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Abstract

Question-answering (QA) systems are becoming more and more important because
they enable human-computer communication in a natural language. In recent years, signif-
icant progress has been made with transformer-based models that leverage deep learning
in combination with large amounts of text data. However, a significant challenge with QA
systems lies in their complexity rooted in the ambiguity and flexibility of a natural lan-
guage. This makes even their evaluation a formidable task. For this reason, in this study,
we focus on the evaluation of extractive question-answering (EQA) systems by conduct-
ing a large-scale analysis of distilBERT using benchmark data provided by the Stanford
Question Answering Dataset (SQuAD). Specifically, the main objectives of this paper are
fourfold. First, we study the influence of the answer length on the performance and we
demonstrate that there is an inverse correlation between both. Second, we study differences
in exact match (EM) measures because there are different definitions commonly used in
the literature. As a result, we find that despite the fact that all of those measures are
named ”exact match” these measures are actually different from each other. Third, we
study the practical relevance of these different definitions because due to the ambivalent
meaning of ”exact match” in the literature, it is often unclear if reported improvements
are genuine or only due to a change in the exact match measure. Importantly, our results
show that differences between differently defined EM measures are in the same order of
magnitude as reported differences found in the literature. This raises concerns about the
robustness of reported results. Fourth, we provide guidelines to improve the experimental
design of general EQA studies, aiming to enhance performance evaluation and minimize
the potential for spurious results.

1. Introduction

Extractive question-answering (EQA) is a task in natural language processing (NLP) where
the goal is to identify the answer to a question in a given text (Conneau & Lample, 2019;
Qi et al., 2020; Radford et al., 2019). This is in contrast to abstractive question-answering,
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where the goal is to generate new text corresponding to the answer of the question. Ex-
tractive question-answering has many potential applications, such as helping people to find
information more quickly in large libraries or enabling chatbots to provide accurate re-
sponses to customers.

Due to advances in transfer learning, large-scale pre-trained language models have re-
cently gained much interest in natural language processing (Bashath et al., 2022) and par-
ticularly in extractive question-answering (Devlin et al., 2018; Liu et al., 2019; Lan et al.,
2019; Clark et al., 2020; Yang et al., 2019). However, a problem with models like BERT is
that they demand large resources. For this reason distilBERT (Sanh et al., 2019) has been
developed based on knolwedge distillation. Distillation is a technique used to compress a
large, complex machine learning model (the ”teacher”) into a smaller, faster model (the
”student”) that can be deployed in situations where computational resources are limited.
Distillation relies on the idea that the output predictions of the teacher model can be used
to train the student model to obtain similar predictions.

In this paper, we study topics related to the experimental design of EQA systems based
on distilBERT. In general, experimental design is the systematic approach to plan and
conduct an analysis in order to ensure that a research question can be addressed and
risk is minimized for drawing false conclusions (Barker & Milivojevich, 2016; Cox & Reid,
2000). For EQA systems there are a number of issues that can cause problems for reaching
robust conclusions of an analysis. For instance, for many domain-specific tasks, there are
insufficient labeled data available. Consequently, fine-tuning a pre-trained model can suffer
considerably for learning target tasks (Sun et al., 2019; Garg et al., 2020; Jeong et al.,
2020). This issue may be enlarged by using compressed models like distilBERT providing
only a lightweight version of the full language model like BERT. Another problem is the
evaluation of a EQA system itself which is much more difficult than the evaluation of a
classification task. The reason therefor is that an answer can, and often does, correspond to
a sentence with a number of words and the assessment of this allows different perspectives.
For instance, one perspective is to focus only on the presence of words, corresponding to
a bag-of-words score. Another perspective attempts to capture the meaning of the entire
answer sentence, including its synonyms.

While there are many studies that investigate transformer-based models, e.g., BERT
(Devlin et al., 2018), XLNet (Yang et al., 2019), ELECTRA (Clark et al., 2020), RoBERTa
(Liu et al., 2019), ProphetNet (Qi et al., 2020), or lightweight versions thereof, e.g., distil-
BERT (Sanh et al., 2019) or ALBERT (Lan et al., 2019), for question-answering tasks the
focus of such studies is on a comparison of performance scores by assuming this is a valid
framework (Pearce et al., 2021). One issue with this assumption is that it doesn’t hold true
in all scenarios. To put it in simple terms, only comparable entities can be evaluated against
each other. Translating this into our context, methods are often benchmarked against oth-
ers, but on different datasets. An additional variable is the definition of an error measure
itself. For example, several definitions of ”exact match” exist in the literature, as seen in
various analysis packages (Wolf et al., 2020; Briggs, 2021; Pedregosa et al., 2011). These are
often not referenced explicitly, leading to potential ambiguities. As a result, the term ”exact
match” might be used across studies, but with varying definitions. Such discrepancies may
significantly impair comparisons, however, without a thorough analysis, the full extent of
this impact remains uncertain.

88



Experimental design of Extractive Question-Answering Systems

In this paper, we study the experimental design of extractive question-answering (EQA)
addressing the above issues. Specifically, we focus on distilBERT (Sanh et al., 2019) be-
cause it is a very popular language model widely used for EQA. We study this model for
the established benchmark data from the Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2018). SQuAD provides in total over 100, 000 questions for a variety of
different settings, including negative examples and multiple answers, that allows a sound
testing of models. Regarding the experimental design of EQA in the above setting, we
study three main questions. First, we study the influence of the answer length on the
model performance. This will allow us to understand if only the exact same dataset should
to be used for a comparison or if variations are tolerable. Second, we study differences in
exact match (EM) measures because there are at least three different definitions commonly
used in the literature, as mentioned above. This informs us about the numerical similarities
and differences among the various EM measures. Third, due to the ambivalent meaning of
”exact match” in the literature, these measures are used interchangeably. We will study if
this leads to spurious results in the reported performances or to an actual improvement.
Overall, our study seeks to offer recommendations and guidelines on how to design exper-
iments for EQA systems that can enhance the accuracy of performance evaluations and
prevent misleading outcomes and interpretations.

This paper is organized as follows. In the next section, we discuss all methods and
data used for our analysis. In addition, we define the error measures we are using for the
evaluation of the prediction performance. In the results section, we provide the results
of our numerical analysis required for answering our research questions. Thereafter, we
provide a discussion and we finish with concluding remarks.

2. Motivation and Research Question

Experimental design, an indispensable cornerstone of scientific research, traces its origins
to Sir Ronald A. Fisher’s pioneering work in the early 20th century (Fisher, 1935). While
the basic principles of conducting experiments have always been integral to science, it was
Fisher who introduced rigorous statistical methodologies. Today, the design of experiments
remains a dynamic field, continually refining its techniques in the face of ever-evolving
technologies. In this paper, we study the experimental design of language models for EQA
systems.

While the importance of experimental design in the development and assessment of
general natural language processing (NLP) systems is undeniable (Sidorov & Sidorov, 2019),
so far, it is sorely underappreciated. This is also the case for EQA systems. Instead, the
literature is dominated by publications that prioritize the introduction of new methods
deemed to be the ’best.’ In this paper, we diverge from the conventional path of proposing
a novel method or selecting the superior model from a list of candidates. In contrast, we
delve into a critical examination of key factors that influence the evaluation of a EQA
system’s performance. This will allow to establish guidelines for the design of EQA system
experiments.

To be specific, it is common for publications to claim that one EQA system shows a
performance improvement over another by a few percentage points. However, since perfor-
mance measures are random variables, it is necessary to question whether these reported
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improvements are genuine or merely the result of random fluctuations, often referred to as
”noise”. Regrettably, many studies do not provide sufficient detail, which leads to problems
in reproducibility. For instance, using the ”exact match” score as a performance score is
ambiguous or potentially misleading unless the post-processing steps involved are clearly
described. Moreover, employing datasets with ”similar” but unspecified answer length
characteristics can yield inconsistent results. In this paper, we examine the effects of these
two factors—the ”exact match” scores and the answer length—on the evaluation of EQA
systems’ performance.

As a result from our investigations, we aim to answer the following research questions.

1. What influence does the answer length of the training and test data have on the
evaluation of a EQA system?

2. What effect has the post-processing for evaluating exact match scores?

3. Are observed differences due to post-processing of ”exact match” scores significant or
are they negligible?

4. How to generally improve analysis guidelines for evaluating EQA systems?

Overall, our study informs the design of experiments of EQA systems that could be used
as a framework for future studies.

3. Method

In this section, we outline our problem for the extractive question-answering task. The
training details are provided in the upcoming section. We show how ditilBERT is used
to learn representations of question-answering entities. Then, we show how to use Distil-
BERT for a variety of answer lengths in the SQuAD datasets subset and the measurement
variations of the evaluated performance.

First, we define Extractive Question-Answering: Let C denote a context with multiple
tokens

([token1, token2, . . . , tokenn]),

where tokeni is the i − th token in the context. The task of predicting the start and end
tokens of an answer span (R) from those tokens is known as extractive question-answering
(EQA). An answer span is the segment in the context that is assumed to have start and
end tokens if the question is answerable; otherwise, both start and end tokens will indicate
a null value indicating the question is unanswerable.

3.1 Problem Setting

Training and validation instances in the SQuAD data consist of a question (Q), human-
annotated responses (A), and relevant contexts (C). Based on the start of an answer and
the length of the ground-truth answer span provided by annotators, the end position of
the answer was added to the data. SQuAD-2.0 includes negative questions, also known as
”unanswerable” questions, which are not found in SQuAD-1.1.
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The following examples demonstrate that the answer-start positions and lengths of the
responses for the same example in SQuAD datasets (1.1 and 2.0) may fluctuate and do not
always match.

For instance, in SQuAD 1.1, the example 1 contains three answers of different lengths
and starting positions (82, 91, 91), the first answer consisting of 11 words-length and the
other two have the same length of one word.

Example 1 ’id’: ’56e1a38de3433e140042305c’, ’question’: ’What is a commonly used
measurement used to determine the complexity of a computational problem?’, ’answers’:
’text’: [’how much time the best algorithm requires to solve the problem’, ’time’, ’time’],
’answer start’: [82, 91, 91]

Additionally, there are three answers to the example 3, one of which are two words
and two with a 1-word answer length, with the answers starting positions of (245, 194,
194). In contrast, the example 2 has five identical answers of 1-word length and the same
answer-start position (665).

