). Moreover, if10 {y ∈ Y | I∗(y) =
I} ≠ ∅, then

riFI = {y ∈ Y | I∗(y) = I} ⊆ FI (18)

is the relative interior (Rockafellar, 1972, Section 6) of the face FI .
Further in this section we assume a fixed set of constraint propagation rules is given for

the left-hand system (14). Let I ⊆ 2[m] be the set of all sets I ⊆ [m] for which this system is
feasible or the constraint propagation rules do not detect its infeasibility.11 Consequently,
the set of fixed points of Algorithm 2 with such constraint propagation rules is

{y ∈ Y | I∗(y) ∈ I} =
⋃
I∈I

{y ∈ Y | I∗(y) = I} =
⋃
I∈I′

riFI (19)

10. For completeness, if this assumption is not satisfied, then we have riFI = {y ∈ Y | I∗(y) = I ′}
where I ′ = {i ∈ [m] | y ∈ FI =⇒ yi = 0} (Dlask, 2022, Section 1.1.3.1), (Greenberg, 1996, Theorem 8).

11. The existence of such a set I implicitly implies that the constraint propagation rules are deterministic,
i.e., whether they detect infeasibility or not depends only on I ⊆ [m].

681

Dlask & Werner

where I ′ = {I ∈ I | {y ∈ Y | I∗(y) = I} ≠ ∅}. Therefore, the set of fixed points (19) is
the union of relative interiors of some faces of Y . Note that {riFI | I ⊆ [m], FI ̸= ∅} is
a partition of Y (Rockafellar, 1972, Theorem 18.2) and the set of fixed points (19) is thus
formed as a union of some elements of this partition, which depends only on the chosen
propagation rules.

These results can be further extended if a natural assumption on the constraint propa-
gation rules is adopted, namely that I ∈ I implies I ′ ∈ I for all I ′ ⊇ I. This means, if the
constraint propagation rules do not detect infeasibility of the left-hand system (14), then
they will not detect infeasibility even if the set I is enlarged, i.e., some of the equalities (14c)
are relaxed to inequalities. With this assumption, the set of fixed points (19) can be also
expressed as

{y ∈ Y | I∗(y) ∈ I} =
⋃
I∈I

⋃
I′⊇I

{y ∈ Y | I∗(y) = I ′} =
⋃
I∈I

{y ∈ Y | I∗(y) ⊇ I} =
⋃
I∈I

FI ,

(20)
i.e., as the union of some faces of Y .

Remark 6. The result stated by Dlask and Werner (2023, Appendix B), which connects
the B-consistent sets (in the sense of Definition 3) and faces of a certain polyhedron is not
related to the discussion in this section. First, in Dlask and Werner (2023), these are faces
of a polyhedron which is a superset of the feasible set of the primal whereas we consider
faces of the feasible set of the dual. Second, the results stated here apply to any constraint
propagation method, not only activity propagation.

Remark 7. A method related to our iterative scheme from Section 4 is block-coordinate
descent (BCD). It is also initialized at a dual-feasible point y and iteratively improves it. In
each iteration, BCD chooses a block B ∈ B of dual variables (where B ⊆ 2[m] is a pre-defined
set of blocks) and optimizes the dual over the variables yi, i ∈ B while keeping the other
dual variables yi, i /∈ B constant. By choosing different blocks, the dual objective gradually
improves until a fixed point is reached. Except for special cases (Zadeh, 1970; Bertsekas,
1997; Beck, 2014; Tseng, 2001; Dlask & Werner, 2022), the fixed points of BCD need
not be global optima of the dual. We proved in Dlask and Werner (2023) that if activity
propagation (see Section 3.3) is applied to the left-hand system (14) such that the set B
in activity propagation coincides with the set of coordinate blocks in BCD, then BCD and
Algorithm 2 have identical fixed points.

4.2 Finiteness and Capacity Scaling

As already mentioned, Algorithm 2 need not in general terminate in a finite number of
iterations. In this section, we state sufficient conditions for its finiteness.

First, notice that the improving direction ȳ used on line 5 of Algorithm 2 can be chosen
as any vector satisfying the right-hand system (14). To guarantee finiteness, we require
a technical assumption, namely that there exists a finite set Ȳ such that any improving
direction used by Algorithm 2 is from this set. This condition is not satisfied trivially
because the same set I∗(y) may be encountered repeatedly during the run of Algorithm 2
and, in each such an iteration, the improving direction ȳ may be chosen as a different vector
satisfying the right-hand system (14).

682

Using Constraint Propagation to Bound Linear Programs

The following theorem shows that if there also exists a positive lower bound on the step
sizes used in Algorithm 2, then the algorithm terminates after a finite number of iterations.

Theorem 6. Let the dual (12) be feasible and bounded. Let there exist a constant αmin > 0
and a finite set Ȳ ⊆ Rm such that in every iteration of Algorithm 2:

(a) improving direction ȳ found on line 5 belongs to Ȳ ,

(b) step size α computed on line 6 satisfies α ≥ αmin.

Then the algorithm terminates after a finite number of iterations (i.e., updates of y).

Proof. We follow a proof technique analogous to the one in Dlask (2018, Section 3.2.4):
we show that there is a value ∆ > 0 that depends only on the instance (i.e., on A, b, c)
such that the dual objective improves at least by ∆ in each iteration. Thus, if the dual
has an optimal solution y∗ and the algorithm is initialized at y, it terminates after at most
⌊(bT y − bT y∗)/∆⌋ iterations.

Without loss of generality, we assume that bT ȳ < 0 for each ȳ ∈ Ȳ . Indeed, if bT ȳ ≥ 0
for some ȳ ∈ Ȳ , then ȳ can be removed from Ȳ as it is never used by the algorithm because
it does not satisfy the right-hand system (14) for any I ⊆ [m]. With this assumption, the
objective improves in each iteration at least by ∆ = minȳ∈Ȳ (−αminb

T ȳ) because after any

update from y to y + αȳ we have bT y − bT (y + αȳ) = −αbT ȳ ≥ −αminb
T ȳ ≥ ∆.

For completeness, ∆ is not well-defined if Ȳ = ∅. But, in such case, Algorithm 2 always
terminates already with the initial point as it cannot use any improving direction.

We will now discuss how the assumptions of Theorem 6 can be satisfied in practice. We
begin with condition (a).

Because the set [m] has only a finite number of subsets, the existence of a finite set Ȳ
satisfying condition (a) is equivalent to the following: for each I ⊆ [m] there exists a finite
set ȲI ⊆ { ȳ ∈ Rm | ȳ satisfies the right-hand system (14) } such that, in any iteration, the
improving direction chosen on line 5 in Algorithm 2 is from the set ȲI∗(y) where y is the
current dual-feasible solution. See that ȲI = ∅ if the left-hand system (14) is feasible because
then right-hand system is infeasible. Moreover, if we are unable to prove infeasibility of the
left-hand system for some I = I∗(y), then one can set ȲI = ∅.

In particular, if the method for constructing the improving direction on line 5 in Al-
gorithm 2 is deterministic and depends only on I, then each set ȲI is either empty or a
singleton, so Ȳ =

⋃
I⊆[m] ȲI is finite and satisfies condition (a) in Theorem 6.

To satisfy condition (b), we introduce a heuristic analogous to capacity scaling in max-
imum flow algorithms (Magnanti, Ahuja, & Orlin, 1993, Section 7.3). This heuristic has
been used to ensure finiteness of the Augmenting DAG algorithm (Koval & Schlesinger,
1976; Werner, 2007, 2005), VAC algorithm (Cooper et al., 2010, Section 11.1),12 and later
by Werner (2017, Equation (21)) and Dlask (2018, Section 3.1.7) in a more general setting
of minimizing unconstrained convex piecewise-affine functions. Let

I∗θ (y) = {i ∈ [m] | yi ≤ θ} (21)

12. To be more precise, Cooper et al., 2010 ensured finiteness of VAC by stopping if the bound does not
sufficiently improve in several consecutive iterations. Capacity scaling was used only for improving the
speed of the algorithm, but the authors presented an example where the VAC algorithm can enter an
infinite loop if neither capacity scaling nor the previously mentioned heuristic is used. However, we
discuss later in Remark 8 that finiteness of the VAC algorithm can be ensured by capacity scaling only.

683

Dlask & Werner

denote the set of dual constraints (12b) that are ‘almost’ active, i.e., active up to a threshold
θ ≥ 0. Clearly, I∗θ (y) = I∗(y) for θ = 0 (see (13)). If I∗(y) is replaced by I∗θ (y) on line 2 in
Algorithm 2, the scheme remains valid. In detail, if the left-hand system (14) is infeasible
for I = I∗θ (y), then it is also infeasible for I = I∗(y) due to I∗(y) ⊆ I∗θ (y) for any θ ≥ 0. This
is equivalent to the fact that any ȳ feasible for the right-hand system (14) with I = I∗θ (y)
is also feasible for this system with I = I∗(y).

Next, we prove that, if the computed step size on line 6 of Algorithm 2 is optimal and
I∗(y) on line 2 is replaced by I∗θ (y) for some constant θ > 0, then there exists a positive
lower bound on the computed step sizes. Thus, condition (b) in Theorem 6 is implied by
the aforementioned conditions which yields the next theorem.

Theorem 7. Let the dual (12) be feasible and bounded. Suppose that

(a) there exists a finite set Ȳ ⊆ Rm such that in every iteration, improving direction ȳ
found on line 5 belongs to Ȳ ,

(b) I∗(y) on line 2 is replaced by I∗θ (y) where θ > 0 is a constant,

(c) the step size computed on line 6 is optimal, i.e., α = α∗ where α∗ is (15).

Then Algorithm 2 terminates after a finite number of iterations (i.e., updates of y).

Proof. We prove that there exists αmin > 0 such that for any α computed by the algorithm
(with the modifications assumed in this theorem), it holds that α ≥ αmin. The claim will
then follow from Theorem 6. Analogously to the proof of Theorem 6, we assume (without
loss of generality) that for any ȳ ∈ Ȳ , there exists dual-feasible y such that ȳ satisfies the
right-hand system (14) for I = I∗θ (y).

Let us define

δ = max
ȳ∈Ȳ

max
i∈[m] : ȳi<0

−ȳi (22)

so that δ ≥ −ȳi > 0 for any ȳ used by Algorithm 2 and any i considered in definition of
step size (15). Clearly, δ is positive and well-defined because the maxima are always taken
over finite sets. The case with Ȳ = ∅ is treated as in the proof of Theorem 6. On the other
hand, if Ȳ ̸= ∅ but all ȳ ∈ Ȳ satisfy ȳ ≥ 0, then the dual is unbounded, which violates our
assumption on its boundedness.

Now, we claim that αmin = θ/δ is positive (because θ > 0 and δ > 0) and constitutes a
lower bound on the step sizes computed by the algorithm. To show this, let y be any feasible
solution for the dual and ȳ ∈ Ȳ satisfy the right-hand system (14) for I = I∗θ (y). We claim
that α∗ ≥ αmin, i.e., for all i ∈ [m] with ȳi < 0, −yi/ȳi ≥ αmin. Indeed, as discussed in the
proof of Proposition 2, if ȳi < 0, then i /∈ I = I∗θ (y) due to the left-hand constraints (14b),
so yi > θ by definition of I∗θ (y). Combined with δ ≥ −ȳi, the claim follows.

Note, instead of using a single fixed θ > 0, one can run the iterative algorithm multiple
times, each time with a lower value of θ, starting from the previously attained fixed point
and thus gradually improving the current feasible solution y even further, as it was done by
Cooper et al. (2010, Section 11.1) and later by Dlask (2018, Algorithm 14) or Dlask, Werner,
and de Givry (2023). In this way, we obtain an anytime algorithmic scheme outlined in
Algorithm 3. It is experimentally observed that this modification results in larger step sizes
and faster decrease of the objective (Cooper et al., 2010; Dlask, 2018).

684

Using Constraint Propagation to Bound Linear Programs

inputs: instance of problem (12), dual-feasible solution y, initial threshold θ > 0,
constraint propagation rules for left-hand system (14).

1 while θ is not small enough or time limit is not reached do
2 Improve y by Algorithm 2 with I∗(y) replaced by I∗θ (y) on line 2.
3 Decrease θ while keeping θ > 0 (e.g., θ := θ/10).

4 return y

Algorithm 3: Approximate optimization of the dual (12) with gradually decreasing
threshold θ.

4.2.1 Convergence

As in Section 4.1, let us for simplicity fix an arbitrary method for detecting infeasibility of
the left-hand system (14). Again, we will denote by I ⊆ 2[m] the set of all I ⊆ [m] such
that this system is feasible or the propagation algorithm does not detect its infeasibility.

Consider the function Θ: Y → R+ (where Y is the feasible set (16) of the dual) defined
by13

Θ(y) = min{θ ∈ R+ | I∗θ (y) ∈ I}, (23)

which can be interpreted as a distance of the point y to the set of fixed points (19) because y
is a fixed point of Algorithm 2 if and only if Θ(y) = 0.

To discuss convergence, let us assume that the main loop in Algorithm 3 is repeated
infinitely, producing an infinite sequence (yk)k∈N of dual-feasible solutions y. Similarly, let
(θk)k∈N be the decreasing sequence of positive values θ computed by Algorithm 3. It is easy
to see that if limk→∞ θk = 0, then

lim
k→∞

Θ(yk) = 0. (24)

Indeed, for all k ∈ N we have I∗θk(y
k) ∈ I, so 0 ≤ Θ(yk) ≤ θk. Note, the assumption on

convergence of θk towards zero is naturally satisfied, e.g., by using the geometric decrease
schedule θk+1 := θk/10, as on line 3 of Algorithm 3.

