
Journal of Artificial Intelligence Research 79 (2024) 1091-1112 Submitted 11/2023; published 04/2024

DIGCN: A Dynamic Interaction Graph Convolutional
Network Based on Learnable Proposals for Object Detection

Pingping Cao cpp@cumt.edu.cn
China University of Mining and Technology,
Xuzhou 221006, China

Yanping Zhu zhuya@mountunion.edu
Missouri University of Science and Technology,
Rolla 65409, USA

Yuhao Jin TS22170040A31@cumt.edu.cn

Benkun Ruan 08213031@cumt.edu.cn

Qiang Niu niuq@cumt.edu.cn

China University of Mining and Technology,

Xuzhou 221006, China

Abstract

We propose a Dynamic Interaction Graph Convolutional Network (DIGCN), an image
object detection method based on learnable proposals and GCN. Existing object detec-
tion methods usually work on dense candidates, resulting in redundant and near-duplicate
results. Meanwhile, non-maximum suppression post-processing operations are required
to eliminate negative effects, which increases the computational complexity. Although
the existing sparse detector avoids cumbersome post-processing operations, it ignores the
potential relationship between objects and proposals, which hinders detection accuracy
improvement. Therefore, we propose a dynamic interaction GCN module in the DIGCN,
which performs dynamic interaction and relational modeling on the proposal boxes and
proposal features to improve the object detection accuracy. In addition, we introduce a
learnable proposal method with a sparse set of learned object proposals to eliminate a
huge number of hand-designed object candidates, avoiding complicated tasks such as ob-
ject candidate design and many-to-one label assignment, and reducing object detection
model complexity to a certain extent. DIGCN demonstrates accuracy and run-time per-
formance on par with the well-established and highly optimized detector baselines on the
challenging COCO dataset, e.g. with the ResNet-101FPN as the backbone our method
attains the accuracy of 46.5 AP while processing 13 frames per second. Our work provides
a new method for object detection research.

1. Introduction

Object detection is one of the most prominent problems in computer vision. High-performance
object detection can help different real-world tasks such as image retrieval (Song, He, Gao,
Xu, Hanjalic, & Shen, 2018; Qin, Huang, Wei, Xie, & Zhang, 2020; Öztürk, 2021), au-
tonomous driving (Zhong, Lei, Cao, Fan, & Li, 2017), and security systems (Lien, Chen,
Bai, & Lin, 2008; Joshi & Thakore, 2012). In recent years, object detection performance
has been continuously improved, and outstanding achievements have been made in the most
popular object detection baselines (Yuxin Wu & Girshick, 2019; Cai & Vasconcelos, 2018).

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Cao, Zhu, Jin, Ruan, & Niu

For example, Faster R-CNN (Ren, He, Girshick, & Sun, 2015) obtained 36.2AP on the
MS-COCO dataset; RetinaNet (Lin, Goyal, Girshick, He, & Dollár, 2017b) increased the
accuracy to 39.1; with the development of deep learning technology, CornerNet (Law &
Deng, 2018) obtained 40.5 AP; in 2019, FSAF (Zhu, He, & Savvides, 2019) directly in-
creased the AP to 42.9; in the same year, FCOS (Tian, Shen, Chen, & He, 2019) improved
the MS-COCO baseline to 44.7AP. Although these object detection methods continue to
refresh and improve the baseline of object detection, most of these detectors rely on dense
object candidates, making the object detection work redundant and complicated. The final
performance will be affected by the number of anchors, their frame size, aspect ratio, ref-
erence density, and the proposal generation algorithm. Therefore, some studies have been
conducted for designing sparse detectors,such as Sparse R-CNN (Sun, Zhang, Jiang, Kong,
Xu, Zhan, Tomizuka, Li, Yuan, Wang, et al., 2021) and DETR (Carion, Massa, Synnaeve,
Usunier, Kirillov, & Zagoruyko, 2020a).

DETR (Carion et al., 2020a) only took 100 learning object queries as input and did not
require any hand-designed post-processing operations, and directly output object prediction
results. However, it is a very sophisticated end-to-end object detection framework. In
DETR, each object query must interact with the context, which increases the density and
reduces the convergence speed of the model. In response to this phenomenon, Sparse R-CNN
(Sun et al., 2021) proposed a completely sparse object detection method, that is, a small
number of initial boxes was adequate to predict all objects in an image, and the features of
each box did not need to interact with all features on the entire image. Moreover, Sparse R-
CNN (Sun et al., 2021) took a small number of learnable proposal boxes, proposal features,
and an image as input. The object features were obtained by the dynamic interaction
between the input proposal boxes and proposal features, and finally output the category
and location through two specific task prediction layers. Although this method implements
a pure sparse detector, some efforts can be made to improve the detection performance.

Existing object detection work (Tan, Pang, & Le, 2020; Yuan, Wan, Fu, Liu, Xu, Ji,
& Ye, 2021) mainly uses hand-designed object candidates and label assignments to deter-
mine object features, while objects are generally represented by 4-d coordinates and lack
detailed information such as object shape and pose. The proposal feature was introduced
for this phenomenon by Sparse R-CNN (Sun et al., 2021). The proposal feature is a high-
dimensional latent vector representation. Compared with the traditional 4-d coordinate
rough bounding box, the proposal feature can encode richer instance features and generate
a series of specific parameters for its unique object recognition head (Jia X & V., 2016;
Tian, Shen, & Chen, 2020). However, Sparse R-CNN (Sun et al., 2021) only provided a
simply dynamic interaction between the proposal feature and the proposal box to obtain
the object feature. Although detailed information of the object is considered, the potential
relationships between objects are ignored, such as semantic and topological relationships.
These studies (Carion et al., 2020a; Chen, Cao, Hu, & Wang, 2020) considered the global
semantic information and local positioning information of the image when extracting object
features, and performed encoding-decoding operations on the image features and location
information to improve the detector accuracy, but increased the input information density.

To improve the accuracy of the sparse detector, we take the problems of the above meth-
ods into account in the detector design, and propose an object detection sparse framework,
i.e., Dynamic Interaction Graph Convolutional Network (DIGCN) based on learnable pro-

1092

DIGCN: Object Detection

posals and a GCN. DIGCN takes an image, a small group of proposals (300) and proposal
features as input, and extracts image features through the backbone network. The ROI fea-
tures of proposal boxes and proposal features interact with each other through the dynamic
interaction GCN module. The category and location of objects are output through the
predicting layers. Compared with Sparse R-CNN (Figure 1(a)), in addition to the feature
interaction, DGCIN also adds the interaction of potential relationships (Figure 1(b)), which
improves the accuracy of the detector by obtaining richer feature information.

