
Journal of Artificial Intelligence Research 80 (2024) 171–208 Submitted 12/2023; published 05/2024

Expressing and Exploiting Subgoal Structure
in Classical Planning Using Sketches

Dominik Drexler DOMINIK.DREXLER@LIU.SE
Jendrik Seipp JENDRIK.SEIPP@LIU.SE
Linköping University, Sweden

Hector Geffner HECTOR.GEFFNER@ML.RWTH-AACHEN.DE

RWTH Aachen University, Germany
Linköping University, Sweden

Abstract
Width-based planning methods deal with conjunctive goals by decomposing problems into

subproblems of low width. Algorithms like SIW thus fail when the goal is not easily serializable
in this way or when some of the subproblems have a high width. In this work, we address these
limitations by using a simple but powerful language for expressing finer problem decompositions
introduced recently by Bonet and Geffner, called policy sketches. A policy sketch R over a set of
Boolean and numerical features is a set of sketch rules C 7→ E that express how the values of these
features are supposed to change. Like general policies, policy sketches are domain general, but
unlike policies, the changes captured by sketch rules do not need to be achieved in a single step.
We show that many planning domains that cannot be solved by SIW are provably solvable in low
polynomial time with the SIWR algorithm, the version of SIW that employs user-provided policy
sketches. Policy sketches are thus shown to be a powerful language for expressing domain-specific
knowledge in a simple and compact way and a convenient alternative to languages such as HTNs
or temporal logics. Furthermore, they make it easy to express general problem decompositions and
prove key properties of them like their width and complexity.

1. Introduction

The success of width-based methods in classical planning is the result of two main ideas: the use of
conjunctive goals for decomposing a problem into subproblems, and the observation that the width
of the subproblems is often bounded and small (Lipovetzky & Geffner, 2012). When these assump-
tions do not hold, pure width-based methods struggle and need to be extended with heuristic estima-
tors or landmark counters that yield finer problem decompositions (Lipovetzky & Geffner, 2017a,
2017b). These hybrid approaches have resulted in state-of-the-art planners but run into shortcom-
ings of their own: unlike pure width-based search methods, they require declarative, PDDL-like
action models and thus cannot plan with black box simulators (Lipovetzky, Ramirez, & Geffner,
2015; Shleyfman, Tuisov, & Domshlak, 2016; Geffner & Geffner, 2015), and they produce decom-
positions that are ad-hoc and difficult to understand. Variations of these approaches, where the use
of declarative action models is replaced by polynomial searches, have pushed the scope of pure-
width based search methods (Francès, Ramı́rez, Lipovetzky, & Geffner, 2017), but they do not fully
overcome their basic limits: top goals that are not easily serializable or that have a high width.
These are indeed the limitations of one of the simplest width-based search methods, Serialized Iter-
ated Width (SIW) that greedily achieves top goal first, one at a time, using IW searches (Lipovetzky
& Geffner, 2012).

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

DREXLER, SEIPP, & GEFFNER

In this work, we address the limitations of the SIW algorithm differently by using a simple but
powerful language for expressing richer problem decompositions recently introduced by Bonet and
Geffner (2021), called policy sketches. A policy sketch is a set of sketch rules over a set of Boolean
and numerical features of the form C 7→ E that express how the values of the features are supposed
to change. Like general policies (Bonet & Geffner, 2018), sketches are general and not tailored to
specific instances of a domain, but unlike policies, the feature changes expressed by sketch rules
represent subgoals that do not need to be achieved in a single step.

We pick up here where Bonet and Geffner left off and show that many benchmark planning
domains that SIW cannot solve are provably solvable in low polynomial time with the SIWR al-
gorithm, the version of SIW that makes use of user-provided policy sketches. Policy sketches are
thus shown to be a powerful language for expressing domain-specific knowledge in a simple and
compact way and a convenient alternative to languages such as HTNs or temporal logics. Bonet
and Geffner introduce the language of sketches and the theory behind them; we show their use and
the properties that follow from them. As we will see, unlike HTNs and temporal logics, sketches
can be used to express and exploit the common subgoal structure of planning domains without
having to express how subgoals are to be achieved. Also, by being simple and succinct, they provide
a convenient target language for learning the subgoal structure of domains automatically, although
this problem, related to the problem of learning general policies (Bonet, Francès, & Geffner, 2019;
Francès, Bonet, & Geffner, 2021), is outside the scope of this article. In this work, we use sketches
to solve domains in polynomial time, which excludes intractable domains. Indeed, intractable do-
mains do not have general policies nor sketches of bounded width and require non-polynomial
searches. Sketches and general policies, however, are closely related: sketches provide the skeleton
of a general policy, or a general policy with “holes” that are filled by searches that can be shown to
be polynomial (Bonet & Geffner, 2021).

This article is an extended version of a conference paper published at the International Con-
ference on Knowledge Representation and Reasoning (Drexler, Seipp, & Geffner, 2021) with the
following main extensions: first, we prove properties of the policy sketches for all seven bench-
mark domains that we consider (the conference paper only contains two proofs). We also correct
the previously reported upper bounds on the sketch width for the Grid and TPP domains. Second,
we provide detailed information about the description logic grammar and the state features that
we use in the policy sketches. Third, in our experiments, we evaluate the new SIWR algorithm in
both a grounded and a lifted planner and compare both implementations to baseline planners on an
additional set of harder benchmarks. Fourth, we release the code for constructing and evaluating
description logic features in the form of an open-source C++ library (with Python bindings), called
DLPlan. Finally, we expand the related work section to cover general policies, reward machines,
landmarks and polynomial algorithms for domain-independent planning.

Since the publication of the original conference paper, there have been several works by us
and others building on the ideas presented here. In particular, we have shown that it is possible
to learn sketches automatically (Drexler, Seipp, & Geffner, 2022) and that we can use them as
building blocks for learning hierarchical policies (Drexler, Seipp, & Geffner, 2023b). Daggelinckx
(2023) used temporal logic to exhaustively generate all well-formed sketches up to a given size and
Grundke (2022) compared policy sketches to other forms of domain-specific knowledge. Finally,
Dalmau-Moreno, Garcı́a, Gómez, and Geffner (2023) used policy sketches for combined task and
motion planning. To keep the size of this article manageable, we focus exclusively on handcrafted
sketches and their analysis here, but discuss related work in Section 7.

172

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

The article is organized as follows. We review the notions of width (Section 2), policy sketches
(Section 3), and sketch width (Section 4), following Bonet and Geffner (2021). In Section 5, we
show that it is possible to write compact and transparent policy sketches for many domains and
establish their widths. We analyze the performance of the SIWR algorithm using these sketches
in Section 6. Finally, we compare sketches to HTNs and temporal logics and briefly discuss the
challenge of learning sketches automatically (Section 7), before summarizing the main contributions
in Section 8.