Example 2 ’id’: ’5737aafd1c456719005744ff’, ’question’: ’What is the seldom used force
unit equal to one thousand newtons?’, ’answers’: ’text’: [’sthène’, ’sthène’, ’sthène’,
’sthène’, ’sthène’], ’answer start’: [665, 665, 665, 665, 665]

Example 3 ’id’: ’56d98c53dc89441400fdb548’, ’question’: ’What performer lead the Su-
per Bowl XLVIII halftime show?’, ’answers’: ’text’: [’Bruno Mars’, ’Coldplay’, ’Cold-
play’], ’answer start’: [245, 194, 194]

Besides, the SQuAD 2.0, there is also variation in the start positions of answers and the
lengths of answers. For instance, the example 4 has three answers with different lengths
(2, 9, and 3) and three different start positions of (161, 114, 157). The example 5 has four
answers with start positions of (671, 649, 671, 671) and lengths of (2, 7, 1, 1), whereas there
is neither an answer nor an answer start position in the example 6.

Example 4 ’id’: ’56de0f6a4396321400ee257f’, ’question’: ”Who was the Normans’ main
enemy in Italy, the Byzantine Empire and Armenia?”, ’answers’: ’text’: [’Seljuk Turks’,
’the Pechenegs, the Bulgars, and especially the Seljuk Turks’, ’the Seljuk Turks’], ’an-
swer start’: [161, 114, 157]

Example 5 ’id’: ’56ddde6b9a695914005b962c’, ’question’: ’What century did the Nor-
mans first gain their separate identity?’, ’answers’: ’text’: [’10th century’, ’the first half
of the 10th century’, ’10th’, ’10th’], ’answer start’: [671, 649, 671, 671]

Example 6 ’id’: ’5ad25878d7d075001a428dc8’, ’question’: ’Where are there the fewest
Protestants in France?’, ’answers’: ’text’: [], ’answer start’: []

Such variations (i.e., the answer start position and the length of the answer) motivated
us to study the impact of variations on the performance of transformers (i.e., distilBERT)
as well as the findings of the most error scores used for the evaluation (i.e., Exact-Match
and F1).
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3.2 Implementation

In order to conduct our analysis on distilBERT there are a number of implementation steps
needed. An overview of these steps is shown in Figure 1 and in the following, we will discuss
each of these steps in detail.

Data
Acquisition

Data
Processing

Model
Fine-Tuning

Model
Predictions

Model
Evaluation

Figure 1: Overview of all steps needed for the evaluation of a model. Given that this involves
a sequence of connected steps, the final step of model evaluation depends crucially
on all previous steps.

In general, there are several steps involved in evaluating the performance of an extractive
question-answering model. In the following, we list the five most important components:

• Data Acquisition: Collect a dataset consisting of questions and answers. This dataset
should be representative of the types of questions and answers that the model will be
expected to handle in practice. The SQuAD -1.1 and SQuAD-2.0 data, as described
in section 3.2.1, are used in this study.

• Data Processing: This involves cleaning and normalizing the data, tokenizing the
text, splitting the dataset into training and test sets. The training set is used to train
the model, while the test set is used to evaluate the model’s performance. This is
discussed in section 3.2.2.

• Fine-tuning the model: Fine-tuning a model refers to the process of taking a pre-
trained model, distilBert in our case, and further training it on a new task or a new
dataset, often with a smaller set of labeled examples like SQuAD datasets in our case
and its distinct subsets that we have defined based on the answe lengths. During
fine-tuning, the parameters of the pre-trained model are adjusted to make it more
suitable for the new task. This can involve training the model with a smaller learning
rate, different batch size, or modifying other hyperparameters to better adapt to the
new data.

• Model Predictions: Based on the fine-tuning, the model will produce a list of responses
for each question as discussed in section 3.2.4. These responses will be compared to
the ground truth answers to evaluate the model’s performance.

• Evaluation of the model: A number of different evaluation scores can be used to
measure the performance of a model (Farea et al., 2022), such as the F1-score (F1),
Exact Match (EM), Mean Reciprocal Rank (MRR), Mean Average Precision (MAP),
and Normalized Discounted Cumulative Gain (nDCG). In this study, we focus on F1
and EM as they are widely utilized in the literature, as outlined in section 3.2.5.
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3.2.1 Data

The Stanford Question Answering Dataset (SQuAD) is arguably the most widely used
resource for extractive question-answering tasks. A collection of questions posed by crowd-
workers on a number of Wikipedia articles has been used to form SQuAD. There is a
response for each question that is either NULL (no answer) or a portion of the question’s
context.
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Figure 2: Diversity of the types of answers found in data from SQuAD 1.1.

• SQuAD-1.1 covers approximately 536 distinct Wikipedia articles and contains 107, 785
question-answer pairs (Rajpurkar et al., 2016). Unfortunately, SQuAD-1.1 does not
provide a list of possible responses to each question; rather, the response to each
question can be selected as a text segment from any span in the passage. SQuAD-2.0
(Rajpurkar et al., 2018) is the result of combining the 100, 000 questions from SQuAD-
1.1 with over 50, 000 unanswerable questions that were created by crowd-workers to
look like answerable questions.

The development set, illustrated in Figure 2 and Table 1, focuses on SQuAD-1.1 questions
and answers in three key aspects:

1. Answer Diversity: It examines the categorization of answers into numerical and non-
numerical responses. Non-numerical answers are classified using Part-of-Speech (POS)
labels, and Named Entity Recognition (NER) is applied to further categorize proper
noun phrases into different entities, including persons, places, and others.

2. Style of Reasoning in Questions: This aspect assesses the complexity of the reasoning
style within the questions. It includes aspects like lexical variation (such as synonymy,
and world knowledge), syntactic variation, multiple sentence reasoning, and ambiguity.

3. Syntactic Disparity: The development set also evaluates the extent of syntactic dif-
ferences between the question sentences and the corresponding answers.

This analysis helps improve the understanding of the complexities in the SQuAD-1.1 dataset,
particularly in terms of answer diversity, reasoning styles, and syntactic structures.
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Table 1: Lexical and syntactic differences in the SQuAD 1.1 development set.

Development Set
Aspect

Description

Separation of answers into numerical and non-numerical categories:
- Non-numerical answers classified using Part-of-Speech (POS) labels

Answer Diversity
- Proper noun phrases categorized with Named Entity Recognition (NER) into
person, place, and more.

Assessment of the intricacy in the style of reasoning in questions:
Lexical variation (e.g., synonymy) such as ”called” to ”referred.”
- Lexical variation (e.g., world knowledge) such as ” governing bodies” to ”The
European Parliament and the Council of the European Union.”
- Syntactic variation like ”is currently on the faculty” to ”Current faculty
include.”
- Syntactic disparity like ”What did Antonio Vivaldi do for a living?” to ”An-
tonio Vivaldi was a composer.”
- Multiple sentences reasoning like ”the V&A Theatre & Performance galleries”
to ”The V&A Theatre & Performance galleries. . . . They”
- Ambiguity, for instance, ”What is the main goal of criminal punishment?”
to ”Achieving crime control via incapacitation and deterrence”

Style of Reasoning
in Questions

- Resolving ambiguity through answers, e.g., ”Achieving crime control via
incapacitation and deterrence.”

• SQuAD-2.0 is an extension of the original SQuAD-1.1 dataset, introducing both ”an-
swerable” and ”unanswerable” questions to challenge machine reading comprehension
and question-answering systems. Table 2 presents a comparative summary and statis-
tical attributes of SQuAD-1.1 and SQuAD-2.0. In this table, we provide an overview
of SQuAD-1.1 and SQuAD-2.0, considering the quantity of instances. Notably, all
validation set questions in both SQuAD-1.1 and SQuAD-2.0 contain multiple answers
of varying lengths, with the exception of the questions in SQuAD-2.0, where some
questions are unanswerable.

3.2.2 Pre-processing of SQuAD

Pre-processing of training data can have a substantial impact on the performance of the
model in an extractive question-answering task. Some common pre-processing steps include
tokenization, lowercasing, stemming, and stop-word removal.

• Tokenization is the process of splitting the input text into individual words or tokens.
This is usually done by splitting on white-space and punctuation. Tokenization is
important because it allows the model to understand the structure of the text and
identify individual words. Tokenization can also affect the exact match and F1-score.
For example, if the model is trained on data that has been tokenized in a certain way,
but the test data is tokenized differently, the model’s performance may be affected.

• Lowercasing involves converting all words to lowercase. This can be useful for models
that are case-sensitive, as it can help improve their performance.
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Table 2: Information provided by SQuAD (Rajpurkar et al., 2018). A statistical comparison
between the data from SQuAD-1.1 and SQuAD-2.0.

Dataset SQuAD-1.1 SQuAD-2.0

Train
Total examples 87,599 130,319
Negative examples 0 43,498
Total articles 442 442
Articles with negatives 0 285

Development
Total examples 10,570 11,873
Negative examples 0 5,945
Total articles 48 35
Articles with negatives 0 35

Test
Total examples 9,533 8,862
Negative examples 0 4,332
Total articles 46 28
Articles with negatives 0 28

• Stemming is the process of reducing words to their base form. For example, the stem
of the word ”jumps” is ”jump.” Stemming can help reduce the size of the vocabulary,
which can make the model easier to train and improve its performance.

• Stopword removal involves removing common words that do not add significant mean-
ing to the text, such as ”the,” ”and,” and ”but.” Removing stop-words can help reduce
the size of the input data and improve the performance of the model.

An important part of data pre-processing is tokenization. Any transformer’s tokenizer
can be used to tokenize the input and convert it into an appropriate format. In addition to
tokenizing the text, the tokens are expected to be converted into their corresponding IDs
in the pre-trained vocabulary. Here it is important to select a tokenizer that is compatible
with the model architecture. The vocabulary that is used to prepare a particular checkpoint
should also be downloaded to be saved in the memory cache, in order not to be downloaded
again when the code runs multiple times.

Depending on the model, we employed distilBERT in this investigation, the process’s
output can be saved in a dictionary that can return various keys such as(input ids, attention
mask). However, how to deal with lengthy documents (i.e., contexts) is one particular aspect
of the pre-processing involved in the extractive question-answering system. In other tasks,
it may typically be truncated if it is longer than the model’s maximum sentence length,
however, in the EQA task, omitting some of the contexts may prevent the model from
getting the right answer or losing part of it. This is the reason why the score of an exact
match in EQA can fluctuate due to various reasons, including differing phrasing of questions,
incorrect answers caused by inadequate context or knowledge, and missing crucial words in
the answer, leading to a lower match score. Thus, the model should be set up to accept
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examples of a certain length and provide multiple input features for each one to address
this issue.

