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Abstract
Learning from imperfect demonstrations is a crucial challenge in imitation learning (IL).

Unlike existing works that still rely on the enormous effort of expert demonstrators, we
consider a more cost-effective option for obtaining a large number of demonstrations. That
is, hire annotators to label actions for existing image records in realistic scenarios. However,
action noise can occur when annotators are not domain experts or encounter confusing states.
In this work, we introduce two particular forms of action noise, i.e., state-independent and
state-dependent action noise. Previous IL methods fail to achieve expert-level performance
when the demonstrations contain action noise, especially the state-dependent action noise.
To mitigate the harmful effects of action noises, we propose a robust learning paradigm
called USN (Uncertainty-aware Sample-selection with Negative learning). The model first
estimates the predictive uncertainty for all demonstration data and then selects samples
with high loss based on the uncertainty measures. Finally, it updates the model parameters
with additional negative learning on the selected samples. Empirical results in Box2D
tasks and Atari games show that USN consistently improves the final rewards of behavioral
cloning, online imitation learning, and offline imitation learning methods under various
action noises. The ratio of significant improvements is up to 94.44%. Moreover, our method
scales to conditional imitation learning with real-world noisy commands in urban driving.

1. Introduction

Reinforcement learning (RL) has achieved great success in various domains, including games
(Crespo & Wichert, 2020) and robotics controls (Nguyen & La, 2019). Despite these successes,
designing hand-crafted reward functions is challenging in many real-world tasks (Sutton &
Barto, 2018; Lazaridis et al., 2020). Imitation learning (IL) offers an alternative approach by
training an agent to mimic expert demonstrations without the need for hand-crafted rewards
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(Russell, 1998; Schaal, 1999; Abbeel & Ng, 2004; Argall et al., 2009). When a large number
of high-quality demonstrations are available, imitation learning has achieved impressive
performance in playing games and urban driving (Ho & Ermon, 2016; Hussein et al., 2017;
Lin et al., 2019; Brown et al., 2019; Codevilla et al., 2018). However, the demonstrations
are often imperfect since collecting high-quality demonstrations in real-world tasks is often
expensive and challenging (Silver et al., 2013; Wu et al., 2019; Wang et al., 2021b; Cao &
Sadigh, 2021). Many previous studies have looked into imitation learning from imperfect
demonstrations that are a mixture of optimal and non-optimal demonstrations (Wu et al.,
2019; Tangkaratt et al., 2020b, 2020a; Zhang et al., 2021b; Wang et al., 2021b). A limitation
of these methods is that they require more optimal demonstrations than non-optimal ones
in the dataset. Thus, the generation of such imperfect demonstrations still costs enormous
expert efforts.

In this paper, we focus on imitation learning tasks with discrete action space. To
maximally reduce the experts’ cost for generating demonstrations, one alternative way is
to use a crowdsourcing platform to make action annotations for extensive available image
records (Audiffren et al., 2015). For example, in the scenario of urban driving, the image
records of first-person view can be easily collected, when an expert driver is driving a car
on the road. However, using experts to annotate all the data can be costly by selecting
correct actions from a set of discrete commands: {continue, left, straight, and right}. On the
other hand, amateurs are cheaper but unable to give precise action labels (Lei et al., 2022).
Annotators with professional domain knowledge are rare, while the amateurs are cheaper
and numerous because they are regular crowds like part-time students (Li et al., 2016).
Without professional domain knowledge, amateur annotators make mistakes when the data
is confusing. This is the primary source of action noise in the annotated demonstrations. As
shown in Figure 1, amateur annotators are required to output action labels for the perceptual
image records of the car view. Amateur annotators usually output wrong action labels, when
the perceptual image records are very confusing at the intersection. We refer to this type of
action noise as state-independent action noise.

Amateurs

left or right?

continue or straight?

Perceptual image records Noisy actions

right

continue

continue or straight?
straight

Figure 1: The perceptual image records in urban driving can be very confusing. The
amateurs tend to output noisy action labels for the perceptual image records at
the intersection of the straight section.

Another cost-effective method for utilizing the numerous image records is to train an
action predictor with a few expert annotations, and use the predictor to output pseudo
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action labels for the rest of the numerous records. Since the training data is rare, the action
predictions will not be precise, and action noises depend on the state features. We refer to
such action noise as state-dependent action noise.

In this paper, we introduce two action noise models, i.e., state-independent and state-
dependent action noise, to study the potential negative impacts of real-world action noises
on imitation learning. Existing robust imitation learning methods have yet to consider the
existence of such realistic action noises in the demonstrations. They always fail to learn a
robust policy with such action noises in the demonstrations. To mitigate the adverse effects of
real-world action noise, we propose a new method called Uncertainty-aware Sample-selection
with soft Negative learning (USN) that takes into account the correlation between loss and
uncertainty estimations (Naeini et al., 2015; Guo et al., 2017) as the noise rate increases.
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Figure 2: The whole procedure of USN includes two steps: (1) uncertainty-aware sample-
selection and (2) negative learning for loss correction. Given a batch of noisy
demonstration M = {(s1, a1), · · · , (sn, an)}Bn=1, USN first conducts positive learn-
ing on the target imitation learning model T and calculates the uncertainty
estimation U . Then, USN uses U to determine the size BN and the indexes IN for
selecting large-loss samples M̃ = (Mi)i∈IN . Together with the positive learning,
USN performs negative learning on the selected large-loss samples and obtains a
robust imitation learning model against action noises. More details of the USN
algorithm are summarized in Section 4.

As shown in Figure 2, our method USN trains a policy with an additional process of
uncertainty-aware sample-selection and negative learning for loss correction. Specifically,
during positive learning (marked in black color), we train an imitation learning model with
any noise-tolerant loss function on the noisy demonstration batch M and estimate the
uncertainty U for selecting large-loss samples. This sample-selection step is motivated by
recent work in the area of learning with label noise (Angluin & Laird, 1988; Smyth et al.,
1994; Kalai & Servedio, 2005; Natarajan et al., 2013; Manwani & Sastry, 2013). Since deep
networks learn easy patterns first (Arpit et al., 2017), they would first memorize training data
of clean labels and then those of noisy labels with the assumption that clean labels are of the
majority in a noisy class. Therefore, large-loss samples are noisy actions with high probability
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(Wei et al., 2020). Instead of requiring additional information on noise models (Han et al.,
2018; Yu et al., 2019), we conduct a comprehensive study to learn the correlations between
loss, uncertainty, and increasing noise rates and design a scalable sample-selection method
based on the correlations. Through the study, we observe positive correlations for behavioral
cloning, online imitation learning, and offline imitation learning on both state-independent
action noise and state-dependent action noise. We sort the positive learning loss to obtain its
index I, and use uncertainty estimation U to adaptively determine the large loss sample size
and indexes IN . The large-loss samples are selected from the noisy demonstration batch M
according to the indexes IN : M̃ = (Mi)i∈IN . Next, we update the imitation learning model
by employing negative learning (marked in blue) with a factor of λneg (Kim et al., 2019) on
the large-loss samples M̃ , along with positive learning on the full dataset M . Finally, we
obtain a robust policy against action noise with USN.

We conclude our contributions in this paper as follows:
• First, we introduced two action noise models: state-independent action noise and

state-dependent action noise, to study the negative impacts of action noises in imitation
learning (Section 3.1).

• Then, we studied the correlations between loss and predictive uncertainty of different
imitation learning methods under various action noises (Section 3.2). The study
determines the range of action noise where the positive correlation holds. Further
analysis in the study laid the basis for our following robust imitation learning method.

• Next, we proposed our method USN (Section 4) to mitigate the harmful effect of action
noise in imitation learning. USN is a versatile meta-algorithm that can be applied to
online and offline imitation learning. Compared to existing IL methods, our method
has multiple advantages, including improved imitation performance, adaptability, and
scalability. Our approach can adaptively select large-loss samples for soft negative
learning across different noise rates without the need for additional datasets, models,
or prior information about the noise model. USN eliminates the need for estimating
noise rates and transition matrices as previous noise-robust methods require, avoiding
the associated extra efforts and drawbacks.

• Finally, we empirically demonstrated that USN significantly improves the robustness of
behavioral cloning (Section 5.1), online imitation learning (Section 5.2), and offline imi-
tation learning (Section 5.3) when learning with state-independent and state-dependent
action noises. USN brings a tangible improvement within the noise range that was
determined in the correlation study, i.e., the noise should be above a certain threshold
for online and offline imitation learning. Moreover, USN scales up to conditional
imitation learning with noisy commands in urban driving (Section 6).

2. Background and Related Work

In this section, we first discuss existing offline and online imitation learning methods. Then,
we introduce some related works of learning with noisy labels. We also briefly discuss action
noise in deep reinforcement learning and imitation learning.

Behavioral cloning (BC) is probably the simplest offline imitation learning algorithm
(Pomerleau, 1988; Bain & Sammut, 1999; Ross et al., 2011). For imitation learning in
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environments with discrete action space, the BC policy π(a|s) is optimized by softmax
cross-entropy loss.

2.1 Online Imitation Learning

Generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) is one of
the state-of-the-art online IL methods. GAIL treats imitation learning as a distribution
matching problem between the expert policy and the agent policy. Specifically, GAIL uses a
discriminator Dϕ to distinguish expert transitions from agent transitions. In contrast, the
agent aims to “fool” the discriminator into treating agent transitions as expert data. Formally,
the objective function of GAIL is written as

min
θ

max
ϕ

E(s,a)∼ρθ [logDϕ(s, a)] + E(s,a)∼ρE [log(1−Dϕ(s, a))], (1)

where ρθ and ρE denote the occupancy measures of agent policies πθ and the expert πE ,
respectively.

Built on top of GAN (Goodfellow et al., 2014), GAIL and its many (robust) variants
(Li et al., 2017; Peng et al., 2019; Tangkaratt et al., 2020b, 2020a; Wang et al., 2021a)
have achieved great success in imitation learning in low-dimensional space even with noisy
demonstrations. However, GAIL fails to scale to high-dimensional imitation learning tasks
(Brown et al., 2019; Tucker et al., 2018). One straightforward solution to alleviate this issue
is to initiate the actor of GAIL using behavior cloning.

Selective adversarial imitation learning (SAIL) (Wang et al., 2021a) was proposed
to address the imperfect demonstration issue, in which good demonstrations can be adaptively
selected for training while bad demonstrations are abandoned. Specifically, a binary weight
w ∈ {0, 1} is assigned to each expert demonstration to indicate whether to select it for
training. The weight is set to be determined by the reward function in Wasserstein GAIL
(Xiao et al., 2019) (i.e., higher reward results in higher weight). The resulting algorithm -
SAIL-hard is defined as follows:

min
θ

max
ϕ

E(s,a)∼ρE [w(s, a)rϕ(s, a)−Kw(s, a)]− E(s,a)∼ρϕ [rϕ(s, a)] + λΨ(rϕ). (2)

Besides hard binary weighting, they also propose a soft weighting scheme with the
suggested optimal soft weight as w∗ = 1

1+e
K−rϕ(s,a) . The corresponding algorithm - SAIL-soft,

is defined as follows:

min
θ

max
ϕ

E(s,a)∼ρE [w(s, a)rϕ(s, a) + f(w(s, a))]− E(s,a)∼ρϕ [rϕ(s, a)] + λΨ(rϕ), (3)

where f(w) = w log(w−1 − 1)− log(1− w)−Kw. We regard GAIL, RIL_CO (Tangkaratt
et al., 2020a), and SAIL as baselines for comparing their robustness against action noise.