ROI

Conv1× 1 Conv1× 1

Dynamic instance head

Cls

Reg

ROI feature Proposal feature

(a)The dynamic interaction of Sparse R-CNN

Prediction layerGCN

(b)The dynamic interaction of our method

ROI feature Proposal feature

Proposal featureROI feature

Interaction

Interaction

Interaction

Object features

ROI

ROI feature

Proposal boxs

Proposal feature

Image feature

Feature

interaction

Object features

ROI feature Proposal feature

Feature

interaction

ROI feature Proposal feature

Feature

interaction

Proposal features

N learned Proposals

Proposal boxs

Proposal features

N learned Proposals

Image feature

Figure 1: Comparison of the principle of feature interaction in sparse detectors.

In Figure 1, (a) represents the dynamic interaction process between ROI features and
proposal features in Sparse R-CNN;(b) represents the dynamic interaction process between
ROI features and proposal features in our DIGCN. In DIGCN,we have added relational
interaction between features, and this relational interaction is implemented through the
GCN module. Specifically,we build the object features obtained from the interaction be-
tween ROI features and proposal features as graph nodes, and dynamically generate the
adjacency matrix between nodes (we will describe the construction of graph nodes and ad-
jacency matrix in detail in Section 3.2). Through the GCN layer, we model the spatial and
semantic information of object features to obtain the final object feature, which is used for
subsequent object detection and improves the accuracy of the detector.

1093

Cao, Zhu, Jin, Ruan, & Niu

Although there are already detectors using sparse learnable proposals (Sun et al., 2021)
and GCN technology (Bruna, Zaremba, Szlam, & LeCun, 2013; Zhao, Ge, & Yu, 2021),
compared with these methods, our method has its unique novelty. In reference (Sun et al.,
2021), it only considered the interaction at the feature level of the proposal, which largely
omitted spatial and semantic information about object features in the inspected image,
thus reducing the detection performance of the detector. However, we can remedy this
defect by using GCN to model the relationship between the proposals. In (Zhao et al.,
2021), GCN is used to model the topological relationship between multi-scale features. The
focus is still on the multi-scale features of images, while the GCN in our method focuses
on the relationship between proposals. Although (Bruna et al., 2013) uses GCN for box
association, it is essentially different from our method. Reference (Bruna et al., 2013)
constructs the graph structure on the dataset, with the word embedding of the label as the
node. The detector models the relationship between the label and the region proposal. The
whole process relies heavily on the label information of the data, and dense candidate boxes
are used in this work. However, in our method, we directly model the relationship between
proposal boxes and proposal features. We do not rely on the labels of data sets. We can
use sparse proposals to achieve high-performance object detection. At present, no work
has ever used ideas similar to our methods, and the novelty of our methods is particularly
prominent.In general, the main contributions of this article are as follows:

• A novel sparse object detection framework: DIGCN is proposed, which uses dynamic
interaction and GCN to obtain object features in the image to be detected for predic-
tion of object position and category.

• A dynamic interaction GCN module is proposed, which includes a dynamic instance
interaction operation and a GCN for relationship modeling. In the dynamic interac-
tion GCN module, the input proposal boxes and proposal features are dynamically
interacted to obtain preliminary object features, and then GCN modeling is used to
obtain more prominent object features.

• A graph structure is constructed and the object features obtained from the interaction
of dynamic instances are nodes. The customized parameters generated by the proposal
features form an adjacency matrix, which maps the relationship between the object
features.

• On the challenging public object detection data set COCO2017, our method was
tested for accuracy, running time, and training convergence performance, which is
comparable to a well-established detector baseline. e.g., with the ResNet-101FPN as
the backbone our method attains the accuracy of 46.5 AP while processing 13 frames
per second.

2. Previous Work

2.1 The Conventional Method

At present, popular detectors are mainly based on a general object detection framework
i.e., deep Convolutional Neural Networks (CNNs) (Szegedy, Toshev, & Erhan, 2013; Ioffe &

1094

DIGCN: Object Detection

Szegedy, 2015; Krizhevsky, Sutskever, & Hinton, 2012), which greatly improves the object
detection model performance (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010;
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, & Zitnick, 2014). In the general
object detection work based on CNNs, there are two commonly used methods. One is to
directly predict the category and location of the anchor box by densely covering the spatial
location, scale and aspect ratio in a single shot, such as OverFeat (Mathieu, LeCun, Fer-
gus, Eigen, Sermanet, & Zhang, 2013), YOLO9000 (Redmon & Farhadi, 2017), SSD (Liu,
Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) and RetinaNet (Lin et al., 2017b).
OverFeat (Mathieu et al., 2013) is an integrated framework that can simultaneously im-
plement multi-scale and sliding windows in the same convolutional network. The learning
process for location identification is to predict the object boundary, and continuously ac-
cumulate bounding boxes to improve the detection confidence. YOLO9000 (Redmon &
Farhadi, 2017) realizes real-time object detection by using multi-scale training and joint
training on the object detection and classification based on YOLO, which has a high ad-
vancement level. SSD (Liu et al., 2016) is a simple object detection method that eliminates
the proposal generation and subsequent pixel or feature resampling stages and encapsulates
all calculations in a single network. It discretizes the output space of the bounding box
into a set of default boxes, and generates scores for the existence of each object category in
each default box. Also, SSD combines feature maps of different scales for prediction, which
can adapt to objects of varying sizes. RetinaNet (Lin et al., 2017b) eliminates extreme
foreground-background imbalances by reshaping standard cross-entropy loss, and trains a
sparse example set to detect objects accurately and quickly in images or videos.

The other object detection work based on CNNs is an anchorless method that replaces
manual anchor boxes with reference points (Law & Deng, 2018; Tian et al., 2019; Huang,
Yang, Deng, & Yu, 2015; Zhou, Wang, & Krähenbühl, 2019; Kong, Sun, Liu, Jiang, Li,
& Shi, 2020). CornerNet (Law & Deng, 2018) used a CNN to detect the upper left cor-
ner and the lower right corner of the object bounding box as a pair of key points for the
object, eliminating the effort of manually designing the anchor. The introduction of the
corner pooling layer in CornerNet can help the network locate corners more accurately and
improve the detection accuracy of the detector. FCOS (Tian et al., 2019) was a detector
without anchor and proposal box, solving object detection by a pixel-by-pixel prediction. It
completely avoided all the hyperparameters related to the anchor box and made the detec-
tion performance more stable. Huang et al. (Huang et al., 2015) introduced DenseBox in
their work, which can directly predict the bounding box and object classification confidence
through all positions of the object and scales of the image. Zhou et al. (Zhou et al., 2019)
modeled each object as a center point of its bounding box, and the key point estimation
was used to find the center point and to regress other object attributes. FoveaBox (Kong
et al., 2020) directly learned the existence possibility. The bounding box coordinates of
the object can be determined by predicting category-sensitive semantic maps for the object
existing possibility and generating category-agnostic bounding boxes for each position that
may contain the object, which avoided anchor references. Compared with detectors based
on bounding boxes, detectors without anchors are simpler, faster, and more accurate.