2. Planning and Width

A classical planning problem or instance P = (D, I) is assumed to be given by a first-order domain
D with action schemas defined over some domain predicates, and instance information I describing
a set of objects, and two sets of ground literals describing the initial situation Init and goal descrip-
tion Goal . The initial situation is assumed to be complete such that either L or its complement is
in Init . A problem P defines a state model S(P) = (S, s0, G,Act , A, f) where the states in S are
the truth valuations over the ground atoms represented by the set of literals that they make true, the
initial state s0 is Init , the set of goal states G includes all of those that make the goal atoms in Goal
true, the actions Act are the ground actions obtained from the action schemas and the objects, the
actionsA(s) applicable in state s are those whose preconditions are true in s, and the state transition
function f maps a state s and an action a ∈ A(s) into the successor state s′ = f(a, s). A plan π for
P is a sequence of actions a0, . . . , an that is executable in s0 and maps the initial state s0 into a goal
state; i.e., ai ∈ A(si), si+1 = f(ai, si), and sn+1 ∈ G. The cost of a plan is assumed to be given by
its length, and a plan is optimal if there is no shorter plan. We are interested in solving collections
of well-formed instances P = (D, I) over fixed domains D denoted as QD or simply as Q.

The most basic width-based search method for solving a planning problem P is IW(1). It
performs a standard breadth-first search in the rooted directed graph associated with the state model
S(P) with one modification: IW(1) prunes a newly generated state if it does not make an atom r
true for the first time in the search. The procedure IW(k) for k > 1 is like IW(1) but prunes a
state if a newly generated state does not make a collection of up to k atoms true for the first time.
Underlying the IW algorithms is the notion of problem width (Lipovetzky & Geffner, 2012):

Definition 1 (Width). Let P be a classical planning problem with initial state s0 and goal states
G. The width w(P) of P is the minimum k for which there exists a sequence t0, t1, . . . , tm of atom
tuples ti, each consisting of at most k atoms, such that:

1. t0 is true in initial state s0 of P ,

2. all optimal plans for ti can be extended into an optimal plan for ti+1 by adding a single
action, i = 1, . . . ,m− 1,

3. if π is an optimal plan for tm, then π is an optimal plan for P .

If a problem P is unsolvable, w(P) is set to the number of variables in P , and if P is solvable
in at most one step, w(P) is set to 0 (Bonet & Geffner, 2021). Chains of tuples θ = (t0, t1, . . . , tm)
that comply with conditions 1–3 are called admissible, and the size of θ is the size |ti| of the largest
tuple in the chain. We talk about the third condition by saying that tm implies G in the admissible
chain t1, t2, . . . , tm. The width w(P) is thus k if k is the minimum size of an admissible chain for

173

DREXLER, SEIPP, & GEFFNER

P . If the width of a problem P is w(P) = k, IW(k) finds an optimal (shortest) plan for P in time
and space that are exponential in k and not in the number of problem variables N as breadth-first
search.

The IW(k) algorithm expands up to Nk nodes, generates up to bNk nodes, and runs in time
and space O(bN2k−1) and O(bNk), respectively, where N is the number of atoms and b bounds
the branching factor in problem P . IW(k) is guaranteed to solve P optimally (shortest path) if
w(P) ≤ k. If the width of P is not known, the IW algorithm can be run instead which calls IW(k)
iteratively for k=0, 1, . . . , N until the problem is solved, or found to be unsolvable.

While IW and IW(k) algorithms are not practical by themselves, they are building blocks for
other methods. Serialized Iterated Width or SIW (Lipovetzky & Geffner, 2012), starts at the initial
state s = s0 of P , and then performs an IW search from s to find a shortest path to state s′ such that
#g(s′) < #g(s) where #g counts the number of top goals of P that are not true in s. If s′ is not a
goal state, s is set to s′ and the loop repeats until a goal state is reached.

In practice, the IW(k) searches in SIW are limited to k ≤ 2 or k ≤ 3, so that SIW solves a
problem or fails in low polynomial time. SIW performs well in many benchmark domains but fails
in problems where the width of some top goal is not small, or the top goals cannot be serialized
greedily. More recent methods address these limitations by using width-based notions (novelty
measures) in complete best-first search algorithms (Lipovetzky & Geffner, 2017a; Francès et al.,
2017), yet they also struggle in problems where some top goals have high width. In this work, we
take a different route: we keep the greedy polynomial searches underlying SIW but consider a richer
class of problem decompositions expressed through sketches. The resulting planner SIWR is not
domain-independent like SIW, but it illustrates that a bit of domain knowledge can go a long way in
the effective solution of arbitrary domain instances.

3. Features and Sketches

A feature is a function of the state over a class of problems Q. The features considered in the
language of sketches are Boolean, taking values in the Boolean domain, or numerical, taking values
in the non-negative integers. For a set Φ of features and a state s of some instance P in Q, f(s) is
the feature valuation determined by a state s. A Boolean feature valuation over Φ refers instead to
the valuation of the expressions p and n = 0 for Boolean and numerical features p and n in Φ. If
f is a feature valuation, b(f) will denote the Boolean feature valuation determined by f where the
values of numerical features are just compared with 0.

The set of features Φ distinguish or separate the goals in Q if there is a set BQ of Boolean
feature valuations such that s is a goal state of an instance P ∈ Q iff b(f(s)) ∈ BQ. For example,
if Qclear is the set of all blocks world instances with stack/unstack operators and common goal
clear(x) ∧ handempty for some block x, and Φ = {n(x), H} are the features that track the
number of blocks above x and whether the gripper is holding a block, then there is a single Boolean
goal valuation that makes the expression n(x) = 0 true and H false.

A sketch rule over features Φ has the form C 7→ E where C consists of Boolean feature
conditions, and E consists of feature effects. A Boolean (feature) condition is of the form p or ¬p
for a Boolean feature p in Φ, or n = 0 or n > 0 for a numerical feature n in Φ. A feature effect is an
expression of the form p, ¬p, or p? for a Boolean feature p in Φ, and n↓, n↑, or n? for a numerical
feature n in Φ. The syntax of sketch rules is the syntax of the policy rules used to define generalized
policies (Bonet & Geffner, 2018), but their semantics is different. In policy rules, the effects have to

174

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

be delivered in one step by state transitions, while in sketch rules, they can be delivered by longer
state sequences.

A policy sketch RΦ is a collection of sketch rules over the features Φ and the sketch is well-
formed if it is built from features that distinguish the goals in Q, and is terminating (to be made
precise below). A well-formed sketch for a class of problems Q defines a serialization over Q;
namely, a “preference” ordering ‘≺’ over the feature valuations that is irreflexive and transitive, and
which is given by the smallest strict partial order that satisfies f ′ ≺ f if f ′ is not a goal valuation
and the pair of feature valuations (f, f ′) satisfies a sketch rule C 7→ E. This happens when: 1) C
is true in f , 2) the Boolean effects p (¬p) in E are true in f ′, 3) the numerical effects are satisfied by
the pair (f, f ′); i.e., if n↓ in E (resp. n↑), then the value of n in f ′ is smaller than in f , i.e., f ′n < fn
(resp. fn > f ′n), and 4) Features that do not occur in E have the same value in f and f ′. Effects p?
and n? do not constrain the value of the features p and n in any way, and by including them in E,
we say that they can change in any way, as opposed to features that are not mentioned in E whose
values in f and f ′ must be the same. Following Bonet and Geffner, we do not use the serializations
determined by sketches but their associated problem decompositions.