2.2 Offline Imitation Learning

Batch-constrained Q-learning (BCQ) (Fujimoto et al., 2019) is the first continuous
control algorithm capable of learning from arbitrary batch data without exploration. BCQ
aims to perform Q-learning while constraining the action space to eliminate actions that are
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unlikely to be selected by the behavioral policy πb and are, therefore, unlikely to be contained
in the batch. At its core, BCQ uses a state-conditioned generative model G : s → a to
model the data distribution in the batch, G ≈ b akin to a behavioral cloning model. As it is
easier to sample from πb(a|s) than model πb(a|s) exactly in a continuous action space, the
policy is defined by sampling N actions ai from G(s) and selecting the highest valued action
according to a Q-network.

Discrete BCQ (Fujimoto et al., 2019) extends BCQ to discrete action space by computing
the probabilities of every action G ≈ πb(a|s), and instead utilizing some threshold to eliminate
actions. To adaptively adjust this threshold, Fujimoto et al. (2019) scale it by the maximum
probability from the generative model over all actions to only allow actions whose relative
probability is above some threshold. Specifically, Fujimoto et al. (2019) applies Double DQN
(Van Hasselt et al., 2016) to select the max valued action with the current Q-network Qθ, and
evaluate with the target Q-network Qθ′ . This results in an algorithm comparable to DQN
(Mnih et al., 2015) where the policy is defined by a constrained argmax. The Q-network is
trained by swapping the max operation with actions selected by the policy:

L(θ) = lκ

(
r + γ max

a|G(a|s)/maxâ G(â|s)>τ
Qθ′(s

′, a′)−Qθ(s, a)

)
, (4)

where lκ defines the Huber loss (Watkins, 1989):

lκ(δ) =

{
0.5δ2 if δ ≤ κ
κ(|δ| − 0.5κ) otherwise.

(5)

With this threshold τ , Fujimoto et al. (2019) maintain the original property of BCQ where
setting τ = 0 returns Q-learning and τ = 1 returns an imitator of the actions contained
in the batch. The generative model G, effectively a behavioral cloning network, is trained
in a standard supervised learning fashion, with a cross-entropy loss. Intrinsic motivation
has been used as an alternative reward function in the exploration literature (Pathak et al.,
2017; Burda et al., 2019; Colas et al., 2022). In this paper, we adopt the (Discrete) BCQ
method for offline IL by training an intrinsic curiosity module (ICM) (Pathak et al., 2017)
for generating intrinsic rewards instead of using the true reward data in the demonstration.

Uncertainty weighted actor-critic (UWAC) (Wu et al., 2021) is a recently proposed
offline reinforcement learning algorithm that can detect OOD (Out-Of-Distribution) state-
action pairs and down-weight their contribution to the training objectives accordingly. UWAC
is closely related to our work since it also uses uncertainty estimation to improve the model’s
robustness. Specifically, UWAC uses Monte Carlo (MC) dropout (Gal & Ghahramani,
2016) to estimate the uncertainty of Q model. The model uncertainty is captured by the
approximate predictive variance with respect to the estimated Q̂ for T stochastic forward
passes:

V ar[Q(s, a)] ≈ σ2 +
1

T

T∑
t=1

Q̂t(s, a)
⊤Q̂t(s, a)− E[Q̂(s, a)]⊤E[Q̂(s, a)]. (6)

Then, UWAC down-weighs the Bellman loss for the Q function by inverse the uncertainty of
the Q-target Qθ′(s

′, a′):

L(Qθ) = E(s′|s,a)∼DEa′∼π(·|s′)
[ β

V ar[Qθ′(s′, a′)]
Err(s, a, s′, a′)2

]
, (7)
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where Err(s, a, s′, a′) = Qθ(s, a)− (R(s, a)) + γQθ′(s
′, a′). This directly reduces the effects

that OOD backups have on the overall training process (Wu et al., 2021). We treat UWAC
as a strong baseline in our paper and show that our USN can scale to MC dropout for
uncertainty estimation. The original UWAC was built on top of BEAR (Kumar et al., 2019).
To enable a fair comparison, we implement UWAC on top of BCQ as follows:

L(θ) = lκ

(
r + γ max

a|G(a|s)/maxâ G(â|s)>τ

β

V ar[Qθ′(s′, a′)]

[
Qθ′(s

′, a′)−Qθ(s, a)
])

. (8)

2.3 Learning with Noisy Labels

Learning with noisy labels aims to learn a robust classifier f by exploiting training samples
with only noisy labels (xi, ỹi)

N
i=1.

Generalized cross-entropy (GCE) (Zhang & Sabuncu, 2018) is a generalization of
cross-entropy (CE) and Mean Absolute Error (MAE). To exploit the benefits of both the
noise-robustness provided by MAE and the implicit weighting scheme of CCE, they proposed
using the negative Box-Cox transformation (Box & Cox, 1964) as a loss function:

Lq(f(x), ej) =
(1− fj(x)

q)

q
, (9)

where q ∈ (0, 1]. It is equivalent to CE for limq→0 Lq(f(x), ej), and becomes MAE/unhinged
loss when q = 1.

Label smoothing has been commonly used to improve the performance of deep learning
models (Szegedy et al., 2016; Vaswani et al., 2017; Zoph et al., 2018; Real et al., 2019; Huang
et al., 2019). It serves as a regularizer that improves the generalization and model calibration
(predictive uncertainty) by using smoothed labels ỹ that mix the original one-hot labels y
with a uniform mixture over all possible labels for α ∈ [0, 1](Li et al., 2020; Pereyra et al.,
2017; Müller et al., 2019; Yuan et al., 2020; Zhang et al., 2021a):

ỹi = (1− α) · yi +
α

K
· 1, (10)

where K is the number of classes. Recently, Lukasik et al. (2020) demonstrated that label
smoothing is also effective when learning with symmetric label noise.

2.4 Action Noise in Deep Reinforcement Learning

Hollenstein et al. (2022) presented a study on the effect of action noise in off-policy deep
reinforcement learning. In continuous control tasks, off-policy deep reinforcement learning
algorithms improve their exploration ability by using additive action noise sampled from a
Gaussian Distribution and a Qrnstein-Uhlenbeck process (Fujimoto et al., 2018; Lillicrap
et al., 2016). This approach is simple yet surprisingly effective. To study the impact of action
noise on exploration and performance of off-policy deep reinforcement learning in continuous
control domain, Hollenstein et al. (2022) performed an extensive experimental study testing
6 environments, 4 algorithms, 5 noise scales, 3 schedulers, and 2 noise types. The study
found that (1) the noise type needs to be chosen to fit the environment, (2) the positive
and negative correlation between the state-space coverage and performance should guide the
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selection of action noise, (3) reducing the impact of action noise improves the performance
and increases robustness to action noise choice, and (4) action noise scale appears to be the
most important factor.

Action noise appears to positively impact the exploration ability and potentially increase
the performance of off-policy deep reinforcement learning in the continuous control domain
(Hollenstein et al., 2022). However, action noise in the demonstrations negatively impacts
imitation learning performance (Tangkaratt et al., 2020b, 2020a). Inspired by Hollenstein
et al. (2022), we perform an extensive experimental study in this paper to understand the
impact of action noise in imitation learning. Our study considers the correlations between
uncertainty estimation, loss estimation, and the scale of action noise. Similar to Hollenstein
et al. (2022), we also consider 2 types of action noise, i.e., state-independent action noise and
state-dependent action noise that occur in the demonstrations. Our experimental study in
the following section tests 3 diverse imitation learning algorithms, 3 uncertainty estimation
methods, 5 noise scales, and 2 noise types.

3. How does Action Noise Affect Imitation Learning?

In this section, we first introduce state-independent action noise and state-dependent action
noise in imitation learning. Then, we briefly summarize loss estimation and uncertainty
estimation methods. Next, we comprehensively study the correlations between loss and
uncertainty under multiple action noise.

3.1 Action Noise in Imitation Learning

In traditional imitation learning, we consider the expert demonstrations D = {si, ai, si+1}Ni=1

are collected from some expert demonstrator with policy π∗. In practice, we may recruit
annotators to give action labels for the recorded sequences of expert behaviors. In contrast,
in our setting of imitation learning with action noise, we assume the demonstrations
are imperfect and contain two types of action noise, i.e., state-independent action noise and
state-dependent action noise. In particular, we focus on discrete action space in this work
and remain the extension to continuous action space for future investigation.

State-independent action noise (SIN): The state-independent action noise occurs
when an amateur annotator randomly picks an action for confusing states since they lack
professional domain knowledge. Consider imitation learning in a discrete action space
A = {1, 2, · · · , |A|}, where |A| is the number of action category. We assume a noisy action ã
is randomly flipped from an expert action a ∼ π∗(a|s) according to the conditional probability
defined in a noise transition matrix M ∈ [0, 1]|A|×|A|, where Mp,q = Pr(ã = q|a = p) and
p, q ∈ A. The generation process of state-independent action noise is borrowed from the
two structures of class-conditional label noise (ϵ is the noise rate) (Blum & Mitchell, 1998;
Van Rooyen et al., 2015; Patrini et al., 2017; Zhang & Sabuncu, 2018): (1) Symmetry flipping,
where a noisy label is randomly flipped from other classes using Msym; (2) Pair flipping,
where a noisy label is flipped from its very similar classes using Mpair (Natarajan et al., 2013;
Han et al., 2018).
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Msym =
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Formally, we define the noisy demonstrations D̃ = {si, ãi, si+1}ni=1 with state-independent
action noise are drawn from p(D̃|Pr, π∗) = p(s0)Π

N−1
t=0 Pr(ãt|at)p(st+1|st, at), where Pr is

determined by the expertise of the amateur annotator. Using the two structures Msym and
Mpair, we have two instances of state-independent action noise, i.e., symmetric action noise
and pairflip action noise, respectively. We present a graphical model for state-independent ac-
tion noise in Figure 3(a) and the whole procedure of state-independent action noise generation
in the Algorithm 1.
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Figure 3: The graphical model of (a) state-independent action noise and (b) state-dependent
action noise.

Algorithm 1 State-Independent Action Noise Generation
1: Input: Expert demonstration D = {(si, ai, si+1)}Ni=1; Noise rate: ϵ.
2: Prepare the noise transition matrix M = Msym or M = Mpair w.r.t. noise rate ϵ.
3: Iterations: // Flip action according to the noise transition matrix.
4: for n = 1 to N do
5: Draw a multinomial distribution Pm with a probability of Man,:.
6: Sample the noisy action ãn from the multinomial distribution Pm.
7: end for
8: Output: Noisy Demonstrations D̃ = {(si, ãi, si+1)}Ni=1.