1095

Cao, Zhu, Jin, Ruan, & Niu

2.2 Sparse Method

General sparse object detection methods can avoid the design of dense candidate objects,
but the accuracy is significantly lower than conventional dense candidate-based detectors.
The work by Najibi et al. (Najibi, Rastegari, & Davis, 2016) was representative of the
first batch of sparse detection algorithms. In their work, the object detection problem
model found a path in a fixed grid to a box tightly surrounding the object. Although this
method achieves the sparse detection purpose, the performance of this proposal box, which
is manually designed based on prior knowledge, needs to be improved in object detection
tasks. Afterwards, Sun et al. (Sun et al., 2021) proposed a sparse R-CNN, applying a
learnable proposal and Deformable-DETR (Zhu, Su, Lu, Li, Wang, & Dai, 2020) to limit
the sampling points of each object query to its reference point surrounding, which improved
the sparse detector performance. Although the sparse R-CNN (Sun et al., 2021) has achieved
good results in sparse object detection, it ignores other key information that helps improve
the detector’s accuracy.

A learnable proposal (Sun et al., 2021) refers to a small set of proposal boxes defined
in the object image. It is an initial guess of the possible area of the object in the image,
usually represented by 4-d coordinates: (x, y, h, w), which respectively represent the center
coordinates (x, y), height and width of the proposal box. During the training process, the
parameters of the proposal box can be continuously updated through backpropagation to
find the optimal area (that is, the area closest to the object). Due to the learnability of
the proposal box, the influence of the initial parameters of the proposal box on the entire
detection framework is not significant.

The 4-d proposal box can only roughly represent the object’s position information,
and cannot describe detailed information such as the posture and shape of the object. To
provide the detector with more detailed object information, a high-dimensional vector of the
proposal feature is introduced to represent the potential features of the object. The proposal
features can be used to encode rich instance features and are one of the key technologies to
improve detector accuracy.

2.3 GCN-Based Method

The basic idea of GCN is to update node representation by propagating information be-
tween nodes (Kipf & Welling, 2016), showing a strong modeling ability for the relationship
between non-Euclidean spatial data. Therefore, the original GCN has been widely used in
3D object detection tasks (Chai, Sun, Ngiam, Wang, Caine, Vasudevan, Zhang, & Anguelov,
2021; Wang, Wang, Zhang, Lan, & Li, 2021). After mastering in-depth graph knowledge,
GCN has been successfully applied for conventional object detection by constructing graphs
of object images or videos in many studies (Li, Miao, & Feng, 2020; Du, Shi, & Huang,
2019). In the object detection process, Li et al. (Li et al., 2020) used GCN for feature fusion
of images with different resolutions, dynamically transferring knowledge through learnable
weights between all nodes and introducing semantic information to guide the fusion pro-
cess. The optimal feature fusion strategy was learned for the detector to improve the object
detection performance. Du et al. (Du et al., 2019) proposed a Relational Proposal Graph
Network (RepGN), which modeled semantics and space as boundaries. In the object de-
tector, GCN is used to model relationships and context constraints, and act in regional

1096

DIGCN: Object Detection

feature extraction and bounding box regression classification to improve the object detec-
tion performance. However, the above GCN-based object detector relies on dense object
candidates. To effectively eliminate manually designed candidates and components and
to improve the sparse detectors’ accuracy, we propose a sparse object detection method-
DIGCN based on learnable proposals and GCN. Our method applies learnable proposals
and inspired by GNN’s interaction with features in (Zhou, Wang, Qi, Ling, & Shen, 2020;
Zhou, Li, Li, Feng, Li, & Shao, 2021), we designed a GCN dynamic interaction module
for proposal box association and potential relationship modeling, which improves the per-
formance of the detector. Our method provides a new research idea for the application of
GCN in object detection tasks.

3. Method

Dynamic interaction graph convolutional network (DIGCN) is an end-to-end object de-
tection framework based on learnable proposals and dynamic interaction GCN. It consists
of a backbone network, a dynamic interaction GCN module and two prediction layers for
output location and classification. DIGCN has a total of three inputs, an image, a set of
proposal boxes and proposal features. The framework of DIGCN is shown in Figure 2.We
will describe each component in detail in this section.

Cls

Reg

Input image CNN

Prediction layer

Dynamic GCN

Interaction

Dynamic interaction

V1

V2

V3
V4

Z1

Z2

Z3
Z4

GCN

Input layer

Hidden layer

Output layer

¨̈

Proposal boxes

¨̈

Proposal features

Image feature
ROI feature

•
•
•

Feature

interaction

g:1×1

Figure 2: An overview of DIGCN pipeline.

3.1 Backbone

We use the Feature Pyramid Network (Lin, Dollár, Girshick, He, Hariharan, & Belongie,
2017a) based on ResNet(He, Zhang, Ren, & Sun, 2016) architecture as the backbone of

1097

Cao, Zhu, Jin, Ruan, & Niu

DIGCN to extract image features from the input image and input them to the GCN dy-
namic interaction module. Like Sparse R-CNN (Sun et al., 2021), our DIGCN also has the
potential to obtain higher performance from more complex backbone network designs (such
as stacked encoder layers (Carion, Massa, Synnaeve, Usunier, Kirillov, & Zagoruyko, 2020b)
and deformable revolution networks (Dai, Qi, Xiong, Li, Zhang, Hu, & Wei, 2017)). To con-
firm this claim,we use a more complex stacked encoder layers network instead of the ResNet
architecture as the backbone of DIGCN, with the other modules remaining unchanged, and
achieve a mAP of 46.7 on the standard object detection dataset COCO2017. However, to
show the simplicity and effectiveness of DIGCN, we will keep the settings consistent with
Faster R-CNN (Ren et al., 2015; Lin et al., 2017a) and Sparse R-CNN (Sun et al., 2021). At
present, some advanced object detection work based on deep learning (Ren et al., 2015; Lin
et al., 2017b; Sun et al., 2021; Carion et al., 2020a) mainly uses the network with ResNet
structure as the backbone. In order to compare with existing methods more intuitively
and fairly, we choose the Feature Pyramid Network based on the ResNet structure as the
backbone of DIGCN.