The interpretation of (24) is that the distance between yk and the set of fixed points (19)
(measured by Θ) converges to zero, i.e., yk converges to the set of the fixed points. In par-
ticular, if the constraint propagation rules are refutation complete (i.e., the chosen method
is able to detect infeasibility of the left-hand system (14) whenever it is infeasible), then yk

converges to the set of optima of the dual (12).

In the following two sections, we exemplify the proposed approach on LP relaxations
of two combinatorial problems. Namely, in Section 5, we show that the VAC algorithm
(Cooper et al., 2010) is its special case and, in Section 6, we apply the approach to the LP
relaxation of Weighted Max-SAT. These LP relaxations involve equality constraints and/or
non-negative variables and even though they could be transformed to the general form (12)

13. The function Θ is well-defined because, for any y ∈ Y , there exists a sufficiently large θ such that I∗θ (y) ∈
I, namely for θ = maxi∈[m] yi we have I∗θ (y) = [m] ∈ I (because feasibility of the left-hand system (14)
for I = [m] is equivalent to feasibility of the primal). A similar function has been used in convergence
analysis of BCD algorithms for the LP relaxation of WCSP (Schlesinger & Antoniuk, 2011), (Tourani,
Shekhovtsov, Rother, & Savchynskyy, 2018, Appendix B), (Savchynskyy, 2019, Section 6.2.4).

685

Dlask & Werner

by well-known tricks, such as replacing an equality with two inequalities or adding slack
variables (Matoušek & Gärtner, 2006; Leiserson, Rivest, Cormen, & Stein, 1994), it will
be more convenient to adapt the basic approach described here to these cases. Indeed, our
approach is applicable to a primal-dual pair in any form and all of our theoretical results
from this section also generalize in this way. E.g., the analogous results for the case where
the roles of the primal and dual are interchanged were presented in the dissertation by Dlask
(2022, Section 2.2).

5. LP Relaxation of Weighted CSP

In this section, we define the Weighted Constraint Satisfaction Problem (WCSP) and show
that the well-known Virtual Arc Consistency (VAC) algorithm by Cooper et al. (2010) is
subsumed by our iterative scheme.

To keep the presentation concise, we consider only binary WCSPs (i.e., WCSPs with
unary and binary constraints) and assume that no constraint is hard (i.e., with weight −∞)
– generalizing the analysis to WCSPs of any arity and/or with hard constraints would be
straightforward.14 An instance of such WCSP is defined by (V,D,E, c) where V is a finite
set of variables, D is a finite domain, E ⊆

(
V
2

)
is a set of variable pairs (so that (V,E) is

an undirected graph) and c ∈ RP is a cost vector where

P = {(u, k) | u ∈ V, k ∈ D} ∪ {{(u, k), (v, l)} | {u, v} ∈ E, k, l ∈ D} (25)

denotes the set of tuples. The component of c with index j ∈ P will be abbreviated by
cj = cuk for a unary tuple j = (u, k) and by cj = cuk,vl for a binary tuple j = {(u, k), (v, l)},
understanding that cuk,vl = cvl,uk. The goal is to find an assignment λ : V → D maximiz-
ing15 the objective ∑

u∈V
cuλ(u) +

∑
{u,v}∈E

cuλ(u),vλ(v). (26)

The LP relaxation of the binary WCSP can be written16 as the left-hand problem of
the primal-dual pair

max cTx min
∑
u∈V

yu (27a)∑
l∈D

xuk,vl − xuk = 0 yuk,v ∈ R ∀u ∈ V, v ∈ Nu, k ∈ D (27b)∑
k∈D

xuk = 1 yu ∈ R ∀u ∈ V (27c)

xuk ≥ 0 yu −
∑

v∈Nu

yuk,v ≥ cuk ∀u ∈ V, k ∈ D (27d)

xuk,vl ≥ 0 yuk,v + yvl,u ≥ cuk,vl ∀{u, v} ∈ E, k, l ∈ D (27e)

14. Hard constraints can be naturally modelled by removing the corresponding primal variables and dual
constraints or setting the corresponding costs to a negative number large in absolute value.

15. To fit our framework, we assume that the WCSP is a maximization problem so that we could minimize
in the dual (27), as in Section 4. The only difference lies in inverting the sign of the weights c.

16. While the basic LP relaxation of WCSP can be written in several different ways (Werner, 2007; Živný,
2012; Savchynskyy, 2019), we chose the form whose dual coincides with the one in the VAC paper
(Cooper et al., 2010, Figure 2). The dual linear program in (27) can be interpreted as minimizing an
upper bound on the WCSP optimal value over equivalent transformations (a.k.a. reparametrizations) of
the cost vector c (Cooper et al., 2010; Wainwright & Jordan, 2008; Savchynskyy, 2019).

686

Using Constraint Propagation to Bound Linear Programs

where cTx =
∑

j∈P cjxj =
∑

u∈V
∑

k∈D cukxuk +
∑

{u,v}∈E
∑

k,l∈D cuk,vlxuk,vl and Nu =
{v ∈ V | {u, v} ∈ E} is the set of neighbors of variable u ∈ V . In matrix form, (27) reads

max cTx min bT y (28a)

Ax = b y ∈ RQ (28b)

x ≥ 0 AT y ≥ c (28c)

where the matrix A and vector b are determined by (27) and Q = {(u, k, v) | u ∈ V, v ∈
Nu, k ∈ D} ∪ V is the index set of the dual variables y.

Given a dual-feasible solution y, the complementary slackness conditions can be written
as the left-hand system of

bT ȳ < 0 (29a)

Ax = b ȳ ∈ RP (29b)

xj ≥ 0 AT
j ȳ ≥ 0 ∀j ∈ J (29c)

xj = 0 ∀j ∈ P \ J (29d)

for J = J∗(y) where Aj denotes the column of A corresponding to tuple j and J∗(y) ⊆ P
the set of the dual constraints (28c) (i.e., (27d)-(27e)) active at y. On the right, we again
wrote Farkas’ alternative system, so that any ȳ satisfying this system is a dual-improving
direction from the current point y. The left-hand system (29) is the LP relaxation of the
CSP with allowed tuples J (Cooper et al., 2010; Nguyen, Bessiere, de Givry, & Schiex, 2017;
Trösser, de Givry, & Katsirelos, 2020; Werner, 2007), which we denote by (V,D,E, J).17

5.1 Constraint Propagation

Given a dual-feasible solution y ∈ RQ, we want to apply constraint propagation to the left-
hand system (29). In our particular case, we will propagate zero values of variables x (i.e.,
inferring equalities xj = 0, i.e., inferring that some of inequalities (29c) are always active)
based on a small subset of marginalization constraints (27b). E.g., if we know that xuk = 0
for some (u, k) ∈ P , then equality (27b) implies (assuming x ≥ 0) that xuk,vl = 0 for all
v ∈ Nu and l ∈ D. If for some u ∈ V we get xuk = 0 for all k ∈ D (‘domain wipe-out’),
then the normalization constraint (27c) is violated, which proves that the initial system was
infeasible. The propagation algorithm starts with J = J∗(y) and then iteratively sets some
variables to zero by removing tuples from J according to (29d).

Let us now focus on deriving the cause vectors. While above we were setting variables to
zero by removing elements from J , here we will do it by adding a suitable (in)equality to the
system (as in Section 2). As our system is in the form of linear equalities over non-negative
variables, we will follow Theorem 3.18 We will not directly infer an equality xj = 0 (or

17. This notation for CSP is non-standard: the set J of allowed tuples is usually represented by a set of
unary relations (equivalently, domains of the variables) and binary relations.

18. An alternative approach would be to treat the left-hand system (29) as a system of linear inequalities
over unconstrained variables (by replacing each equality with two inequalities with opposite directions)
and apply Farkas’ lemma in the general form of Theorem 1. However, this would lead to more complex
derivation of the cause vectors.

687

Dlask & Werner

inequality xj ≤ 0) as a linear combination of all existing (in)equalities, but instead infer
a more complex equality as a linear combination of equalities Ax = b which nevertheless
implies xj = 0. Namely, we infer an equality

xj + tj = 0 (30)

where tj is a linear combination of the variables x such that tj ≥ 0 holds for all vectors
x ≥ 0 satisfying xj′ = 0 for all j′ /∈ J∗(y). Under these conditions and assuming x ≥ 0,
(30) clearly implies xj = 0. The cause vector (the coefficients of a linear combination of
the equalities Ax = b) of equality (30) is denoted yj ∈ RP . Since a single equality (30) can
imply multiple x-variables to be zero, it can happen that yj = yj

′
for some j ̸= j′. Equality

(30) trivially (by (29d)) implies xj = 0 also for j /∈ J∗(y), in which case we simply set
tj = −xj . Then (30) reduces to the equality 0 = 0, which is the trivial linear combination
of equalities Ax = b with cause vector yj = 0.

Below, we describe the propagation rules in detail. Although we are applying constraint
propagation to the left-hand system (29) (which is a CSP with continuous variables), the
propagation corresponds to enforcing certain well-known local consistencies for the CSP
(V,D,E, J) (which has finite domains), namely pairwise consistency (PWC) and arc con-
sistency (AC) (Janssen, Jégou, Nouguier, & Vilarem, 1989; Bessiere, 2006) (more in Re-
mark 10). We first describe the rules for PWC and then for AC. Although PWC and AC
have equal power for binary CSPs, we describe them both to better illustrate the derivations
of cause vectors. Let us remark that it would be straightforward to extend the PWC and
AC propagation rules to CSPs with constraints of any arity, but we do not present this
extension as it would require more complex notation.

We denote the standard-basis vector of the space RP corresponding to (27b) and (27c)
by euk,v and eu, respectively. While elements are removed from J only to keep track which
variables have been set to zero, the inference tables (such as (31)) are understood as adding
equalities to the system (29) with J = J∗(y).

5.1.1 Pairwise Consistency

Definition 5. A binary CSP (V,D,E, J) is pairwise consistent (PWC) if 19 (u, k) ∈ J if
and only if for each v ∈ Nu there is l ∈ D such that {(u, k), (v, l)} ∈ J .

PWC is enforced by iterating the following propagation rules. We always first state a rule
and then derive it from a suitable linear combination of existing equalities, which provides
the cause vector:

1. If there is {(u, k), (v, l)} ∈ J such that (u, k) /∈ J , then we remove the tuple {(u, k), (v, l)}
from J . This rule can be derived as follows:

xuk + tuk = 0 yuk (31a)∑
l′∈D

xuk,vl′ − xuk = 0 euk,v (31b)

19. While PWC in general requires consistency of all possible constraint pairs (with overlapping scopes), it
is known that for binary CSPs with all unary constraints (our case), this is equivalent to consistency
only of all constraint pairs consisting of a unary and a binary constraint.

688

Using Constraint Propagation to Bound Linear Programs

xuk,vl +
∑

l′∈D\{l}
xuk,vl′ + tuk︸ ︷︷ ︸
tuk,vl

= 0 yuk,vl = yuk + euk,v (31c)

Equality (31a) represents the equality xuk = 0, which holds by the assumption (u, k) /∈
J . Equality (31b) is the marginalization constraint (27b). Finally, (31c) is the new
inferred equality. We wrote the corresponding cause vectors on the right.

2. If there are (u, k) ∈ J and v ∈ Nu such that {(u, k), (v, l)} /∈ J for all l ∈ D, then we
remove the tuple (u, k) from J . This is inferred as follows:

xuk,vl + tuk,vl = 0 yuk,vl ∀l ∈ D (32a)

−
∑
l∈D

xuk,vl + xuk = 0 −euk,v (32b)

xuk +
∑
l∈D

tuk,vl︸ ︷︷ ︸
tuk

= 0 yuk =
∑
l∈D

yuk,vl − euk,v (32c)

where (32a) represents the equalities xuk,vl = 0 (which hold because {(u, k), (v, l)} /∈ J)
for all l ∈ D and (32b) is the marginalization constraint (27b) multiplied by −1. In
the inferred equality, we have tuk ≥ 0, which implies xuk = 0.

3. If for some u ∈ V it happens that (u, k) /∈ J for all k ∈ D, then the CSP is infeasible
due to domain wipe-out. This is inferred as follows:

xuk + tuk = 0 yuk ∀k ∈ D (33a)

−
∑
k∈D

xuk = −1 −eu (33b)∑
k∈D

tuk = −1 ȳ =
∑
k∈D

yuk − eu (33c)

where (33b) is the normalization constraint (27c) multiplied by −1. The inferred
equality (33c) is infeasible because tuk ≥ 0 for all k. The derived vector ȳ in (33c) is a
solution to the right-hand system (29).

The whole process of propagation using the three PWC rules above is summarized in
Algorithm 4. If the rules detect infeasibility of the left-hand system (29), the algorithm
returns the computed infeasibility certificate satisfying the right-hand system (29).

5.1.2 Arc Consistency

Definition 6. A binary CSP (V,D,E, J) is arc consistent (AC) if for each (u, k) ∈ J and
v ∈ Nu there is l ∈ D such that {(u, k), (v, l)} ∈ J and (v, l) ∈ J .