State-dependent action noise (SDN): We assume the noisy action is dependent on
not only the expert action but also the state feature. The resulting noisy demonstrations
D̃ = {si, ãi, si+1}ni=1 with state-dependent action noise are drawn from

p(D̃|π̃, π∗) = p(s0)Π
N−1
t=0 π̃(ãt|st)p(st+1|st, at), (11)
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where π̃ is the noisy policy from an amateur annotator. Figure 3(b) shows a graphical model
for state-dependent action noise. We present the whole procedure of state-dependent action
noise generation in the Algorithm 2.

Algorithm 2 State-Dependent Action Noise Generation
1: Input: Expert demonstration D = {(si, ai, si+1)}Ni=1; Noise rate: ϵ; Size of feature:

1× |S|; Number of action category: |A|.
2: Sample instance flip rates qn from the truncated normal distribution N (ϵ, 0.12, [0, 1]);
3: Sample W ∈ R|S|×|A| from the standard normal distribution N (0, 12);
4: for n = 1 to N do
5: p = si ·W // Generate state dependent flip rates. The size of p is 1× |A|.
6: pai = −∞ // Only consider entries different from the expert actions
7: p = qi · softmax(p) // Let qn be the probability of getting a wrong action
8: pai = 1− qi // Keep expert actions w.p. 1− qi
9: Randomly choose an action from the action space as noisy action ãi according to p;

10: end for
11: Output: Noisy Demonstrations D̃ = {(si, ãi, si+1)}Ni=1.

We simulate the generation of state-dependent action noise by following the instance-
dependent label noise setting (Xia et al., 2020). Note that it is more realistic that different
states have different flip rates. It is more challenging to model the action noise and train
robust policies without constraining different states to have the same flip rate. In Step 1,
to control the global flip rate as ϵ but without constraining all the states to have the same
flip rate, we sample their flip rates from a truncated normal distribution N (ϵ, 0.12, [0, 1]).
Specifically, this distribution limits the flip rates of states in the range [0, 1]. Their mean and
standard deviation are equal to the mean ϵ and the standard deviation 0.1 of the selected
truncated normal distribution, respectively.

In Step 2, we sample parameters w1, w2, · · · , wc from the standard normal distribution
for generating state-dependent action noise. The dimensionality of each parameter is d× c,
where d denotes the dimensionality of the state. Learning these parameters is critical to
model state-dependent action noise. However, it is hard to identify these parameters without
any assumptions. Note that a state with expert action a will be flipped only according to
the a−th row of the transition matrix. Thus, in Steps 5 to 8, we only use the ai−th row of
the state-dependent transition matrix for the state si. Specifically, Steps 6 and 8 ensure the
diagonal entry of the ai−th row is 1− qi. Step 7 ensures that the sum of the off-diagonal
entries is qi.

3.2 Correlation Between Loss and Predictive Uncertainty Under Action Noise

In this section, we comprehensively study the correlation between the loss, uncertainty
estimation of behavioral cloning (BC), online imitation learning (GAIL), and offline imitation
learning (BCQ) models under diverse action noise in the demonstrations. To study the
correlations, we pre-train imitation learning models with the expert demonstrations, and
then estimate the corresponding loss and uncertainty estimations (ECE, Entropy, and
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MC_Dropout) on demonstrations with both state-independent action noises (symmetric and
pairflip) and state-dependent action noise under different noise rates.

Loss estimation Lpos. To study the correlations, we first need to define the target
model T and its corresponding loss estimation for each imitation learning method. The
target model T is the model we perform loss and uncertainty estimations under different
action noises. For behavioral cloning, the target model T is the behavioral cloning model
itself, and we use cross-entropy as the loss estimation since we focus on discrete action space
in this work. For GAIL, we define the target model T as the discriminator of GAIL and use
the adversarial loss for the demonstrations as the loss estimation. For BCQ, we chose its
generative model G as the target model, and we also used cross-entropy for loss estimation.

Uncertainty estimation U . Uncertainty estimation has been widely used in machine
learning applications as a complement that reflects the degree of trust in the model predictions
(Kotelevskii et al., 2022). Usually, the total uncertainty of a prediction comes from two types
of uncertainty: aleatoric and epistemic (Der Kiureghian & Ditlevsen, 2009; Kendall & Gal,
2017). The aleatoric uncertainty, known as data uncertainty, reflects the noise and ambiguity
in the data. The epistemic uncertainty, known as model uncertainty, is related to the lack of
knowledge about model parameters. Quantifying both types of uncertainty is crucial for safe
decisions in practical applications (Filos et al., 2020).

One simple aleatoric uncertainty is called MaxProb, which uses maximum softmax
probabilities of the deep neural network as the uncertainty measure (Nguyen et al., 2015).
Entropy is another widely used uncertainty estimation method. MC_dropout is based on
Bayesian techniques, capturing both types of uncertainty, and is known to be a more reliable
uncertainty estimation method (Gal & Ghahramani, 2016). Recently, a promising direction
of uncertainty estimation methods based on a single deterministic neural network has been
developed (Lee et al., 2018; Liu et al., 2020). More recently, (Kotelevskii et al., 2022) proposes
a nonparametric uncertainty quantification (NUQ) method, which enables uncertainty to be
disentangled into aleatoric and epistemic uncertainty and is scalable to a large dataset.

Expected Calibration Error (ECE) (Naeini et al., 2015; Guo et al., 2017) is widely used
to measure the predictive uncertainty (model calibration) of a deep network. To approximate
the calibration error in expectation, ECE discretizes the probability interval into a fixed
number of bins and assigns each predicted probability to the bin that encompasses it. The
calibration error is the difference between the fraction of predictions in the bin that are
correct (accuracy) and the mean of the probabilities in the bin (confidence). Intuitively,
the accuracy estimates P(Y = y|p̂ = p), and the average confidence is a setting of p. ECE
computes a weighted average of this error across bins:

ECE =

B∑
b=1

nb

N
|acc(b)− conf(b)|, (12)

where nb is the number of predictions in bin b, N is the total number of data points, and
acc(b) and conf(b) are the accuracy and confidence of bin b, respectively. As framed in Naeini
et al. (2015), ECE leaves ambiguity in both its binning implementation and how to compute
calibration for multiple classes. In Guo et al. (2017), they bin the probability interval [0; 1]
into equally spaced subintervals, and they take the maximum probability output for each
datapoint (i.e., the predicted class’s probability). We use this for our ECE implementation.
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Instead of using the uncertainty for OOD detection (Malinin & Gales, 2018), or down-
weighting the Bellman loss for Q function (Wu et al., 2021) in RL, we leverage uncertainty for
robust imitation learning in a novel direction. Namely, we first study the correlation between
loss and uncertainty estimations (ECE, Entropy, and MC_Dropout) and then propose a
robust imitation learning paradigm called uncertainty-aware sample selection with negative
learning (USN) based on the correlations. Our method, USN, is scalable to behavioral
cloning, online imitation learning, and offline imitation learning. We provide details of the
correlation studies for behavioral cloning, GAIL, and BCQ in the following parts of this
section.

3.2.1 Behavioral Cloning

We first perform a correlation study for the behavioral cloning (BC) model. We use the
pre-trained Proximal Policy Optimization (PPO) (Schulman et al., 2017) agent from stable-
baselines31 to generate ten expert demonstrations as the training data to train BC model on
the LunarLander-v2 task. We build the BC model using a 2-layer MLP architecture with 32
neurons on each layer. We use the expert demonstrations to generate noisy demonstrations
according to the noise models of state-independent action noise and state-dependent action
noise defined in Section 3.1. For each action noise type, we set the noise rate ϵ as 0.1, 0.2,
0.3, 0.4, and 0.5. We train the BC model on the expert demonstrations and evaluate it on
the noisy demonstrations with increasing noise rates to calculate the loss and uncertainty
estimations.
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Figure 4: The correlations between loss and uncertainty estimation (ECE) of behavioral
cloning model as noise rates increase in the LunarLander-v2 task.

Figure 4, Figure 5 and Figure 6 show the correlations between loss and uncertainty
estimations (ECE, Entropy, and MC_Dropout) as the noise rate increases, separately. In
each figure, we report the boxplot of loss estimations (in black color) and uncertainty
estimations (in light blue color) for state-independent action noises ((a) symmetric, (b)
pairflip) and state-dependent action noise (c). As shown in Figure 4, ECE shows a clearly
positive correlation with loss as the noise rate increases. This positive correlation holds for
different action noise types. On the contrary, Entropy and MC_Dropout are not sensitive
to the changes in noise rates, and thus have no correlations with the loss estimations. We

1. https://github.com/DLR-RM/rl-baselines3-zoo
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Figure 5: The correlations between loss and uncertainty estimation (Entropy) of behavioral
cloning model as noise rates increase in the LunarLander-v2 task.
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(c) State-dependent

Figure 6: The correlations between loss and uncertainty estimation (MC_Dropout) of be-
havioral cloning model as noise rates increase in the LunarLander-v2 task.

obtain a rough observation from this study for behavioral cloning, that is, ECE and loss are
sensitive to the changes in noise rates, and they are positively correlated with each other.

To provide quantitative support to this observation, we calculate the Spearman correlation
coefficients C (Hollenstein et al., 2022) in Table 1. Typically, C > 0.5 means high positive
correlation, and C < −0.5 means high negative correlation. From Table 1, we know that only
ECE shows high positive correlations with both loss estimation and increasing noise rates.
These results indicate that the loss and ECE are good identifiers of both state-independent
action noise and state-dependent action noise for the behavioral cloning model.

Symmetric Pairflip State-dependent
U C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ)

ECE 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Entropy 0.0 0.0 0.99 0.0 0.0 0.99 0.0 0.0 0.99

MC_Dropout 0.0 0.0 0.99 0.0 0.0 0.99 0.0 0.0 0.99

Table 1: Spearman correlation coefficients on noise rate ϵ for: uncertainty estimation U and
loss estimation Lpos. Results are shown on the LunarLander-v2 environment for
the BC model.
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3.2.2 Online Imitation Learning - GAIL.

Then, we perform a correlation study for the GAIL discriminator. We use the open-source
implementation2 for Atari games. Figure 7, Figure 8 and Figure 9 shows the correlations
between loss and uncertainty estimations (ECE, Entropy, and MC_Dropout) as the noise
rate increases on Q*bert game, separately. From these Figure 8 and Figure 9, we observe
that Entropy and MC_Dropout are not sensitive to the increases of noise rate. Figure 7
shows that ECE positively correlates with the loss when the noise rate ϵ >= 0.3; otherwise,
ECE is not sensitive to the changes of noise rates.
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Figure 7: The correlations between loss and the uncertainty estimation (ECE) of GAIL
discriminator as noise rates increase in the Q*bert game.
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Figure 8: The correlations between loss and the uncertainty estimation (Entropy) of GAIL
discriminator as noise rates increase in the Q*bert game.