3.2 Dynamic Interaction GCN Module

The dynamic interaction GCN module is the core of our method, which is mainly divided
into two stages: dynamic convolutional layer interaction and dynamic GCN interaction.
This module takes a set of proposal features, proposal boxes and images as inputs. Then
the module achieves dynamic interaction between proposal boxes and proposal features
through a convolutional layer and a single-layer GCN.

In the dynamic interaction GCN module, for the given paired proposal boxes and pro-
posal features (fpro), during the dynamic convolutional layer interaction stage, we first
extract the ROI features (froi) of each proposal box corresponding to the image through
RoIAlign operation. Then, the obtained ROI features are interacted with the proposal fea-
tures (fpro) through a 1×1 convolutional layer to filter out ineffective bins, the interaction
process can be seen in Figure 3(a). The parameter of the 1×1 convolutional layer is the dy-
namic parameter matrix, which is generated by the filter-generate network in the dynamic
filtering network (Jia X & V., 2016). We called the features obtained from the interaction
of convolutional layers preliminary object features (obj fpre).

In the dynamic graph convolution interaction stage, we first use the object features
obj fpre as nodes and the dynamic parameter matrix generated by the proposal features as
the adjacency matrix to construct the graph structure of the object features (see Section
3.2.1). Then, a single-layer GCN is used to update node features, thereby achieving dy-
namic interaction between obj fpre and fpro. At this point, our dynamic interaction graph
convolution module can complete the dynamic interaction between proposal boxes and pro-
posal features. The final object features (obj ffin) obtained from the interaction are used
for object localization and classification.

3.2.1 Constructing the graph structure of object features

In our design, we use the object features (obj fpre) as nodes V and generate adjacency
matrix A based on the proposal features for object features , as shown in Figure 3(b).

1098

DIGCN: Object Detection

Object

features V1

V2

V3

V4

Image

features

Any

4N 

Proposal

boxes

RoIAlign
ROI

features

ROI

features

Proposal

features

N C

Dynamic

parameter

matrix

LM

g:1 1

g:1 1

Parameter

matrix

Parameter

matrix

T

Correlation

matrix A

/ 4N C C 

Proposal

features

N C

Dynamic

parameter

matrix

LM

g:1 1

g:1 1

Parameter

matrix

Parameter

matrix

T

Correlation

matrix A

/ 4N C C 

(a)

(b)

Graph

g:1 1g:1 1

N S S C  

N S S C  

/ 4N C C 

/4N C C 

/ 2N C C 

Object

features

Image

features

Proposal

boxes

RoIAlign
ROI

features

ROI

features

Proposal

features

Dynamic

parameter

matrix

Correlation matrix

of graph

(a)

(b)

Nodes

Filter-

generating

network

D1

g:1 1

Object

features

Proposal

features

Euclidean

distance Similarity

matrix

D2

V1 V2 … VN

V1

V2

⁝

VN

A11 A12 A1N…

A21 … A22 A2N

…

ANN… AN2AN1

… … …

Figure 3: Graph construction method based on object features.

Specifically, the construction principle of adjacency matrix A is as follows: Firstly, we
use the proposal features to generate a dynamic parameter matrix D1 through the filter-
generate network. The filter-generate network (Jia X & V., 2016) can be implemented using
any differentiable architecture. As the input of our task is an image, we chose a convolutional
network to obtain the dynamic parameter matrix. Then we use Euclidean distance to
calculate the similarity between the proposal features and obj fpre obtain a similarity matrix
D2. Finally, by fusing the two matrices, we can obtain the adjacency matrix of the graph.
Since the proposal features in the dynamic interaction graph convolution module participate
in both the dynamic convolution layer interaction and GCN interaction stages, the fusion
of the two matrices is necessary. In addition, the graph is constructed based on sparse
proposals, avoiding the complex distribution caused by dense connections, thereby reducing
noise edges, and saving the operation of noise filtering.

In the figure, ”g : 1×1” represents the convolution operation of 1×1 and ”⊕” represents
matrix addition operations. ”A” represents the adjacency matrix of the graph and V
represents the nodes.

1099

Cao, Zhu, Jin, Ruan, & Niu

3.2.2 Dynamic GCN

We designed a dynamic GCN to replace the static GCN to realize dynamic interaction
between proposal boxes and proposal features in the dynamic interaction GCN module.
The working principle of dynamic GCN is as follows:

First, the dynamic GCN uses obj fpre as the node V and the adjacency matrix A as the
initial matrix to update the node. The updated node H is as follows:

H = δ(AVW), (1)

Among them, W is learnt during training, and δ(·) represents the activation function.
In this experiment, the activation function is ReLU .

Then, the updated node H is input into the dynamic convolutional layer. In this layer,
the adjacency matrix Ad is dynamically generated:

Ad = δ
(
WAH

′)
, (2)

where δ(·) is the activation function sigmoid; WA is the weight obtained by training the
convolutional layer and can be used for calculating the dynamic adjacency matrix. H

′
is

synthesized by connecting H and its global representation Hg (generated by global average
pooling and a convolutional layer), thus, the definition of H

′
is as follows:

H
′
= [(h1;hg) , (h2;hg) , . . . , (hc;hg)] . (3)

Finally, the updated node information is obtained through the dynamic GCN module
as equation (4).

Z = LReLU(AdHWd). (4)

The final object feature obj ffin can be obtained by linear mapping the node information
output from the dynamic GCN module.

3.3 Loss Function

In DIGCN, the prediction layer mainly relies on the loss function to realize the prediction of
object category and location. Like the loss function used in (Carion et al., 2020a; Stewart,
Andriluka, & Ng, 2016; Yang, Wang, Clark, Hu, Wang, Markham, & Trigoni, 2019), we
adopted a set-based one-to-one matching loss for classification and box coordinate predic-
tion. According to (Carion et al., 2020a), when i represents the elements of the truth label
set, ci represents the truth label of the object class, and σ (i) represents the prediction index,
the probability of the object class ci can be expressed as: p̂σ(i) (ci),then the loss between
the predicted category of the target and the truth label is equation (5):

Lcls = p̂σ̂(i) (ci) . (5)

When bi and b̂σ(i) are used to represent the set of truth boxes and prediction boxes, box
losses can be represented as:

Lbox(bi, b̂σ̂(i)) =∥ bi − b̂σ̂(i) ∥
(
1 +

(
bi, b̂σ̂(i)

))
, (6)

1100

DIGCN: Object Detection

Then the final loss can be calculated by equation (7):

L (yi, ŷ) = λcls · p̂σ̂(i) (ci) + λL1 ∥ bi − b̂σ̂(i) ∥
(
1 + λgiou

(
bi, b̂σ̂(i)

))
, (7)

In the equation, λcls , λL1 and λgiou are the coefficients of the object category loss,
box loss, and generalized IOU loss, respectively. Compared with other detectors, using set-
based one-to-one matching loss avoids the problem of many-to-one label allocation, thereby
reducing computational costs. Compared with other end-to-end detectors based on set
prediction, the linear combination of L1 loss and generalized IOU loss is used to directly
predict boxes of different sizes, bypassing the preliminary prediction steps of other detectors
for boxes.