The set of subgoal states Gr(s) associated with a sketch rule r : C 7→ E in RΦ and a state
s for a problem P ∈ Q, is the set of states s′ that are either goal states of P or those with feature
valuations f(s′) such that (f(s), f(s′)) satisfies the sketch rule r. Intuitively, when in a state s, the
subgoal states s′ in Gr(s) provide a stepping stone in the search for plans connecting s to the goal
of P . Furthermore G∗r(s) denotes the set of subgoal states in Gr(s) that are closest to s, GR(s)
denotes the set of subgoal states associated with a sketch R, i.e., GR(s) =

⋃
r∈RGr(s), and G∗R(s)

denotes the set of subgoal states in GR(s) that are closest to s.

4. Serialized Iterated Width with Sketches

The SIWR algorithm is a variant of the SIW algorithm that uses a given sketch R = RΦ for solving
problems P ∈ Q. SIWR starts at the state s := s0, where s0 is the initial state of P , and then
performs an IW search to find a state s′ that is closest from s such that s′ is a goal state of P or
a subgoal state in Gr(s) for some sketch rule r in R. If s′ is not a goal state, then s is set to s′,
s := s′, and the loop repeats until a goal state is reached. The features define subgoal states through
the sketch rules but otherwise play no role in the IW searches.

The only difference between SIW and SIWR is that in SIW each IW search finishes when the
goal counter #g is decremented, while in SIWR, when a goal or subgoal state is reached. The
behavior of plain SIW can be emulated in SIWR using the single sketch rule {#g > 0} 7→ {#g↓} in
R when the goal counter #g is the only feature, and the rule {#g > 0} 7→ {#g↓, p?, n?}, when p
and n are the other features. This last rule says that it is always “good” to decrease the goal counter
independently of the effects on other features, or alternatively, that decreasing the goal counter is a
subgoal from any state s where #g(s) is positive.

The complexity of SIWR over a class of problems Q can be bounded in terms of the width of
the sketch RΦ, which is given by the width of the possible subproblems that can be encountered
during the execution of SIWR when solving a problem P inQ. For this, let us define the set SR(P)
of reachable states in P when following the sketch R = RΦ recursively as follows: 1) the initial
state s of P is in SR(P), 2) the subgoal states s′ ∈ G∗R(s) are in SR(P) if s ∈ SR(P). The states
in SR(P) are called the R-reachable states in P . The width of sketch R is then defined as follows
(Bonet & Geffner, 2021).

175

DREXLER, SEIPP, & GEFFNER

Definition 2 (Sketch width). Let R = RΦ be a well-formed sketch for a class of problems Q. The
width of the sketch R at state s of problem P ∈ Q, denoted wR(P [s,G∗R(s)]), is the width k of the
subproblem P [s,G∗R(s)] that is like P but with initial state s and goal states G∗R(s). The width of
the sketch R over Q is wR(Q) = maxP,swR(P [s,G∗R(s)]) for P ∈ Q and s ∈ SR(P).1

The time complexity of SIWR can then be expressed as follows, under the assumption that the
features are all linear (Bonet & Geffner, 2021).

Theorem 3. If the width wR(Q) = k of a well-formed sketchR = RΦ then SIWR solves any P ∈ Q
in O(bN |Φ|+2k−1) time and O(bNk +N |Φ|+k) space.

A feature is linear if it can be computed in linear time and can take a linear number of values at
most. In both cases, the linearity is in the number of atoms N in the problem P inQ. If the features
are not linear but polynomial in P , the bounds on SIWR remain polynomial as well (both k and Φ
are constants).

Bonet and Geffner introduce and study the language of sketches as a variation of the language
of general policies and their relation to the width and serialized width of planning domains. They
illustrate the use of sketches in a simple example (Delivery) but focus mainly on the theoretical
aspects. Here we focus instead on their use for modeling domain-specific knowledge in the standard
planning benchmarks as an alternative to languages like HTNs.

5. Sketches for Classical Planning Domains

In this section, we present policy sketches for seven classical planning domains from the Interna-
tional Planning Competition (IPC). All of the chosen domains are solvable suboptimally in poly-
nomial time, but plain SIW fails to solve them. There are two main reasons why SIW fails. First,
SIW fails if achieving a single goal atom has too large width, and second, SIW fails if greedy goal
serialization generates such avoidable subproblems, including reaching unsolvable states.

We provide a handcrafted sketch for each of the domains and show that it is well-formed and
has small sketch width. These sketches allow SIWR to solve all instances of the domain in low
polynomial time and space by Theorem 3. Furthermore, we impose a low polynomial complexity
bound on the runtime of the evaluation of each feature, i.e., at most cubic in the number of grounded
atoms. Limiting feature complexity is required since without any limit, one could use a numerical
feature that encodes the optimal value function V ∗(s), i.e., the perfect goal distance of all states
s. Using this feature in combination with the sketch rule {V ∗ > 0} 7→ {V ∗↓} would make all
problems trivially solvable. Even with linear and quadratic features, we can capture complex state
properties such as distances between objects.

Aside from limiting their computational complexity, we impose no further assumptions on the
features. However, we found that all features required for the sketches below can be defined with
a description logic grammar (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003;
Francès et al., 2021) over primitive PDDL predicates. Using a common representation for the
features simplifies evaluating them for a given state and makes it easy to check that they can indeed
be evaluated in low polynomial time. We present the description logic grammar and the feature

1. This definition changes the one by Bonet and Geffner slightly by restricting the reachable states s to those that are R-
reachable; i.e., part of SR(P). This distinction is convenient when Q does not contain all possible “legal” instances
P but only those in which the initial situations complies with certain conditions (e.g., robot arm is empty). In those
cases, the sketches forQ do not have to cover all reachable states.

176

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

representations in the appendix. For the presentation and theoretical analysis of the sketches the
feature representation is irrelevant, so we do not discuss it further in the main part of the article.

5.1 Proving Termination and Sketch Width

For each sketch introduced below we show that it uses goal-separating features, is terminating and
has bounded and small sketch width. Showing that the features are goal separating is usually direct.

Proving termination is required to ensure that by iteratively moving from a state s to a subgoal
state s′ ∈ G∗R(s) we cannot get trapped in a cycle. The conditions under which a sketch RΦ

is terminating are similar to those that ensure that a general policy πΦ is terminating (Srivastava,
Zilberstein, Immerman, & Geffner, 2011; Bonet & Geffner, 2020b, 2021), and can be determined
in polynomial time in the size of the policy graph G(RΦ) using the SIEVE procedure where RΦ is
interpreted as a general policy (Srivastava et al., 2011; Bonet & Geffner, 2020b).

The policy graph G(RΦ), or simply G(R), for sketch R over features Φ has a node for each
of the 2|Φ| Boolean feature valuations over Φ, and edges b → b′ labeled with E if b is not a goal
valuation and (b, b′) is compatible with a rule C 7→ E in the sketch.

The SIEVE procedure was originally introduced for numerical features only. In the following,
we extend it to also work for Boolean features. We say that a ruleC 7→ E changes a Boolean feature
p if p ∈ C and ¬p ∈ E or vice versa. SIEVE then iteratively checks whether the feature changes
on the edges b → b′ in a strongly connected component (SCC) of G(R) do not allow for infinite
execution, i.e., at least some numerical feature n decreases (n↓) in the SCC and never increases
(n↑), or at least one Boolean feature p changes from true to false (resp. false to true) in the SCC.
The procedure then iteratively eliminates such edges, effectively breaking SCCs into smaller SCCs.
If the largest SCC has size one, then the sketch R over features Φ is terminating; otherwise, the
sketch is not terminating.