To confirm this observation, we also calculate the Spearman correlation coefficients in
Table 2. ECE shows high positive correlations with loss and the increasing noise rates
(ϵ >= 0.3) under all action noise types. Thus, the loss and ECE of the GAIL discriminator
are good identifiers of both state-independent action noise and state-dependent action noise
when noise rate ϵ >= 0.3.

3.2.3 Offline Imitation Learning - BCQ.

We finally use the open-source platform3 to perform the correlation study for BCQ’s generative
model G. We train the BCQ (Algorithm 3) with an ICM module (Pathak et al., 2017) that
produces intrinsic rewards for updating policy. BCQ starts by sampling a mini-batch of

2. https://github.com/yunke-wang/gail_atari
3. https://github.com/thu-ml/tianshou
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Figure 9: The correlations between loss and the uncertainty estimation (MC_Dropout) of
GAIL discriminator as noise rates increase in the Q*bert game.

ϵ >= 0.3 Symmetric Pairflip State-dependent
U C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ)

ECE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Entropy -0.5 -0.5 1.0 -0.5 -0.5 1.0 -1.0 -1.0 1.0

MC_Dropout 1.0 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0

ϵ < 0.3 Symmetric Pairflip State-dependent
U C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ)

ECE -0.99 -0.99 0.99 -0.99 -0.99 0.99 -0.99 -0.99 0.99
Entropy -0.99 -0.99 0.99 -0.99 -0.99 0.99 -0.99 -0.99 0.99

MC_Dropout 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 2: Spearman correlation coefficients on noise rate ϵ for: uncertainty estimation U
and loss estimation Lpos. Results are shown on the Q*bert game for the GAIL
discriminator.

transitions from the input demonstration data D. Then, BCQ uses a generative model G to
eliminate actions (step 6) for updating the Q network (step 7). The generative model G is
trained using a cross-entropy loss in step 8.

Algorithm 3 BCQ with ICM for offline imitation learning.
1: Input: Demonstration D = {(si, ai, si+1)}Ni=1, number of iterations T , tar-

get_update_rate, mini-batch size B, threshold τ .
2: Initialize Q-network Qθ, generative model G with parameter ω and target network Qθ′

with θ′ ← θ.
3: for t = 1 to T do
4: Sample mini-batch M of B transitions (s, a, s′) from D.
5: Train an ICM module to generate intrinsic reward: r = ICM(s, a, s′).
6: a′ ← argmaxa′|G(a′|s′)/maxâ G(â|s′)>τ Qθ(s

′, a′).
7: θ ← argminθ

∑
(s,a,s′)∈M kκ(r + γQθ′(s

′, a′)−Qθ(s, a))
8: ω ← argminω −

∑
(s,a)∈M logG(a|s). //Update the generative model G using

cross-entropy loss.
9: If t mod target_update_rate = 0 : θ′ ← θ.

10: end for
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Figure 10: The correlations between loss and the uncertainty (ECE) of BCQ generative
model - G as noise rates increase in the AirRaid game.
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Figure 11: The correlations between loss and the uncertainty (Entropy) of BCQ generative
model - G as noise rates increase in the AirRaid game.
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Figure 12: The correlations between loss and the uncertainty (MC_Dropout) of BCQ gener-
ative model - G as noise rates increase in the AirRaid game.

Figure 10, Figure 11 and Figure 12 shows the correlations between loss and uncertainty
estimations (ECE, Entropy and MC_Dropout) as the noise rate increases, separately. From
Figure 11 and Figure 12, we know that Entropy and MC_Dropout again are not sensitive to
the increases of noise rates. From Figure 10, we observe that ECE tends to have a positive
correlation to the loss estimation when the noise rate ϵ >= 0.4 under state-independent
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ϵ >= 0.4 Symmetric Pairflip State-dependent
U C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ)

ECE 0.99 0.99 0.99 0.99 0.99 0.99 -0.99 0.99 -0.99
Entropy -0.99 0.99 -0.99 -0.99 0.99 -0.99 0.99 0.99 0.99

MC_Dropout 0.0 0.0 -0.99 0.0 0.0 0.99 0.99 0.99 0.99

ϵ < 0.4 Symmetric Pairflip State-dependent
U C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ) C(U ,Lpos) C(U , ϵ) C(Lpos, ϵ)

ECE -1.0 1.0 -1.0 -1.0 1.0 -1.0 -0.5 1.0 -0.5
Entropy 0.5 1.0 0.5 0.5 1.0 0.5 -1.0 0.5 -0.5

MC_Dropout 0.86 -0.86 -1.0 0.86 -0.86 -1.0 0.86 -0.86 -1.0

Table 3: Spearman correlation coefficients on noise rate ϵ for: uncertainty estimation U and
loss estimation Lpos. Results are shown on the AirRaid environment for the BCQ’s
generative model.

action noise. For the other noise cases, ECE negatively correlates to the loss estimation of
BCQ’s generative model G. Table 3 shows the Spearman correlation coefficients on noise
rate ϵ for uncertain estimation U and loss estimation Lpos of BCQ’s generative model. The
correlation coefficient values C of ECE are all close to 1 for the state-independent action
noises (symmetric and pariflip), which confirms our observation.

Analysis. From the above qualitative and quantitative study on state-independent
and state-dependent action noises, we can conclude that both ECE and the loss estimation
have positive correlations, and they are sensitive for detecting noisy actions for the BC
model, GAIL’s discriminator (ϵ >= 0.3) and BCQ’s generative model (ϵ >= 0.4). Table 4
summarizes the application scope of ECE and loss estimation for detecting action noises for
BC, GAIL, and BCQ.

Target model T BC GAIL’s Discriminator Dϕ BCQ’s Generative Model G

Action Noise SIN SDN SIN (ϵ >= 0.3) SDN (ϵ >= 0.3) SIN (ϵ >= 0.4) SDN (ϵ >= 0.4)

U(ECE) ✓ ✓ ✓ ✓ ✓ ✓

Lpos ✓ ✓ ✓ ✓ ✓ -

Table 4: The application scope of ECE and loss estimation for detecting action noises for BC,
GAIL, and BCQ. SIN denotes state-independent action noise, and SDN denotes
state-dependent action noise. ✓ marks the cases where the criteria (ECE or loss) is
sensitive to and shows a high positive correlation to the increase of noise rate and
thus is suitable to detect the noisy actions.

Within the application scope of each algorithm, the “large-loss” and the “large-ECE”
samples have a high probability of containing noisy actions. Therefore, we can leverage both
the loss estimation and ECE as a criterion to detect noisy actions with high probability,
and leverage the selected data to improve the robustness of BC, GAIL, and BCQ against
diverse action noise in the demonstrations. To this end, we propose a general paradigm called
Uncertainty-aware Sample-selection with Negative learning (USN) based on the positive
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correlations for robust training IL models against action noise. USN uses the ECE uncertainty
estimation to determine the number and indexes for “large-loss” sample selection. We will
provide details of our method in the following section.

4. Method

Our main goal is to develop a general robust IL paradigm against diverse types of action
noise. To achieve this goal, we design USN to be a composite of two main steps: (1)
uncertainty-aware sample-selection and (2) negative learning for loss correction. Algorithm 4
summarizes the whole procedure of USN.

Algorithm 4 Uncertainty-aware Sample-selection with Soft Negative learning (USN)
1: Input: A mini-batch M of B transitions (s, a) from D, target model T .
2: Initialize the weight of negative learning loss as λneg = 1.0.

Uncertainty-aware sample-selection (steps 3-6):
3: Estimate predictive uncertainty U and loss Lpos for the target model T .
4: Use the uncertainty U to determine the number of large-loss samples for selection:

BN = B × (1− U), where U ∈ (0, 1).
5: Sort the batch loss to obtain the indexes I = argsort(Lpos).
6: Sample a large-loss batch M̃ = (Mi)i∈IN , where IN = (Ii)i∈[B−BN ,B).

Negative learning for loss correction (steps 7-8):
7: Generate complementary actions for M̃ : ā = Randomly select from{1, .., |A|}\{a},

resulting in a complementary batch M̄ for negative learning.
8: LUSN =

∑
(s,a)∈M Lpos(s, a) + λneg

∑
(s,a)∈M̄ Lneg(s, a).

9: Output: LUSN.

Uncertainty-aware sample-selection aims to select samples that contain noisy actions
with high probability. Given a mini-batch of demonstration data with a size of B, we first
employ an imitation learning model for positive learning on the full-batch data. As mentioned
in Section 3.2, the target model T is a component of the imitation learning model. This
paper defines the target model as the behavioral model itself, the GAIL’s discriminator
Dϕ, and the BCQ’s generative model G. Then in step 3, we estimate uncertainty U and
loss Lpos for the target model T . According to the qualitative and quantitative analysis in
Section 3, we know that the loss estimation Lpos is a more reliable criterion for indicating
noisy actions. The uncertainty estimation U is also a good indicator, since it usually shows
high positive correlations to Lpos as the noise rate increases. Thus, we propose to use these
two criteria jointly to select reliable large-loss samples for robust training imitation learning
models. Namely, we use U to determine the number of large-loss samples for selection (step
4): BN = B × (1− U), where U ∈ (0, 1). Since we are selecting large-loss samples, we need
to sort the batch data to obtain its indexes I = argsort(Lpos) (step 5). Then, the indexes
of the large-loss samples becomes IN = (Ii)i∈[B−BN ,B). In step 6, we use the indexes IN to
sample a large-loss batch M̃ = (Mi)i∈IN .

Previous sample selection methods (Hafner et al., 2018; Han et al., 2020; Xia et al.,
2022) usually assume that the noise rate is known and design the sample selection threshold
using the noise rate. In contrast, we select large-loss samples jointly using the uncertainty
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estimation U and the loss estimation Lpos. Since the uncertainty estimation dynamically
changes during training, the large-loss batch M̃ is automatically updated and is adaptive to
different noise rates and model capabilities. In this way, our method can maximally reduce
the harmful effects of action noise using the adaptive threshold without requiring any prior
knowledge about the noise model.

Negative learning for loss correction. Positive learning with full-batch data with
noisy actions will result in bias in the loss training and misguides the policy to choose the
wrong actions. We propose to leverage the selected large-loss sample for negative learning to
correct the loss bias. Intuitively, the selected large-loss batch M̃ contains noisy actions with
high probability. Its complementary set has more chances to contain true actions. Therefore,
we generate complementary actions for M̃ by randomly selecting ā from {1, .., |A|}\{a},
resulting a complementary batch M̄ for negative learning (step 7). Negative learning on
the complementary batch of the selected large-loss samples will correct the loss bias from
action noise, improving imitation learning performance. We implement negative learning
with label smoothing to further boost the performance, resulting in Soft Negative learning.
Specifically, we employ the following negative log-likelihood (NLL) loss for negative learning
on the “large-loss” samples with label smoothing: Lneg = NLL

(
1−T (a|s), (1−α) · ā+ α

|A| ·1
)
,

where ā is the complementary action of the “large-loss” samples, and α is the smooth rate.