4. Experiment

In this section, we first introduce the evaluation metrics, data sets and implementation
details of the detector. Then, the test results of our method on the COCO2017 data set are
given and compared with other methods. Finally, the advantage of our method is proved
through the ablation research and result visualization.

4.1 Evaluation Metrics

According to previous object detection work (Ren et al., 2015; Sun et al., 2021; Carion
et al., 2020a), we use Average Precision (AP) and Frame Per Second (FPS) as evaluation
metrics. For a fair comparison, we also compared AP50, AP75, APs, APm and APl. AP50

and AP75 represent the accuracy of taking the positive result when the IOU threshold is
greater than 0.5 and 0.75, respectively. The larger the IOU threshold, the more difficult
the measurement. APs, APm and APl represent detection AP for small objects, medium
objects, and large objects, respectively.

4.2 Dataset

We use our method to perform object detection performance experiment on the COCO2017
(Lin et al., 2014). COCO2017 contains about 118k training images and 5k validation images.
Each image is labeled with bounding box information. On average, each image contains 7
instances. In the training set, each image can have 63 instances at most. These instances
have different sizes, which brings great challenges to object detection.

4.3 Implementation Details

Our DIGCN is implemented by Pytorch, and ResNet-101 (Szegedy et al., 2013) is the
backbone network we mainly use to extract image features. In order to improve the training
speed of DIGCN, we use the pre-training weights on ImageNet (Deng, Dong, Socher, Li, Li,
& Fei-Fei, 2009) to initialize the backbone network. The AdamW optimizer is used during
training, and the weight decays to 0.0001. The minimum training batch for each GPU is 2
images. Our main detection result is trained using 4 GPUs and the batch size is set to 8.
The whole training process includes 36 epochs, and the initial learning rate is 2.5 × 10−5

which is reduced by 10 times at the epochs 27 and 33. According to the previous work (Sun

1101

Cao, Zhu, Jin, Ruan, & Niu

et al., 2021; Carion et al., 2020a) λcls , λL1 and λgiou are set to 2, 5 and 2. The input image
of the network is enhanced with random horizontal scaling, and the image is adjusted to be
at least 480 pixels to 800 pixels on the shortest side, and up to 1333 pixels on the longest
side (Ren et al., 2015). In addition, in our training, the number of proposal boxes, proposal
features, and iterations are 300, 300, and 6, respectively. Except for the initial proposal
box, the gradients in the iteration process are limited into the proposal box to ensure the
stability of training.

4.4 Experimental Results

Our method has been applied to the challenging object detection dataset COCO2017 using
4 GPUs of NVIDIA GeForce RTX 2080Ti with a batch size of 8. The trained model is
applied to the validation dataset. Since the detector performance is related to the training
hardware, we reproduce one of the most advanced sparse detector Sparse R-CNN (Sun
et al., 2021) on the same hardware device as our method to make a fair comparison. During
the training process, all parameters remain the same. At the same time, we also compare
with other detectors that including the latest detector based on GCN method (Chen, Li,
Huang, Zhang, & Ma, 2021; Zhao et al., 2021), and the results are shown in Table 1.

Table 1: Comparison of the detection results of Sparse GCN and other detectors on
COCO2017.

Method EP GPU/num
Acc Sp

AP AP50 AP75 APs APm APl FPS

RetinaNet-R50 36 v100/8 38.7 58.0 41.5 23.3 42.3 50.3 24
RetinaNet-R101 36 v100/8 40.4 60.2 43.2 24.0 44.3 52.2 18
Faster R-CNN-R50 36 v100/8 40.2 61.0 43.8 24.2 43.5 52.0 26
Faster R-CNN-R101 36 v100/8 42.0 62.5 45.9 25.2 45.6 54.6 20
Cascade R-CNN-R50 36 v100/8 44.3 62.2 48.0 26.6 47.7 57.7 19
DETR-R50 500 v100/8 42.0 62.4 44.2 20.5 45.8 61.1 28
DETR-R101 500 v100/8 43.5 63.8 46.4 21.9 48.0 61.8 20
DETR-DC5-R50 500 v100/8 43.3 63.1 45.9 22.5 47.3 61.1 12
DETR-DC5-R101 500 v100/8 44.9 64.7 47.7 23.7 49.5 62.3 10
Deformable DETR-R50 50 v100/8 43.8 62.6 47.7 26.4 47.1 58.0 19
DN-DETR-DC5-R101 50 A100/8 47.3 67.5 50.8 28.6 51.5 65.0 -
DINO-5scale 36 A100/8 51.2 69.0 55.8 35.0 54.3 65.3 10
YOLOv7-E6E - cloudGPU 56.8 74.4 62.1 40.8 62.1 70.6 -
Sparse R-CNN-R50* 36 2080Ti/4 44.7 63.5 48.4 27.8 47.6 59.1 17
Sparse R-CNN-R101* 36 2080Ti/4 45.6 64.6 49.5 29.0 48.2 61.4 14

GCN-
Based

Relation
R-CNN-R101

20 - 36.2 56.9 39.3 19.5 41.2 49.1 -

GraphFPN-R101 50 2080Ti/4 46.3 65.1 50.1 29.5 49.1 61.5 10
DIGCN-R50(ours) 36 2080Ti/4 45.2 64.1 49.5 28.7 47.8 59.4 16
DIGCN-R101(ours) 36 2080Ti/4 46.5 65.7 50.6 30.0 49.5 61.0 13

1102

DIGCN: Object Detection

In Table 1, ”Ep” is the abbreviation of ”Epoch”, which represents the number of training
cycles; ”Acc” and ”Sp” respectively represent the accuracy and speed of model training;
”V100”, ”A100” and ”2080Ti” represent the NVIDIA Tesla V100, ”NVIDIA A100 Tensor
Core” and NVIDIA GeForce RTX 2080Ti GPU types, ”/8” and ”/4” represent the number
of GPU is 8 and 4, respectively; ”*” means the result of reproducing and training this model
on our hardware device. Black bold represents the best result among all methods, while
red represents the best result based on GCN methods.