Often, however, a simple syntactic procedure suffices that eliminates sketch rules, one after
the other, until none is left. This syntactic procedure is sound but not complete in general. The
procedure iteratively applies one of the following cases until no rule is left (the sketch terminates)
or until no further cases apply (there may be an infinite loop in the sketch):

1. Eliminate a rule r if it decreases a numerical feature n (n↓) that no other remaining rule can
increase (n↑ or n?), and mark n to indicate that n changes finitely often,

2. Eliminate a rule r if it changes the value of a Boolean feature p that no other remaining rule
changes in the opposite direction, and mark p to indicate that p changes finitely often,

3. Eliminate a rule r = C 7→ E that decreases a numerical feature n or that changes a Boolean
feature p to true (false) such that for all other remaining rules r′ = C ′ 7→ E′ it holds that if
E′ changes the feature in the opposite direction, i.e., n↑, n? or changes p to false (true), there
must be a condition on a numerical feature m or Boolean feature q in C that is marked and is
complementary to the one in C ′, e.g., m> 0 ∈ C and m= 0 ∈ C ′ or q ∈ C and ¬q ∈ C ′.

Theorem 4. The incomplete termination test procedure is sound in the sense that if it returns that a
sketch R is terminating then R is indeed terminating.

Proof. We must show that if the incomplete procedure removes a rule r ∈ R then the SIEVE al-
gorithm removes all edges with label r in the policy graph G(R). The SIEVE algorithm iteratively

177

DREXLER, SEIPP, & GEFFNER

removes edges from the strongly connected components (SCCs) of the policy graph G(R). It re-
moves an edge with label r from an SCC if the rule r decreases a numerical feature n, i.e., n↓,
that is never incremented in the SCC, i.e., n? or n↑. Originally, SIEVE does not consider Boolean
features in the elimination. We allow SIEVE to remove an edge with label r from an SCC if the rule
r changes a Boolean feature p that is never changed in the opposite direction in the SCC. Since r
changes a Boolean feature in the SCC that no other rule changes in the opposite direction then the
rule r cannot be part of a cycle. Next, consider the cases 1–3 from above:

1. The eliminated rule r decreases n and no other rule r′ increases n. Hence, in all SCCs of
G(R), the rule r decreases n and it is never increased in the SCC. Thus, SIEVE removes all
edges labeled r.

2. The eliminated rule r changes p which no other rule r′ changes in the opposite direction.
Hence, in all SCCs of G(R), the rule r changes p which is never changed in the opposite
direction in the SCC. Thus, SIEVE removes all edges labeled r.

3. Consider marked numerical feature n and marked Boolean feature p. Then there does not
exist an SCC that contains Boolean feature valuations b, b′ where n= 0 ∈ b, n> 0 ∈ b′, or
p ∈ b,¬p ∈ b′, or ¬p ∈ b, p ∈ b′ because those change only finitely many times. The
eliminated rule r = C 7→ E has condition either n= 0, n> 0,¬p or p and has only edges in
one SCC C1 that decrease a numerical feature m or change a Boolean feature q. The rules
r′ that increase m or change q in the opposite direction have complementary conditions and
therefore, have edges in other SCCs C2. Thus, SIEVE removes all edges with label r because
r decreases m and no other rule r′ increases m in C1 or r changes p and no other rule r′

changes p in the opposite direction in C1.

Showing that a sketch for problem class Q has sketch width k requires to prove that for all
R-reachable states s in all problem instances P ∈ Q, the width of P [s] is bounded by k. Remember
that P [s] is like P but with initial state s, and goal states G of P combined with goal states Gr(s)
of all r ∈ R. We need to show that the first subproblem Pi = P [s] with initial state s of P and
i = 0 has width at most k. Then for any closest subgoal state s′ of Pi, we need to show that the
next subproblem Pi+1 = P [s′] has width at most k until all closest subgoal states are goals of P .
We prove the width of each subproblem Pi by providing an admissible chain t1, . . . , tm of size at
most k where all optimal plans for tm are also optimal plans for Pi. We overapproximate the set
of R-reachable states where necessary to make the proofs more compact. This implies that our
results provide an upper bound on the actual sketch width, which is small and tight. Furthermore,
regardless of which rule r defines the closest subgoal Gr(s) for an R-reachable state s, we show
that P [s] with subgoal Gr(s) in the R-reachable state s has width k. This suffices because the rule
that defines the closest subgoals satisfies the optimality in the third part of the definition of width.

5.2 Floortile

In the Floortile domain (Linares López, Celorrio, & Olaya, 2015), a set of robots have to paint a set
of tiles in a grid. As is done in the IPC tasks, we consider a simpler version of the domain where the
robots have to paint a rectangular portion of a rectangular grid. There can be at most one robot a on
each tile t at any time and the predicate robot-at(a, t) is true iff a is on tile t . If there is no robot on
tile t then t is marked as clear, i.e., clear(t) holds. Robots can move left, right, up or down, if the

178

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

target tile is clear. Each robot a is equipped with a brush that is configured to either paint in black
or white , e.g., robot-has(a, black) is true iff the brush of robot a is configured to paint in black . It
is possible to change the color infinitely often. The goal is to paint a rectangular subset of the grid
in chessboard style. If a tile t has color c then the predicate painted(t , c) holds and additionally the
tile is marked as not clear, i.e., clear(t) does not hold. A robot a can only paint tile t if a is on a tile
t ′ that is below or above t and t is clear, i.e., robot-at(a, t ′) holds, up(t ′, t) or down(t ′, t) holds,
and clear(t) holds.

Consider the set of features Φ = {g, v} where g counts the number of unpainted tiles that need
to be painted and v represents that the following condition is satisfied: for each tile t1 that remains
to be painted there exists a sequence of tiles t1, . . . , tn such that each ti with i = 1, . . . , n − 1
remains to be painted, tn does not need to be painted, and for all pairs ti−1, ti with i = 2, . . . , n
holds that ti is above ti−1, i.e., up(ti−1, ti), or for all pairs ti−1, ti with i = 2, . . . , n it holds that ti
is below ti−1, i.e., down(ti−1, ti). Intuitively, v is true iff a given state is solvable. The set of sketch
rules RF

Φ contains the single rule

r = {v, g > 0} 7→ {g↓}

which says that painting a tile such that the invariant v remains satisfied is good.

Theorem 5. The sketch RF
Φ for the Floortile domain is well-formed and has width 2.

Proof. Recall that a sketch is well-formed if it uses goal-separating features and is terminating. The
features Φ are goal separating because the feature valuation g= 0 holds in state s iff s is a goal
state. The sketch RΦ is terminating because r decreases the numerical feature g and no other rule
increases g.

It remains to show that the sketch width is 2. Consider a Floortile instance P with states S.
If the initial state s is a solvable non-goal state, then the feature conditions of r are true, and the
subgoal Gr(s) is nonempty. If we reach such a subgoal state, then either the feature conditions of r
remain true because the invariant remains satisfied or the overall goal was reached. Next, we show
that P [s] with subgoal Gr(s) in R-reachable state s has width 2. Consider states S1 ⊆ S where the
feature conditions of rule r are true, i.e., solvable states where a tile t must be painted in a color c.
We do a three-way case distinction over states S1.