5. Experiments on Synthetic Benchmarks

In this section, we evaluate the effectiveness of USN on synthetic benchmarks. We want
to answer the following questions: (1) does USN consistently improve the robustness of
behavioral cloning, online imitation learning (GAIL), and offline imitation learning (BCQ)
under state-independent action noise and state-dependent action noise? and (2) are the
improvements significant?

Synthetic benchmarks generation. To answer these questions, we pre-train expert
agents on the benchmark tasks and then use the pre-trained experts to generate demon-
strations with synthetic state-independent action noise (Algorithm 1) and state-dependent
action noise (Algorithm 2). We denote D as standard demonstration with expert actions
and D̃ as a demonstration with noisy actions, a.k.a. the noisy demonstration. Note that
we use ground-truth rewards only to train the expert agent, and we discard the rewards
afterward. We set the scaling weight λneg = 1.0 and the smooth rate α = 0.01 across all the
experiments.

Statistical analysis. We perform one-way ANOVA (Analysis of VAriance) for the
experimental results to show the statistical significance of the differences between USN and
baselines. We can conclude that there are significant differences among treatments if the
p-value obtained from ANOVA analysis is small (p<0.05). However, ANOVA does not tell
which treatments are significantly different from each other. To know the pairs of significantly
different treatments, we will perform multiple pairwise comparison (post hoc comparison)
analyses for all unplanned comparisons using Tukey’s honestly significantly differenced (HSD)
test. Tukey’s HSD test accounts for multiple comparisons using the following formula:

HSD = qA,α,dof

√
MSE

n
, (13)
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where qA,α,dof denotes the studentized range statistic with A number of groups, α significance
level (0.05 or 0.01), and dof degrees of freedom; MSE is the mean square error from ANOVA;
n is the sample size in each group, when the sample size is equal in two comparison groups.
Note that p-value 0.001 from Tukey’s HSD output should be interpreted as <=0.001.

5.1 Behavioral Cloning with Noisy Demonstrations

Experimental setup. For behavioral cloning, we directly replace the cross-entropy loss as
our USN loss to obtain the robust version of BC - BC-USN. We conduct experiments on
the classic control task from OpenAI Gym (Brockman et al., 2016) - LunarLander-v2. This
is a classic rocket trajectory optimization problem. According to Pontryagin’s maximum
principle (Kopp, 1962), it is optimal to fire the engine at full throttle or turning it off in the
LunarLander environment. We pre-train a DQN policy as the expert agent and generate
noisy demonstrations with 50K steps. We set the noise rates for both types of action noise as
{0.1, 0.2, 0.3, 0.4}. We use a 3-layer MLP architecture with 32 units in each hidden layer as
the model backbone for implementing BC, BC-GCE, and BC-USN. We train all the models
using the Adam optimizer for 20 epochs. Our implementation is based on the opensource
code4. We set λneg = 1.0 for BC-USN.
Baselines. Besides the original BC, we also compare BC-USN to a baseline robust BC
model called BC-GCE that is trained using the generalized cross-entropy loss (GCE) loss
(Zhang & Sabuncu, 2018).
Results. Tables 5 and 6 show the performance of BC, BC-GCE, and BC-USN under multiple
state-independent action noise and state-dependent action noise, respectively. The results
demonstrate that BC-USN consistently outperforms baselines significantly under both types
of action noise.

ϵ 0.1 0.2 0.3 0.4

BC 175.6 ± 74.9 177.4 ± 61.2 37.7 ± 154.4 -72.4 ± 178.1
BC-GCE -561.4 ± 124.5 -461.3 ± 148.6 -252.3 ± 119.4 -498.6 ± 143.4

BC-USN (Ours) 233.5 ± 28.6 233.0 ± 18.6 214.8 ± 34.2 217.6 ± 19.0

Table 5: Average return of BC, BC-GCE and our BC-USN on LunarLander-v2 with state-
independent (symmetric) action noise. The reported results are averaged over five
random seeds.

ϵ 0.1 0.2 0.3 0.4

BC 189.2 ± 36.4 113.8 ± 104.2 2.2 ± 118.4 -159.7 ± 101.2
BC-GCE -12.5 ± 165.8 -239.6 ± 161.7 -466.2 ± 143.8 -631.3 ± 95.9

BC-USN (Ours) 243.6 ± 18.8 205.1 ± 56.8 232.0 ± 25.6 195.9 ± 66.3

Table 6: Average return of BC, BC-GCE and our BC-USN on LunarLander-v2 with state-
dependent action noise. The reported results are averaged over five random seeds.

4. https://github.com/HumanCompatibleAI/imitation
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ANOVA. Table 7 shows ANOVA analysis results under state-independent action noise and
state-dependent action noise. For most cases, the p-value obtained from ANOVA analysis
is significant (p<0.05). Therefore, we conclude that there are significant differences among
treatments (BC, BC-GCE, and BC-USN).

Action noise p-value

ϵ 0.1 0.2 0.3 0.4

Symmetric 0.0777 0.00335 7.49e-4 2.11e-6
State-dependent 7.34e-5 0.00963 3.947e-7 1.16e-10

Table 7: ANOVA on state-independent (symmetric) and state-dependent action noises.

Tukey’s HSD test. Table 8 summarizes Tukey’s HSD results of BC and BC-USN on
symmetric action noise and state-dependent action noise. The results suggest that except (BC,
BC-USN) with Symmetric-0.1 action noise, all other pairwise comparisons from treatments
reject the null hypothesis (p < 0.05) and indicate statistically significant differences.

Action noise ϵ Group1 Group2 Diff q-value p-value

Symmetric

0.1 BC BC-USN 57.919 2.589 0.0777
0.2 BC BC-USN 55.541 3.161 0.00335
0.3 BC BC-USN 177.161 5.349 0.001
0.4 BC BC-USN 290.141 8.41 0.001

State-dependent

0.1 BC BC-USN 54.390 6.567 0.001
0.2 BC BC-USN 91.362 3.929 0.00963
0.3 BC BC-USN 229.728 9.299 0.001
0.4 BC BC-USN 355.648 14.021 0.001

Table 8: Tukey’s HSD test on state-independent (symmetric) and state-dependent action
noises.
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Figure 13: Boxplot on symmetric action noise.

Using the boxplots Figure 13 and Figure 14, we can easily detect the differences between
BC and BC-USN under symmetric action noise and state-dependent action noise with different
noise rates. We can conclude that USN improves the robustness of BC against diverse action
noises, and the improvements are usually statistically significant.
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Figure 14: Boxplot on State-dependent action noise.

Ablation study on λneg. We perform an ablation to study the effects of λneg to the
performance of BC-USN under symmetric and state-dependent action noises. The ablation
study is conducted on the LunarLander-v2 task over three λneg (0.1, 1.0, and 10.0) and four
noise rates (0.1, 0.2, 0.3, and 0.4). From the bar charts in Figure 15 and ablation study
results in Table 9, we know that BC-USN achieves the best performance in most cases when
λneg = 1.0. Therefore, we set λneg = 1.0 for the following experiments.
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Figure 15: Ablation study of λneg on the LunarLander-v2 task.

Action noise
λneg

ϵ 0.1 0.2 0.3 0.4

Symmetric
0.1 207.1 ± 55.3 229.4 ± 18.5 150.3 ± 117.9 161.9 ± 85.2
1.0 233.5 ± 28.6 233.0 ± 18.6 214.8 ± 34.2 217.6 ± 19.0
10.0 226.4 ± 39.1 228.4 ± 16.1 156.2 ± 81.3 123.8 ± 114.4

State-dependent
0.1 246.4 ± 12.8 225.9 ± 36.0 209.3 ± 30.3 -59.3 ± 370.3
1.0 243.6 ± 18.8 205.1 ± 56.8 232.0 ± 25.6 195.9 ± 66.3
10.0 202.0 ± 64.6 223.8 ± 20.1 190.2 ± 62.3 149.7 ± 77.4

Table 9: Average return of our BC-USN on LunarLander-v2 with different λneg on state-
independent (symmetric) action noise and state-dependent action noise. The re-
ported results are averaged over five random seeds.
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5.2 Online Imitation Learning with Noisy Demonstrations

Experimental setup. Since most of the previous robust online imitation learning algorithms
(Tangkaratt et al., 2020a; Wang et al., 2021a) are based on GAIL, we also choose GAIL as
our base method. However, the original GAIL can not perform well in a high-dimensional en-
vironment like Atari games (Brown et al., 2019). Fortunately, we found that using behavioral
cloning as an initialization for the actor, GAIL can achieve good performance on some Atari
games, e.g., KungFuMaster, Q*bert, and Hero, with only one full-episode demonstration. We
use widely used Atari games simulated through Arcade Learning Environment (Bellemare
et al., 2013). We generate one full-episode demonstration using pre-trained PPO agents.
The PPO is trained with a learning rate of 2.5e-4, a clipping threshold of 0.1, an entropy
coefficient of 0.01, a value function coefficient of 0.5, and a GAE parameter of 0.95 (Schulman
et al., 2016). We generated noisy demonstrations with state-independent action noise and
state-dependent action noise from the one full-episode demonstration following Algorithm 1
and Algorithm 2, respectively. According to the application scope analysis (Table 4, Section
3.2), we generate demonstrations with noise rate ϵ>=0.3 for this online imitation learning
experiment.

Implementation and baselines. We apply USN for training the discriminator of GAIL,
resulting in the robust algorithm GAIL-USN. We add an auxiliary fully-connected layer to
output logits for using USN loss to achieve this goal. The original discriminator of GAIL can
be presented as Dϕ = fd ◦ h, where h is the backbone network for learning features from
input state-action pairs. We add a fully-connected layer fl to output logits from the feature
via fl ◦ h. The whole learning objective of GAIL-USN is as follows:

min
θ

max
ϕ

E(s,a)∼ρθ

[
logDϕ(s, a) + USN

(
(s, a), fl ◦ h

)]
+ E(s,a)∼ρE

[
log

(
1−Dϕ(s, a)

)
+USN

(
(s, a), fl ◦ h

)]
,

(14)

where ρθ and ρE denote the occupancy measures of agent policies πθ and the demonstrator
πE , respectively. We compare GAIL-USN to the original GAIL and state-of-the-art robust
imitation learning algorithms, i.e., RIL_CO (Tangkaratt et al., 2020a) and SAIL with soft
weights (Wang et al., 2021a). We implement all the methods using the open-source code
https://github.com/yunke-wang/gail_atari. All the policies are trained using PPO with the
same hyper-parameters as the expert agents.