In the case that the answer lies at the point that splits a long context; a hyper-parameter
(i.e., stride) should be specified to control and allow some overlap between the generated
features. Keeping in mind that the only context should be truncated —not the question—
to return the overflowing tokens and the stride of the contexts, then, the tokenizer can
automatically return a list of features with a maximum length, and the overlap can be seen
by decoding them. It should be precisely determined where and which of those features
contain the answer in order to treat them appropriately. Therefore, the models usually
need to know where the start and end tokens are in order to map parts of the original
context to some tokens. However, some of the tokenizers provide an offset mapping that
can assist in that regard. This shows the start and end token for each character in the
original text that refers to the corresponding index of the input IDS. The first token, for
instance, with the (0, 0) position typically does not correspond to any part of the question
or answer, whereas the second token is identical to some of the question’s characters. The
sequence IDs can be useful in this situation because it only needs to determine which parts
of the offsets correspond to the question and which to the context. If the corresponding
token comes from the first sentence (the question) it will return 0 or 1 if it comes from the
second (the context), or it will return none for the special tokens. This allows the model to
identify the first and last tokens of the answer in the given features or to determine if the
answer is not present in that feature.

In light of that, on both training and test sets, the previous pre-processing steps can
be combined and applied. However, the < CLS > index should be set for both the start
and end positions whenever impossible answers are encountered. When processing multiple
examples within the dataset, it is important to keep in mind that the tokenizer will produce
a list of lists for each key. Additionally, the fast tokenizer can be used to process the texts
in batches by setting the batched parameter to True when encoding them. This makes it
possible to make use of the tokenizer’s multi-threading capabilities and process multiple
texts at the same time in a batch, increasing productivity.

However, it’s crucial to underscore the importance of verifying the preprocessing steps,
placing special emphasis on correctly defining the start and end tokens for the actual answers
of the training set. Neglecting to handle these tokens accurately may result in inaccuracies
in the predicted answers, and ultimately degrading affecting the model’s performance.

3.2.3 Fine-Tuning of the Model

Once the pre-processing phase is complete, the next step is to download the pre-trained
model, which in this case is distilBERT, along with its corresponding question-answering
tokenizer. After that, the model should be fine-tuned when the training data is prepared
for the fine-tuning process.

During the fine-tuning process, specific weights, like those within the vvocab transform
and vocab layer norm layers, are excluded, whereas others, such as the pre classifier and
classifier layers, undergo random initialization. This is a crucial step as the model needs to
substitute the pre-training head, which was originally trained for masked language modeling,
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with a fresh head designed for fine-tuning. These weights in the new head are intended to be
fine-tuned based on the EQA training set, and they will be employed later during inference.

3.2.4 Model Predictions

To ensure that the model’s prediction of the logits for the answers’ beginning and ending
positions are accurate, we should therefore map the model’s predictions to specific parts
of the original contexts in the dataset. The model performs this process and produces a
dictionary-alike object that contains the loss as well as the start and end logits for each
batch in the validation set, such as ” dict keys{’loss’, ’start logits’, ’end logits’}.”

For each example, the instance tokens and features are contained in the dictionary-like
object. The easiest way to predict an answer for each feature is to use the index with the
maximum in the start logits as a starting position and the index with the maximum in the
end logits as an ending position.

Although this approach can be effective in many instances, it can also lead to unfeasible
results in some cases. For example, when the predicted start position is greater than the
predicted end position, or when the model points to a segment of the question rather than
the answer. In such cases, exploring the second-best prediction may be beneficial to identify
an alternative answer. However, selecting the second-best option is not a straightforward
process since it could encompass several possibilities. For instance, should it be the best
index in the end logits with the second-best index in the start logits, or the best index in
the start logits with the second-best index in the end logits? If neither of these options is
feasible, then finding the third-best option becomes even more challenging.

The score of the start and end logits should be used to classify the generated outputs.
A hyper-parameter that regulates the optimal size of the alternative answers may be useful
in order to avoid ranking all possible answers. After that, all of the predicted answers can
be gathered by selecting the most appropriate indices in the start and end logits. The best
answer should be kept after each one is validated and sorted by score.

The last outstanding matter is to determine that a given span belongs to the context
and extract its associated text. Two parameters are essential for this purpose: the question
ID and the offset mapping. The question ID corresponds to the example that produced the
feature, with the understanding that each example can generate several features. Mean-
while, the offset mapping provides a context-specific map from token indices to character
positions. This is the reason why the validation set should be handled somewhat uniquely
in contrast to the training set.

Using the aforementioned configurations, the model usually selects the most probable
answer that lies within the context, which can be a simple task since we have already
determined which sections in the offset mappings correspond to parts of the question, and
have removed excessively long answers. However, this is straightforward for the initial
feature in the batch because we know it originates from the first example. For the other
features, it is essential to map the remaining examples and their corresponding features.
Additionally, since one example can generate several features, it is necessary to gather all
the responses with their features and choose the most suitable one to map from the example
index to its corresponding feature indices.
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The ultimate issue pertains to how to handle SQuAD 2.0, which comprises negative
answers (i.e., questions for which no answer exists). Since the aforementioned configuration
only considers answers contained within the given context, it is crucial to compute the score
for impossible answers as well. Given that each example could be represented by several
features and the highest score could be predicted as an answer that might not be part of the
accessible context, the impossible answer could be forecast with a minimum score among
the features generated by that example, Or, if the score for the impossible answer is higher
than that of the best answer that is not impossible, it can be inferred as the predicted
answer.

3.2.5 Model evaluation

Overall, the goal of post-processing in question answering is to improve the accuracy and
usefulness of the model’s responses and to make it easier for users to understand and use
the information provided by the model. Therefore, by carefully designing and implementing
post-processing steps, it is often possible to significantly improve the performance of a
question-answering system.

Post-processing is the step of refining or improving the output and it refers to any
additional step that is taken after a question-answering model has generated an initial
response. Thus, depending on the format of the predicted and ground-truth answers, it
may be necessary to post-process those answers in order to prepare them for evaluation.
This may involve normalizing the predicted answer’s text by removing stop words, stripping
white-spaces, accent characters using a semi-complicated alignment heuristic to achieve a
character-to-character alignment with the ground-truth answer, or other steps to clean and
standardize the data. These steps can enhance the quality or accuracy of the scores used
for evaluating the model’s performance. The Post-processing steps for question-answering
systems can include the following:

• Normalization: Removing any stop words that may appear in the predicted or ground-
truth answer or both.

• Error correction: This involves identifying and correcting any mistakes or errors (i.e.,
predicting a null response with start and end tokens that are not compatible with the
ground-truth answer to the unanswered question) in the model’s predicted response
as discussed in the section 3.2.4.

• Relevance ranking: This involves ranking the different pieces of information included
in the model’s response based on their relevance or confidence scores to the question
with the most relevant or confident answers appearing first, as discussed in the section
3.2.4.

• Completeness: Post-processing may also entail further modifications to the start or
end token positions, in order to rectify any inadequacies in the predicted response
span and improve its accuracy.

In general, it is important to carefully consider the pre-processing and post-processing
steps used when evaluating a model, as they can significantly impact the results of the
evaluation if the text of the input or the output has changed or modified in any form.
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For example, If the ground-truth or predicted answers have been marginally altered or
modified prior to the use of specific assessment scores, such as F1 or Exact Match, this will
undoubtedly increase certain variations in the performance measurements.

This step is of particular interest for our study. Typically, evaluating the performance of
extractive question-answering involves comparing the model’s output with a set of ground
truth answers. In this paper, we use the Exact Match (EM) and F1-score.

• The F1-score is a measure that combines precision (P) and recall (R), and it is a
widely used to evaluate the performance of an extractive question-answering model.
Precision measures the proportion of correct answers among all the answers produced
by the model, while recall measures the proportion of the total number of possible
correct responses that the model was able to provide. The F1-score is calculated by
taking the harmonic mean of precision and recall as shown in Eqn. 1, and it can
assume values from 0 to 1, where a score of 1 indicates a perfect performance, while
a score of 0 indicates the worst possible performance.

F1-score = 2 · P ·R
P +R

(1)

• Exact Match is a binary evaluation score that measures the proportion of questions
for which the model’s predicted answer exactly matches the ground-truth answer and
it can be calculated as shown in Eqn. 2. The exact match measure is a binary score
because a predicted answer is either considered an exact match or not.

EM = Exact Match Score =
Number of questions with exact match

Total number of questions
(2)

Here ”Number of questions with exact match” is the number of questions for which
the model’s predicted answer exactly matches the ground-truth answer, and ”Total
number of questions” is the total number of questions in the evaluation data.

We would like to highlight that there is a problem with the practical evaluation of Eqn
2. It is true that the accuracy of the exact match score depends on comparing the predicted
answer to the ground truth answer, but this can be subjected and vary based on the an-
notation format used, leading to differing evaluation results. The computation of an exact
match may be influenced by these variations as illustrated in section 4.2. Consequently, it
is necessary to define the different variations that may arise in the exact match as follows:

3.2.6 Alternative definitions of EM

In the literature, one can find different definitions of EM scores which are defined in this
section. In the following, we use the terms ”true answer” and ”ground truth answer”
interchangeably.

Definition 1 [EM normalized-based (nb)] The exact match which is normalized-based, EMnb,
is evaluated by (see (Devlin et al., 2018; Wolf et al., 2020; Liu et al., 2017b; Chen et al.,
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2017; Wang & Jiang, 2016; Rajpurkar et al., 2016, 2018))

EMnb =
1

N

N∑
i=1

D
(
true answer, predicted answer

)
(3)

In Eqn. 3 of Definition 1, N is the total number of examples, and the true and predicted
answers are the answer spans obtained by the tokenizer decode function as follows:

true answer = tokenizer.decode
(
inputid[i][starttrue[i] : endtrue[i]]

)
predicted answer = tokenizer.decode

(
inputid[i][startpred[i] : endpred[i]]

)
Here startpred[i] and endpred[i] are the predicted start and end indices of the answer span

for the i-th example, and starttrue[i] and endtrue[i] are the corresponding true start and end
indices of the answer span. That means, the indices assume positive integer numbers, i.e.,
startpred[i], endpred[i], starttrue[i] and endtrue[i] ∈ N+.