First, consider states S1
1 ⊆ S1 where some robot a on tile t1 that is configured to color c,

can move to tile tn above or below t to paint it. The singleton tuple painted(t, c) implies Gr(s) in
s ∈ S1

1 in the admissible chain that consists of moving a from t1 to tn, while decreasing the distance
to tn in each step, and painting t , i.e.,

(robot-at(a, t1), . . . , robot-at(a, tn), painted(t , c)).

Second, consider states S2
1 ⊆ S1 where the robot a must reconfigure its color from c′ to c before

painting. The tuple (robot-at(a, tn), painted(t , c)) impliesGr(s) in s ∈ S2
1 in the admissible chain

that consists of reconfiguring the color, and then moving closer and painting as before, i.e.,

((robot-at(a, t1), robot-has(a, c′)),

(robot-at(a, t1), robot-has(a, c)), . . . ,

(robot-at(a, tn), robot-has(a, c)),

(robot-at(a, tn), painted(t , c))).

179

DREXLER, SEIPP, & GEFFNER

We observe that reconfiguring requires an admissible chain of size 2 because of serializing the
reconfiguring and the moving part. Therefore, in the following case, we assume that the robot must
reconfigure its color.

Third, consider states S3
1 ⊆ S1 where robot a is standing on t and there is a sequence of robots

a1, . . . , an such that a can only paint t if each a1, . . . , an moves in such a way that tile t ′ above or
below t becomes clear. Using the fact that a rectangular portion inside a rectangular grid has to be
painted, it follows that the set of tiles that must not be painted is pairwise connected. Therefore, we
can move each robot ai from its current tile t ′i to ti in such a way that after moving each robot, tile t
becomes clear. The tuple (robot-at(a, t ′), painted(t , c)) implies Gr(s) in s ∈ S3

1 in the admissible
chain that consists of moving each robot ai from t ′i to ti in such a way that moving all of them clears
tile t ′, followed by moving a to t ′, and painting t , i.e.,

((robot-at(a, t), robot-has(a, c′)),

(robot-at(a, t), robot-has(a, c)),

(robot-at(a1, t1), robot-has(a, c)), . . . ,

(robot-at(an, tn), robot-has(a, c)),

(robot-at(a, t ′), robot-has(a, c)),

(robot-at(a, t ′), painted(t , c)))

We obtain sketch width 2 because all tuples in admissible chains have size of at most 2.

5.3 TPP

In the Traveling Purchaser Problem (TPP) domain, there is a set of places that can either be markets
or depots, a set of trucks, and a set of goods (Gerevini, Haslum, Long, Saetti, & Dimopoulos,
2009). The places are connected via a roads, allowing trucks to drive between them. If a truck t
is at place p, then atom at(t , p) holds. Each market p sells specific quantities of goods, e.g., atom
on-sale(g , p, 2) represents that market p sells two quantities of good g . If there is a truck t available
at market p, it can buy a fraction of the available quantity of good g , making g available to be
loaded into t , while the quantity available at p decreases accordingly, i.e., atom on-sale(g , p, 1) and
ready-to-load(g , p, 1) hold afterwards. The trucks can unload the goods at any depot, effectively
increasing the number of stored goods, e.g., atom stored(g , 1) becomes false, and stored(g , 2)
becomes true, indicating that two quantities of good g are stored. The goal is to store specific
quantities of specific goods.

SIW fails in TPP because loading sufficiently many quantities of a single good can require
buying and loading them from different markets. Making the goods available optimally requires
taking the direct route to each market followed by buying the quantity of goods. Thus, the problem
width is bounded by the number of quantities needed.

Consider the set of features Φ = {b, l ,n} where b is the number of ready-to-be-loaded goods
that are not bought at a market and of which some quantity remains to be stored, l is the number of
goods of which some quantity remains to be stored and are not loaded in a truck, and n is the sum

180

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

of quantities of goods that remain to be stored. The sketch rules in RT
Φ are defined as

r1 = {b> 0} 7→ {b↓}
r2 = {l > 0} 7→ {b?, l↓}
r3 = {n > 0} 7→ {b?, l?,n↓},

where rule r1 says that buying any quantity of a good that remains to be stored is good, rule r2 says
that loading any quantity of a good that remains to be stored is good, and rule r3 says that storing
any quantity of a good for which have not yet stored enough is good.2

Theorem 6. The sketch RT
Φ for the TPP domain is well-formed and has width 1.

Proof. The features are goal separating because n = 0 holds in state s iff s is a goal state. We show
that the sketchRΦ is terminating by iteratively eliminating rules: r3 decreases the numerical feature
n which no other rule increments, so we eliminate r3 and mark n . Next, r2 decreases l which no
other rule increments, so we eliminate r2 and mark l . Now only r1 remains, and we can eliminate it
since it decreases b, which is never incremented.

It remains to show that the sketch width is 1. Consider any TPP instance P . In the initial
state s, the feature conditions of at least one rule r are true and the corresponding subgoal Gr(s) is
nonempty. In the subgoal states s′ ∈ Gr1(s) of some state s the feature conditions of r2 must be
true, the set of subgoal states Gr2(s′) is nonempty, and the feature conditions of r1 can remain true
and the set of subgoal states remains nonempty. Similarly, in the subgoal states s′ ∈ Gr2(s) of some
state s the feature conditions of r3 must be true, the set of subgoal states Gr3(s′) is nonempty, and
the feature conditions of r1 and r2 can remain true and the set of subgoal states remains nonempty.
At some point, the subgoal of r3 is the overall goal of the problem. Next, we show that the sketch
has width 1.

First, we consider rule r1. Intuitively, we show that buying a good, that is not yet ready to be
loaded but of which some quantity remains to be stored in a depot, has width at most 1. Consider
states S1 ⊆ S where the feature conditions of r1 are true, i.e., states where there is no good g bought
and therefore ready to be loaded in a truck but of which some quantity remains to be stored in a de-
pot. With Gr1(s) we denote the subgoal states of r1 in s ∈ S1, i.e., states where some quantity qb of
g is bought and therefore ready to be loaded. The tuple ready-to-load(g , p, qb) implies Gr1(s) in
s ∈ S1 in the admissible chain that consists of moving a truck t from its current place p1 to the clos-
est market pn where nonzero quantities qa of g are available, ordered descendingly by their distance
to pn, buying qb ≤ qa quantities of g , i.e., (at(t , p1), . . . , at(t , pn), ready-to-load(g , pn, qb)).

Second, we consider rule r2. Intuitively, we show that loading a good that is not yet loaded but
of which some quantity remains to be stored in a depot has width at most 1. Consider states S2 ⊆ S
where the feature conditions of r2 are true, and some quantity of a good g that remains to be stored
is ready to be loaded (see above), i.e., states where there is no truck that has g loaded, but of which

2. The theorem for the TPP sketch in our previous work contains an error (Drexler et al., 2021). The original sketch
only contained the features l and n , and the rules r2 and r3, and we claimed that the subproblem of loading a quantity
of a good that remains to be stored has width 1. This is wrong because making a good available to be loaded requires
any truck to be at the market, but all those optimal plans cannot be extended into an optimal plan for loading the
good into one specific truck. However, one can show that the effective width of such a subproblem is 1 because it is
irrelevant into which truck we load a good. To obtain a width-1 sketch, we must add another feature b and rule r1.
The rules r2, r3 are semantically identical as before, but have an additional effect b? for allowing the Boolean feature
b to change arbitrarily.