AC is enforced by iterating the following propagation rule (besides the last PWC rule):

689

Dlask & Werner

inputs: V,D,E and J ⊆ P
1 For each j ∈ P \ J , set yj := 0.
2 while the set J changes
3 if there is {(u, k), (v, l)} ∈ J with (u, k) /∈ J then
4 Remove {(u, k), (v, l)} from J . Set yuk,vl := yuk + euk,v.

5 if there are (u, k) ∈ J and v ∈ Nu with {(u, k), (v, l)} /∈ J for all l ∈ D then
6 Remove (u, k) from J . Set yuk :=

∑
l∈D yuk,vl − euk,v.

7 if there is u ∈ V with (u, k) /∈ J for all k ∈ D then
8 return ȳ =

∑
k∈D yuk − eu. (Domain wipe-out, with certificate ȳ.)

Algorithm 4: PWC propagation in LP relaxation of CSP (V,D,E, J).

1. If there are (u, k) ∈ J and v ∈ Nu such that {(u, k), (v, l)} /∈ J or (v, l) /∈ J for all
l ∈ D, then we remove the tuple (u, k) from J . This rule is derived as follows:

xuk,vl + tuk,vl = 0 yuk,vl ∀l ∈ D : {(u, k), (v, l)} /∈ J (34a)

xvl + tvl = 0 yvl ∀l ∈ D : {(u, k), (v, l)} ∈ J (34b)∑
k′∈D

xuk′,vl − xvl = 0 evl,u ∀l ∈ D : {(u, k), (v, l)} ∈ J (34c)

−
∑
l∈D

xuk,vl + xuk = 0 −euk,v (34d)

xuk + tuk = 0 yuk (34e)

where

yuk =
∑
l∈D

{(u,k),(v,l)}/∈J

yuk,vl +
∑
l∈D

{(u,k),(v,l)}∈J

(yvl + evl,u)− euk,v (35)

and

tuk =
∑
l∈D

{(u,k),(v,l)}/∈J

(xuk,vl + tuk,vl) +
∑
l∈D

{(u,k),(v,l)}∈J

(
xvl + tvl +

∑
k′∈D

xuk′,vl − xvl

)
−

∑
l∈D

xuk,vl

(36a)

=
∑
l∈D

{(u,k),(v,l)}/∈J

tuk,vl +
∑
l∈D

{(u,k),(v,l)}∈J

(
tvl +

∑
k′∈D\{k}

xuk′,vl

)
. (36b)

We have tuj ≥ 0 as required, because all terms in (36b) are non-negative. Note, we
used that for each l ∈ D we have (v, l) /∈ J or {(u, k), (v, l)} /∈ J by assumption.

5.2 Final Algorithm

When plugging the constraint propagation described in Section 5.1 into Algorithm 2, we
obtain an algorithm that is ‘almost’ equivalent to the VAC / Augmenting DAG algorithm
(Cooper et al., 2010; Koval & Schlesinger, 1976; Werner, 2007). The stopping points
of both algorithms are characterized by the same property, namely non-empty AC/PWC

690

Using Constraint Propagation to Bound Linear Programs

closure of the CSP (V,D,E, J∗(y)). However, improving directions ȳ constructed in Sec-
tion 5.1 are in general different from the ones constructed by Cooper et al. (2010), Koval
and Schlesinger (1976), Werner (2007), sometimes having larger absolute values of their
components and thus possibly leading to smaller step sizes α. We illustrate such a case
in detail in Appendix B. The reason is that our algorithm does not take into account the
values of the individual coefficients in the cause vectors yj . In contrast, the algorithms in
(Cooper et al., 2010; Koval & Schlesinger, 1976; Werner, 2007) compute the cause vectors
in an anti-chronological order after the contradiction has been detected, rather than fixing
them already when inferring individual equalities. This is the same difference which we
discussed previously in Section 3.3 considering the chronological and anti-chronological ap-
proaches for computing certificates of infeasibility. The latter approach (Dlask & Werner,
2023, Appendix A) is a generalization of the algorithms in (Cooper et al., 2010; Koval &
Schlesinger, 1976; Werner, 2007) to a general system in the form Ax = b, x ≥ 0. Another
method using the anti-chronological computation of cause vectors was proposed by Dlask
et al. (2023, Section 4.2.2), which is however applicable only to a certain class of linear
programs. It may be an important direction for future research to compare and study the
quality of the improving directions produced by the chronological and anti-chronological
approach or propose even other methods.

Remark 8. It is known (Cooper et al., 2010, Appendix A) that the VAC algorithm without
capacity scaling can enter an infinite loop. In order to avoid this, one can replace the set of
active tuples J∗(y) by ‘almost’ active tuples J∗

θ (y), analogously to (21) (see Cooper et al.,
2010, Section 11.1).

Despite finiteness of the VAC algorithm was already ensured by Cooper et al. (2010),
we would like to point out that Theorem 7 is easily applicable here. First, both the primal
and the dual (28) are clearly feasible and bounded. Second, despite there might be many
orders in which the PWC or AC propagation rules can be applied to the CSP J∗

θ (y), the set
of tuples P is finite, so there is only finitely many ways in which the rules can be applied to
each CSP. For each such an order, the improving direction ȳ is constructed deterministically
(both by the VAC algorithm or by our propagation rules above). Finally, using θ > 0 and
optimal step size, both of these approaches will terminate in finite time.

Remark 9. Since non-empty AC/PWC closure of the CSP (V,D,E, J∗(y)) is in general
not sufficient for optimality of y for the dual (28) (Werner, 2007, Section 5), our propaga-
tion algorithm is refutation incomplete, i.e., it may not detect infeasibility of the left-hand
system (29) in some cases. Consequently, the VAC algorithm and the algorithm outlined
above may terminate in a non-optimal point y.

Remark 10. The words ‘arc consistency’ in VAC refer to enforcing arc consistency in the
CSP (V,D,E, J∗(y)) where a tuple j ∈ P is forbidden in the CSP implicitly by setting the
variable xj to zero. However, one can see this also as enforcing arc consistency w.r.t. the
continuous constraints (27b)-(27c). By (29c)-(29d), the initial domains of the variables xj
are either Dj = {0} (if the variable is set to zero, i.e., j /∈ J∗(y)) or Dj = R+ (otherwise).
Enforcing arc consistency w.r.t. a marginalization constraint (27b) then shrinks some of the
domains from R+ to {0}. In this case (see Proposition 1, cf. Appendix A), enforcing arc
consistency is not only equivalent to propagation of bounds but also to activity propagation

691

Dlask & Werner

since inferring an equality xj = 0 can be seen as inferring that the inequality xj ≥ 0 is
always active.

Remark 11. The fact that there exists y such that the CSP (V,D,E, J∗(y)) is PWC/AC
(or has a non-empty PWC/AC closure) is given by the properties of the LP relaxation (27)
(Werner, 2007, 2010). Not every local consistency of this CSP can be enforced in this way
unless a different linear program is used (Dlask et al., 2023) or additional constraints are
introduced (Batra, Nowozin, & Kohli, 2011; Sontag, Choe, & Li, 2012; Sontag, Meltzer,
Globerson, Jaakkola, & Weiss, 2008; Werner, 2014, 2010).

6. LP Relaxation of Weighted Max-SAT

In this section, we show how the iterative constraint-propagation-based scheme from Sec-
tion 4 can be applied to the LP relaxation of the Weighted Max-SAT problem. In this prob-
lem, we are given a finite set V of Boolean variables and a finite set C of clauses with positive
weights wc, c ∈ C. The task is to find an assignment to the variables such that the sum of
weights of satisfied clauses is maximized. Let V +

c and V −
c denote the set of variables that

occur in clause c ∈ C non-negated and negated, respectively. Let C±
i = { c ∈ C | i ∈ V ±

c }
denote the set of clauses where variable i ∈ V occurs non-negated/negated.

We consider the classical LP relaxation of Weighted Max-SAT (Vazirani, 2001, Sec-
tion 16), (Biere, Heule, & van Maaren, 2009, Section 19.2) in a slightly different but equiva-
lent20 form (cf. Min-UNSAT in Biere et al., 2009). To adhere to the form of the primal-dual
pair from Section 4, i.e., the dual being a minimization problem, we make the auxiliary pri-
mal variables z negative. Moreover, we represent each Boolean variable by two variables,
x+i for a non-negated and x−i for a negated Boolean variable. The relaxation is the left-hand
problem of the primal-dual pair21

max wT z min p(V)− y(C) (37a)

zc − x+(V +
c)− x−(V −

c) ≤ −1 yc ≥ 0 ∀c ∈ C (37b)

zc ≤ 0 yc ≤ wc ∀c ∈ C (37c)

x+i + x−i = 1 pi ≶ 0 ∀i ∈ V (37d)

x+i ≥ 0 pi − y(C+
i) ≥ 0 ∀i ∈ V (37e)

x−i ≥ 0 pi − y(C−
i) ≥ 0 ∀i ∈ V (37f)

where we use the usual shortcuts x+(V +
c) =

∑
i∈V +

c
x+i and y(C+

i) =
∑

c∈C+
i
yc, similarly

for x−(V −
c), y(C−

i), y(C), and p(V).
Note, for any upper bound u on the common optimal value of (37), w(C)+u is an upper

bound on the optimal value of the original (non-relaxed) Max-SAT problem. In particular,

20. In our conference paper (Dlask & Werner, 2020), we used the classical LP relaxation, called Max-SAT
by Biere et al. (2009). Both relaxations have the same global optima and behave the same way w.r.t. the
propagation algorithm. Precisely, using our result in (Dlask & Werner, 2023), it is easy to see that every
pre-interior local minimum of problem (39) is a pre-interior local minimum of problem (11) in (Dlask &
Werner, 2020).

21. The meaning of the primal constraint (37b) becomes clearer if it is multiplied by −1. However, we keep
it in its current form so that the pair (37) complies to the standard primal-dual correspondence in linear
programming (Matoušek & Gärtner, 2006, Section 6.2).

692

Using Constraint Propagation to Bound Linear Programs

if u∗ is the common optimal value of (37), then w(C) + u∗ is equal to the optimal value of
the LP relaxation in the form considered by Vazirani (2001, Section 16).

Remark 12. Despite we do not consider this explicitly, our approach can be also applied to
instances of Weighted Partial Max-SAT which contain hard clauses (i.e., clauses that need
to be satisfied) by removing zc from the corresponding primal constraints (37b), which leads
to removing the dual constraint (37c). Another, less elegant, alternative is to assign large
weights to the hard clauses which does not require any changes in the algorithm. Comparing
these approaches is subject to further research.

At any primal and dual optimum, we clearly have

zc = max{x+(V +
c) + x−(V −

c)− 1, 0} ≥ −1 ∀c ∈ C, (38a)

pi = max{y(C+
i), y(C−

i)} ∀i ∈ V, (38b)

respectively. Using (38b), the dual thus can be simplified to the problem

min
0≤y≤w

∑
i∈V

max{y(C+
i), y(C−

i)} − y(C), (39)

in which we minimize a convex piecewise-affine function on a box. In the following, we will
work with the dual in the form (39) because it simplifies the algorithm.

By eliminating variables z and p, the complementary slackness conditions for the pair (37)
can be simplified to

−x+(V +
c)− x−(V −

c) ≤ −1 ∀c ∈ C : yc = 0 (40a)

−x+(V +
c)− x−(V −

c) = −1 ∀c ∈ C : 0 < yc < wc (40b)

−x+(V +
c)− x−(V −

c) ≥ −1 ∀c ∈ C : yc = wc (40c)

x+i + x−i = 1 ∀i ∈ V (40d)

x+i ≥ 0 ∀i ∈ I+ (40e)

x+i = 0 ∀i ∈ V \ I+ (40f)

x−i ≥ 0 ∀i ∈ I− (40g)

x−i = 0 ∀i ∈ V \ I− (40h)

for I+ = I∗+(y) and I− = I∗−(y) where

I∗+(y) = {i ∈ V | y(C+
i) ≥ y(C−

i)}, (41a)

I∗−(y) = {i ∈ V | y(C+
i) ≤ y(C−

i)}. (41b)

Thus, system (40) is feasible if and only if y is optimal for problem (39). If system (40) is
infeasible, the following theorem shows how to conveniently obtain an improving direction
for (39). Following Theorem 5, we dualize only some of the constraints, namely (40a)-(40c).

Theorem 8. Let ∑
c∈C

ȳc(1− x+(V +
c)− x−(V −

c)) ≤ 0 (42)

be a linear combination of (in)equalities (40a)-(40c) with coefficients ȳ ∈ RC (where the
signs of the components of ȳ comply to the (in)equality signs in (40a)-(40c): ȳc ≥ 0

693

Dlask & Werner

for (40a), ȳc ∈ R for (40b), and ȳc ≤ 0 for (40c)). Inequality (42) is infeasible on con-
ditions (40d)-(40h) if and only if ȳ is an improving direction for problem (39) from the
point y.