In Eqn. 3, D(true answer, predicted answer) is a binary function that returns 1 if
the bag of words (BoW) of the two input strings (e.g., answer span) are exactly identical
after being normalized with the normalized text function, as given by the implementation
packages in (Devlin et al., 2018; Wolf et al., 2020) (see function squad metrics.py), and 0
otherwise. That means D(x, y) for string x and y is defined by

D(x, y) =

{
1 if BoW (x) = BoW (y),

0 otherwise.
(4)

In this case, the Exact Match score is calculated as the ratio of examples where the normal-
ized BoW of the predicted answer matches the BoW of the true answer to the total number
of examples N .

Definition 2 [EM token-based (tb)] The exact match which is token-based, EMtb, is eval-
uated by

EMtb =
1

N

N∑
i=1

(
δ(startpred[i] ≡ starttrue[i]) · δ(endpred[i] ≡ endtrue[i])

)
(5)

Here N is the total number of examples, and startpred[i] and endpred[i] are the start and end
indices of the predicted answer span for the i-th example, and starttrue[i] and endtrue[i] are
the corresponding start and end indices of the true answer span. The symbol δ(·) is the
delta function, which gives the exact match score and yields a value of 1 if the token IDs
inside the parentheses are identical (corresponding to a true argument) and 0 otherwise.
Hence, in this case, the Exact Match score is determined by the ratio of match-counts to
the total number of instances, N .

Definition 3 [EM average-based (av)] The exact match which is average-based, EMav, is
evaluated by (see (Briggs, 2021)):
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EMav =
1

2

(∑N
i=1 δ(startpred[i] ≡ starttrue[i])

N
+

∑N
i=1 δ(endpred[i] ≡ endtrue[i])

N

)
(6)

The definitions of startpred and endpred, starttrue and endtrue, and N are the same as for
EMtb. Also the definition of the delta function, δ(·), remains unchanged. In this case, the
EMav is the average accuracy of the predictions over the start and end indices in all batches
as given in (Briggs, 2021).

We would like to note that the normalized-based method (Devlin et al., 2018; Wolf
et al., 2020), while commonly used as an EM measure and perhaps more familiar, can
yield variations depending on how the answer text is normalized. Unfortunately, such
details are frequently omitted in publications. In contrast, other methods (i.e., token-based,
average-based (Briggs, 2021)) might not be as prevalent as the normalized-based method.
These methods determine the match based on the token IDs of the beginning and ending
answer spans, unlike the normalized-based method which focuses on the text span between
them. Conceptually, the token-based method aligns with the average-based approach by
calculating the mean of the exact match score instead of the product. This gives in general a
less stringent score. In Section 4.2, we will return to this discussion by providing examples.

4. Results

In the following sections, we present the results of our analysis of distilBERT (Sanh et al.,
2019) for data from the Stanford Question Answering Dataset (SQuAD).

4.1 Characteristics of the Data

For our analysis, we are utilizing data from SQuAD. Due to the fact that these data contain
a large number of samples with a heterogeneous structure, we start our analysis by providing
an overview of the data itself. Specifically, in Figure 3, we show histograms that provide
information about the answer lengths in SQuAD-1.1 (first two histograms) and SQuAD-2.0
(last two histograms). For instance, from Figure 3 (top) we see that there are 30268 answers
in SQuAD-1.1 having a fixed answer length of one word. The difference between the first
and third histogram and the second and fourth histogram is that the former are for the
training data while the latter are for validation data.

Overall, one can see that the number of answers decreases monotonically for the answer
length for all cases. While for a short answer length, there are thousands of instances, for an
answer length of 5 or larger this number drops considerably below or around one thousand.
Hence, for larger answer lengths the available instances for training and validation are
potentially too small to ensure a sound learning. Furthermore, one can see that all four
histograms show similar characteristics of the data excluding a zero answer length. For this,
we see a difference in the last two histograms.

4.2 Influence of Post-processing on the Evaluation: Detailed Examples

Next, we discuss a number of examples that demonstrate the effect of post-processing on
the exact match (EM) and F1-scores based on the following steps.
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Figure 3: Frequency of answer lengths (expressed in terms of the number of words) in the
SQuAD datasets.

• Normalization: Normalizing the answer’s text (e.g., lowercasing all text, removing
punctuation) can also impact the F1-score and exact match. This is because certain
variations in the predicted or the ground-truth answer’s text (e.g., capitalization,
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punctuation) may lead to significant variation, and normalizing the answer’s text
may remove this variation.

• Thresholding: The model’s primary function is to predict the start and end positions
of answers within a given context. It accomplishes this by pinpointing the indices with
the highest prediction scores for both the start and end positions to determine the
answer. However, this straightforward approach may sometimes produce inaccurate or
invalid results. In cases where the top prediction is invalid, the second-best prediction
becomes a pivotal factor. Nevertheless, this practice introduces complexity in ranking
and selecting the best answer among multiple possibilities. The answers are then
categorized according to a composite score that takes into account both the initial and
final prediction scores. Thus, to improve prediction accuracy, one should consider a
”n-best size” hyper-parameter that determines the optimal size of alternative answers.
For a detailed discussion on this, refer to Section 3.2.4.

Next, we discuss several examples that show the resulting differences when different
assumptions are made for these post-processing steps.

Case 1: The first example demonstrates the effect of the normalizing of the ground-
truth and the predicted answers on evaluation scores. Normalization means the removal of
stop words from either or both of them.

For example: Let’s consider Example 7 (below). If the answer is not normalized and the
model predicts ”in 1900” as an answer, then we obtain an EM score of 0% and a F1-score
of 67%.

Example 7 ’Context’: The following table gives the largest known primes of the mentioned
types. Some of these primes have been found using distributed computing. In 2009, the
Great Internet Mersenne Prime Search project was awarded a US$100,000 prize for first
discovering a prime with at least 10 million digits. The Electronic Frontier Foundation also
offers $150,000 and $250,000 for primes with at least 100 million digits and 1 billion digits,
respectively. Some of the largest primes not known to have any particular form (that is, no
simple formula such as that of Mersenne primes) have been found by taking a piece of semi-
random binary data, converting it to a number n, multiplying it by 256k for some positive
integer k, and searching for possible primes within the interval [256kn+1, 256k(n+1)− 1].
’Q’: In what year was the Great Internet Mersenne Prime Search project conducted?

On the other hand, if we apply normalization to the predicted answer and the ground
truth by removing stop words (in our case ”in”), then we obtain an exact match score of
100% and a F1-score of 100%. Both results are quite different from each other caused by
the normalization. To view the variant scores of the EM based on the provided definitions
in Section 3.2.6, please refer to Table 3 for this example and subsequent examples.

Case 2: The second example demonstrates the effect of the variation between the
predicted and ground-truth answers with respect to the positions of the starting and ending
tokens. This variability should be taken into account, especially in situations where there is
no answer available within the context of the associated question. The following examples
8, 9, 10 and 11 provide an illustration of problems that can occur.
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Table 3: Predicted and ground-truth answers for questions in Examples 7, 8, 9, 10, 11,
and 12. EM denotes the exact match score without normalization, EMnb repre-
sents the normalization-based score, EMtb the token-based score, and EMav the
average-based score. Pred. and GT refer to Predicted and Ground-Truth answers,
respectively. Square brackets, [ ], are used to indicate the absence of an answer.

Example Answer Start-token End-token EM EMnb EMtb EMav

7
Pred. 2009 28 29

0 1 0 0.5
GT in 2009 27 29

8
Pred. [ ] 59 59

1 1 1 1
GT [ ] 59 59

9
Pred. [ ] 52 18

1 1 0 0
GT [ ] 17 17

10
Pred. algorithm 81 82

0 1 0 0.5
GT an algorithm 80 82

11
Pred. welsh 44 45

0 1 0 0.5
GT the welsh 43 45

12
Pred. [ ] 61 61

0 1 1 1
GT the 61 61

Example 8 ’Context’: Subsequent to the Conquest, however, the Marches came completely
under the dominance of William’s most trusted Norman barons, including Bernard de Neuf-
marché, Roger of Montgomery in Shropshire and Hugh Lupus in Cheshire. These Normans
began a long period of slow conquest during which almost all of Wales was at some point
subject to Norman interference. Norman words, such as baron (barwn), first entered Welsh
at that time.
’Q’: What country was under the control of Norman barons?

Example 8 demonstrates that in the first scenario, both the EM and F1 scores are
perfect at 100% when the start and end tokens of the predicted answer match those of
the ground truth answer. However, in the second scenario, if there are differences in the
token positions between the predicted and ground-truth answers, such as when a null token
appears between the start and end tokens of the predicted answer (see Example 9), or when
only a portion of the answer’s text is present (see Examples 10 and 11), relying solely on
F1 scores or exact matches can result in 0% EM scores for both examples. The reason
for this is that the comparisons are precisely based on the positions of the tokens, without
considering the null or normalized text in between, see Table 3 for more details.

Alternatively, if the normalized text in between the start and end tokens is considered
and the token positions are ignored, the EM scores can be 100%.
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Example 9 ’Context’:The best, worst, and average case complexity refer to three different
ways of measuring the time complexity (or any other complexity measure) of different inputs
of the same size. Since some inputs of size n may be faster to solve than others, we define
the following complexities:
’Q’: What is one common example of a critical complexity measure?

The scores of F1 and the exact match for examples 10 and 11 may differ depending
on how the ground truth and predicted answers will be considered prior to applying such
scores, see Table 3.

Example 10 ’Context’: A Turing machine is a mathematical model of a general comput-
ing machine. It is a theoretical device that manipulates symbols contained on a strip of
tape. Turing machines are not intended as a practical computing technology, but rather as a
thought experiment representing a computing machine—anything from an advanced super-
computer to a mathematician with a pencil and paper. It is believed that if a problem can
be solved by an algorithm, there exists a Turing machine that solves the problem. Indeed,
this is the statement of the Church–Turing thesis. Furthermore, it is known that everything
that can be computed on other models of computation known to us today, such as a RAM
machine, Conway’s Game of Life, cellular automata, or any programming language can be
computed on a Turing machine. Since Turing machines are easy to analyze mathematically
and are believed to be as powerful as any other model of computation, the Turing machine
is the most commonly used model in complexity theory.
’Q’: It is generally assumed that a Turing machine can solve anything capable of also being
solved using what?

Example 11 ’Context’: Even before the Norman Conquest of England, the Normans had
come into contact with Wales. Edward the Confessor had set up the aforementioned Ralph
as earl of Hereford and charged him with defending the Marches and warring with the Welsh.
In these original ventures, the Normans failed to make any headway into Wales.
’Q’: Who was Ralph in charge of being at war with?