181

DREXLER, SEIPP, & GEFFNER

some quantity remains to be stored in a depot, and there is some nonzero quantity qb of g at place
pn ready to be loaded. With Gr2(s) we denote the subgoal states of r2 in s ∈ S2, i.e., states where
some quantity ql of g is loaded into a truck t . The tuple loaded(g , t , ql) implies Gr2(s) in s ∈ S2

in the admissible chain that consists of moving t from its current place p1 to the closest market pn,
ordered descendingly by their distance to pn, loading ql ≤ qb quantities of g , i.e., (at(t , p1), . . . ,
at(t , pn), loaded(g , t , ql)).

Last, we consider rule r3. Intuitively, we show that storing a good of which some quantity
remains to be stored in a depot has width at most 1. Consider states S3 ⊆ S where the feature
conditions of r3 are true and some quantity of a good that remains to be stored is loaded (see above),
i.e., states where some quantity of a good g remains to be stored in a depot, and some nonzero
quantity ql of g is loaded into a truck t because it has width 1 (see above). With Gr3(s) we denote
the subgoal states of r3 in s ∈ S3, i.e., states where the remaining quantity of g that remains to be
stored has decreased. The tuple stored(g , q′s) implies Gr3(s) in s ∈ S3 in the admissible chain that
consists of moving t from its current place p1 to the closest depot at place pn, ordered descendingly
by their distance to pn, storing q′l ≤ ql quantities of g , i.e., (at(t , p1), . . . , at(t , pn), stored(g , q′s)).

We obtain sketch width 1 because all tuples in admissible chains have a size of at most 1.

5.4 Barman

In the Barman domain (Linares López et al., 2015), there is a set of shakers, a set of shots, and a
set of dispensers where each dispenses a different ingredient. There are recipes of cocktails, each
consisting of two ingredients, e.g., the recipe for cocktail c consists of ingredients i1, i2. The goal is
to serve beverages, i.e., ingredients and/or cocktails. A beverage b is served in shot g if g contains
b. An ingredient i can be filled into shot g using one of the dispensers if g is clean. Producing a
cocktail c with a shaker t requires both ingredients i1, i2 of c to be in t . In such a situation, shaking
t produces c. Pouring a cocktail from t into shot g requires g to be clean. The barman robot has
two hands which limits the number of shots and shakers it can hold at the same time. Therefore, the
barman often has to put down an object before it can grasp a different object. For example, assume
that the barman holds the shaker t and some shot g ′ and assume that ingredient i must be filled into
shot g . Then the barman has to put down either t or g ′ so that it can pick up g with hand h . As
in the Barman tasks from previous IPCs, we assume that there is only a single shaker and that it is
initially empty.

Consider the set of features Φ = {g , u, c1, c2} where g is the number of unserved beverages,
u is the number of used shots, i.e., shots with a beverage different from the one mentioned in the
goal, c1 is true iff the first recipe ingredient of an unserved cocktail is in the shaker, and c2 is true
iff both recipe ingredients of an unserved cocktail are in the shaker. We define the following sketch
rules for RB

Φ :

r1 = {¬c1} 7→ {u?, c1},
r2 = {c1,¬c2} 7→ {u?, c2},
r3 = {u > 0} 7→ {u↓},
r4 = {g > 0} 7→ {g↓, c1?, c2?}.

Rule r1 says that filling an ingredient into the shaker is good if this ingredient is mentioned in the
first part of the recipe of an unserved cocktail. Rule r2 says the same for the second ingredient, after
the first ingredient has been added. Requiring the ingredients to be filled into the shaker in a fixed

182

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

order ensures bounded width, even for arbitrary-sized recipes. Rule r3 says that cleaning shots is
good and rule r4 says that serving an ingredient or cocktail is good.

Theorem 7. The sketch RB
Φ for the Barman domain is well-formed and has width 2.

Proof. The features Φ are goal separating because g = 0 holds in state s iff s is a goal state. We
show that the sketch is terminating by iteratively eliminating rules: first, we eliminate r4 because
it decreases the numerical feature g that no rule increases. Next, rules r1 and r2 can be eliminated
because both change a Boolean feature that no remaining rule changes in the opposite direction.
Last, we eliminate the r3 because it decrements the numerical feature u .

It remains to show that the sketch width is 2. Consider any Barman instance P with states S.
In the initial state s the feature conditions of r4 are true, and the subgoal Gr4(s) is nonempty. Note
that using r4 to reach a subgoal decreases the number of unserved beverages until the overall goal
is reached. Hence, r4 can be seen as the goal counter. If the beverage to be served is a cocktail or if
the shots are dirty, then this subproblem can be further decomposed into smaller subproblems using
rules r1, r2, r3 as follows. Producing a cocktail requires filling the shaker with correct ingredients
and can be achieved by successively reaching the subgoals defined by rules r1 and r2. Next, if the
shot required for serving was made dirty during this process, then r3 defines the subgoal of cleaning
it again. Finally, r4 defines the subgoal of serving the cocktail.

We first consider rule r3. Intuitively, we show that shots are cleaned with width at most 1.
Consider all states S1 ⊆ S where the feature conditions of r3 are true, i.e., states where there is
a used shot g such that used(g , b) holds for some beverage b that is not supposed to be in g ac-
cording to the goal description. With Gr3(s) we denote the subgoal states of r3 in s ∈ S1, i.e.,
states where g is clean. We do a case distinction over states S1. First, consider states S1

1 ⊆ S1

where the barman is holding g in hand h . The tuple clean(g) implies Gr3(s) for all s ∈ S1
1

in the admissible chain that consists of cleaning g , i.e., (holding(h, g), clean(g)). Second, con-
sider states S2

1 ⊆ S1 where the barman must grasp g with empty hand h first. The same tuple
clean(g) implies Gr3(s) for all s ∈ S2

1 in the admissible chain that consists of picking g , and
cleaning g , i.e., (ontable(g), holding(h, g), clean(g)). Last, consider states S3

1 ⊆ S1 where the
barman must exchange g ′ with g in hand h first. The same tuple clean(g) implies Gr3(s) for all
s ∈ S3

1 in the admissible chain that consists of putting down g ′, picking up g , cleaning g , i.e.,
(holding(h, g ′), ontable(g ′), holding(h, g), clean(g)). It also follows that we can reduce the set of
R-reachable states in our analysis to those where the container is already grasped if only a single
container is affected.