It can be seen from the comparison results in Table 1 that our method has higher
accuracy than either the most advanced sparse detector Sparse R-CNN (Sun et al., 2021) or
the latest detector based on GCN method (Chen et al., 2021; Zhao et al., 2021). Although
our method appears disadvantages in detection accuracy compared to recent work (Li,
Zhang, Liu, Guo, Ni, & Zhang, 2022; Zhang, Li, Liu, Zhang, Su, Zhu, Ni, & Shum, 2022;
Wang, Bochkovskiy, & Liao, 2023), it still has advantages in computational cost. DN-
DETR-DC5 (Li et al., 2022), DINO-5scale (Zhang et al., 2022) and YOLOv7 (Wang et al.,
2023) reported FLOPs of 839.8G, 275.4G, and 843.2G in their work, respectively. However,
our method has only 24.1G FLOPs, indicating that our method has a lower computational
cost. In addition, DN-DETR-DC5-R101 (Li et al., 2022) and DINO-5scale (Zhang et al.,
2022) still rely on dense query sequences or anchors for object detection, which do not
belong to the same category of detectors as our method.

GraphFPN (Zhao et al., 2021), which is also based on the GCN method, uses ”Contex-
tual Graph Layers” to achieve feature interaction at the same scale, with the same goal as
dynamic GCN interaction in our method, but their structures are different. The contextual
graph layers use a graph self-attention network to update graph nodes. From the feature up-
date formula mentioned in GraphFPN (Zhao et al., 2021), this graph self-attention network
is composed of two GCNs based on attention mechanisms. Our dynamic GCN interaction
only requires a single GCN to achieve feature interaction, nor does it require the addition
of additional attention mechanisms. Although our method has only 0.2AP gain compared
with GraphFPN (Zhao et al., 2021), GraphFPN (Zhao et al., 2021) is implemented by re-
lying on dense candidate frames, and FPS is significantly reduced. The comparison with
GraphFPN (Zhao et al., 2021) further shows that our DIGCN can still achieve detection
performance comparable to the dense candidate box method when using sparse proposal
boxes. In addition, we compared all APs of DIGCN with Sparse R-CNN (Sun et al., 2021)
to illustrate the convergence rate of our model. The comparison results are shown in Figure
4.

In Figure 4, our detector starts to converge at the epoch 33, and Sparse RCNN starts
to converge at the epoch 34. It can be seen from Figure 4 that our method has the same
convergence speed as the most advanced sparse detector.

4.5 Ablation Researches

In this section, we conduct ablation studies on each component of the dynamic interaction
GCN module in the DIGCN, and explore the impact of the dynamic interaction, GCN
module, two-layer GCN, three-layer GCN, dynamic GCN, and graph construction ways on
the detector performance, and we reported the FLOPs, parameter numbers and running
times of each ablation experiment to demonstrate the trade-off between the effectiveness

1103

Cao, Zhu, Jin, Ruan, & Niu

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0

10

20

30

40

A
P

epoch

Our method

Sparse R-CNN

Figure 4: AP comparison of our DIGCN and Sparse RCNN.

and efficiency of our method. All ablation studies are based on ResNet 101 as the backbone
network, 300 proposals and 3x training schedule based on 4 GPUs of NVIDIA GeForce RTX
2080Ti with a batch size of 8, unless otherwise specified.

4.5.1 Dynamic interaction

In order to verify the contribution of the dynamic interaction in the DIGCN, we cancel
the dynamic interaction operation in the model, and simply use the ROI feature and the
proposal feature as the input of the GCN module, and the other modules remain unchanged.
The detection AP drops from 46.5 to 45.5, the detection results and the corresponding
FLOPs, parameter numbers, running times are shown in Table 2.

Table 2: Comparison of DIGCN full model and DIGCN without dynamic interactive oper-
ation.

Model Dynamic interaction AP AP50 AP75 APs APm APl FLOPs Params Times

DIGCN Yes 46.5 65.7 50.6 30.0 49.5 61.0 24.1G 77.85M 52.5h
DIGCN No 45.5 64.7 49.4 29.3 48.3 60.1 23.7G 77.83M 52h

It can be seen from Table 2 that the APs of the full DIGCN model is higher than that
of the DIGCN model without dynamic interaction. This is because each ROI feature in
the dynamic interaction interacts with its corresponding proposal feature, thus eliminating
the impact of invalid bins, avoiding the impact of invalid information on object features,
improving the accuracy of object detection, and verifying the effectiveness of our dynamic
interaction in improving the accuracy of object detection. At the same time the total
DIGCN model and the DIGCN without dynamic interactive operation have approximately
the same running times and parameter numbers. Although the FLOPs, parameter num-

1104

DIGCN: Object Detection

bers and running times of the full model is slightly increased compared with that without
dynamic interaction, it is wise to use the full model with a higher detection accuracy based
on the AP gain in Table 2.

4.5.2 GCN module

In order to verify the role of GCN in our method, we designed an experiment to remove
GCN modules: leave the other modules unchanged, remove the GCN module, and directly
use the proposal features after dynamic interaction for object classification and localization.
After removing GCN from DIGCN, train the model and record the average value of 5 times
of training compared with our whole model. The detection results and the corresponding
FLOPs, parameter numbers , running times are shown in Table 3.

Table 3: Comparison of DIGCN with GCN removed and DIGCN full model.
Model GCN AP AP50 AP75 APs APm APl FLOPs Params Times

DIGCN Yes 46.5 65.7 50.6 30.0 49.5 61.0 24.1G 77.85M 52.5h
DIGCN No 44.6 63.2 47.9 27.6 47.0 59.1 22.6G 77.83M 49.7h

As can be seen from Table 3, with the removal of GCN module in DIGCN, the AP of
the model decreases from 46.5 to 44.6, and the corresponding AP50, AP75, APs, APm and
APl decrease. This is because compared with DIGCN without GCN, DIGCN full model
adds interaction modeling of semantic and topological features between proposal boxes in
dynamic interaction, and has richer object features. This shows that GCN module plays an
important role in improving the detection accuracy of DIGCN.

Although the removal of GCN module can reduce FLOPs, parameter numbers and
running times, it also reduces the AP of the detector, and the reduction of accuracy is
unbalanced with the improvement of efficiency.