Here, if the scores in example 10 and 11 are computed based on the exact position
of the tokens in the ground truth and predicted answers, the results may vary depending
on whether the text is normalized for the ground-truth answer. Specifically, if the text is
not normalized, the exact match and F1-score could be both 0, or the exact match could
be 0 and the F1-score could be 67%. However, if the text of the ground-truth answer is
normalized, the exact match and F1-score could both be 100%.

Case 3: During the pre-processing stage, if the start or end tokens, or both, of the
ground truth answer, are not properly specified, there is a chance that the ground truth
answer may be wrongly defined as shown in Example 12. As a result, the evaluation scores
used may incorrectly evaluate the answer as correct if the post-processing normalization
step omits the word ”the”.
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Example 12 ’Context’: The descendants of Rollo’s Vikings and their Frankish wives would
replace the Norse religion and Old Norse language with Catholicism (Christianity) and the
Gallo-Romance language of the local people, blending their maternal Frankish heritage with
Old Norse traditions and customs to synthesize a unique ”Norman” culture in the north of
France. The Norman language was forged by the adoption of the indigenous langue d’öıl
branch of Romance by a Norse-speaking ruling class, and it developed into the regional
language that survives today.
’Q’: What part of France were the Normans located?

The pre-processing steps and fine-tuning the model’s hyperparameters as discussed in
sections 3.2.2 and 3.2.4 significantly impact on the model performance. However, it is
also true that, before the evaluation metrics (EM, F1, etc.) are utilized, the measurement
may be misinterpreted as a result of the post-processing phase for the ground-truth and
predicted answers. So, it is important to be aware of the impact that post-processing can
have on the evaluation metrics and to carefully consider whether any post-processing steps
are necessary and appropriate.

These examples demonstrate the influence post-processing has on the evaluation of a
EQA-system. In order to obtain a more comprehensive view, we extend this analysis in the
next section by conducting a large-scale analysis of distilBERT.

4.3 Influence of Post-processing, Data and Experimental Settings on
Performance

Next, we study how the performance of ditilBERT depends on experimental settings, data
and parameters of the analysis. Specifically, we study the influence of the size of the training
data, learning rate, batch size (in all our experiments, a batch size of 16 was utilized),
number of epochs and answer length on the performance. The results of these studies are
shown in Tables [4, 5, 6, 7, and 8].

In Table 4, we show results for the exact match based on various subset selections
from the SQuAD 1.1 dataset as discussed in Definitions [1, 2, 3]. It also demonstrates
the influence of the learning rate, the size of training and validation sets, and the settings
for answer length of both training and validation sets, as well as the effects of single and
multiple answers.

By re-fine-tuning some hyper-parameters, as discussed in Section 3.2.4, and using the
same settings mentioned above for Table 4, some improvements in model performance are
shown in Table 5 utilizing the definition 1 while computing the scores of an exact match.

Table 6 showcases the results of multiple subset selections from the SQuAD-2.0 dataset,
including changes in the exact match as discussed in Definitions [1, 2, 3]. It also highlights
the impact of factors such as the learning rate, size of training/validation sets, answer length
settings for both training and validation sets, and the influence of having single or multiple
answers for each question in the dataset.

By re-fine-tuning certain hyper-parameters, as outlined in section 3.2.4, and utilizing
the same settings outlined in Table 6, some improvements in model performance are shown
in Table 7 utilizing the definition 1 while computing the scores of an exact match.
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Table 4: Results for DistilBERT for data from SQuAD 1.1. Prediction performance for
EMnb, EMtb, EMav and F1-score.

Training Size Validation Size Train Answer Length Validation Answer Length Learning Rate # Epochs EMnb EMtb EMav F1

87599 10570 variable variable 5.00E-05 1 0.609 0.541 0.673 0.707
87599 10570 variable variable 5.00E-05 3 0.601 0.532 0.665 0.705
87599 10570 variable variable 5.00E-07 1 0.6 0.55 0.679 0.716
87599 10570 variable variable 5.00E-07 3 0.618 0.553 0.681 0.719
87599 34726 variable variable 5.00E-05 1 0.6 0.537 0.667 0.695
87599 34726 variable variable 5.00E-05 3 0.598 0.53 0.658 0.695
87599 34726 variable variable 5.00E-07 1 0.6 0.533 0.662 0.699
87599 34726 variable variable 5.00E-07 3 0.603 0.535 0.666 0.703
30268 34726 Fixed(1-word) variable 5.00E-05 1 0.339 0.299 0.448 0.417
30268 34726 Fixed(1-word) variable 5.00E-05 3 0.326 0.287 0.433 0.402
30268 34726 Fixed(1-word) variable 5.00E-07 1 0.326 0.288 0.432 0.399
30268 34726 Fixed(1-word) variable 5.00E-07 3 0.328 0.289 0.433 0.4
30268 12260 Fixed(1-word) Fixed(1-word) 5.00E-05 1 0.817 0.748 0.782 0.826
30268 12260 Fixed(1-word) Fixed(1-word) 5.00E-05 3 0.828 0.752 0.774 0.834
30268 12260 Fixed(1-word) Fixed(1-word) 5.00E-07 1 0.842 0.77 0.787 0.847
30268 12260 Fixed(1-word) Fixed(1-word) 5.00E-07 3 0.843 0.775 0.793 0.849
22311 34726 Fixed(2-words) variable 5.00E-05 1 0.313 0.249 0.422 0.437
22311 34726 Fixed(2-words) variable 5.00E-05 3 0.297 0.24 0.4 0.433
22311 34726 Fixed(2-words) variable 5.00E-07 1 0.298 0.241 0.418 0.435
22311 34726 Fixed(2-words) variable 5.00E-07 3 0.3 0.244 0.42 0.438
22311 8969 Fixed(2-words) Fixed(2-words) 5.00E-05 1 0.745 0.729 0.768 0.768
22311 8969 Fixed(2-words) Fixed(2-words) 5.00E-05 3 0.761 0.745 0.776 0.779
22311 8969 Fixed(2-words) Fixed(2-words) 5.00E-07 1 0.774 0.756 0.784 0.791
22311 8969 Fixed(2-words) Fixed(2-words) 5.00E-07 3 0.779 0.763 0.787 0.796
13132 34726 Fixed(3-words) variable 5.00E-05 1 0.256 0.186 0.349 0.388
13132 34726 Fixed(3-words) variable 5.00E-05 3 0.257 0.189 0.362 0.41
13132 34726 Fixed(3-words) variable 5.00E-07 1 0.259 0.191 0.363 0.41
13132 34726 Fixed(3-words) variable 5.00E-07 3 0.258 0.19 0.362 0.408
13132 5344 Fixed(3-words) Fixed(3-words) 5.00E-05 1 0.704 0.681 0.742 0.752
13132 5344 Fixed(3-words) Fixed(3-words) 5.00E-05 3 0.726 0.709 0.758 0.77
13132 5344 Fixed(3-words) Fixed(3-words) 5.00E-07 1 0.744 0.728 0.769 0.783
13132 5344 Fixed(3-words) Fixed(3-words) 5.00E-07 3 0.754 0.74 0.777 0.793
6391 34726 Fixed(4-words) variable 5.00E-05 1 0.172 0.105 0.262 0.296
6391 34726 Fixed(4-words) variable 5.00E-05 3 0.178 0.117 0.281 0.322
6391 34726 Fixed(4-words) variable 5.00E-07 1 0.182 0.121 0.282 0.325
6391 34726 Fixed(4-words) variable 5.00E-07 3 0.186 0.125 0.287 0.332
6391 2600 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.435 0.408 0.524 0.526
6391 2600 Fixed(4-words) Fixed(4-words) 5.00E-05 3 0.598 0.561 0.65 0.675
6391 2600 Fixed(4-words) Fixed(4-words) 5.00E-07 1 0.619 0.588 0.67 0.685
6391 2600 Fixed(4-words) Fixed(4-words) 5.00E-07 3 0.625 0.594 0.678 0.69
4033 34726 Fixed(5-words) variable 5.00E-05 1 0.11 0.059 0.156 0.194
4033 34726 Fixed(5-words) variable 5.00E-05 3 0.105 0.062 0.17 0.205
4033 34726 Fixed(5-words) variable 5.00E-07 1 0.113 0.065 0.177 0.216
4033 34726 Fixed(5-words) variable 5.00E-07 3 0.115 0.067 0.181 0.222
4033 1640 Fixed(5-words) Fixed(5-words) 5.00E-05 1 0.346 0.309 0.434 0.46
4033 1640 Fixed(5-words) Fixed(5-words) 5.00E-05 3 0.459 0.418 0.519 0.556
4033 1640 Fixed(5-words) Fixed(5-words) 5.00E-07 1 0.468 0.428 0.532 0.561
4033 1640 Fixed(5-words) Fixed(5-words) 5.00E-07 3 0.474 0.437 0.539 0.567

Table 8 displays the model performance on SQuAD-2.0 dataset, including negative ex-
amples, using the same experiment settings as in Table 7 and utilizing the definition 1 while
computing the scores of an exact match.

4.4 Influence of the Answer Length on Predictions

Next, we take a detailed look at the influence of the answer length on the prediction per-
formance. In order to do this, we use the results from Tables 4 and 6 and plot various error
scores in dependence on the answer length. The results of this analysis are shown in Figure
4 and 5.
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Table 5: Performance of DistilBERT in dependence on various settings for data from
SQuAD-1.1. Shown are results for the influence of the learning rate, the size
of training and validation sets, settings for answer lengths of both training and
validation sets, and the effects of single and multiple answers.