Proof. The complementary slackness conditions for the pair (37) before eliminating z read

zc − x+(V +
c)− x−(V −

c) ≤ −1 ∀c ∈ C : yc = 0 (43a)

zc − x+(V +
c)− x−(V −

c) = −1 ∀c ∈ C : yc > 0 (43b)

zc ≤ 0 ∀c ∈ C : yc = wc (43c)

zc = 0 ∀c ∈ C : yc < wc (43d)

plus constraints (40d)-(40h). Consider the linear combination of (in)equalities (43a)-(43b)
with the coefficients ȳ: ∑

c∈C
ȳc(1 + zc − x+(V +

c) + x−(V −
c)) ≤ 0. (44)

It is easy to see that inequality (44) is infeasible on conditions (43c)-(43d) and (40d)-(40h)
if and only if ȳ is an improving direction for (39). So it remains to prove that (44) is feasible
on conditions (43c)-(43d) and (40d)-(40h) if and only if (42) is feasible on conditions (40d)-
(40h).

Suppose there is x satisfying (40d)-(40h) and (42). If we simply set z = 0, then (x, z)
clearly satisfies (43c)-(43d) and (44).

Suppose there are (x, z) satisfying (43c)-(43d), (40d)-(40h) and (44). Then x satis-
fies (42), which can be shown by comparing corresponding terms in (42) and (44) as follows.
For c ∈ C with yc < wc, we have zc = 0 by (43d), hence the c-th terms in (42) and (44) are
the same. For c ∈ C with yc = wc, we have ȳc ≤ 0 by (40c) and zc ≤ 0, hence the c-th term
in (42) is not greater than the c-th term in (44).

6.1 Constraint Propagation

Given a current solution y feasible for problem (39), we want to apply constraint propagation
to system (40). Similarly to Section 5.1, in every iteration we propagate zero values of the
variables x+ and x− based on a single constraint (40a)-(40c), assuming (40d)-(40h). That
is, we choose one of the constraints (40a)-(40c), infer from this constraint equalities x+i = 0
for some i ∈ I+ ∩ V +

c and/or x−i = 0 for some i ∈ I− ∩ V −
c , and remove these indices from

the sets I+ and/or I−.
22 The propagation algorithm starts with I+ = I∗+(y) and I− = I∗−(y)

and then iteratively shrinks the sets I+ and I−. If at some point any of the constraints
(40a)-(40c) becomes infeasible on conditions (40d)-(40h), then we know that the initial
(i.e., for I± = I∗±(y)) system (40) was infeasible, hence there exists an improving direction ȳ
for (39) from y, which can be obtained using Theorem 8.

To derive the cause vectors, we need to formulate each propagation rule as a linear
combination of existing equalities and inequalities, according to Theorem 8. Similarly to
Section 5.1, rather than directly inferring an equality x±i = 0 for some i ∈ I∗±(y), we instead
infer an inequality

x±i + t±i ≤ 0 (45)

22. To satisfy constraint (40d), any index i can be removed from at most one of the sets I+ and I−, so that
we always maintain I+ ∪ I− = V .

694

Using Constraint Propagation to Bound Linear Programs

where t±i is a linear combination of the variables x+ and x− such that t±i ≥ 0 on conditions
(40d)-(40h) with I± = I∗±(y). This implies x±i = 0 due to x± ≥ 0. Inequality (45) is a linear
combination of constraints (40a)-(40c) with the cause vector (the coefficients of the linear
combination) denoted by yi ∈ RC . Note that (45) trivially (by (40e)-(40h)) implies x±i = 0
also for i /∈ I∗±(y), in which case we set t±i = −x±i , so that (45) reads 0 ≤ 0 with the cause
vector yi = 0.

To simplify the formal descriptions of the rules, we will use the following abbreviations.
For any c ∈ C, we denote Vc = V +

c ∪ V −
c . For any c ∈ C and i ∈ Vc, we denote

xci =

{
x+i if i ∈ V +

c ,

x−i if i ∈ V −
c

(46)

and define the following phrases:

• By saying that variable xci is fixed to 0, we mean that i ∈ (V +
c \ I+) ∪ (V −

c \ I−).
• By saying that variable xci is fixed to 1, we mean that i ∈ (V +

c \ I−) ∪ (V −
c \ I+).

• By saying that variable xci is not fixed, we mean that i ∈ I+ ∩ I−.

• By fixing xci to 0, we mean removing i from I+ or I− if i ∈ V +
c or i ∈ V −

c , respectively.

• By fixing xci to 1, we mean removing i from I− or I+ if i ∈ V +
c or i ∈ V −

c , respectively.

Similarly to previous sections, ec ∈ RC denotes the standard-basis vector of RC .
Here are the used propagation rules in detail and the derivations of the cause vectors:

1. In a constraint (40a) or (40b), if one variable is not fixed and all other variables are
fixed to 0, then the non-fixed variable can be fixed to 1. Formally, if there is i ∈ Vc

such that xci is not fixed and xcj is fixed to 0 for all j ∈ Vc \ {i}, then xci is fixed to 1.

We show how this rule is inferred for the case i ∈ V +
c :

x+j + t+j ≤ 0 yj ∀j ∈ V +
c \ {i} (47a)

x−j + t−j ≤ 0 yj ∀j ∈ V −
c (47b)

1− x+(V +
c)− x−(V −

c) ≤ 0 ec (47c)

1− x+i︸ ︷︷ ︸
x−
i

+
∑

j∈V +
c \{i}

t+j +
∑

j∈V −
c

t−j︸ ︷︷ ︸
t−i

≤ 0 yi =
∑

j∈Vc\{i}
yj + ec (47d)

Since all t±j are non-negative, the inferred inequality implies x−i = 0. Note that, due

to the implicitly assumed constraint (40d), we replaced 1− x+i with x−i in the inferred
inequality.

The inference for the case i ∈ V −
c is similar, resulting in the same cause vector.

2. In a constraint (40a) or (40b), if all variables are fixed to 0 (formally, if xci is fixed to 0
for all i ∈ Vc), then there is a contradiction. This is inferred as follows:

x+j + t+j ≤ 0 yj ∀j ∈ V +
c (48a)

x−j + t−j ≤ 0 yj ∀j ∈ V −
c (48b)

1− x+(V +
c)− x−(V −

c) ≤ 0 ec (48c)

695

Dlask & Werner

1 +
∑

j∈V +
c

t+j +
∑

j∈V −
c

t−j ≤ 0 ȳ =
∑
j∈Vc

yj + ec (48d)

Since all t±j are non-negative, the inferred inequality is infeasible.

3. In a constraint (40b) or (40c), if exactly one variable is fixed to 1 (i.e., there is exactly
one i ∈ Vc such that xci is fixed to 1), then all non-fixed variables have to be fixed to 0.
For i ∈ V +

c (i.e., 1− x+i = x−i = 0), this is inferred as follows:

x−i + t−i ≤ 0 yi (49a)

x+(V +
c) + x−(V −

c)− 1 ≤ 0 −ec (49b)

x−i + t−i + x+(V +
c) + x−(V −

c)− 1 ≤ 0 yj = yi − ec (49c)

Using (40d) we have x−i + x+(V +
c)− 1 = x−i + x+(V +

c \ {i}) + x+i − 1 = x+(V +
c \ {i}),

therefore the inferred inequality implies xcj = 0 for all j ∈ Vc \{i}. Note that the cause
vectors for all these variables are identical, yj = yi − ec.

The inference for the case i ∈ V −
c is similar, resulting in the same cause vector.

4. In a constraint (40b) or (40c), if two (or more) variables are fixed to 1 (i.e., there are
distinct i, j ∈ Vc such that xci and xcj are fixed to 1), then there is a contradiction. For
i, j ∈ V +

c , this is inferred as follows:

x−i + t−i ≤ 0 yi (50a)

x−j + t−j ≤ 0 yj (50b)

x+(V +
c) + x−(V −

c)− 1 ≤ 0 −ec (50c)

x−i + t−i + x−j + t−j + x+(V +
c) + x−(V −

c)− 1 ≤ 0 ȳ = yi + yj − ec (50d)

Using (40d) we have x−i + x−j + x+(V +
c) = x+(V +

c \ {i, j}) + 2, therefore the inferred
inequality is infeasible.

For all other cases than i, j ∈ V +
c , the inference is similar, resulting in the same

infeasibility certificate ȳ.

Example 5. Let V = C = {1, 2, 3} and let the system (40a)-(40c) read 23

x+1 + x−2 + x−3 = 1 (51a)

x+1 + x+2 ≥ 1 (51b)

x+2 + x+3 = 1. (51c)

I.e., V +
1 = {1}, V −

1 = {2, 3}, V +
2 = {1, 2}, V −

2 = ∅, V +
3 = {2, 3}, and V −

3 = ∅. Let us
also initially have I+ = {1, 2, 3} and I− = {2, 3}. Note that x−1 = 0 due to 1 /∈ I−, so we
initialize y1 = (0, 0, 0).

The propagation proceeds as follows:

1. Since x−1 = 1 − x+1 = 0, (51a) implies x−2 = x−3 = 0, by propagation rule 3. Follow-
ing (49), y2 = y3 = y1 − e1 = (−1, 0, 0).

23. We write the constraints (40a)-(40c) multiplied by −1 here.

696

Using Constraint Propagation to Bound Linear Programs

2. All variables in (51b) are fixed and the constraint is satisfied, so no rule is applicable
to this constraint.

3. Finally, since x+2 + x+3 = 1− x−2 + 1− x−3 = 2, constraint (51c) is infeasible by rule 4.
The certificate of infeasibility is ȳ = y2 + y3 − e3 = (−2, 0,−1) by (50).

Remark 13. For general Weighted Max-SAT, the propagation rules need not always detect
infeasibility of system (40), i.e., they are refutation incomplete. As an example, let V =
I+ = I− = {1, 2, 3} and (40a)-(40c) read

x+1 + x+2 + x+3 = 1 (52a)

x+1 + x+2 = 1 (52b)

x+1 + x+3 = 1 (52c)

x+2 + x+3 = 1 (52d)

This system is infeasible but no propagation rule is applicable.
However, for Weighted Max-2SAT (i.e., |Vc| ≤ 2 for all c ∈ C), the rules are refutation

complete. In detail, if no more propagation is possible and no contradiction was detected,
setting all undecided variables x±i to 1

2 satisfies (40). This is easily verified by case analysis.

Remark 14. If a propagation rule 1 or 3 is applied to a single constraint of (40a)-(40c),
then all variables in this constraint become fixed and the constraint becomes satisfied. Thus,
none of the propagation rules is applicable to this constraint anymore. Consequently, prop-
agation stops after at most |C| inference rules are applied.

Remark 15. One can ask whether it is possible to infer other values of non-fixed variables
than 0 or 1, such as 1

2 . If inference is done only from a single constraint of (40a)-(40c),
this is impossible because the polyhedron defined by a single (in)equality from (40a)-(40c)
subject to (40d)-(40h) has integral vertices (see Proposition 4 in Appendix A).

Remark 16. System (40) can be interpreted as an LP relaxation of a Boolean CSP with
domains D = {+,−} and constraints (40a)-(40c). It is easy to see that the propagation
rules correspond to enforcing arc consistency in this CSP, i.e., reducing the initial domains
to Di = {+} or Di = {−} which is represented by x−i = 0 or x+i = 0, respectively.

Seeing (40) as a CSP with continuous variables, described propagation can be also in-
terpreted as activity propagation, making some of the inequalities (40e) and (40g) active in
every iteration. Note that we need not explicitly infer activity of constraints (40a) and (40c)
because this does not make the propagation algorithm stronger. The propagation rules can
be also equivalently seen as enforcing bounds consistency (or arc consistency) w.r.t. the
constraints (40a)-(40c) while implicitly assuming the constraints (40d).

6.2 Finding Step Size by Approximate Line Search

If a contradiction is detected in (40) and an improving direction ȳ for problem (39) from
the current point y is constructed, we need to find a step size α > 0 to update y := y + αȳ
as in Section 4. The optimal way (exact line search) would be to minimize the univariate
convex piecewise-affine function g(α) = f(y + αȳ) over α > 0 subject to 0 ≤ y + αȳ ≤ w
where f is the objective function of (39). As this is too costly for large instances, we do

697

Dlask & Werner

α

g(α)

1 2 3 4 5 6

9

7

5

3

1

Figure 3: Graph of function g from Example 6.

only approximate line search: we find the first breakpoint (i.e., non-differentiable point)
α > 0 of the function g, i.e., the smallest α > 0 at which at least one of the affine functions
that is inactive at α = 0 becomes active.24 This value of α may be further decreased to
ensure feasibility. Such α is the greatest number satisfying the following conditions:

1. To maintain feasibility, for all c ∈ C we need 0 ≤ yc + αȳc ≤ wc. Since 0 ≤ yc ≤ wc,
this means α ≤ −yc/ȳc for all c with ȳc < 0 and α ≤ (wc − yc)/ȳc for all c with ȳc > 0.

2. For the terms max{y(C+
i), y(C−

i)}, if y(C+
i) > y(C−

i) and ȳ(C+
i) < ȳ(C−

i) (or with
both inequalities inverted), we need α ≤ (y(C+

i)− y(C−
i))/(ȳ(C−

i)− ȳ(C+
i)) where the

bound is the point where the terms equal, i.e., y(C+
i) + αȳ(C+

i) = y(C−
i) + αȳ(C−

i).
So, this is for all i ∈ V with (y(C+

i)− y(C−
i))(ȳ(C−

i)− ȳ(C+
i)) > 0.

By writing Farkas’ alternative system to the complementary slackness conditions (40), it
can be shown that there always exists α > 0 satisfying these bounds.