At the same time, we also try to use an Attention Mechanism (AM) to replace GCN for
relationship modeling, and other modules remain unchanged. Input the proposal features
and proposal boxes into the attention mechanism, and first calculate the similarity score
of each proposal through dot product calculation; Then, using normalization operation,
the attention score is converted into attention weight; Next, the attention weight is multi-
plied by the corresponding eigenvalues vector to obtain the weighted eigenvalues, resulting
in a more focused feature representation; Finally, the weighted features will be used for
object classification and localization. The training results and the corresponding FLOPs,
parameter numbers, running times are shown in Table 4.

Table 4: Comparison results between DIGCN and Attention Mechanism.
Model AP AP50 AP75 APs APm APl FLOPs Params Times

DIGCN 46.5 65.7 50.6 30.0 49.5 61.0 24.1G 77.85M 52.5h
AM 44.2 63.6 47.6 27.7 47.3 58.3 24.3G 77.93M 53.6h

The results in Table 4 further illustrate the effectiveness and rationality of our relation-
ship modeling using GCN.

1105

Cao, Zhu, Jin, Ruan, & Niu

During the training process, we believe that the number of GCN layers also affects the
training results. To verify this assumption, we design an experiment using single-layer GCN,
two-layer GCN and three-layer GCN for model training. The two-layer GCN is designed
on the basis of the single-layer GCN. The output of the single-layer GCN is taken as the
input feature of the two-layer GCN. The input feature is linearly mapped to obtain the
corresponding dynamic parameter matrix. The dynamic parameter matrix is fused with the
adjacency matrix of the single-layer GCN to obtain the adjacency matrix of the two-layer
GCN. Similarly, we have added a three-layer GCN on the basis of the two-layer GCN. Train
the DIGCN model of single-layer GCN, two-layer GCN and three-layer GCN respectively,
the training results and the corresponding FLOPs, parameter numbers, running times are
shown in Table 5.

Table 5: Comparison results of GCN with different layers.
Model GCN layers AP AP50 AP75 APs APm APl FLOPs Params Times

DIGCN 1 46.5 65.7 50.6 30.0 49.5 61.0 24.1G 77.85M 52.5h
DIGCN 2 45.9 65.0 49.9 29.7 49.1 60.3 24.8G 77.85M 54h
DIGCN 3 45.1 64.4 49.1 29.1 48.5 59.3 26.1G 77.85M 55.4h

It can be seen from the comparison results in Table 5 that the proposed detector uses
single-layer GCN to obtain higher APs than two-layer GCN and three-layer GCN. This is
because our input is sparse proposal features and the corresponding sparse proposal boxes.
After a single-layer GCN, we can obtain rich spatial and semantic information. Using two-
layer GCN and three-layer GCN for sparse input features is prone to over-smoothing and
over-fitting, which reduces the accuracy of the model. In addition, with the increase of
GCN layers, the accuracy and efficiency of the detector are decreasing. It can be seen that
multi-layer GCN is not suitable for our DIGCN.

Moreover, to verify the role of GCN in our method, we also use dynamic GCN instead
of static GCN in the dynamic interaction GCN module, other modules remain unchanged
for training. The comparison results with our method on the COCO2017 dataset are shown
in Table 6.

Table 6: Comparison results of using dynamic GCN and static GCN.
Model GCN AP AP50 AP75 APs APm APl

DIGCN Static 46.5 65.7 50.6 30.0 49.5 61.0
DIGCN Dynamic 44.6 64.0 48.3 27.4 48.0 59.1

It can be seen from the comparison results in Table 6 that in DIGCN, static GCN can
better improve the detector accuracy. We think that this is because the initial adjacency
matrix in the dynamic interaction is a dynamic parameter matrix generated by the proposal
features through dynamic algorithm (Jia X & V., 2016). The dynamic adjacency matrix has
been matched for the proposal features. When the dynamic GCN is used again to generate
the dynamic matrix, some spatial and semantic information is lost, so the accuracy of the
detection model is reduced.

1106

DIGCN: Object Detection

4.5.3 Ways of graph construction

The graph construction of object features in this article includes the construction of nodes
and adjacency matrices. It can be seen from Section 3.2.1 that the adjacency matrix is
obtained by adding two parameter matrices. In order to prove the validity and rationality
of the adjacency matrix construction, we combine the two parameter matrices by adding
(Add), multiplying (Mul) and concatenating (Concat) methods, and the impact on the
detector accuracy is shown in Table 7.

Table 7: Comparison results of different adjacency matrix construction methods on
COCO2017.

Method AP AP50 AP75 APs APm APl

Add 46.5 65.7 50.6 30.0 49.5 61.0
Mul 46.2 65.3 50.4 30.4 49.1 60.7

Concat 46.2 65.2 50.3 28.7 49.6 60.2

It can be seen from Table 7 that adding the parameter matrix to construct the adjacency
matrix is an effective and reasonable construction way.

In order to compare the construction methods of the adjacency matrix more clearly,
we visualize the adjacency matrices constructed by the three methods, and further verify
the rationality of the graph construction by visualizing the detection results using different
matrices. The matrix visualization and detection results are shown in Figure 5.

(a) The correlation matrix

constructed by "Add"

(b) The correlation matrix

constructed by "Mul"

(c) The correlation matrix

constructed by "Concat"

Person 93%

Person 98%

Motorcycle 98%

Figure 5: Visualization detection results for different composition methods.

Figure 5 (a), (b) and (c) are the visualization results and detection results of the correla-
tion matrices constructed by ”Add”, ”Mul” and ”Concat”, respectively. It can be seen from
the visualization results in Figure 5 that constructing the adjacency matrix in an additive
manner is the most correct choice.

4.6 Visualization of Results

In order to more intuitively reflect the effectiveness of our method, we use our detector and
the most advanced sparse detector Sparse R-CNN (Sun et al., 2021) to detect objects in

1107

Cao, Zhu, Jin, Ruan, & Niu

the image, and visualize the detection results. The visual comparison results are shown in
Figure 6.

Sparse R-CNN Our method

Figure 6: Comparison of visual detection results between our detector and Sparse R-CNN.

The detected image in Figure 6 contains small objects, overlapping objects, occlusion,
etc., which increase the detection difficulty. From the comparison results of the two methods,
it can be seen that the detection results of our method have a higher confidence score,
and our detector can detect objects that Sparse R-CNN cannot detect, and has stronger
detection abilities.