Training Size Validation Size Train Answer Length Validation Answer Length Learning Rate # Epochs EMnb F1

87599 10750 variable variable 5.00E-05 1 0.763 0.848
87599 10750 variable variable 5.00E-05 3 0.771 0.855
87599 10750 variable variable 5.00E-07 1 0.103 0.178
87599 10750 variable variable 5.00E-07 3 0.377 0.493
87599 34726 variable variable 5.00E-05 1 0.62 0.762
87599 34726 variable variable 5.00E-05 3 0.624 0.768
87599 34726 variable variable 5.00E-07 1 0.062 0.127
87599 34726 variable variable 5.00E-07 3 0.31 0.441
30268 34726 Fixed(1-word) variable 5.00E-05 1 0.346 0.524
30268 12260 Fixed(1-word) Fixed(1-word) 5.00E-05 1 0.807 0.816
22311 34726 Fixed(2-words) variable 5.00E-05 1 0.336 0.547
22311 8969 Fixed(2-words) Fixed(2-words) 5.00E-05 1 0.784 0.82
13132 34726 Fixed(3-words) variable 5.00E-05 1 0.285 0.495
13132 5344 Fixed(3-words) Fixed(3-words) 5.00E-05 1 0.723 0.79
6391 34726 Fixed(4-words) variable 5.00E-05 1 0.146 0.296
6391 2600 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.479 0.596
4033 34726 Fixed(5-words) variable 5.00E-05 1 0.046 0.117
4033 1640 Fixed(5-words) Fixed(5-words) 5.00E-05 1 0.304 0.416

The meaning of the bars shown in Figure 4 and 5 is as follows: The first bar in each
figure is for a variable answer length of the training data and a variable answer length of
the validation data (labeled as ”variable”). For all other bars in the figures, we assumed a
fixed answer length of the training data while there are two options for the answer length
of the validation data, namely fixed or variable. The results for a fixed answer length of the
validation data are shown as the top numbers while results for a variable answer length of
the validation data are shown as the bottom numbers. The answer length of the training
data is indicated by the x-labels of those bars. We would like to note that these values are
stacked resulting in a total height of those bars that corresponds to the summation of the
two numbers.

From these figures, one can see that with increasing answer length, the exact matches
of EMnb, EMtb, and EMav (shown as the top numbers in the bars) are monotonically
decreasing. This holds for all settings, i.e., variations in the number of epochs, learning
rate, and size of the training and validation data. It is interesting to note that when using
a fixed answer length for training but a variable answer length for validation, these values
drop considerably as one can see from the bottom numbers in the corresponding bars.

Furthermore, we observe that the values for the exact match of EMnb, EMtb, and EMav

for a variable answer length of the training and validation data, shown in the bar on the
left-hand side, are considerably smaller compared to the results from the small fixed answer
lengths, e.g., for answer lengths 1, 2 and 3.

While the number of epochs and the learning rate have an effect on the absolute values
of EMnb, EMtb, and EMav the overall learning behavior is not affected. That means all con-
figurations show a declining performance for increasing answer lengths and below-average
results for variable answer lengths.
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Table 6: Results for DistilBERT for data from SQuAD 2.0. Prediction performance for
EMnb, EMtb, EMav and F1-score.

Training Size Validation Size Train Answer Length Validation Answer Length Learning Rate # Epochs EMnb EMtb EMav F1

86821 20302 variable variable 5.00E-05 1 0.583 0.522 0.656 0.685
86821 20302 variable variable 5.00E-05 3 0.577 0.513 0.646 0.682
86821 20302 variable variable 5.00E-07 1 0.586 0.519 0.653 0.691
86821 20302 variable variable 5.00E-07 3 0.591 0.521 0.656 0.696
29979 20302 Fixed(1-word) variable 5.00E-05 1 0.331 0.295 0.439 0.397
29979 20302 Fixed(1-word) variable 5.00E-05 3 0.329 0.294 0.431 0.4
29979 20302 Fixed(1-word) variable 5.00E-07 1 0.333 0.298 0.436 0.402
29979 20302 Fixed(1-word) variable 5.00E-07 3 0.334 0.298 0.436 0.4
29979 7208 Fixed(1-word) Fixed(1-word) 5.00E-05 1 0.814 0.746 0.788 0.826
29979 7209 Fixed(1-word) Fixed(1-word) 5.00E-05 3 0.834 0.767 0.796 0.84
29979 7210 Fixed(1-word) Fixed(1-word) 5.00E-07 1 0.836 0.77 0.801 0.843
29979 7211 Fixed(1-word) Fixed(1-word) 5.00E-07 3 0.841 0.782 0.81 0.846
22121 20302 Fixed(2-words) variable 5.00E-05 1 0.305 0.239 0.415 0.426
22121 20303 Fixed(2-words) variable 5.00E-05 3 0.293 0.239 0.411 0.422
22121 20304 Fixed(2-words) variable 5.00E-07 1 0.299 0.243 0.4 0.43
22121 20305 Fixed(2-words) variable 5.00E-07 3 0.297 0.244 0.417 0.429
22121 5021 Fixed(2-words) Fixed(2-words) 5.00E-05 1 0.749 0.733 0.771 0.769
22121 5022 Fixed(2-words) Fixed(2-words) 5.00E-05 3 0.759 0.741 0.765 0.781
22121 5023 Fixed(2-words) Fixed(2-words) 5.00E-07 1 0.77 0.753 0.773 0.79
22121 5024 Fixed(2-words) Fixed(2-words) 5.00E-07 3 0.772 0.755 0.776 0.793
13005 20302 Fixed(3-words) variable 5.00E-05 1 0.249 0.177 0.35 0.39
13005 20303 Fixed(3-words) variable 5.00E-05 3 0.231 0.165 0.326 0.377
13005 20304 Fixed(3-words) variable 5.00E-07 1 0.236 0.169 0.338 0.387
13005 20305 Fixed(3-words) variable 5.00E-07 3 0.24 0.173 0.343 0.394
13005 2934 Fixed(3-words) Fixed(3-words) 5.00E-05 1 0.686 0.667 0.736 0.742
13005 2935 Fixed(3-words) Fixed(3-words) 5.00E-05 3 0.726 0.714 0.751 0.762
13005 2936 Fixed(3-words) Fixed(3-words) 5.00E-07 1 0.735 0.721 0.76 0.772
13005 2937 Fixed(3-words) Fixed(3-words) 5.00E-07 3 0.74 0.726 0.767 0.777
6343 20302 Fixed(4-words) variable 5.00E-05 1 0.145 0.09 0.228 0.263
6343 20303 Fixed(4-words) variable 5.00E-05 3 0.187 0.123 0.289 0.338
6343 20304 Fixed(4-words) variable 5.00E-07 1 0.186 0.122 0.284 0.333
6343 20305 Fixed(4-words) variable 5.00E-07 3 0.186 0.123 0.282 0.331
6343 1543 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.473 0.439 0.556 0.56
6343 1544 Fixed(4-words) Fixed(4-words) 5.00E-05 3 0.607 0.576 0.648 0.675
6343 1545 Fixed(4-words) Fixed(4-words) 5.00E-07 1 0.612 0.583 0.655 0.68
6343 1546 Fixed(4-words) Fixed(4-words) 5.00E-07 3 0.618 0.59 0.663 0.688
4004 20302 Fixed(5-words) variable 5.00E-05 1 0.111 0.064 0.179 0.21
4004 20303 Fixed(5-words) variable 5.00E-05 3 0.118 0.071 0.187 0.232
4004 20304 Fixed(5-words) variable 5.00E-07 1 0.1 0.072 0.188 0.231
4004 20305 Fixed(5-words) variable 5.00E-07 3 0.117 0.072 0.191 0.232
4004 959 Fixed(5-words) Fixed(5-words) 5.00E-05 1 0.357 0.32 0.455 0.473
4004 960 Fixed(5-words) Fixed(5-words) 5.00E-05 3 0.471 0.424 0.53 0.563
4004 961 Fixed(5-words) Fixed(5-words) 5.00E-07 1 0.478 0.432 0.536 0.569
4004 962 Fixed(5-words) Fixed(5-words) 5.00E-07 3 0.482 0.446 0.545 0.576

For reasons of clarity, we have included additional results, as depicted in Figure 6,
where the top figure corresponds to SQuAD1.1 and the bottom figure to SQuAD2.0. All
results were obtained using fixed training data sizes for all answer lengths. Specifically,
for SQuAD1.1, the training data consists of 87,599 samples, and for SQuAD2.0 of 86,821
samples. For both datasets, we use a learning rate of 5.00E-05, a batch size of 16, and
3 epochs. These supplementary findings reaffirm the trends observed in Figures 4 and 5,
indicating that learning becomes more challenging as answer lengths increase.

For reasons of completeness, we show in Figure 7 also results that include a ”no-answer”
category. As one can see, in this case the category ”no-answer” shows a perfect performance
for a fixed answer length while it drops considerably for variable answer lengths. Overall,
the learning behavior we found in Figure 4 and 5 is also present in these results.
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Table 7: Performance of DistilBERT in dependence on various experiments settings for
data from SQuAD-2.0. The scores of the exact match and F1 are based on the
discussion in Section 3.2.4. Shown are results for the influence of the learning rate,
the size of training and validation sets, settings for answer lengths of both training
and validation sets, and the effects of single and multiple answers.

Training Size Validation Size Train Answer Length Validation Answer Length Learning Rate # Epochs EMnb F1

86821 20302 variable variable 5.00E-05 1 0.603 0.752
86821 20302 variable variable 5.00E-05 3 0.613 0.765
86821 20302 variable variable 5.00E-07 1 0.053 0.119
86821 20302 variable variable 5.00E-07 3 0.274 0.398
29979 20302 Fixed(1-word) variable 5.00E-05 1 0.35 0.529
29979 7208 Fixed(1-word) Fixed(1-word) 5.00E-05 1 0.808 0.818
22121 20302 Fixed(2-words) variable 5.00E-05 1 0.331 0.542
22121 5021 Fixed(2-words) Fixed(2-words) 5.00E-05 1 0.766 0.811
13005 20302 Fixed(3-words) variable 5.00E-05 1 0.274 0.486
13005 2934 Fixed(3-words) Fixed(3-words) 5.00E-05 1 0.711 0.783
6343 20302 Fixed(4-words) variable 5.00E-05 1 0.163 0.332
6343 1543 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.53 0.658
4004 20302 Fixed(5-words) variable 5.00E-05 1 0.036 0.102
4004 959 Fixed(5-words) Fixed(5-words) 5.00E-05 1 0.238 0.35

Table 8: Performance of DistilBERT for data from SQuAD-2.0.0. In contrast to the results
in Table 7, we include for this analysis also negative cases.