Next, we consider rule r1. Intuitively, we show that filling the first ingredient into the shaker
for producing a required cocktail has width at most 2. Consider states S2 ⊆ S where the feature
conditions of r1 are true and required shots are clean, i.e., states where no ingredient i1 consis-
tent with the first part of some unserved cocktail c’s recipe is in the shaker t . We do not need
to consider states where required shots are not clean because a shot can be cleaned with width
1 (see above). With Gr1(s) we denote the subgoal states of r1 in s, i.e., states where an ingre-
dient i1 consistent with the first recipe part of some unserved cocktail c is inside t . The tuple
(contains(t , i1), shaker -level(t , l1)) implies Gr1(s) in the admissible chain that consists of clean-
ing t , putting down t , picking a clean shot g , filling i1 into g using the corresponding dispenser, and

183

DREXLER, SEIPP, & GEFFNER

pouring g into t , i.e.,

((holding(h, t), shaker -level(t , l2)),

(holding(h, t), empty(t)),

(holding(h, t), clean(t)),

(ontable(t), clean(t)),

(holding(h, g), clean(t)),

(contains(g , i1), clean(t)),

(contains(t , i1), shaker -level(t , l1))).

Note that the feature conditions of rule r2 are true in states s′ in subgoal Gr1(s) with nonempty
subgoal Gr2(s′).

Next, we consider rule r2. Intuitively, we show that filling the second ingredient into the shaker
for producing a required cocktail has width at most 1. Consider states S3 ⊆ S where the feature
conditions of r2 are true and required shots are clean, i.e., states where the first ingredient consistent
with the recipe of an unserved cocktail c is in the shaker t , and required shots are clean because
a shot can be cleaned with width 1 (see above). With Gr2(s) we denote the subgoal states of r2

in s, i.e., states where an ingredient i2 is inside t such that both ingredients in t are consistent
with the recipe of an unserved cocktail c. The tuple (contains(t , i2), shaker -level(t , l2)) implies
Gr2(s) in the admissible chain that consists of putting down t , grasping g , filling i2 into g using the
corresponding dispenser, and pouring g into t , i.e.,

((holding(h, t), shaker -level(t , l1)),

(ontable(t), shaker -level(t , l1)),

(holding(h, g), ontable(t)),

(contains(g , i2), ontable(t)),

(contains(t , i2), shaker -level(t , l2))).

Finally, we consider rule r4, where we show intuitively that serving a beverage has width at most
1. We do a case distinction over all states S4 where the feature conditions of r4 are true, i.e., states
where there is an unserved ingredient or an unserved cocktail. First, consider states S1

4 ⊆ S4 where
there is an unserved ingredient i . G1

r4(s) is the set of subgoal states for r4 in s ∈ S1
4 where i is

served. The tuple contains(g , i) impliesG1
r4(s) in the admissible chain that consists of filling i into

g using the corresponding dispenser, i.e., (clean(g), contains(g , i)). Last, consider states S2
4 ⊆ S4

where there is an unserved cocktail c, respective ingredients are in the shaker using the results of
rule r1, r2, and required shots are clean using the results of rule r3. With G2

r4(s) we denote the
subgoal states of r4 in s ∈ S2

4 where c is served. The tuple contains(g , c) implies G2
r4(s) in the

admissible chain that consists of putting down g (or any other shot) because shaking requires only
the shaker t to be held, shaking t , and pouring t into g , i.e.,

(holding(h, g), ontable(g), contains(t , c), contains(g , c))

We obtain sketch width 2 because all tuples in admissible chains have a size of at most 2.

184

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

5.5 Grid

In the Grid domain (McDermott, 2000), a single robot operates in a grid-structured world. There
are keys and locks distributed over the grid cells. The robot can move to a cell c above, below, left
or right of its current cell if c does not contain a closed lock or another robot. The robot can drop,
pick or exchange keys at its current cell and can only hold a single key e at any time. Keys and locks
have different shapes and the robot, holding a matching key, can open a lock when standing on a
neighboring cell. The goal is to move keys to specific target locations that can be locked initially.
Initially, it is possible to reach every lock for the unlock operation. SIW fails in this domain when
goals need to be undone, i.e., a key has to be picked up from its target location to open a lock that is
necessary for picking or moving a different key.

Consider the set of features Φ = {l , k , o, t} where l is the number of locked grid cells, k is the
number of misplaced keys, o is true iff the robot holds a key for which there is a closed lock, and
t is true iff the robot holds a key that must be placed at some target grid cell. We define the sketch
rules for RG

Φ as:

r1 = {l > 0} 7→ {l↓, k?, o?, t?}
r2 = {l = 0, k > 0} 7→ {k↓, o?, t?}
r3 = {l > 0,¬o} 7→ {o, t?}
r4 = {l = 0,¬t} 7→ {o?, t}

Rule r1 says that unlocking grid cells is good. Rule r2 says that placing a key at its target cell is
good after opening all locks. Rule r3 says that picking up a key that can be used to open a locked
grid cell is good if there are locked grid cells. Rule r4 says that picking up a misplaced key is good
after opening all locks.

Theorem 8. The sketch RG
Φ for the Grid domain is well-formed and has width 2.3

Proof. The features Φ are goal separating because the feature valuation k = 0 holds in state s iff s
is a goal state. We show that the sketch is terminating by iteratively eliminating rules: r1 decreases
l which no other rule increases, so we eliminate r1 and mark l . Now r2 can be eliminated because
it decreases k which no remaining rule increases. We can now eliminate r3 = C 7→ E because it
changes the Boolean feature o and the only other remaining rule r4 = C ′ 7→ E′ may restore the
value of o, but this can only happen finitely often, since l is marked and l > 0 ∈ C and l = 0 ∈ C ′.
Now only r4 remains and we can eliminate it since it changes t , which is never changed back.

It remains to show that the sketch width is 1. Consider any Grid instance P with states S. Note
that depending on the initial state s the feature conditions of at least one rule r are true in s and
its subgoal Gr(s) are nonempty. We first consider rule r3. Intuitively, we show that picking up
a key that can be used to open some closed lock has width 1. Consider states S1 ⊆ S where the

3. The proof for the Grid sketch in our previous work (Drexler et al., 2021) contains an error: we claimed that the
subproblems of moving a key to its target cell have width 1. This is wrong because placing a key at a target lo-
cation by exchanging it with another key that is at its goal location, results in a state that is not a subgoal state.
Hence, the correct atom tuple in the admissible chain of rule r2, which also captures that the arm must be empty, is
(at(e, cn), arm-empty()) of size 2. A sketch of width 1 can be obtained by splitting the problem into moving to
the target location of the key with width 1 and then dropping the key with width 0. Since the exchange action can
be simulated with a pick and drop action, the above sketch still has a width of 1 for the domain variant where the
exchange action is removed entirely.

185

DREXLER, SEIPP, & GEFFNER

feature conditions of r3 are true, i.e., states where there is a closed lock and the robot does not hold
a key e that can be used to open a closed lock. With Gr3(s) we denote the subgoal states of r3

in s ∈ S1, i.e., states where the robot holds e . The tuple holding(e) implies Gr3(s) in s ∈ S1 in
the admissible chain that consists of changing the position of the robot from the current position
c1 to the position cn of e ordered by the distance to cn, and followed by exchanging or picking e ,
i.e., (at-robot(c1), . . . , at-robot(cn), holding(e)). Note that the feature conditions of r1 are true
in states s′ in subgoal Gr3(s) with nonempty subgoal states Gr1(s′) because the number of closed
locks remains greater than 0.