Results. We conduct experiments on KungFuMaster, Q*bert, and Hero games under
state-independent (symmetric and pairflip) action noise and state-dependent action noise
with noise rate ϵ of 0.3 and 0.5. We compare GAIL-USN to the original GAIL, RIL_CO, and
SAIL-soft. The bar charts in Figure 16 show the performance differences of the algorithms
under symmetric action noise over the noise rate of 0.3 and 0.5. GAIL performs badly on
the KungFuMaster game, even with a noise rate of 0.3. RIL_CO and SAIL-soft outperform
GAIL with a noise rate of 0.3 and 0.5, while still performing worse than our GAIL-USN. In
Q*bert and Hero, RIL_CO and SAIL-soft totally fail with both noise rates, while GAIL
achieves the second-best performance. Figure 16(b) shows that our GAIL-USN significantly
outperforms the original GAIL and other baselines under symmetric action noises. The
results comparison under state-dependent action noise (Figure 18) are similar to those under
Symmetric noise in Figure 16. Our GAIL-USN significantly outperforms GAIL and other

1259

https://github.com/yunke-wang/gail_atari


Yu, Han, & Tsang

0.3 0.5
Noise Rate

5000

10000

15000

20000

25000
Av

er
ag

e 
R

et
ur

n

(a) KungFuMaster

0.3 0.5
Noise Rate

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e 

R
et

ur
n

(b) Q*bert

0.3 0.5
Noise Rate

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e 

R
et

ur
n

GAIL
RIL_CO
SAIL-soft
GAIL-USN

(c) Hero

Figure 16: The performance of GAIL-USN and baselines with noisy demonstration across
different state-independent (symmetric) action noise on Atari games.
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Figure 17: The performance of GAIL-USN and baselines with noisy demonstration across
different state-independent action noise (pairflip) on Atari games.
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Figure 18: The performance of GAIL-USN and baselines with noisy demonstration across
different state-dependent action noise on Atari games.

baselines in the Q*bert game under the state-dependent action noise. Figure 17 demonstrates
that GAIL-USN consistently outperforms other baselines under the pairflip action noise.

1260



USN: A Robust Imitation Learning Method against Diverse Action Noise

The quantitative comparisons for each game are summarized in Table 10, Table 11 and
Table 12. SAI-soft, and RIL_CO usually perform worse than the original GAIL, while our
GAIL-USN consistently outperforms the baselines under all the evaluated noise settings.

KungFuMaster ϵ 0.3 0.5

Symmetric

GAIL 3,873.0 ± 5,264.5 8,944.3 ± 4,263.9
RIL_CO 10,529.0 ± 2,678.4 10,473.9 ± 2,537.2
SAIL-soft 8,324.3 ± 7,958.4 4,811.1 ± 3,612.7

GAIL-USN (ours) 11,337.0 ± 4,471.4 14,887.6 ± 2,675.2

Pairflip

GAIL 15,915.3 ± 2,932.6 8,110.0 ± 6,933.2
RIL_CO 8,572.3 ± 2,268.2 10,110.1 ± 2,968.8
SAIL-soft 6,531.7 ± 7,621.9 11,752.7 ± 9,405.2

GAIL-USN (ours) 16,409.8 ± 2,796.1 16,399.3 ± 3,060.1

State-dependent

GAIL 1,369.9 ± 1,010.5 9,664.6 ± 7,281.6
RIL_CO 7,672.5 ± 5,656.8 11,850.3 ± 3,647.1
SAIL-soft 13,380.8 ± 11,120.8 11,472.2 ± 8,951.7

GAIL-USN (ours) 14,666.6 ± 4,366.6 13,819.6 ± 2,708.0

Table 10: Average return of GAIL, RIL_CO, SAIL-soft, and our GAIL-USN with noisy
demonstrations on the KungFuMaster games. The reported results are averaged
over five random seeds.

Q*bert ϵ 0.3 0.5

Symmetric

GAIL 7,776.3 ± 1,184.3 6,555.3 ± 2,058.9
RIL_CO 3,582.5 ± 4,274.3 484.1 ± 240.5
SAIL-soft 739.1 ± 225.0 1,082.0 ± 330.0

GAIL-USN (ours) 11,972.1 ± 1,014.7 13,481.1 ± 1,068.3

Pairflip

GAIL 11,534.4 ± 1,618.4 10,359.0 ± 2,686.0
RIL_CO 2,751.2 ± 1,653.7 1,824.8 ± 1,897.7
SAIL-soft 513.4 ± 173.2 1,136.8 ± 377.4

GAIL-USN (ours) 13,066.2 ± 1,144.7 10,974.4 ± 1,775.8

State-dependent

GAIL 9,922.7 ± 2,799.3 4,686.9 ± 350.1
RIL_CO 1,838.7 ± 1,762.7 346.1 ± 119.1
SAIL-soft 758.2 ± 484.2 1,478.2 ± 1,185.1

GAIL-USN (ours) 13,861.7 ± 1,608.5 12,186.6 ± 1,625.4

Table 11: Average return of GAIL, RIL_CO, SAIL-soft, and our GAIL-USN with noisy
demonstrations on the Q*bert games. The reported results are averaged over five
random seeds.
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Hero ϵ 0.3 0.5

Symmetric

GAIL 12,962.7 ± 1,680.0 11,314.4 ± 1,333.4
RIL_CO 427.9 ± 411.4 880.8 ± 735.2
SAIL-soft 4,889.9 ± 2,362.7 1,431.2 ± 1,357.7

GAIL-USN (ours) 13,350.2 ± 1,113.1 13,249.6 ± 1,276.6

Pairflip

GAIL 14,034.2 ± 464.5 13,140.7 ± 597.7
RIL_CO 502.4 ± 533.7 618.3 ± 664.2
SAIL-soft 2,459.3 ± 1,600.6 2,071.7 ± 1,022.9

GAIL-USN (ours) 14,930.2 ± 2,609.9 14,068.0 ± 787.4

State-dependent

GAIL 13,796.1 ± 570.9 12,954.0 ± 2,306.0
RIL_CO 710.6 ± 802.6 972.3 ± 794.2
SAIL-soft 1,836.4 ± 1,387.3 2,256.2 ± 1,356.5

GAIL-USN (ours) 14,904.8 ± 1,162.5 13,672.8 ± 2,708.0

Table 12: Average return of GAIL, RIL_CO, SAIL-soft, and our GAIL-USN with noisy
demonstrations on the Hero games. The reported results are averaged over five
random seeds.

ANOVA. Table 13 shows the ANOVA analysis results for KungFuMaster, Q*bert, and Hero
under the symmetric, pairflip, and state-dependent action noises with two noise rates. For
most cases, the p-value obtained from ANOVA analysis is significant (p<0.05). Therefore, we
conclude that there are significant differences among treatments (GAIL, RIL_CO, SAIL-soft,
and GAIL-USN).

Environments
p-value

Symmetric Pairflip State-dependent
0.3 0.5 0.3 0.5 0.3 0.5

KungFuMaster 9.443e-11 0.155 1.679e-11 8.425e-5 3.2e-5 3.97e-13
Q*bert 5.002e-52 3.814e-68 3.09e-63 1.002e-43 4.844e-35 2.973e-64
Hero 6.485e-82 9.067e-63 2.011e-61 8.032e-75 1.643e-56 1.022e-64

Table 13: ANOVA analysis results for KungFuMaster, Q*bert, and Hero under the symmetric,
pairflip, and state-dependent action noises with two noise rates.

Tukey’s HSD test. Table 14 summarizes Tukey’s HSD results of GAIL, RIL_CO, SAIL-
soft, and GAIL-USN on symmetric noise, pairflip noise and state-dependent noise for the
KungFuMaster game. Note that p-value 0.001 from Tukey’s HSD output should be interpreted
as <=0.001. The results suggest that 10 out of 18 pairwise comparisons from treatments
reject the null hypothesis (p < 0.05) and indicate statistically significant differences. The
ratio of significant improvements is 55.55%.
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KungFuMaster ϵ Group1 Group2 Diff q-value p-value

Symmetric

0.3
GAIL GAIL-USN 13,296.636 9.911 0.001

RIL_CO GAIL-USN 6,994.060 5.213 0.00194
SAIL-soft GAIL-USN 1,285.727 0.958 0.9

0.5
GAIL GAIL-USN 4,154.999 3.250 0.104

RIL_CO GAIL-USN 1,969.393 1.540 0.674
SAIL-soft GAIL-USN 2,347.424 1.836 0.558

Pairflip

0.3
GAIL GAIL-USN 494.484 0.463 0.900

RIL_CO GAIL-USN 7,837.424 7.348 0.001
SAIL-soft GAIL-USN 9,878.090 9.262 0.001

0.5
GAIL GAIL-USN 8,289.303 6.561 0.001

RIL_CO GAIL-USN 6,289.242 4.978 0.003
SAIL-soft GAIL-USN 4,646.575 3.678 0.050

State-dependent

0.3
GAIL GAIL-USN 7,464.030 6.553 0.001

RIL_CO GAIL-USN 807.090 0.708 0.900
SAIL-soft GAIL-USN 3,012.727 2.645 0.246

0.5
GAIL GAIL-USN 5,943.242 7.351 0.001

RIL_CO GAIL-USN 4,413.697 5.459 0.001
SAIL-soft GAIL-USN 10,076.424 12.464 0.001

Ratio of significant improvements: 55.55%

Table 14: Tukey’s HSD test on the KungFuMaster game under state-independent (symmetric
and pairflip) action noise and state-dependent action noise.

Q*bert ϵ Group1 Group2 Diff q-value p-value

Symmetric

0.3
GAIL GAIL-USN 3,939.045 10.182 0.001

RIL_CO GAIL-USN 12,022.995 31.081 0.001
SAIL-soft GAIL-USN 13,103.513 33.874 0.001

0.5
GAIL GAIL-USN 7,499.719 32.799 0.001

RIL_CO GAIL-USN 11,840.553 51.779 0.001
SAIL-soft GAIL-USN 9,865.300 46.828 0.001

Pairflip

0.3
GAIL GAIL-USN 1,531.833 5.088 0.00263

RIL_CO GAIL-USN 10,314.992 34.265 0.001
SAIL-soft GAIL-USN 12,737.530 42.316 0.001

0.5
GAIL GAIL-USN 615.462 1.531 0.678

RIL_CO GAIL-USN 9,149.613 22.761 0.001
SAIL-soft GAIL-USN 10,185.257 25.337 0.001

State-dependent

0.3
GAIL GAIL-USN 4,195.772 9.268 0.001

RIL_CO GAIL-USN 8,389.583 18.533 0.001
SAIL-soft GAIL-USN 11,232.992 24.814 0.001

0.5
GAIL GAIL-USN 6,925.795 24.613 0.001

RIL_CO GAIL-USN 12,997.053 46.189 0.001
SAIL-soft GAIL-USN 12,309.146 44.062 0.001

Ratio of significant improvements: 94.44%

Table 15: Tukey’s HSD test on the Q*bert game under state-independent (symmetric and
pairflip) action noise and state-dependent action noise.
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Table 15 summarizes Tukey’s HSD results for the Q*bert game. The results suggest
that except the (GAIL, GAIL-USN) under Pairflip-0.5 noise, all other pairwise comparisons
from treatments reject the null hypothesis (p < 0.05) and indicate statistically significant
differences. The ratio of significant improvements is 94.44%. Table 16 summarizes Tukey’s
HSD results for the Hero game. The ratio of significant improvements is 77.77%. Therefore,
we conclude that our GAIL-USN consistently outperforms baselines on KungFuMaster,
Q*bert, and Hero games under three types of action noise with two noise rates, and the
improvements are usually significant.