Training Size Validation Size Train Answer Length Validation Answer Length Learning Rate # Epochs EMnb F1

130319 11873 variable variable 5.00E-05 1 0.658 0.689
130319 11873 variable variable 5.00E-05 3 0.663 0.698
130319 11873 variable variable 5.00E-07 1 0.501 0.501
130319 11873 variable variable 5.00E-07 3 0.467 0.48
130319 26247 variable variable 5.00E-05 1 0.543 0.626
130319 26247 variable variable 5.00E-05 3 0.566 0.664
130319 26247 variable variable 5.00E-07 1 0.227 0.227
130319 26247 variable variable 5.00E-07 3 0.299 0.331
43498 26247 Fixed(no-answer) variable 5.00E-05 1 0.227 0.227
43498 5945 Fixed(no-answer) Fixed(no-answer) 5.00E-05 1 1 1
29979 26247 Fixed(1-word) variable 5.00E-05 1 0.266 0.409
29979 7208 Fixed(1-word) Fixed(1-word) 5.00E-05 1 0.813 0.822

73477 26247
Fixed(no-answer

+ 1-word)
variable 5.00E-05 1 0.359 0.395

73477 7208
Fixed(no-answer

+ 1-word)
Fixed(no-answer

+ 1-word)
5.00E-05 1 0.618 0.62

22121 26247 Fixed(3-words) variable 5.00E-05 1 0.258 0.424
22121 5021 Fixed(3-words) Fixed(3-words) 5.00E-05 1 0.769 0.812
13005 26247 Fixed(4-words) variable 5.00E-05 1 0.201 0.352
13005 2934 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.706 0.779
6343 26247 Fixed(4-words) variable 5.00E-05 1 0.11 0.229
6343 1543 Fixed(4-words) Fixed(4-words) 5.00E-05 1 0.5 0.625
4004 26247 Fixed(5-words) variable 5.00E-05 1 0.048 0.127
4004 959 Fixed(5-words) Fixed(5-words) 5.00E-05 1 0.311 0.439

Finally, we show that the EM values for variable answer lengths, shown in the bar on the
left-hand side in Figure 4, 5 and 7, can be approximated by the results from fixed answer
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Figure 4: Dependency of EMnb, EMtb and EMav on the training answer length (data from
Table 4). The bar ”variable” is for a variable answer length of the training data
and a variable answer length of the validation data. Top numbers: Results for
a fixed answer length of the validation data. Bottom numbers: Results for a
variable answer length of the validation data.
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Figure 5: Dependency of EMnb, EMtb and EMav on the training answer length (data from
Table 6). The bar ”variable” is for a variable answer length of the training data
and a variable answer length of the validation data. Top numbers: Results for
a fixed answer length of the validation data. Bottom numbers: Results for a
variable answer length of the validation data.

.
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(a) SQuAD1.1: Influence of answer length and error scores

(b) SQuAD2.0: Influence of answer length and error scores

Figure 6: The influence of the answer length on DistilBERT for fixed sizes of the training
data. Top: Results for SQuAD1.1. Bottom: Results for SQuAD2.0. The evalua-
tion is conducted on a validation set with the same distribution of answer lengths.

lengths. Specifically, we obtain the following estimated values

ˆEM(a) =

5∑
i=1

EM(a)ip(a)i (7)

for all those values in Figure 4 and 5. In Eqn. 7, EM(a)i corresponds to one of the three
exact matches, a ∈ {nb, tb, av} and i to the answer length of the validation data, i.e.,
i ∈ {1, 2, 3, 4, 5}. The resulting expected values are shown in Table 9.

From this table, it is evident that the expected values for the different settings, ˆEM , ap-
proximate the exact match values (EM), however, there are no instances of perfect matches.
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Figure 7: The impact of the answer length on predictions based on data from Table 8.
Here the category ”no-answer” is included in the analysis and EM corresponds
to EMnb.

Table 9: Shown results are based on data from Figure 4 (top table) and from Figure 5
(bottom table). The column EM shows exact match values for variable answer
lengths whereas ˆEM shows expectation values obtained from Eqn. 7 (averaged
over a fixed answer length).

Measure Epochs
Learning Rate = 5e-05 Learning Rate = 5e-07

EM ˆEM EM ˆEM

EMnb
1 0.6 0.638 0.6 0.680
3 0.598 0.667 0.603 0.684

EMtb
1 0.537 0.602 0.533 0.643
3 0.53 0.629 0.535 0.650

EMav
1 0.667 0.648 0.662 0.674
3 0.658 0.664 0.666 0.679

EMnb
1 0.583 0.626 0.586 0.663
3 0.577 0.657 0.591 0.666

EMtb
1 0.522 0.591 0.519 0.629
3 0.513 0.623 0.521 0.635

EMav
1 0.656 0.641 0.653 0.660
3 0.646 0.655 0.656 0.666

The comparison of ˆEM with EM for variable answer lengths can be seen in Figure 4 and
Table 4, as well as in Figure 5 and Table 6. For instance, the first entry in Table 9 gives
an overestimate of 0.638/0.6 corresponding to 6.3%. Overall, this indicates that there are
nonlinear effects when training the EQA system that require a re-training when studying
distributional changes in answer lengths that cannot be fully captured by a linear decom-
position into fixed answer lengths.
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4.5 Comparison of Numerical Differences for Exact Match Measures

So far, we studied the exact match (EM) measures, i.e., EMnb, EMtb, EMav (see Definition
1, 2 and 3) in isolation. Now, we present a comparative analysis for EMnb, EMtb, EMav

investigating their differences. For this analysis, we focus on results for a fixed answer
length for the validation data, as obtained in Table 4 and 6.

In Figure 8, we show the corresponding curves for EMnb, EMtb, EMav in dependence
on the answer lengths (of the training and validation data). For reasons of simplicity, we
show only results for data from SQuAD-2.0, learning rate 5 × 10−7 and 3 epochs because
all other settings give similar results. One can see that there are clear differences between
EMnb, EMtb, EMav despite the fact that each score corresponds to the exact match measure
and identical underlying settings. Specifically, these settings include the analysis method
(distilBERT), training data, validation data, batch size, learning rate and epochs.

Comparison of the differences in the exact match measures, EMnb, EMtb, EMav, in
Figure 8 clearly indicate that the Definition of an exact match, as provided in Definition 2,
1 and 3, has a noticeable effect on the numerical estimates. Furthermore, these differences
are not constant but change. This can be seen from ordering the values of EMnb, EMtb,
EMav at different answer lengths. For instance, for an answer length of 1, we observe the
ordering

EMnb > EMav > EMtb (8)

while for an answer length of 5 we observe

EMav > EMnb > EMtb. (9)

This means that the Definitions of an exact match, as specified in Definition 1, 2 and 3, lead
to nonlinear effects making the interpretation of the resulting scores even more difficult.

The above observations raise the question about the severity or importance of these
differences between EMnb, EMtb, EMav for identical settings. This question is addresses in
the next section.

4.6 Importance of the Differences between Exact Match Measures

In order to emphasize the potential problem revealed in the previous section, we extend
this analysis by including results from the literature for a comparison. For this reason,
we collected articles that presented different EM scores for models addressing extractive
question answering on SQuAD datsets, which is the same problem we study. In Table 10,
we list 40 published articles that all share the characteristics described above. This table
provides also information about the used version of the SQuAD data for the conducted
analysis and the best EM value and F1-score for each paper. However, we would like to note
that each article provides much more information. Specifically, in addition to the best EM
value and F1-score, each article provides a table (or several tables) with additional results
for a variety of different methods. That means each article provides a comparative analysis
showing that the newly introduced method (or variant thereof) has superior predictive
abilities compared to previously introduced methods.
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Figure 8: Comparison of numerical differences in the exact match measures, EMnb, EMtb,
EMav, based on data from Table 5.

This allows us to calculate the difference between the best reported EM value and all
other EM values from different methods in the form:

∆EMlit = EMbest − EMmethod i (10)

Here EMmethod i corresponds to a particular method, indexed by i, that has been used in a
study listed in Table 10. Since EMbest provides the best value of a study which gives the
highest value, the sign of, ∆EM, will be always positive for all studies. Overall, this means,
we calculate the differences according to Eqn. 10 separately for each study in Table 10.

As a result, we summarize all these differences in the form of a density plot shown in
Figure 9. For reasons of comparison, we add to this figure also density plots from our
analysis. Specifically, for each of the three exact matches, i.e., EMnb, EMtb, EMav, we
calculate the following differences:

∆EMav
tb =

(
EMav − EMtb

)
(11)

∆EMav
nb =

(
EMav − EMnb

)
(12)

∆EMnb
tb =

(
EMnb − EMtb

)
(13)

We calculate these differences for our results from Table 4 and 6 and summarize these again
by density plots.

From Figure 9, one can see that the range of the four density plots is largely overlapping
and they cannot be separated clearly. This is an interesting observation considering the
different meaning of the four density plots. Specifically, while the density plot corresponding
to literature results represents differences in the reported performance, measured by the
exact match, between different methods our three density plots represent differences in the
definition of the exact match score leaving all other parameters and settings unchanged.
Hence, for our density plots, the differences do not correspond to a change in performance
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Table 10: Results from the literature reporting best Exact Match (EM) and F1-scores for
data from SQuAD-1.1 and SQuAD-2.0. The column ”SQuAD dataset” indicates
the used version.

Study SQuAD dataset EM F1

LR Baseline (Rajpurkar et al., 2016) 1.1 40.4 51
BNA (Rajpurkar et al., 2018) 2.0 59.2 62.1
DocQA (Rajpurkar et al., 2018) 2.0 59.3 62.3
DocQA + ELMo (Rajpurkar et al., 2018) 2.0 63.4 66.3
Match-LSTM (Wang & Jiang, 2016) 1.1 64.7 73.7
BiDAF (Seo et al., 2016) 1.1 68 77.3
SEDT (Liu et al., 2017a) 1.1 68.2 77.5
ReasoNet-Ensemble Model (Shen et al., 2017) 1.1 70.6 79.4
DrQA (Chen et al., 2017) 1.1 70.7 79.4
RaSoR (Lee et al., 2016) 1.1 70.8 78.7
R. Mnemonic Reader-Ensemble Model (Hu et al., 2017) 1.1 73.2 81.8
ReasoNet-Ensemble Model (Shen et al., 2017) 1.1 75 82.3
DCN+ (Xiong et al., 2017) 1.1 75.1 83.1
MEMEN-Ensemble Model (Pan et al., 2017) 1.1 75.4 82.7
Interactive AoA Reader+ (Cui et al., 2016) 1.1 75.8 83.8
FusionNet (Huang et al., 2017) 1.1 76 83.9
SAN (Liu et al., 2017b) 1.1 76.8 84.4
R. Mnemonic Reader-Ensemble Model (Lee et al., 2016) 1.1 77.7 84.9
BiDAF + Self Attention + ELMo (Peters et al., 2018) 1.1 78.6 85.8
FusionNet-Ensemble Model (Huang et al., 2017) 1.1 78.8 85.9
DCN+ Ensemble model (Xiong et al., 2017) 1.1 78.9 86
Interactive AoA Reader+ Ensemble model (Cui et al., 2016) 1.1 79 86.4
DistilBERT (Sanh et al., 2019) 1.1 79.1 86.9
SAN Ensemble model (Liu et al., 2017b) 1.1 79.6 86.5
r-net+ (Wang et al., 2017) 1.1 79.9 86.5
BERT LARGE (Devlin et al., 2018) 2.0 80 83.1
SLQA+ (Wang et al., 2018) 1.1 80.4 87
BiDAF + Self Attention + ELMo Ensemble model (Peters et al., 2018) 1.1 81 87.4
NeurQuRI (Back et al., 2020) 2.0 81.3 84.3
SLQA+ Ensemble model (Wang et al., 2018) 1.1 82.4 88.6
r-net+ Ensemble model (Wang et al., 2017) 1.1 82.6 88.5
XLNet (Yang et al., 2019) 2.0 86.4 89.1
Human (Rajpurkar et al., 2016) 1.1 86.8 89.5
RoBERTa (Liu et al., 2019) 2.0 86.8 89.8
SG-Net (Zhang et al., 2018) 2.0 87.2 90.1
BERT LARGE (Ens.+TriviaQA) (Devlin et al., 2018) 1.1 87.4 93.2
ALBERT (Lan et al., 2019) 2.0 88.1 90.9
Retro-Reader on ALBERT (Zhang et al., 2021) 2.0 88.1 91.4
ELECTRA (Clark et al., 2020) 2.0 88.7 91.4
Retro-Reader on ELECTRA (Zhang et al., 2021) 2.0 89.6 92.1