5. Conclusions

We propose DIGCN, a sparse detector based on learnable proposal boxes and GCN. A
dynamic interaction GCN module is proposed for obtaining object feature, and finally the
classification and location of the object can be directly output through two simple prediction
layers to achieve object detection. In the process of designing the detector, we also build
a specific graph structure for the dynamic interaction GCN module, which provides our

1108

DIGCN: Object Detection

detector with more detailed object information, establishing a foundation for improving the
detector accuracy. Our detector on the COCO2017 dataset proves comparable detection
accuracy, detection speed and modeling convergence accuracy with existing the state-of-
the-art sparse detectors. Our work provides a new research idea for the application of GCN
in object detection tasks.

Acknowledgments

This work is supported by the Postgraduate Research and Practice Innovation Program
of Jiangsu Province No.KYCX22 2564 and the Graduate Innovation Program of China
University of Mining and Technology No. 2022WLKXJ114.

References

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203.

Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
6154–6162.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020a).
End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020b).
End-to-end object detection with transformers., 213–229.

Chai, Y., Sun, P., Ngiam, J., Wang, W., Caine, B., Vasudevan, V., Zhang, X., & Anguelov,
D. (2021). To the point: Efficient 3d object detection in the range image with graph
convolution kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16000–16009.

Chen, S., Li, Z., Huang, F., Zhang, C., & Ma, H. (2021). Object detection using dual graph
network. In 2020 25th International Conference on Pattern Recognition (ICPR), pp.
3280–3287. IEEE.

Chen, Y., Cao, Y., Hu, H., & Wang, L. (2020). Memory enhanced global-local aggregation
for video object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10337–10346.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convo-
lutional networks. In Proceedings of the IEEE international conference on computer
vision, pp. 764–773.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pp. 248–255. Ieee.

Du, X., Shi, X., & Huang, R. (2019). Repgn: Object detection with relational proposal
graph network. arXiv preprint arXiv:1904.08959.

1109

Cao, Zhu, Jin, Ruan, & Niu

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The
pascal visual object classes (voc) challenge. International journal of computer vision,
88 (2), 303–338.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.,
770–778.

Huang, L., Yang, Y., Deng, Y., & Yu, Y. (2015). Densebox: Unifying landmark localization
with end to end object detection. arXiv preprint arXiv:1509.04874.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning,
pp. 448–456. PMLR.

Jia X, De Brabandere B, T., & V., G. L. (2016). Dynamic filter networks. In Advances in
neural information processing systems, pp. 667–675.

Joshi, K. A., & Thakore, D. G. (2012). A survey on moving object detection and tracking in
video surveillance system. International Journal of Soft Computing and Engineering,
2 (3), 44–48.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., & Shi, J. (2020). Foveabox: Beyound anchor-
based object detection. IEEE Transactions on Image Processing, 29, 7389–7398.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 1097–1105.

Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In Proceedings
of the European conference on computer vision (ECCV), pp. 734–750.

Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., & Zhang, L. (2022). Dn-detr: Accelerate detr
training by introducing query denoising. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13619–13627.

Li, H., Miao, S., & Feng, R. (2020). Dg-fpn: Learning dynamic feature fusion based on graph
convolution network for object detection. In 2020 IEEE International Conference on
Multimedia and Expo (ICME), pp. 1–6. IEEE.

Lien, C.-H., Chen, P.-T., Bai, Y.-W., & Lin, M.-B. (2008). Monitoring system with mov-
ing object detection based on msn messenger. In 2008 IEEE Instrumentation and
Measurement Technology Conference, pp. 229–234. IEEE.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
pp. 2980–2988.

1110

DIGCN: Object Detection

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on
computer vision, pp. 740–755. Springer.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016).
Ssd: Single shot multibox detector. In European conference on computer vision, pp.
21–37. Springer.

Mathieu, M., LeCun, Y., Fergus, R., Eigen, D., Sermanet, P., & Zhang, X. (2013). Overfeat:
Integrated recognition, localization and detection using convolutional networks..

Najibi, M., Rastegari, M., & Davis, L. S. (2016). G-cnn: an iterative grid based object
detector. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2369–2377.

Öztürk, Ş. (2021). Convolutional neural network based dictionary learning to create hash
codes for content-based image retrieval. Procedia Computer Science, 183, 624–629.

Qin, Q., Huang, L., Wei, Z., Xie, K., & Zhang, W. (2020). Unsupervised deep multi-
similarity hashing with semantic structure for image retrieval. IEEE Transactions on
Circuits and Systems for Video Technology.

Redmon, J., & Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7263–7271.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28, 91–99.

Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., & Shen, H. T. (2018). Binary generative
adversarial networks for image retrieval. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

Stewart, R., Andriluka, M., & Ng, A. Y. (2016). End-to-end people detection in crowded
scenes. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 2325–2333.

Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan,
Z., Wang, C., et al. (2021). Sparse r-cnn: End-to-end object detection with learnable
proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14454–14463.

Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection..

Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10781–10790.

Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation.
In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16, pp. 282–298. Springer.

Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object
detection. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 9627–9636.

1111

Cao, Zhu, Jin, Ruan, & Niu

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475.

Wang, L., Wang, C., Zhang, X., Lan, T., & Li, J. (2021). S-at gcn: Spatial-attention
graph convolution network based feature enhancement for 3d object detection. arXiv
preprint arXiv:2103.08439.

Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., & Trigoni, N. (2019). Learn-
ing object bounding boxes for 3d instance segmentation on point clouds. Advances in
neural information processing systems, 32.

Yuan, T., Wan, F., Fu, M., Liu, J., Xu, S., Ji, X., & Ye, Q. (2021). Multiple instance
active learning for object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5330–5339.

Yuxin Wu, Alexander Kirillov, F. M. W.-Y. L., & Girshick, R. (2019). Detectron2.. Detec-
tron2 https://github.com/facebookresearch/detectron2.

Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L. M., & Shum, H.-Y. (2022).
Dino: Detr with improved denoising anchor boxes for end-to-end object detection.
arXiv preprint arXiv:2203.03605.

Zhao, G., Ge, W., & Yu, Y. (2021). Graphfpn: Graph feature pyramid network for object
detection. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 2763–2772.

Zhong, Z., Lei, M., Cao, D., Fan, J., & Li, S. (2017). Class-specific object proposals re-
ranking for object detection in automatic driving. Neurocomputing, 242, 187–194.

Zhou, T., Li, L., Li, X., Feng, C.-M., Li, J., & Shao, L. (2021). Group-wise learning for
weakly supervised semantic segmentation. IEEE Transactions on Image Processing,
31, 799–811.

Zhou, T., Wang, W., Qi, S., Ling, H., & Shen, J. (2020). Cascaded human-object interaction
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4263–4272.

Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint
arXiv:1904.07850.

Zhu, C., He, Y., & Savvides, M. (2019). Feature selective anchor-free module for single-shot
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 840–849.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159.

1112