Hero ϵ Group1 Group2 Diff q-value p-value

Symmetric

0.3
GAIL GAIL-USN 1,108.786 4.554 0.00890

RIL_CO GAIL-USN 14,194.199 58.298 0.001
SAIL-soft GAIL-USN 13,068.460 53.674 0.001

0.5
GAIL GAIL-USN 718.759 2.203 0.407

RIL_CO GAIL-USN 12,700.433 38.935 0.001
SAIL-soft GAIL-USN 11,416.551 34.999 0.001

Pairflip

0.3
GAIL GAIL-USN 895.942 2.393 0.332

RIL_CO GAIL-USN 14,427.750 38.544 0.001
SAIL-soft GAIL-USN 12,470.831 33.316 0.001

0.5
GAIL GAIL-USN 927.277 3.501 0.069

RIL_CO GAIL-USN 13,449.739 50.784 0.001
SAIL-soft GAIL-USN 11,996.333 45.296 0.001

State-dependent

0.3
GAIL GAIL-USN 387.474 1.109 0.845

RIL_CO GAIL-USN 12,922.313 36.997 0.001
SAIL-soft GAIL-USN 8,460.231 24.222 0.001

0.5
GAIL GAIL-USN 1,935.165 6.478 0.001

RIL_CO GAIL-USN 12,368.772 41.409 0.001
SAIL-soft GAIL-USN 11,818.353 39.566 0.001

Ratio of significant improvements: 77.77%

Table 16: Tukey’s HSD test on the Hero game under state-independent (symmetric and
pairflip) action noise and state-dependent action noise.

5.3 Offline Imitation Learning with Noisy Demonstrations

Experimental setup. We first pre-train a QRDQN policy as the expert agents on the
Atari games. The expert policy is trained using Adam optimizer with a learning rate of
0.0001 for 100 epochs. Then, we generate 50K-step demonstration datasets with synthetic
state-independent and state-dependent action noises.

Implementation and baselines. We apply USN on the generative model G, resulting
in our robust method BCQ_ICM-USN. Algorithm 5 presents an instance of our BCQ_ICM-
USN. BCQ_ICM-USN improves BCQ_ICM by updating the generative model G using our
USN method (Algorithm 4) in step 8. USN enhances the ability of generative model G
to eliminate noisy actions for policy learning. Thus, BCQ_ICM-USN is more robust than
BCQ_ICM, achieving better imitation learning performance across diverse levels of action
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noise. We compare BCQ_ICM-USN with BCQ_ICM, BCQ_ICM-GCE, and UWAC (Wu
et al., 2021). We use the open-source platform5 for implementing the algorithms.

Algorithm 5 BCQ_ICM-USN for robust offline imitation learning against action noise.
1: Input: Demonstration D = {(si, ai, si+1)}Ni=1, number of iterations T , tar-

get_update_rate, mini-batch size B, threshold τ .
2: Initialize Q-network Qθ, generative model G with parameter ω and target network Qθ′

with θ′ ← θ.
3: for t = 1 to T do
4: Sample mini-batch M of B transitions (s, a, s′) from D.
5: Train an ICM module to generate intrinsic reward: r = ICM(s, a, s′).
6: a′ ← argmaxa′|G(a′|s′)/maxâ G(â|s′)>τ Qθ(s

′, a′).
7: θ ← argminθ

∑
(s,a,s′)∈M kκ(r + γQθ′(s

′, a′)−Qθ(s, a))
8: ω ← argminLUSN(M,ω) // Update G using USN approach in Algorithm 4.
9: If t mod target_update_rate = 0 : θ′ ← θ.

10: end for

Results on control tasks. The bar chats in Figure 19 demonstrate that our method
BCQ_ICM-USN outperforms the baselines on CartPole-v0 under state-independent (sym-
metric and pairflip) action noise and state-dependent action noise. We can see that the
performance of BCQ_ICM drops when the noise rate is larger than 0.3, while our method
BCQ_ICM-USN consistently performs the best across diverse noise rates. Figure 20 shows
that our method BCQ_ICM-USN consistently outperforms the baselines under the three
types of action noise across two noise rates.
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Figure 19: Average return of BCQ_ICM, BCQ_ICM-GCE and our BCQ_ICM-USN on
CartPole-v0 with state-independent (symmetric and pairflip) action noise, and
state-dependent action noise.

The quantitative results of CartPole-v0 and LunarLander-v2 are summarized in Table
17, and Table 18, respectively. The results show that the improvements of our method
BCQ_ICM-USN to the baselines are usually significant, especially under the state-dependent
action noise. In the CartPole-v0 task, BCQ_ICM-USN achieves a performance that is 1.45
times of BCQ_ICM-GCE and 7.3 times of BCQ_ICM under state-dependent action noise
with a noise rate of 0.5.
5. https://github.com/thu-ml/tianshou
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Figure 20: Average return of BCQ_ICM, BCQ_ICM-GCE and our BCQ_ICM-USN on
LunarLander-v2 with state-independent (symmetric and pairflip) action noise,
and state-dependent action noise.

CartPole-v0 ϵ 0.4 0.5

Symmetric

BCQ_ICM 165.8 ± 32.8 25.0 ± 10.2
BCQ_ICM-GCE 196.9 ± 0.6 192.2 ± 3.2

BCQ_ICM-USN (ours) 197.2 ± 0.3 195.7 ± 1.3

Pairflip

BCQ_ICM 165.8 ± 32.8 25.0 ± 10.2
BCQ_ICM-GCE 196.9 ± 0.6 192.2 ± 3.9

BCQ_ICM-USN (ours) 197.2 ± 0.3 195.7 ± 1.3

State-dependent

BCQ_ICM 59.8 ± 48.9 13.1 ± 2.5
BCQ_ICM-GCE 152.0 ± 39.2 66.3 ± 36.0

BCQ_ICM-USN (ours) 153.4 ± 34.4 96.5 ± 73.7

Table 17: Average return of BCQ_ICM, BCQ_ICM-GCE and our BCQ_ICM-USN with
noisy demonstrations on the CartPole-v0 task.

LunarLander-v2 ϵ 0.4 0.5

Symmetric

BCQ_ICM 197.7 ± 6.0 70.3 ± 19.0
BCQ_ICM-GCE 197.9 ± 11.8 189.1 ± 14.3

BCQ_ICM-USN (ours) 198.9 ± 8.9 195.0 ± 5.8

Pairflip

BCQ_ICM 186.4 ± 5.8 19.3 ± 5.1
BCQ_ICM-GCE 189.9 ± 9.6 180.1 ± 5.1

BCQ_ICM-USN (ours) 193.3 ± 5.4 187.7 ± 7.1

State-dependent

BCQ_ICM -116.9 ± 4.2 -118.7 ± 6.4
BCQ_ICM-GCE 10.3 ± 27.4 -122.5 ± 46.4

BCQ_ICM-USN (ours) 70.8 ± 7.2 -93.7 ± 15.2

Table 18: Average return of BCQ_ICM, BCQ_ICM-GCE and our BCQ_ICM-USN with
noisy demonstrations on the LunarLander-v2 task.
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Results on Atari games. In Figure 21, we show bar charts comparison of UWAC (Gal
& Ghahramani, 2016), BCQ_ICM, BCQ_ICM-GCE, and BCQ_ICM-USN for three Atari
games under state-independent (symmetric) action noise and state-dependent action noise
with a noise rate of 0.45. The results show that UWAC is the worst among all the algorithms,
while our method, BCQ_ICM-USN, consistently outperforms the baselines. The performance
improvements of BCQ_ICM-USN compared to other methods are usually significant. Table
19 and Table 20 summarize the quantitative comparison results under the symmetric noise
and state-dependent action noise, respectively.
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Figure 21: Bar chart comparison of the average return of BCQ_ICM, BCQ_ICM-GCE and
BCQ_ICM-USN on Atari games with 45% Symmetric and Piirflip action noise.

Atari Games Alien AirRaid NameThisGame

UWAC 505.1 ± 51.5 2,347.5 ± 455.0 3,035.0 ± 481.0
BCQ_ICM 932.1 ± 184.8 2,924.1 ± 251.6 3,431,8 ± 282.8

BCQ_ICM-GCE 1,384.3 ± 31.3 3,870.4 ± 237.0 4,681.8 ± 315.1
BCQ_ICM-USN (Ours) 1,453.0 ± 97.3 4,275.4 ± 511.2 4,821.3 ± 110.6

Table 19: Average return of UWAC, BCQ_ICM, BCQ_ICM-GCE, and BCQ_ICM-USN
when learning with state-independent (symmetric) action noise with noise rate of
0.45 on four Atari games.

Atari Games Alien AirRaid NameThisGame

UWAC 693.0 ± 79.6 2,705.8 ± 381.6 1,874.1 ± 273.5
BCQ_ICM 560.3± 48.0 2,791.2 ± 391.2 2,463.6 ± 184.3

BCQ_ICM-GCE 1,311.6 ± 34.3 4,042.0 ± 517.9 4,396.1±136.8
BCQ_ICM-USN (Ours) 1,407.3 ± 34.3 4,271.6 ± 391.6 4,583.0 ± 275.0

Table 20: Average return of UWAC, BCQ_ICM, BCQ_ICM-GCE, and BCQ_ICM-USN
when learning with state-independent (pairflip) action noise with noise rate of 0.45
on four Atari games.
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6. Experiments on Real-world Benchmarks

In this section, we evaluate the effectiveness of USN on real-world benchmarks.

6.1 Conditional Imitation Learning (CIL) for Autonomous Driving

Imitation Learning is a promising approach for training autonomous driving models. Early
imitation learning methods assume that they can infer optimal actions from perceptual
inputs only. However, this assumption often does not hold in practice, and thus, they do not
scale up to fully autonomous urban driving. Conditional imitation learning (CIL) (Codevilla
et al., 2018) was proposed to address this challenge by taking in the perceptual inputs
and control commands. In driving scenarios, CIL specializes in a set of four commands:
continue (follow the road), left (turn left at the next intersection), straight (go straight at the
next intersection), and right (turn right at the next intersection). The additional command
guidance resolves the ambiguity in perceptuomotor mapping, and enables imitation learning
to scale up to the complex urban scenarios.

In the original conditional imitation learning, the training dataset is D = {(oi, ci, ai)}Ni=1,
where o is the observation, c is the command, and a denotes the action. The objective of
the original conditional imitation learning is

min
θ

∑
i

ℓ(F (oi, ci; θ),ai), (15)

where F is the function approximator parameterized with θ, will be optimized to map
observations to actions. Actions a = ⟨s, a⟩ are two-dimensional vectors that collate steering
angle and acceleration. Given the ground truth action agt, the loss function of the original
conditional imitation learning is defined as

ℓ(a,agt) = ℓ(⟨s, a⟩, ⟨sgt, agt⟩) = ∥s− sgt∥2 + λa∥a− agt∥2. (16)

Network architecture. To take the commands into account, the original conditional
imitation learning designs a branched architecture as in Figure 22 (a). Given the observation
o = ⟨i,m⟩ that comprises an image i and a measurement vector m (Dosovitskiy & Koltun,
2017) and a discrete set of commands C = {c0, · · · , cK}, the output of the branched
architecture is

F (i,m, ci) = Ai(j) = Ai(J(i,m)), (17)

where Ai are the branches for learning sub-policies that correspond to different commands,
j = J(i,m) = ⟨I(i),M(m)⟩ is the joint representation that concatenates the two modules’
outputs.