but merely a change in the definition of exact match. This example demonstrates that
different definitions of EM have been used without even emphasizing this difference.

A major problem with reported EM values in the literature is that the definition of the
EM values is often unclear. For instance, when the model incorrectly predicts the start and
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end tokens for an unanswerable question, particularly when the predicted start token ID is
greater than the end token ID, as illustrated in Example 9 in Section 4.2, the answer span
in between will be disregarded, given that the answer is null. This null answer will then
be compared with the actual null answer (no answer in this example). In such cases, the
normalized exact match method may erroneously consider the answer as correct because it
solely compares the span text extracted between the token IDs which is null. In reality, the
model fails to extract the answer in this scenario.

All of these issues lead to problems in interpreting the results because, as we showed,
differences in changing the definition of EM led already to noticeable differences in perfor-
mance values. To simplify this argument let’s take a look at the mean values and their
standard errors (SE) of the four density plots. From Figure 9 (top), we find the following:

mean
(
∆EMav

tb

)
± SEav

tb = 0.110± 0.0074 (14)

mean
(
∆EMav

nb

)
± SEav

nb = 0.061± 0.0065 (15)

mean
(
∆EMnb

tb

)
± SEnb

tb = 0.049± 0.0027 (16)

mean
(
EMlit

)
± SElit = 0.054± 0.0068 (17)

and correspondingly for Figure 9 (bottom):

mean
(
∆EMav

tb

)
± SEav

tb = 0.108± 0.0079 (18)

mean
(
∆EMav

nb

)
± SEav

nb = 0.062± 0.0066 (19)

mean
(
∆EMnb

tb

)
± SEnb

tb = 0.046± 0.0028 (20)

mean
(
EMlit

)
± SElit = 0.054± 0.0068 (21)

As one can see from the above mean values, mean
(
EMlit

)
is in the same order of mag-

nitude as mean
(
∆EMav

nb

)
and mean

(
∆EMnb

tb

)
and even much smaller than mean

(
∆EMav

tb

)
considering the standard errors. From this comparison follows the conclusion that some (or
many) of the literature results may not due to improvements but a different choice of the
exact match score.

5. Discussion

In general, the pre-processing of data is a crucial step for any data analysis and pre-
processing includes cleaning the data, normalizing the data, and formatting the data in
a specific way as needed, e.g., for a EQA system. In contrast, post-processing refers to the
steps taken after an analysis is completed to prepare the results for evaluation. This can
include formatting and normalizing the results. While it is generally acknowledged that pre-
processing is an important step of an analysis, post-processing is much less standardized.
This asymmetry in the perceived importance of pre-processing and post-processing is under-
standable when considering, e.g., a classification task. For classification a pre-processing of
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Figure 9: Density plots of EM differences. The upper figure illustrates the numerical dif-
ferences in exact match measures based on data from Table 4 and the literature
results (in gray) from studies in Table 10. The lower figure shows the numerical
differences in exact match measures based on data from Table 6 and the literature
results (in gray) from studies in Table 10.
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the data is needed, however, there is no post-processing required before the evaluation can
take place because the predictions, corresponding to class labels, can directly be assessed
using the labeled test data (Emmert-Streib & Dehmer, 2022). On the other hand, EQA
systems (or other NLP tasks) require post-processing to conduct an evaluation.

In this paper, we weigh the importance of pre-processing and post-processing equally.
For this reason, we conducted an extensive analysis studying variations in answer lengths
(for training and validation data), training and validation sizes and different parameter
settings, including learning rates and the number of epochs; see Table 4, 5, 6, 7 and 8. The
strongest effect we found is from the answer length on the performance which is negatively
correlated. That means for all studied conditions, short answer lengths can be much better
predicted than longer answer lengths; see Figures 4 and 5. Specifically, going from an
answer length of 1 to an answer length of 5 reduces the exact match, regardless which of
the three definitions is used, by almost a factor of 2. This is a performance drop of almost
50%. Considering that SQuAD provides also examples with much longer answer lengths,
see Figure 3, the performance impact on such long answers becomes dominating. This is
also demonstrated by using a fixed answer length for training but a variable answer length
for validation; see Figures 4 and 5.

Furthermore, we showed that the performance of variable answer lengths for both train-
ing and validation can be approximated by a mixture of fixed answer lengths for training
and validation, see Table 9, however, no perfect match can be reached. Here the approxi-
mation corresponds to the expected value of the fixed answer lengths, see Eqn. 7. These
findings have practical consequences because they demonstrate that for a comparison of
models one needs to pay attention to the distribution of answer lengths. By skewing the
distribution of the data to shorter answer lengths one obtains a bias leading to higher per-
formance values, i.e., exact match values, without changing the model itself. Hence, for a
comparative analysis of EQA systems, if it is not possible to use the exact same data, it is
crucial to use at least data with similar answer length distributions to avoid a bias in the
evaluation.

All of the above findings hold for all three definitions of the EM score; see Definition
1, 2 and 3. However, we also showed that the numerical values of these three scores are
not identical but clearly different, e.g., see Figure 8. Importantly, we showed that all three
pairwise differences, i.e., ∆EMav

tb , ∆EMav
nb and ∆EMnb

tb are having density distributions with
a mean between 0.05 and 0.10 which is similar to the mean of reported EM differences in
the literature; see Eqn. 14 to 21 and Figure 9 for the distributions. The crucial point here is
that the reported EM values in the literature largely ignore the fact that there are different
definitions of an exact match score. A consequence thereof is that when a new model is
studied and reference EM values from other papers are used there is no guarantee that the
some definition of EM score has been used for all models. Hence, this leads to comparisons
of the form ∆EMav

tb , ∆EMav
nb and ∆EMnb

tb as studied in our paper. Considering the fact that
the order of magnitude of these differences, i.e., from our study and from the literature, are
in the same range it can be expected that many reported improvements are not genuine
but merely due to a confusion in the definition of exact match scores. This is alarming as
it can result in misinterpretations, making some models appear superior when they aren’t
actually better than others.
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We would like to emphasize that the two effects discussed above, namely, the answer
length and the definitions of an EM score, are two independent factors that influence the
analysis of a EQA system. In essence, the published results in literature might be influenced
by two biases: one stemming from a skewed distribution of answer lengths in the data, and
the other from the definition of the EM score. To mitigate these pitfalls, we recommend
thoroughly documenting all factors that influence the analysis of a EQA system, especially
the distribution of answer lengths in both training and validation data, as well as the
specifics of the definition of the the EM score.

In this paper, we focused on the exact match score. However, we would like to highlight
that also for evaluating the F1-score the post-processing is crucial. That means, similar
to the exact match, also for the F1-score different versions exists, resulting in different
definitions similar to Definition 1, 2 and 3 for the EM score. We did not study these results
in this paper because the overall findings are similar as for the EM score.

We would like to conclude this paper with a broader observation. Our examination of
EQA systems, particularly regarding the influence of answer length in training and vali-
dation data, has led us to believe that the EQA literature might not fully recognize the
statistical intricacies of the underlying problem. This viewpoint stems from a noticeable
lack of detail on pivotal components within the literature. The importance of a rigorous
statistical approach becomes evident when revisiting fundamental principles of statistics.
It’s a well-established fact that the function of a random variable remains a random variable
(Papoulis & Unnikrishna Pillai, 2002). That means for a deterministic function, f , with

y = f(x) (22)

the output variable y is a random variable, if x is a random variable. For a EQA system, a
change in the (input) question is a random variable implying that even for a deterministic
EQA system the (output) answer is a random variable. This correspondence shows that
statistical considerations are always needed when studying EQA systems or general NLP
problems.

Based on our results, we can formulate the following guidelines that could be used for
instructing general EQA system studies.

• Post-processing is as important as pre-processing.

• Provide explicit formal definitions of all used error measures.

• Distributions of answer lengths of training and test data are important and should be
matched for comparative studies if the same data are not available.

• Study the uncertainty of an error measure by estimating its distribution or at least
the standard error.

Overall, our findings inform the general design of experiments for EQA systems, which
could serve as a framework for future research.

6. Conclusion

The analysis of extractive question-answering (EQA) systems including their evaluation is
in general intricate and many details need to be considered. In this study, we conduct a
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large-scale evaluation of distilBERT using benchmark data provided by the Stanford Ques-
tion Answering Dataset (SQuAD). From our analysis, we find three major results. First,
by studying the influence of the answer length on the performance, we find an inverse cor-
relation between both. Second, we study differences in the definition of exact match (EM)
measures and find that despite the fact that all of those measures are named ”exact match”
the obtained results for the same model and the same data can be quite different from each
other. Third, the literature’s ambiguous interpretation of ”exact match” often makes it
difficult to determine if reported enhancements are authentic or merely a consequence of
alterations in the exact match score. Our findings indicate that variations in the definition
of EM scores are comparable to the differences reported in prior studies. This raises doubts
about the reliability of the reported outcomes. In summary, our results offer comprehen-
sive recommendations and guidelines for designing EQA system experiments, enhancing
performance evaluations and preventing spurious outcomes.
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