Example 6. Let the sets V , C, V ±
1 , V ±

2 , and V ±
3 be as in Example 5. In that case, the

objective of (39) reads

f(y) = max{y1 + y2, 0}+max{y2 + y3, y1}+max{y3, y1} − y1 − y2 − y3. (53)

Furthermore, let the current point be y = (6, 0, 4), the improving direction be ȳ = (−2, 0,−1),
and w = (7, 8, 9). Thus, we have (see Figure 3)

g(α) = f(y+αȳ) = max{6−2α, 0}+max{4−α, 6−2α}+max{4−α, 6−2α}−10+3α. (54)

By condition 1, we need yc+αȳc ≥ 0 for each c with ȳc < 0, which yields α ≤ −y1/ȳ1 = 3
and α ≤ −y3/ȳ3 = 4. By condition 2, we need α ≤ (y(C+

i)− y(C−
i))/(ȳ(C−

i)− ȳ(C+
i)) for

all i ∈ V , which yields α ≤ 3, α ≤ 2, and α ≤ 2. The maximum number α satisfying these
bounds is α = 2 and y is therefore updated to y + 2ȳ = (2, 0, 2).

Notice that the upper-bounds obtained from condition 2, i.e., {2, 3}, are precisely the
breakpoints α of function g with α > 0. The chosen step size α = 2 is then the smallest
breakpoint of g with α > 0 and also the point where the affine functions 4 − α from (54)
become active (while they are inactive for α < 2).

24. For a convex piecewise-affine function
∑

k∈K maxl∈Lk

(
cTkly + dkl

)
, an affine function cTkl∗y+dkl∗ is active

(for some y) if cTkl∗y + dkl∗ = maxl∈Lk

(
cTkly + dkl

)
.

698

Using Constraint Propagation to Bound Linear Programs

It is clear from Figure 3 that the unique optimal step size is argmin0<α≤3 g(α) = {3},
so the computed step size α = 2 is not optimal in this case.

6.3 Algorithm Overview and Implementation Details

Let us summarize the algorithm that follows the general iterative scheme previously shown
in Algorithm 2. We start with y = 0 (which is feasible for (39)) and repeat the following
iteration. For the current y, apply appropriate propagation rules. During that, construct
the DAG defining each yi (recall Section 2.1) until no rule is applicable or contradiction is
detected. If no contradiction is detected, stop. If contradiction is detected, compute ȳ from
the DAG as in Section 2.1. Calculate step size α as in Section 6.2 and update y := y + αȳ.

Remark 17. Following on Remark 16, this algorithm seeks to find a feasible dual solution
to the LP relaxation of Weighted Max-SAT that enforces the CSP defined by (40) to have
a non-empty AC closure. Compare this with the WCSP case, where (29) is an LP relax-
ation of a CSP and the VAC algorithm seeks to find a reparametrization that makes this
CSP have a non-empty AC closure. In contrast to WCSP, there is no obvious analogy of
reparametrizations (or equivalent transformations) for Weighted Max-SAT.

To speed up the algorithm and ensure finiteness, we use the trick similar to capac-
ity scaling as described in Section 4.2. Namely, we redefine the conditions in (40a)-(40c)
and (41) up to a tolerance θ > 0: we replace yc > 0 with yc > θ, y(C+

i) ≤ y(C−
i) with

y(C+
i) ≤ y(C−

i) + θ, yc = wc with wc − θ ≤ yc ≤ wc + θ, etc. We follow the general
scheme outlined in Algorithm 3 where we initialize θ = w(C) =

∑
c∈C wc and whenever

the algorithm cannot detect infeasibility with the current θ, we keep the current y and up-
date θ := θ/10. We continue until θ is not small enough (10−6). To improve performance,
we also decrease θ whenever (D − D′)/(w(C) + D′) < 10−12 where D and D′ is the dual
objective before and after the iteration, respectively.

All data structures used by the algorithm need space that is linear in the input size, i.e.,
in the number

∑
c∈C |Vc| of non-zeros in linear program (37). In particular, it can be shown

that the DAG (used to calculate ȳ) can be conveniently stored as a directed subgraph of
the clause-variable incidence graph.25 By Remark 14, we only need to store for each clause
c ∈ C which rule was applied to this clause and which variables were fixed by the rule.

Remark 18. We argue that this algorithm terminates after a finite number of iterations
(recall Theorem 6). First, the primal (37) is always feasible and bounded by −w(C), so the
dual (37) is also feasible and bounded. Second, by Remark 14 there are only finitely many
options in which the propagation rules can be applied to system (40) and, for each order in
which the rules were applied, the improving direction ȳ is defined deterministically. Conse-
quently, there exists a finite set Ȳ of improving directions used by the algorithm (for each
instance). Finally, although the computed step size need not be optimal (for the formulation
in terms of the convex piecewise-affine function (39)), it can be shown that there exists a
positive lower bound on the step size by analyzing the bounds listed in Section 6.2 and noting
that θ > 0 (this is similar to the proof of Theorem 7).

25. The clause-variable incidence graph is the bipartite graph whose nodes correspond to variables V and
clauses C. The graph contains an edge between nodes i ∈ V and c ∈ C if i ∈ Vc.

699

Dlask & Werner

Solved by LP solver?
Total

Yes No

Instances with no unit clauses 91 11 102
Max-2SAT instances with at least one unit clause 154 0 154

Other instances 1855 480 2335

Total 2100 491 2591

Table 1: Survey of Max-SAT instances in experiments.

Alternatively, one can apply Theorem 7 directly to the dual linear program in (37). It
is possible to show that the step size α is in fact optimal for the dual (37) via the update
(y, p) := (y, p)+α(ȳ, p̄) if the improving direction (ȳ, p̄) for the dual (37) is obtained from ȳ
as

p̄i =

max{ȳ(C+

i), ȳ(C−
i)} if y(C+

i) = y(C−
i)

ȳ(C+
i) if y(C+

i) > y(C−
i)

ȳ(C−
i) if y(C+

i) < y(C−
i)

∀i ∈ V. (55)

Remark 19. Li, Xu, Coll, Manyà, Habet, & He, 2021 recently proposed another method
for computing bounds on the optimal value of Max-SAT. It is combinatorial in nature: based
on the current assignment, it finds conflicts (cores) among the clauses, which provides a
bound on the number of falsified soft clauses. The method is applicable only to Unweighted
Partial Max-SAT. As our interest is only in the bounds obtained from the LP relaxation,
we do not compare our results with this method.

6.4 Experimental Results

We compared the upper bound on the optimal value of (37) obtained by our algorithm
with the exact optimal value of (37) computed by an off-the-shelf LP solver. We used
Gurobi (Gurobi Optimization, LLC, 2020) version 7.5.2 with default parameters, which
uses a concurrent solver. Note that the concurrent solver runs several algorithms in parallel,
stopping as soon as any of them signals optimality. This option can thus use more memory
than any of the algorithms individually. The experiments were performed on a laptop with
i7-4710MQ CPU at 2.5 GHz, providing 8 threads to the concurrent solver, and 16GB RAM
without any time limit. We implemented our algorithm to use only a single thread.

We used the Max-SAT Evaluations 2018 benchmark (Bacchus, Järvisalo, & Martins,
2019), which contains 2591 instances of Weighted Max-SAT. Gurobi was able to solve
(without memory overflow) the LP relaxation for 2100 instances, the largest of which had
up to 640 thousand clauses, 400 thousand variables, and 3.5 million non-zeros (i.e., the
number

∑
c∈C |Vc|). The largest instances in the benchmark have up to 27 million clauses,

19 million variables, and 95 million non-zeros and were still managed by our algorithm.26

Note that if an instance does not contain any unit clause, then setting x+i = x−i = 1
2 ,

i ∈ V and zc = 0, c ∈ C yields an optimal solution to the primal (37) with objective value 0

26. The instance sizes reported here correspond to maximal values of these properties and, e.g., the instance
with the maximal number of clauses need not have the maximal number of variables. In contrast, Dlask
and Werner (2020) reported these values for the largest instances in terms of file size. However, in both
publications, the dataset and results are the same.

700

Using Constraint Propagation to Bound Linear Programs

 1
0

1
3

8

6

0

0

0

0
5

3
0

5

5
9

7

7
7

8

1
7

0

0

0

0

1 3

4

 9
6

2
8

2

 6
4

3

10
1
-10

2
10

2
-10

3
10

3
-10

4
10

4
-10

5
10

5
-10

6
10

6
-10

7
10

7
-10

8

Number of variables

0

100

200

300

400

500

600

700

800

900

1000

1100

Max-2SAT instances (154) - solved by LP solver

Other instances (1855) - solved by LP solver

Other instances (480) - not solved by LP solver

 0 1
1

7
2

5
7

1
4

 0 0
2

 6
4

4
1

7

6
0

9

7
6

3

0

0

0

0

0 1

4

1
8

0

2
5

2

 3
4

10
1
-10

2
10

2
-10

3
10

3
-10

4
10

4
-10

5
10

5
-10

6
10

6
-10

7
10

7
-10

8

Number of clauses

 0 4

4
4

9
0

1
6

 0 0
2

3

2
5

6

4
4

0

9
2

4

2
3

0

0

0

0

0

0

0

3
9

3

 8
7

10
1
-10

2
10

2
-10

3
10

3
-10

4
10

4
-10

5
10

5
-10

6
10

6
-10

7
10

7
-10

8

Number of non-zeros

Figure 4: Histograms of the number of clauses, number of variables, and number of non-
zeros of the instances, grouped as in Table 1. Instances with no unit clauses are omitted.
Lower bounds of the intervals are inclusive and upper bounds are exclusive.

(cf. Hooker, 2000, Section 13.1.1). Our algorithm attains optimality on these instances
because y = 0 is already optimal for the dual. Therefore, we exclude these instances from
further evaluation.

In Table 1, we divide instances according to lengths of clauses and whether the Gurobi
LP solver was able to solve them. Further on, we compare our method with the LP solver
on the 1855 instances with at least one clause of length at least 3 and on the 154 Max-2SAT
instances, respectively, and discuss the 480 instances that are too large for the LP solver in
Section 6.4.3. For these three groups of instances, we show the histograms of the instance
sizes in Figure 4.

6.4.1 Comparison on Instances with a Clause of Length at Least 3

If an instance has at least one clause of length at least 3 and at least one unit clause, the
bound provided by our algorithm is not guaranteed to coincide with the optimum of the LP
relaxation. We measure the quality of the bound on each such instance i by two criteria

Qi =
UCP
i − ULP

i

ULP
i

and Ri =
UCP
i − ULP

i

w(C)− ULP
i

(56)

where ULP
i is the upper bound computed using an LP solver and UCP

i is the upper bound
computed by our algorithm based on constraint propagation on the instance. In detail, ULP

i

equals w(C) plus the optimal value of (37) and UCP
i equals w(C) plus the bound on the

optimal value of (37) computed by our algorithm. Note that ULP
i is equal to the optimal

value of the classical LP relaxation (Vazirani, 2001, Section 16). Both criteria (56) are
invariant to scaling the weights. Criterion Qi is the relative difference between the optimal
value of the classical LP relaxation and the upper bound computed by our algorithm whereas
criterion Ri shows how tight the bound is relative to the trivial bound w(C).

To analyze the achievable trade-offs between runtime and quality of the obtained bound,
we also report the results obtained for the setting where the algorithm is stopped already
when θ ≤ θ∗ for different (larger) values of θ∗, namely 100, 5, 3, 1.5, 1, 10−2, and 10−6.
Clearly, a higher value of θ∗ results in stopping earlier and a worse bound. For each value
of θ∗, the schedule of decrease of θ is the same, as described in Section 6.3.

The sorted numbers Qi and Ri for the 1855 instances are plotted in Figure 5 for each
considered value of θ∗. The values θ∗ are chosen so that the curves in the plots are evenly

701

Dlask & Werner

0 200 400 600 800 1000 1200 1400 1600 1800

10
-15

10
-10

10
-5

10
0

(a) Sorted values Qi (log scale).

0 200 400 600 800 1000 1200 1400 1600 1800

10
-15

10
-10

10
-5

10
0

(b) Sorted values Ri (log scale).

0 200 400 600 800 1000 1200 1400 1600 1800

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) Sorted values Qi (linear scale).

0 200 400 600 800 1000 1200 1400 1600 1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Sorted values Ri (linear scale).

Figure 5: Sorted values of Qi (left) and Ri (right) with linear (bottom) and logarithmic
(top) scale for different values of θ∗.

distributed (except that there is not much difference between the results obtained with θ∗ =
10−2 and θ∗ = 10−6). Since our algorithm sometimes attains the optimal value, the vertical
logarithmic axes are trimmed, starting from 10−16. Note, the least attained positive value
of the values (56) is 1.2 · 10−16. Based on the linear plot in Figure 5d, the obtained upper
bound UCP

i is close to ULP
i in around 1100 cases (if θ∗ is sufficiently small). To be precise,

criterion Ri was lower than 10−2 in 1036, 1120, and 1127 cases for θ∗ = 1, 10−2, and 10−6,
respectively.