6.2 Learning from Noisy Commands

The original conditional imitation learning assumes that high-quality commands are available
for all the observations and actions. However, this assumption may not hold in practice
because hiring expert annotators to give correct commands for all observations and actions
is expensive or intractable. In practice, we usually only obtain a small dataset Dl =
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Figure 22: The network architectures for conditional imitation learning: (a) the original CIL
architecture where the correct command acts as a switch that selects between
specialized sub-modules for choosing actions; (b) our CIL-USN architecture, which
uses USN to correct the noisy commands before switching an action.

{(oi, ci,ai)}Mi=1 with correct commands, and a larger dataset Du = {(oi,ai)}Ni=M+1 without
commands.

To leverage the large dataset, we train an inverse dynamics model I(ci|oi,oi+1; η) on
Dl to infer pseudo commands for Du. Given the command prediction ĉ and the ground
truth command c, the inverse dynamics model I was optimized by minimizing the cross-
entropy loss. Then, we can use the trained inverse dynamics model I to predict pseudo
commands c̃ for Du. However, due to the limited number of training data, the trained inverse
dynamics model is inaccurate in predicting the pseudo commands for Du, resulting in the
noisy demonstration dataset D̃u = {(oi, c̃i,ai)}Ni=M+1. The noisy commands in the dataset
will misguide the imitation learning policy in selecting the incorrect actions and fail urban
driving. More details of noisy demonstrations are summarized in Appendix A. Given the
noisy demonstration D̃, we train CIL-USN to correct the commands before switching an
action module for urban driving.

CIL-USN. To alleviate the harmful effects of the noisy commands c̃, we introduce an
additional command-correction module Cω to generate corrected command predictions ĉ
before switching an action module Ak. In Figure 22(b), we regard the noisy commands c̃ as
noisy discrete actions and apply our USN (Algorithm 4) to update Cω. The resulting robust
conditional imitation learning method is called CIL-USN. The objective of the CIL-USN is

min
θ

∑
i

ℓ(F (oi, ĉi; θ),ai), (18)

where ĉ = Cω(J(i,m)). We optimize the command-correction submodule Cω by applying
USN (Algorithm 4) as follows:

min
ω

E(o,c̃)∈D̃u
[LUSN({(o, c̃)}, ω)]. (19)

Baselines. We compare CIL-USN with the following two related baselines:
• CIL-CE, which trains the command-correction module Cω using cross-entropy loss.
• CIL-GCE, which trains the command-correction module Cω using the robust general-

ized cross-entropy (GCE) loss (Zhang & Sabuncu, 2018).
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Experimental setup. The CIL network contains image module and action modules. The
CIL-USN and the baselines contain an additional command-correction module. The image
module of CIL is the same as that of the inverse dynamics model I. The other modules
are implemented as standard multilayer perceptrons. The command-correction module and
action module contain three fully connected layers with 256 units each, followed by ReLU
nonlinearities and dropout operation. We train CIL-USN and the baselines on the noisy
demonstration dataset D̃ using the Adam optimizer with an initial learning rate of 0.0002.
Results. We measure the performance of CIL-USN and the baselines using the command
correction accuracy of Cω. Figure 23 and Table 21 show that CIL-USN achieves a higher
command correction accuracy than other baselines in the cases of ϵ = 0.1 and ϵ = 0.4.
The results of this experiment demonstrate that our proposed USN method improves the
robustness of conditional imitation learning with noisy commands in complex urban driving
tasks.
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Figure 23: Bar chart comparison of the average return of CIL, CIL-GCE, and CIL-USN on
noisy demonstrations with ϵ = 0.1 and ϵ = 0.4.

ϵ CIL-CE CIL-GCE CIL-USN (Ours)

0.1 31.73 ± 1.48 % 35.11 ± 3.02 % 37.79 ± 1.51%
0.4 32.92 ± 1.25% 33.90 ± 2.83% 36.77 ± 0.81%

Table 21: Command prediction accuracy of CIL-CE, CIL-GCE, and CIL-USN on noisy
demonstration dataset with ϵ = 0.1 and ϵ = 0.4. The reported results are the
averaged accuracy over five random seeds.

ANOVA. We perform one-way ANOVA for the above results. Table 22 shows ANOVA
analysis results for the real-world benchmark with noise rates of 0.1 and 0.4. The p-value
obtained from ANOVA analysis is significant (p<0.05) in both cases. Therefore, we conclude
that there are significant differences among treatments (CIL-CE, CIL-GCE, and CIL-USN).
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ϵ p-value

0.1 7.67e-9
0.4 4.761e-5

Table 22: ANOVA on the real-world benchmark with noise rate of 0.1 and 0.4.

Tukey’s HSD test. Table 23 summarizes Turkey’s HSD results of CIL-CE, CIL-GCE, and
CIL-USN. Note that the p-value 0.001 from Tukey’s HSD output should be interpreted as
<=0.001. The results suggest that all of the pairwise comparisons from treatments reject the
null hypothesis (p < 0.05) and indicate statistically significant differences. Thus, we conclude
that CIL-USN significantly outperforms baselines on the real-world benchmark with noise
rates of 0.1 and 0.4.

ϵ Group1 Group2 Diff q-value p-value

0.1 CIL-CE CIL-USN 6.071 10.957 0.001
0.1 CIL-GCE CIL-USN 2.714 4.898 0.00347

0.4 CIL-CE CIL-USN 3.720 7.019 0.001
0.4 CIL-GCE CIL-USN 2.765 5.217 0.00208

Table 23: Tukey’s HSD test on the real-world benchmark with noise rate of 0.1 and 0.4.

7. Discussion

Robustness. The experiments conducted in this paper showed that our proposed USN
method consistently improves the robustness of behavioral cloning, online imitation learning
(GAIL), and offline imitation learning (BCQ) under both state-independent (symmetric and
pairflip) action noise and state-dependent action noise. The ANOVA and Tukey’s HSD test
results demonstrated that the improvements are usually significant. The ratio of significant
improvements is up to 94.44%. Moreover, our USN improves the robustness of conditional
imitation learning in the real-world urban driving benchmark with natural noisy commands.
Limitations and future work. The limitations in this work present opportunities for future
research. Firstly, this work focuses on imitation learning with discrete action space. Extending
our method to more general tasks with continuous action space would be a valuable direction
for future investigation. To scale USN to continuous action space, regression uncertainty
estimation methods might be helpful for sample selection (Gustafsson et al., 2023; Tohme
et al., 2023). Secondly, USN only selects samples based on the positive correlation between
loss and uncertainty estimations when the noise rate increases. Moreover, we only perform
USN within the application scope (Table 4 of Section 3.2) of different imitation learning
methods. It would be interesting to explore how to apply USN beyond the application scope,
where negative correlations might exist. Finally, although we have demonstrated that our
USN consistently improves the robustness of several traditional imitation learning algorithms
across diverse types of action noise, it would be exciting and worthy to explore further the
scalability of our method to foundation model-based decision making (Yang et al., 2023).
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8. Conclusion

This paper thoroughly examined the correlations between loss estimation and uncertainty
estimation in imitation learning models under state-independent action noise and state-
dependent action noise. Based on positive correlations within the corresponding application
scope of each IL method, we present a new paradigm for robust imitation learning in the
presence of action noise. Our uncertainty-aware sample selection method for negative learning
(USN) can be applied to various types of imitation learning, such as behavioral cloning,
online imitation learning (GAIL), and offline imitation learning (BCQ), and is agnostic
to the type of action noise. USN consistently brings a tangible improvement for diverse
IL methods within the noise range determined in the correlation study (Section 3), i.e.,
ϵ>= 0.3 for GAIL and ϵ>=0.4 for BCQ. Moreover, our method scales well to autonomous
driving scenarios, where the driving policy is trained via conditional imitation learning with
real-world noisy commands. Through ANOVA analysis and Tukey’s HSD test, we conclude
that USN usually significantly outperforms the baselines under diverse types of action noise.
We have empirically demonstrated the new findings and discussed the limitations of our work.
In addition, we have pointed out several interesting directions for future exploration.
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Appendix A. Noisy Demonstrations in the Real-world Benchmark

Dataset with noisy commands. In the experiments on real-world benchmark (Section
6), we use the CARLA dataset6 to train our models. The dataset was collected using the
urban driving simulator CARLA (Dosovitskiy et al., 2017). CARLA is an open-source
simulator that contains dynamic urban environments with traffic. Figure 24(a) provides
a map and sample views of a simulated urban environment in CARLA. The environment
contains buildings, vegetation, traffic signs, and vehicular and pedestrian traffic.

6. https://github.com/carla-simulator/imitation-learning

1272

https://www.a-star.edu.sg/cfar
https://www.nscc.sg
https://github.com/carla-simulator/imitation-learning


USN: A Robust Imitation Learning Method against Diverse Action Noise
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Figure 24: (a) Simulated urban environment in CARLA (Codevilla et al., 2018); and (b)
network architecture of the inverse dynamics model I.

In the training dataset, the observation o is the currently observed image at 200×88
pixel resolution. The car’s current speed is regarded as the measurement m. Actions a are
two-dimensional vectors that consist of steering angle s and acceleration a. As mentioned, we
assume we can only access a small dataset Dl with correct command labels. Thus, we sample
Dl from the original CARLA dataset with a portion of ρ ∈ (0, 0.5). The rest (1− ρ) portion
of the CARLA dataset is considered as the Du by removing the commands. Given the small
dataset Dl, we train the inverse dynamics model I(ci|oi,oi+1; η) for command prediction.

As shown in Figure 24(b), we consider the observation o = i that only contains an image
when training the inverse dynamics model. The inverse dynamics model includes an image
module and a pseudo command module. The image module consists of 8 convolutional layers
with a kernel size of 5 in the first layer and 3 in the following layers. The number of channels
increases from 32 to 256 from the first to the last convolutional layer. The convolutional
layers are followed by two fully connected layers with 512 units each. ReLU nonlinearities
are used for all hidden layers, and batch normalization is applied after convolutional layers.
The pseudo command module contains three fully connected layers with 256 units each.

We train the inverse dynamics model I on the sampled dataset Dl using the Adam
optimizer with an initial learning rate of 0.0002. Then, we use the trained inverse dynamics
model I to generate the pseudo commands for Du, resulting in our noisy demonstration
dataset D̃ with a noise rate of ϵ = 1−ρ. Given D̃, we train CIL-USN to correct the commands
before switching an action module for urban driving. We apply data augmentation for the
dataset when training the inverse dynamics model and conditional imitation learning models,
which follows the original CIL paper (Codevilla et al., 2018).
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