To support the claim that our algorithm is useful even for larger instances, it is important
to analyze whether the bounds do not get worse with increasing instance size. To confirm
this, we group instances into quartiles based on their properties and plot the overlaid sorted
values of Qi and Ri for each quartile in Figure 6. Regarding the properties determining the
size of the instance, we consider number of clauses, number of variables, and number of non-
zeros, i.e., the sum of lengths of all clauses. For all the plots, it seems that the numbers Qi

and Ri are either getting lower or staying the same with increasing the instance size. For
the criterion Qi, this can be explained by the fact that, with increasing size of the instance,

702

Using Constraint Propagation to Bound Linear Programs

θ∗ 100 5 3 1.5 1 10−2 10−6

Instances with at least one clause of length at least 3 and at least one unit clause (Sec. 6.4.1)∑
i T

LP
i /

∑
i T

CP
i 15.26 7.38 6.45 3.91 3.48 3.29 3.23

arithmetic mean of TLP
i /TCP

i 200.40 159.84 85.77 53.25 34.32 26.50 20.37
geometric mean of TLP

i /TCP
i 42.16 22.04 16.86 10.39 7.48 5.43 4.52

instances with Ri ≤ 10−16 378 461 542 660 764 798 799
instances with UCP

i ≤ ULP
i + 10−6 378 462 543 665 769 807 814

Max-2SAT instances with at least one unit clause (Section 6.4.2)∑
i T

LP
i /

∑
i T

CP
i 16.59 2.01 0.86 0.65 0.60 0.59 0.59

arithmetic mean of TLP
i /TCP

i 36.57 23.71 11.40 7.08 3.74 3.44 3.03
geometric mean of TLP

i /TCP
i 15.62 7.26 3.29 2.16 1.56 1.53 1.48

instances with Ri ≤ 10−16 0 53 99 134 153 154 154
instances with UCP

i ≤ ULP
i + 10−6 0 53 99 134 153 154 154

Table 2: Comparison of runtimes of the LP solver (TLP
i) and our method (TCP

i) and the
number of instances solved exactly.

ULP
i is increasing too. However, the number of instances solved to optimality is increasing

with the size of the instance. Overall, we conclude that the bounds do not get worse with
increasing instance size.

Next, we report the number of instances solved exactly and the speed-up obtained for
different values of θ∗ in Table 2 (upper part), denoting by TLP

i and TCP
i the time required

by the LP solver and by our method on instance i, respectively. For each value of θ∗,
the table shows the overall runtime of the LP solver divided by the overall runtime of our
algorithm and the arithmetic and geometric mean of speed-ups for the individual instances.
Figure 7a shows the cactus plot, which indicates that there is indeed a systematic speed-up
with our method when compared to the LP solver. The longest runtime of our algorithm
with θ∗ = 10−6 and the LP solver is 111 seconds and 679 seconds, respectively.

We believe that an additional speed-up could be achieved by warm-starting. The part of
the DAG needed to explain the found contradiction (see Section 2.1) is usually very small.
If the DAG is built in every iteration from scratch, most of it is therefore thrown away.
Since the system (40) changes only slightly between consecutive updates, it makes sense to
reuse a part of the DAG in the next iteration and thus avoid repeatedly applying many rules
in the same way. Such a warm-starting was presented for the VAC algorithm by Nguyen,
Schiex, and Bessiere (2013) and for the Augmenting DAG algorithm by Werner (2005) with
significant speed-ups (also see Komodakis & Paragios, 2008).

6.4.2 Comparison on Max-2SAT Instances

Regarding the 154 Max-2SAT instances, Table 2 (lower part) shows the achievable trade-offs
in terms of runtime and number of instances solved to optimality. In relation to Remark 13,
with low-enough θ∗, all Max-2SAT instances are solved to optimality. Concerning runtime,
some speed-up is often achieved, but the overall time needed by our algorithm for the 154
instances is higher than the overall runtime of the LP solver, as seen in Table 2. This is
explained by the cactus plot in Figure 7b which shows that our approach is able to solve
many instances quickly, but then spends a lot of time converging on a few ones. In detail,
more than 80% and 90% of time is spent on 12% and 23% of instances by our algorithm

703

Dlask & Werner

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(a) Division based on number of clauses in the in-
stance, values of Qi.

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(b) Division based on number of clauses in the in-
stance, values of Ri.

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(c) Division based on number of variables in the in-
stance, values of Qi.

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(d) Division based on number of variables in the
instance, values of Ri.

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(e) Division based on number of non-zeros, values
of Qi.

0 50 100 150 200 250 300 350 400 450

10
-15

10
-10

10
-5

10
0

(f) Division based on number of non-zeros, values
of Ri.

Figure 6: Dependence of bound quality on the instance size (specified by quartiles Q1–Q4).
For each quartile, sorted values of Qi or Ri are shown with logarithmic scale of the vertical
axis. The division into quartiles is done according to the number of clauses, number of
variables, and number of non-zeros.

704

Using Constraint Propagation to Bound Linear Programs

10
-6

10
-4

10
-2

10
0

10
2

10
4

Time (seconds)

0

200

400

600

800

1000

1200

1400

1600

1800
N

u
m

b
e

r
o

f
in

s
ta

n
c
e

s
 f

o
r

w
h

ic
h

 a
lg

o
ri
th

m
 f

in
is

h
e

d

(a) Cactus plot for the 1855 instances with at least
one clause of length at least 3 and at least one unit
clause.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Time (seconds)

0

50

100

150

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s
 f

o
r

w
h

ic
h

 a
lg

o
ri
th

m
 f

in
is

h
e

d

(b) Cactus plot for the 154 Max-2SAT instances
with at least one unit clause.

Figure 7: Cactus plots comparing the speed of the LP solver and our method for different
values of θ∗. The plots show for how many instances the algorithm finishes (vertical axis)
within the specified time (horizontal axis).

with θ∗ = 10−6, respectively, and the longest runtime is 5.3 seconds. On the other hand,
the LP solver solves each Max-2SAT instance in less than 1.9 seconds.

Importantly, the LP relaxation of Weighted Max-2SAT can be solved by a reduction to
the maximum-flow problem (Rother, Kolmogorov, Lempitsky, & Szummer, 2007; Boros &
Hammer, 2002), which makes it easier than the general case (Pr̊uša & Werner, 2019). It is
possible that Gurobi takes advantage of this.

6.4.3 Instances Too Large for the LP Solver

Let us now analyze the runtime of our algorithm on the 480 instances that are too large for
the LP solver. Figure 8a shows the cactus plot which is, in comparison to those in Figure 7,
more inclined towards longer runtimes. In particular, 90% and 99% of these instances are
solved (with θ∗ = 10−6) within 36 seconds and 556 seconds, respectively. The instance with
second-longest and longest runtime required 16 and 72 minutes for our algorithm (with
θ∗ = 10−6) to converge, respectively.

To demonstrate that there is no abrupt change of behavior of our algorithm on these
instances, we show the dependence of runtime on the number of variables, clauses, and
non-zeros in Figures 8b, 8c, and 8d, respectively. All of these figures show that there is
a clear trend between the runtime and the size of the instance and that the 480 instances
adhere to it.

Putting this together with the results from Section 6.4.1 (recall Figure 6), we believe
that our algorithm scales well even to large instances and that neither the runtime (relative
to the instance size) nor the bound quality will systematically deteriorate.

705

Dlask & Werner

10
-2

10
0

10
2

10
4

Time (seconds)

0

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s
 f

o
r

w
h

ic
h

 a
lg

o
ri
th

m
 f

in
is

h
e

d

(a) Cactus plot for the 480 instances with at least
one clause of length at least 3 and at least one unit
clause that could not be solved by the LP solver.

(b) Dependence of runtime of our algorithm (with
θ∗ = 10−6) on the number of variables in the in-
stance.

(c) Dependence of runtime of our algorithm (with
θ∗ = 10−6) on the number of clauses in the instance.

(d) Dependence of runtime of our algorithm (with
θ∗ = 10−6) on the number of non-zeros in the in-
stance.

Figure 8: Information on the runtime of our algorithm and its dependence on instance size.
Note the logarithmic scales of some of the axes.

6.5 Tightness of the Bound on Tractable Max-SAT Classes

We show that our constraint propagation rules for system (40) are refutation complete for
tractable subclasses of Max-SAT that either use tractable clause types (language) or have
acyclic structure (clause-variable incidence graph). For these instances, the LP relaxation
is tight and any point returned by our algorithm is an optimum of the dual LP relaxation.

It was proved by Khanna and Sudan (1996) and Creignou (1995) that a subclass of gen-
eralized Max-SAT (i.e., Max-CSP with Boolean variables) defined by restricting constraint
types (language) is tractable if and only if one of the following holds:

• All constraints are 0-valid or all are 1-valid. In this case, the optimal value is w(C),
which coincides with the bound provided by the linear program (optimal value shifted by
w(C), as explained previously) and our algorithm attains this optimum already at y = 0.

706

Using Constraint Propagation to Bound Linear Programs

• All constraints are 2-monotone. Restricting these constraints to clauses results in clauses
with at most two literals where at most one is positive and at most one is negative. In
this case, Max-SAT can be reduced to minimum st-cut problem (Khanna & Sudan, 1996,
Lemma 3), (Creignou, 1995) and the optimal value of its LP formulation equals (up to
a trivial recalculation) the optimal value of the LP relaxation of Max-SAT which is thus
tight. Since this is an instance of Max-2SAT, any point returned by our algorithm is
optimal by Remark 13.

If we view (40) as the LP relaxation of a CSP with Boolean variables, then the propa-
gation rules enforce AC of this CSP (Remark 16). If the factor graph of this CSP is acyclic,
AC solves this CSP exactly (Freuder, 1982, Theorem 1). Hence, if the clause-variable in-
cidence graph is acyclic, our constraint propagation rules are refutation complete and the
fixed points of our algorithm are optimal. Additionally, if no contradiction is detected, an
integral solution to the left-hand system (40) can be constructed, so the bound computed
by the LP relaxation is tight.

7. Conclusion

We have proposed and analyzed a technique to compute, with small space complexity,
bounds on linear programs. Given a dual-feasible solution, we apply constraint propaga-
tion to the complementary slackness conditions, which is a system of linear inequalities
in the primal variables. If propagation succeeds to detect infeasibility of this system, we
reconstruct a certificate of infeasibility (a solution of Farkas’ alternative system) from the
propagation history. This certificate is at the same time a dual-improving direction, which
is used, after line search, to improve the current dual solution and thus the bound on the
optimal value of the linear program.

While constraint propagation for systems of constraints (here, linear inequalities) with
continuous variables has been studied before (Benhamou & Granvilliers, 2006), the main
novelty of our approach is in reconstructing infeasibility certificates from constraint propa-
gation and using them to iteratively improve the dual solution.

The proposed method can be seen as a generalization of the VAC / Augmenting DAG
algorithm (Cooper et al., 2010; Koval & Schlesinger, 1976; Werner, 2007) for WCSP. Recall
that the main purpose of (soft) local consistencies in WCSP, such as VAC, EDAC (de Givry,
Heras, Zytnicki, & Larrosa, 2005), FDAC, DAC (Cooper, 2003; Larrosa & Schiex, 2003) or
OSAC (Cooper, de Givry, & Schiex, 2007), is to bound the optimal value of WCSP during
search. Each (soft) local consistency has a different trade-off point between bound quality
and computational complexity (those that provide tighter bounds take longer to compute
and vice versa). In this view, our approach can be seen as a (soft) local consistency technique
for other problems than WCSP.

In particular, we applied it to the LP relaxation of Weighted Max-SAT where it pro-
vided different trade-offs between quality of the bound and runtime. Since the original
announcement of our method in (Dlask & Werner, 2020), we applied it to approximately
optimize an LP formulation of WCSP (Dlask et al., 2023), which is an exponentially large
linear program. There, a necessary condition for feasibility of the complementary slackness
is satisfiability of an underlying CSP (a generalization of the CSP (V,D,E, J∗(y)) from
Section 5), so one can use any classical CSP local consistency to improve the bound.

707

Dlask & Werner

In principle, our approach can be applied to any linear program (assuming an initial
feasible dual solution is available), with any propagation method from Section 3. Alterna-
tively, new propagation methods can be designed for the problem at hand. However, the
quality of the obtained bounds will heavily depend on the linear program and the used
constraint propagation method: for some classes of linear programs, the complementary
slackness constraints will ‘propagate well’, for some others not. Like in the (W)CSP, no
general enough theoretical results currently exist here, so this question is largely empirical.

Acknowledgments

This work has been supported by the Grant Agency of the Czech Technical University in
Prague (grants SGS19/170/OHK3/3T/13 and SGS22/061/OHK3/1T/13), the OP VVV
project CZ.02.1.01/0.0/0.0/16 019/0000765, the CTU institutional support (future fund),
and the Czech Science Foundation (grant 19-09967S).

Appendix A. Relation Between Bounds Propagation and Activity
Propagation

Here, we state specific conditions under which B-consistency is related to bounds consis-
tency (and thus also to arc consistency, by Proposition 1). As before, we assume that the
constraint system is Ax ≤ b where A ∈ Rm×n and b ∈ Rm, but we additionally require the
variables to be bounded to the interval [0, 1], i.e., Ax ≤ b reads

A′x ≤ b′ (57a)

−x ≤ 0 (57b)

x ≤ 1 (57c)

where A′ ∈ Rm′×n consists of the first m′ = m − 2n rows of A and b′ ∈ Rm′
contains the

first m′ components of b. For clarity, we assume that the inequalities in (57) are numbered
from top to bottom so that −xj ≤ 0 is the (m′ + j)-th inequality and xj ≤ 1 is the
(m′ + n+ j)-th inequality.

Next, we assume that the set of blocks B is defined by

B = {{i} ∪ {m′ + 1, . . . ,m} | i ∈ [m′]}, (58)

so that each subset of inequalities given by B ∈ B contains a single inequality from (57a)
and all inequalities (57b)-(57c).

Following on this setting, we state our result that connects bounds consistency and
B-consistency in Proposition 3.

708

Using Constraint Propagation to Bound Linear Programs

Proposition 3. Let {X1, X0, XU} be a partition of [n]. Let us define

Dj =

{1} if j ∈ X1

{0} if j ∈ X0

[0, 1] if j ∈ XU

∀j ∈ [n] (59a)

I = [m′] ∪ {m′ + j | j ∈ X1} ∪ {m′ + n+ j | j ∈ X0} (59b)

I ′ = I \
{
i ∈ [m′]

∣∣∣ ∑
j∈X1

aij +
∑

j∈XU

min{0, aij} = bi

}
. (59c)

Let i ∈ [m′] and B = {i} ∪ {m′ + 1, . . . ,m}. If the polyhedron

{x ∈ Rn | aTi x ≤ bi, 0 ≤ x ≤ 1} (60)

is integral, then the domains (59a) are bounds consistent w.r.t. the constraint aTi x ≤ bi if
and only if I ′ is B-consistent w.r.t. (57).

Consequently, if the polyhedron (60) is integral for each i ∈ [m′], then the domains (59a)
are bounds consistent w.r.t. the system (57) if and only if I ′ is B-consistent w.r.t. (57)
(where B is (58)). Lastly, if these statements hold, then there exists a B-consistent subset
of I, namely I ′.

Proof. Let i ∈ [m′] and B be as in the statement of the theorem. We prove both implications
by contradiction. The system (10) for such B reads{

aTi x ≤ bi if i ∈ I ′

aTi x = bi if i /∈ I ′
(61a)

xj = 1 ∀j ∈ X1 (61b)

xj = 0 ∀j ∈ X0 (61c)

0 ≤ xj ≤ 1 ∀j ∈ XU . (61d)

Clearly, integrality of (60) implies integrality of {x ∈ Rn | aTi x = bi, 0 ≤ x ≤ 1} and
consequently also integrality of the polyhedron defined by (61).

Let I ′ be B-consistent, i.e., (61) is feasible and implies neither xj = 0 nor xj = 1
for any j ∈ XU . Also, if i ∈ I ′, it does not imply aTi x = bi. Let (59a) not be bounds
consistent, i.e., for some j ∈ [n], there is no x feasible for (61) with xj = d where d ∈
{minDj , maxDj}. Necessarily, j ∈ XU because otherwise Dj is a singleton set and this in
turn implies infeasibility of (61), which would be contradictory. Assuming feasibility of (61)
and j ∈ XU , (61) implies xj = 1 − d because the polyhedron defined by (61) is integral.
This is contradictory with B-consistency of I ′.

On the other hand, let (59a) be bounds consistent w.r.t. aTi x ≤ bi. The system

aTi x ≤ bi (62a)

xj = 1 ∀j ∈ X1 (62b)

xj = 0 ∀j ∈ X0 (62c)

0 ≤ xj ≤ 1 ∀j ∈ XU . (62d)

709

Dlask & Werner

is feasible because none of the domains is empty. Moreover, for each j ∈ XU , (62) implies
neither xj = 0 nor xj = 1 (otherwise, the domains could be reduced). Next, we argue
that i ∈ I ′ if and only if (62) implies aTi x = bi: indeed, the minimal value of aTi x among x
satisfying (62b)-(62d) is ∑

j∈X1

aij +
∑

j∈XU

min{0, aij}.

By feasibility, this value is at most bi and it equals bi if and only if (62) implies aTi x = bi,
i.e., if and only if i /∈ I ′ by definition (59c). Consequently, I ′ is B-consistent, i.e., (61) does
not contain any always-active inequality.

The remaining statements follow directly from the definition of B-consistency and bounds
consistency.

Even though the setting outlined above might seem very restrictive, LP relaxations
of combinatorial problems often satisfy these assumptions. In such cases, the bounded
variables xj ∈ [0, 1], j ∈ [n] can originate as the continuous relaxation of binary variables
and the requirement on integrality of the polyhedra (60) can be assured, e.g., by the following
proposition.

Proposition 4 (Dlask, 2022, Lemma 5.5, cf. Hooker, 2000, Theorem 45). For each a ∈
{−1, 0, 1}n and b ∈ Z, the polyhedra {x ∈ [0, 1]n | aTx ≤ b} and {x ∈ [0, 1]n | aTx = b} are
integral.

It is straightforward to extend the previous result to the more general case where the
system (57a) contains also equalities, but we chose not to formalize this since it would
complicate the explanation to some extent.27

In practice, it is indeed typically the case that the relaxed variables are in the inter-
val [0, 1] and the coefficients in the constraints satisfy aij ∈ {−1, 0, 1} and bi ∈ Z, which
turns out sufficient for integrality by Proposition 4. In particular, all of the aforementioned
assumptions are satisfied by the constraints in the LP relaxations of the following com-
binatorial problems: set multicover (Vazirani, 2001) (including its special cases, set cover
and vertex cover), quadratic assignment problem (Du & Pardalos, 1999) (also for the form
in Zhang, Shi, McAuley, Wei, Zhang, & Van Den Hengel, 2016), max-cut (de la Vega &
Kenyon-Mathieu, 2007), correlation clustering (Demaine & Immorlica, 2003) (a.k.a. multi-
way cut), Steiner forest (Vazirani, 2001), maximum independent set (Matoušek & Gärtner,
2006), facility location (Vazirani, 2001), travelling salesperson problem (Jünger, Reinelt, &
Rinaldi, 1995; Dantzig, Fulkerson, & Johnson, 1954), linear ordering problem (Pardalos,
Du, & Graham, 2013), planar and axial three-dimensional problem (Burkard, 2002; Pr̊uša
& Werner, 2019). To be precise, some of these linear programs do not contain the upper
bounds x ≤ 1 (at least explicitly), but their optimal value is not changed by including them.

27. Additionally, we are aware of the fact that this is not the only case where these notions of consistency
coincide – e.g., this is also the case for the basic LP relaxation of WCSP (Remark 10). Even though all
coefficients in the constraints (27) are from the set {−1, 0, 1}, the variables are only constrained to be
non-negative and are not (explicitly) bounded to be at most 1 (even though this is done implicitly by
the simplex constraint (27c)). We decided to omit a more general analysis that would cover also such
cases because it would be technical and lengthy.

710

Using Constraint Propagation to Bound Linear Programs

label a

label b

variable 1 variable 2 variable 3

Figure 9: Illustration of the CSP considered in Appendix B. Allowed domain elements and
binary tuples are shown by black circles and full lines, respectively, and forbidden domain
elements and binary tuples are depicted by white circles and dashed lines, respectively.

Remark 20. It is of interest in the constraint programming community to identify subsets
of problems where enforcing a precise form of local consistency is a refutation-complete
method, i.e., where attaining the local consistency implies satisfiability of the original system.
This was studied, e.g., for arc consistency by Cohen and Jeavons (2017) and Cooper and
Živný (2016). Dlask and Werner (2022) identified two classes of problems where activity
propagation is refutation complete (more precisely, where BCD applied to the dual linear
program is optimal, which is equivalent to refutation-completeness of activity propagation
by Remark 7). In both of them, the variables are bounded by 0 ≤ x ≤ 1, the constraint
matrix contains only {−1, 0, 1} coefficients, and vector b is integral, so the constraints are
in the form (57) and satisfy all the assumptions stated in this section. Other classes of
problems could be inherited by the connection between activity propagation and bounds/arc
consistency stated here.

Appendix B. Example of Propagation: Difference Between VAC and Our
Algorithm

In this part, we present an example in which the propagation rules from Section 5.1 yield a
different infeasibility certificate (dual-improving direction) than the VAC algorithm (Cooper
et al., 2010; Koval & Schlesinger, 1976; Werner, 2007) or its generalization by Dlask et al.
(2023), even if the sequence of propagation steps is the same.

Let V = {1, 2, 3}, E = {{1, 2}, {2, 3}}, and D = {a, b}. We thus have

P = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b),
{(1, a), (2, a)}, {(1, a), (2, b)}, {(1, b), (2, a)}, {(1, b), (2, b)},
{(2, a), (3, a)}, {(2, a), (3, b)}, {(2, b), (3, a)}, {(2, b), (3, b)}}.

(63)

Next, let c = (2, 0, 2, 2, 0, 2, 2, 2, 0, 0, 2, 0, 2, 0) where the order of the components is deter-
mined by (63) and y = 0 is the zero vector of RQ. Consequently,

J∗(y) = {(1, a), (2, a), (2, b), (3, b),
{(1, a), (2, a)}, {(1, a), (2, b)},
{(2, a), (3, a)}, {(2, b), (3, a)}}

(64)

711

Dlask & Werner

and the left-hand system (29) thus reads

ϕ1a,2 : x1a,2a + x1a,2b − x1a = 0
ϕ1b,2 : x1b,2a + x1b,2b − x1b = 0
ϕ2a,1 : x1a,2a + x1b,2a − x2a = 0
ϕ2b,1 : x1a,2b + x1b,2b − x2b = 0
ϕ2a,3 : x2a,3a + x2a,3b − x2a = 0
ϕ2b,3 : x2b,3a + x2b,3b − x2b = 0
ϕ3a,2 : x2a,3a + x2b,3a − x3a = 0
ϕ3b,2 : x2a,3b + x2b,3b − x3b = 0

ϕ1 : x1a + x1b = 1
ϕ2 : x2a + x2b = 1
ϕ3 : x3a + x3b = 1

xj ≥ 0 ∀j ∈ J∗(y)
xj = 0 ∀j ∈ P \ J∗(y)

(65)

where we named the individual equalities in accordance to the corresponding dual variables
y1a,2, . . . , y3. The CSP with the set of allowed tuples (64) is depicted in Figure 9.

To initialize the propagation algorithm, we set yj = 0 (the zero vector of RP) for all
j ∈ P \J∗(y). The PWC propagation rules from Section 5.1.1 iteratively infer the following.
Note that, to improve readability, we underline variables xj with j ∈ P \ J∗(y).

1. Using rule 1, set x2a,3a = x2b,3a = 0 via the inequality x2a,3a + x2b,3a − x3a = 0 with
cause vectors y2a,3a = y2b,3a = e3a,2 + y3a.

2. Using rule 2, set x2a = 0 via the equality x2b,3a − x2a,3b + x2a − x3a = 0 with cause

vector y2a = y2a,3a + y2a,3b − e2a,3.

3. Using rule 2, set x2b = 0 via the equality x2a,3a − x2b,3b + x2b − x3a = 0 with cause

vector y2b = y2b,3a + y2b,3b − e2b,3.

4. Using rule 1, set x1a,2a = 0 via the equality x1a,2a + x1b,2a + x2b,3a − x2a,3b − x3a = 0

with cause vector y1a,2a = y2a + e2a,1.

5. Using rule 1, set x1a,2b = 0 via the equality x1a,2b + x1b,2b + x2a,3a − x2b,3b − x3a = 0

with cause vector y1a,2b = y2b + e2b,1.

6. Using rule 2, set x1a = 0 via the equality x1b,2a + x2b,3a − x2a,3b + x1b,2b + x2a,3a −
x2b,3b − 2x3a + x1a = 0 with cause vector y1a = y1a,2a + y1a,2b − e1a,2.

7. Using rule 3, detect infeasibility via the equality x1b,2a+x2b,3a−x2a,3b+x1b,2b+x2a,3a−
x2b,3b − 2x3a − x1b = −1 with cause vector ȳ = y1a + y1b − e1.

Stated explicitly, the found infeasibility certificate is ȳ = (−1, 0, 1, 1,−1,−1, 2, 0,−1, 0, 0)
where the order of the components corresponds to the order of the constraints in (65). The
optimal step size with this improving direction ȳ from the current point y is α∗ = 1 and,
by updating from y to y + α∗ȳ, the objective improves by 1.

However, the VAC algorithm with the same order of propagations finds the improving
direction ȳ′ = (−1, 0, 1, 1,−1,−1, 1, 0,−1, 0, 0) which differs in the component y3a,2. Due to
its lower magnitude, the optimal step size is larger, namely α∗′ = 2. By updating from y

712

Using Constraint Propagation to Bound Linear Programs

to y + α∗′ȳ′, the objective improves by 2, which is a greater improvement when compared
to the improving direction ȳ above.

References

Achterberg, T. (2007). Constraint integer programming. Ph.D. thesis.

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., & Weninger, D. (2014). Multi-row
presolve reductions in mixed integer programming. In Proceedings of the Twenty-
Sixth RAMP Symposium, pp. 181–196.

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., & Weninger, D. (2020). Presolve
reductions in mixed integer programming. INFORMS Journal on Computing, 32 (2),
473–506.

Apt, K. R. (1999). The rough guide to constraint propagation. In Conference on Principles
and Practice of Constraint Programming, pp. 1–23. Springer.

Bacchus, F., Järvisalo, M., & Martins, R. (2019). MaxSAT Evaluation 2018: New develop-
ments and detailed results. Journal on Satisfiability, Boolean Modeling and Computa-
tion, 11 (1), 99–131. Instances available at https://maxsat-evaluations.github.
io/.

Batra, D., Nowozin, S., & Kohli, P. (2011). Tighter relaxations for MAP-MRF inference:
A local primal-dual gap based separation algorithm. In Proceedings of the Fourteenth
international conference on artificial intelligence and statistics, pp. 146–154. JMLR
Workshop and Conference Proceedings.

Beck, A. (2014). The 2-coordinate descent method for solving double-sided simplex con-
strained minimization problems. Journal of Optimization Theory and Applications,
162, 892–919.

Belotti, P. (2013). Bound reduction using pairs of linear inequalities. Journal of Global
Optimization, 56, 787–819.

Belotti, P., Cafieri, S., Lee, J., Liberti, L., et al. (2010). Feasibility-based bounds tightening
via fixed points.. In COCOA (1), pp. 65–76.

Benhamou, F., & Granvilliers, L. (2006). Continuous and interval constraints. In Handbook
of Constraint Programming, chap. 16. Elsevier.

Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research
Society, 48 (3), 334–334.

Bessiere, C. (2006). Constraint propagation. In Handbook of Constraint Programming,
chap. 3. Elsevier.

Biere, A., Heule, M., & van Maaren, H. (2009). Handbook of satisfiability, Vol. 185. IOS
press.

Bordeaux, L., Katsirelos, G., Narodytska, N., & Vardi, M. Y. (2011). The complexity of
integer bound propagation. Journal of Artificial Intelligence Research, 40, 657–676.

Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete applied mathe-
matics, 123 (1-3), 155–225.

713

Dlask & Werner

Brearley, A., Mitra, G., & Williams, H. P. (1975). Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical programming, 8,
54–83.

Burkard, R. E. (2002). Selected topics on assignment problems. Discrete applied mathe-
matics, 123 (1-3), 257–302.

Cohen, D. A., & Jeavons, P. G. (2017). The power of propagation: when GAC is enough.
Constraints, 22 (1), 3–23.

Cooper, M. C. (2003). Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy
Sets and Systems, 134 (3), 311–342.

Cooper, M. C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010).
Soft arc consistency revisited. Artificial Intelligence, 174 (7-8), 449–478.

Cooper, M. C., de Givry, S., & Schiex, T. (2007). Optimal soft arc consistency.. In Pro-
ceedings of the 20th International Joint Conference on Artifical Intelligence, Vol. 7,
pp. 68–73.

Cooper, M. C., & Živný, S. (2016). The power of arc consistency for CSPs defined by
partially-ordered forbidden patterns. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 652–661.

Creignou, N. (1995). A dichotomy theorem for maximum generalized satisfiability problems.
Journal of Computer and System Sciences, 51 (3), 511–522.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2 (4), 393–410.

Davis, E. (1987). Constraint propagation with interval labels. Artificial intelligence, 32 (3),
281–331.

de Givry, S., Heras, F., Zytnicki, M., & Larrosa, J. (2005). Existential arc consistency: Get-
ting closer to full arc consistency in weighted CSPs. In International Joint Conference
on Artificial Intelligence, Vol. 5, pp. 84–89.

de la Vega, W. F., & Kenyon-Mathieu, C. (2007). Linear programming relaxations of
Maxcut. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 53–61. Citeseer.

Demaine, E. D., & Immorlica, N. (2003). Correlation clustering with partial information.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 6th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, APPROX 2003 and 7th International Workshop on
Randomization and Approximation Techniques in Computer Science, RANDOM 2003,
Princeton, NJ, USA, August 24-26, 2003. Proceedings, pp. 1–13. Springer.

Devriendt, J., Gleixner, A., & Nordström, J. (2021). Learn to relax: Integrating 0-1 integer
linear programming with pseudo-boolean conflict-driven search. Constraints, 26 (1),
26–55.

Dlask, T. (2018). Minimizing Convex Piecewise-Affine Functions by Local Consistency Tech-
niques. Master’s thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering.

714

Using Constraint Propagation to Bound Linear Programs

Dlask, T. (2022). Block-Coordinate Descent and Local Consistencies in Linear Pro-
gramming. Dissertation, available online: https://dspace.cvut.cz/handle/10467/
102874?locale-attribute=en, Czech Technical University in Prague, Faculty of
Electrical Engineering.

Dlask, T., & Werner, T. (2020). Bounding linear programs by constraint propagation:
application to Max-SAT. In International Conference on Principles and Practice of
Constraint Programming, pp. 177–193. Springer.

Dlask, T., & Werner, T. (2022). Classes of linear programs solvable by coordinate-wise
minimization. Annals of Mathematics and Artificial Intelligence, 90 (7), 777–807.

Dlask, T., & Werner, T. (2023). Activity propagation in systems of linear inequalities and
its relation to block-coordinate descent in linear programs. Constraints, 28, 244––276.

Dlask, T., Werner, T., & de Givry, S. (2023). Super-reparametrizations of weighted CSPs:
properties and optimization perspective. Constraints, 28, 277–319.

Du, D., & Pardalos, P. M. (1999). Handbook of combinatorial optimization, Vol. 4. Springer
Science & Business Media.

Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM
(JACM), 29 (1), 24–32.

Freund, R. M., Roundy, R., & Todd, M. J. (1985). Identifying the set of always-active
constraints in a system of linear inequalities by a single linear program. Massachusetts
Institute of Technology, Alfred P. Sloan School of Management.

Greenberg, H. J. (1996). Consistency, redundancy, and implied equalities in linear systems.
Annals of Mathematics and Artificial Intelligence, 17 (1), 37–83.

Gurobi Optimization, LLC (2020). Gurobi Optimizer Reference Manual..

Haller, S., Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., &
Savchynskyy, B. (2020). A primal-dual solver for large-scale tracking-by-assignment.
In International Conference on Artificial Intelligence and Statistics, pp. 2539–2549.
PMLR.

Harvey, W., & Stuckey, P. J. (2003). Improving linear constraint propagation by changing
constraint representation. Constraints, 8 (2), 173–207.

Hooker, J. (2000). Logic-based methods for optimization: combining optimization and con-
straint satisfaction. Wiley series in discrete mathematics and optimization. Wiley.

Janssen, P., Jégou, P., Nouguier, B., & Vilarem, M.-C. (1989). A filtering process for gen-
eral constraint-satisfaction problems: achieving pairwise-consistency using an associ-
ated binary representation. In IEEE International Workshop on Tools for Artificial
Intelligence, pp. 420–421. IEEE Computer Society.

Jünger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman problem. Handbooks
in operations research and management science, 7, 225–330.

Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S.,
Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., & Rother,
C. (2015). A comparative study of modern inference techniques for structured discrete

715

Dlask & Werner

energy minimization problems. International Journal of Computer Vision, 115 (2),
155–184.

Khanna, S., & Sudan, M. (1996). The optimization complexity of constraint satisfaction
problems. In Electonic Colloquium on Computational Complexity. Citeseer.

Komodakis, N., & Paragios, N. (2008). Beyond loose LP-relaxations: Optimizing MRFs by
repairing cycles. In European Conference on Computer Vision.

Koval, V. K., & Schlesinger, M. I. (1976). Dvumernoe programmirovanie v zadachakh
analiza izobrazheniy (Two-dimensional programming in image analysis problems).
Automatics and Telemechanics, 8, 149–168. In Russian.

Larrosa, J., & Schiex, T. (2003). In the quest of the best form of local consistency for
weighted CSP. In International Joint Conference on Artificial Intelligence, Vol. 3,
pp. 239–244.

Leiserson, C. E., Rivest, R. L., Cormen, T. H., & Stein, C. (1994). Introduction to algorithms,
Vol. 3. MIT press Cambridge, MA, USA.

Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI, Vol. 93, pp.
232–238.

Li, C.-M., Xu, Z., Coll, J., Manyà, F., Habet, D., & He, K. (2021). Combining Clause
Learning and Branch and Bound for MaxSAT. In Michel, L. D. (Ed.), 27th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2021),
Vol. 210 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 38:1–38:18,
Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Magnanti, T., Ahuja, R., & Orlin, J. (1993). Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, NJ.

Matoušek, J., & Gärtner, B. (2006). Understanding and using linear programming (univer-
sitext). Springer-Verlag.

Nguyen, H., Bessiere, C., de Givry, S., & Schiex, T. (2017). Triangle-based consistencies
for cost function networks. Constraints, 22 (2), 230–264.

Nguyen, H., Schiex, T., & Bessiere, C. (2013). Dynamic virtual arc consistency. In The
28th Annual ACM Symposium on Applied Computing, pp. 98–103.

Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: algorithms and
complexity. Courier Corporation.

Pardalos, P. M., Du, D.-Z., & Graham, R. L. (2013). Handbook of combinatorial optimiza-
tion. Springer.

Pr̊uša, D., & Werner, T. (2019). Solving LP relaxations of some NP-hard problems is as hard
as solving any linear program. SIAM Journal on Optimization, 29 (3), 1745–1771.

Puranik, Y., & Sahinidis, N. V. (2017). Domain reduction techniques for global NLP and
MINLP optimization. Constraints, 22 (3), 338–376.

Rockafellar, R. T. (1972). Convex Analysis. Princeton University Press.

716

Using Constraint Propagation to Bound Linear Programs

Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007). Optimizing binary
MRFs via extended roof duality. In 2007 IEEE conference on computer vision and
pattern recognition, pp. 1–8. IEEE.

Savchynskyy, B. (2019). Discrete graphical models – an optimization perspective. Founda-
tions and Trends in Computer Graphics and Vision, 11 (3-4), 160–429.

Savelsbergh, M. W. (1994). Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA Journal on Computing, 6 (4), 445–454.

Schlesinger, M. (1976). Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh
pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions).
Kibernetika, 4 (113-130), 2.

Schlesinger, M. I., & Antoniuk, K. (2011). Diffusion algorithms and structural recognition
optimization problems. Cybernetics and Systems Analysis, 47, 175–192.

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

Schrijver, A. (2004). Combinatorial optimization: polyhedra and efficiency. Springer Science
& Business Media.

Schulte, C., & Stuckey, P. J. (2005). When do bounds and domain propagation lead to
the same search space?. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27 (3), 388–425.

Sofranac, B., Gleixner, A., & Pokutta, S. (2022). An algorithm-independent measure of
progress for linear constraint propagation. Constraints, 27 (4), 432–455.

Sontag, D., Choe, D. K., & Li, Y. (2012). Efficiently searching for frustrated cycles in
MAP inference. In Proceedings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, UAI’12, p. 795–804, Arlington, Virginia, USA. AUAI Press.

Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., & Weiss, Y. (2008). Tightening LP
relaxations for MAP using message passing. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI’08, p. 503–510, Arlington,
Virginia, USA. AUAI Press.

Swoboda, P., & Andres, B. (2017). A message passing algorithm for the minimum cost
multicut problem. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1617–1626.

Swoboda, P., Kuske, J., & Savchynskyy, B. (2017). A dual ascent framework for Lagrangean
decomposition of combinatorial problems. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1596–1606.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen,
M., & Rother, C. (2008). A comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. IEEE transactions on pattern
analysis and machine intelligence, 30 (6), 1068–1080.

Thapper, J., & Živný, S. (2012). The power of linear programming for valued CSPs. In
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 669–
678. IEEE.

717

Dlask & Werner

Tourani, S., Shekhovtsov, A., Rother, C., & Savchynskyy, B. (2018). MPLP++: Fast,
parallel dual block-coordinate ascent for dense graphical models. In Proceedings of
the European Conference on Computer Vision, pp. 251–267.

Trösser, F., de Givry, S., & Katsirelos, G. (2020). Relaxation-aware heuristics for exact
optimization in graphical models. In Hebrard, E., & Musliu, N. (Eds.), Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 475–
491, Cham. Springer International Publishing.

Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of optimization theory and applications, 109 (3), 475.

Vazirani, V. V. (2001). Approximation Algorithms. Springer-Verlag New York.

Živný, S. (2012). The Complexity of Valued Constraint Satisfaction Problems. Cognitive
Technologies. Springer.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1 (1-2), 1–305.

Werner, T. (2005). A linear programming approach to max-sum problem: A review. Tech.
rep. CTU-CMP-2005-25, Center for Machine Perception, Czech Technical University.

Werner, T. (2007). A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29 (7), 1165–1179.

Werner, T. (2010). Revisiting the linear programming relaxation approach to Gibbs energy
minimization and weighted constraint satisfaction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32 (8), 1474–1488.

Werner, T. (2014). Marginal consistency: Upper-bounding partition functions over commu-
tative semirings. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37 (7), 1455–1468.

Werner, T. (2017). On coordinate minimization of piecewise-affine functions. Tech. rep.
CTU-CMP-2017-05, Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague.

Yanover, C., Meltzer, T., Weiss, Y., Bennett, K. P., & Parrado-Hernández, E. (2006). Lin-
ear programming relaxations and belief propagation–an empirical study.. Journal of
Machine Learning Research, 7 (9).

Yuanlin, Z., & Yap, R. H. (2000). Arc consistency on n-ary monotonic and linear constraints.
In International Conference on Principles and Practice of Constraint Programming,
pp. 470–483. Springer.

Zadeh, N. (1970). A note on the cyclic coordinate ascent method. Management Science,
16 (9), 642–644.

Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., & Van Den Hengel, A. (2016). Pairwise
matching through max-weight bipartite belief propagation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1202–1210.

718