Next, we consider rule r1. Intuitively, we show that opening a closed lock has width 1. Consider
states S2 ⊆ S where feature conditions of r1 are true and the robot holds a key e that can be used
to open a closed lock d . We can transform states where the robot holds no key into a state from S2

by letting it pick a key with width 1 (see above). With Gr1(s) we denote the subgoal states of r1 in
s ∈ S2, i.e., states where d is open. The tuple open(d) implies Gr1(s) in s ∈ S2 in the admissible
chain that consists of changing the position of the robot from its current position c1 to a position cn
next to lock d ordered by the distance to cn, i.e., (at-robot(c1), . . . , at-robot(cn), open(d)). Note
that either there are still closed locks that can be opened by repeated usage of rules r1 and r3 or
the feature conditions of r2 or r4 are true in states s′ in the subgoal Gr1(s) with nonempty subgoal
states Gr2(s′) or Gr4(s′) respectively because there are misplaced keys. Hence, it remains to show
that if all locks are open then well-placing keys has width 1.

Next, we consider rule r4. Intuitively, we show that picking up a key that is not at its target cell
has width 1. Consider states S3 ⊆ S where the feature conditions of r4 are true, i.e., states where
all locks are open and the robot does not hold a misplaced key. With Gr4(s) we denote the subgoal
states of r4 in s ∈ S3, i.e., states where the robot holds e . The tuple holding(e) implies Gr4(s) in
s ∈ S3 in the admissible chain that consists of changing the position of the robot from the current
position c1 to the position cn of e ordered by the distance to cn, and followed by exchanging or
picking e , i.e., (at-robot(c1), . . . , at-robot(cn), holding(e)). Note that the feature conditions of r2

are true in states s′ in subgoal Gr4(s) with nonempty subgoal states Gr2(s′) because the number of
misplaced keys remains greater than 0.

Finally, we consider rule r2. Intuitively, we show that moving a key to its target cell has width 2.
Consider states S4 ⊆ S where the feature conditions of r2 are true and the robot holds a misplaced
key e . As before, we can transform states s′ /∈ S4 into such a state s by picking up e with width
1. With Gr2(s) we denote the subgoal states of r2 in s ∈ S4, i.e., states where e is at its target
cell. The tuple (at(e, cn), arm-empty()) implies Gr2(s) in s ∈ S4 in the admissible chain that
consists of changing the position of the robot from its current position c1 to the key’s target cell cn
ordered by the distance to cn, followed by dropping e at cn, i.e., (at-robot(c1), . . . , at-robot(cn),
(at(e, cn), arm-empty())).

We obtain sketch width 2 because all tuples in admissible chains have size at most 2.

5.6 Childsnack

In the Childsnack domain (Vallati, Chrpa, & McCluskey, 2018), there is a set of contents, a set of
trays, a set of gluten-free breads, a set of regular breads that contain gluten, a set of gluten-allergic
children, a set of children without gluten allergy, and a set of tables where the children sit. The
goal is to serve the gluten-allergic children with sandwiches made of gluten-free bread and the
non-allergic children with either type of sandwich.

186

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

The Childsnack domain has large bounded width because moving an empty tray is possible at
any given time. The goal serialization fails because it gets trapped in deadends when serving non-
allergic children with gluten-free sandwiches while leaving insufficiently many gluten-free sand-
wiches for the allergic children.

Consider the set of features Φ = {cg , cr , skg , sk , s tg , s t} where cg is the number of unserved
gluten-allergic children, cr is the number of unserved non-allergic children, skg holds iff there is a
gluten-free sandwich in the kitchen, sk holds iff there is any sandwich in the kitchen, s tg holds iff
there is a gluten-free sandwich on a tray, and s t holds iff there is any sandwich on a tray. We define
the following sketch rules RC

Φ :

r1 = {cg > 0,¬skg ,¬s tg} 7→ {skg , sk}
r2 = {cg = 0, cr > 0,¬sk ,¬s t} 7→ {sk}
r3 = {cg > 0, skg ,¬s tg} 7→ {skg ?, sk?, s tg , s

t}
r4 = {cg = 0, cr > 0, sk ,¬s t} 7→ {skg ?, sk?, s tg?, s t}
r5 = {cg > 0, s tg} 7→ {cg↓, s tg?, s t?}
r6 = {cg = 0, cr > 0, s t} 7→ {cr↓, s tg?, s t?}

Rule r1 says that making a gluten-free sandwich is good if there is an unserved gluten-allergic
child and if there is no other gluten-free sandwich currently being served. Rule r2 says the same
thing for non-allergic children after all gluten-allergic children have been served and the sandwich
to be made is not required to be gluten free. Rules r3 and r4 say that putting a gluten-free (resp.
regular) sandwich from the kitchen onto a tray is good if there is none on a tray yet. Rule r5 says
that serving gluten-allergic children before non-allergic children is good if there is a gluten-free
sandwich available on a tray. Rule r6 says that serving non-allergic children afterwards is good.

Theorem 9. The sketch RC
Φ for the Childsnack domain is well-formed and has width 1.

Proof. The features are goal separating because the feature valuations cg = 0 and cr = 0 hold in
state s iff s is a goal state. We show that the sketch is terminating by iteratively eliminating rules: r5

decreases the numerical feature cg which no other rule increments, so we eliminate r5 and mark cg .
Similarly, r6 decreases the numerical feature cr which no other rule increments, so we eliminate r6

and mark cr . Then rules r4 changes s t and no remaining rules changes s t in the opposite direction,
so we eliminate r4. Likewise, we eliminate r3 because it changes s tg , which no remaining rule can
change back. Last, we eliminate rules r1 and r2 because they change skg resp. sk , and no remaining
rule can change the values in the opposite direction.

It remains to show that the sketch width is 1. Consider any Childsnack instance with states S.
Note that if there is an unserved gluten-allergic child in the initial state then rules r1, r3, r5 define
subgoals for serving a gluten-allergic child. If there is no unserved gluten-allergic child but there is
an unserved non-allergic child then rules r2, r4, r6 define subgoals for serving a non-allergic child.
In the following, we first show that serving a gluten-free sandwich to a gluten-allergic child has
width 1 and deduce the case of serving a non-allergic child from it.

We first consider rule r1. Intuitively, we show that producing a gluten-free sandwich has width
1. Consider states S3 ⊆ S where the feature conditions of r1 are true, i.e., states where there is
an unserved gluten-allergic child c and there is no gluten-free sandwich available in kitchen nor
on a tray. With Gr1(s) we denote the subgoal states of r1 in s ∈ S3, i.e., states where gluten-free

187

DREXLER, SEIPP, & GEFFNER

sandwich s is available in kitchen . The tuple no-gluten-sandwich(s) implies Gr1(s) in s ∈ S3

in the admissible chain that consists of producing s , i.e., (notexists(s),no-gluten-sandwich(s)).
Note that the feature conditions of r3 are true in states s′ in the subgoal Gr1(s) with nonempty
subgoal Gr3(s′).

Next, we consider rule r3. Intuitively, we show that moving a gluten-free sandwich from the
kitchen onto a tray has width 1. Consider states S2 ⊆ S where the feature conditions of r3 are true,
i.e., states where there is an unserved gluten-allergic child c and there is a gluten-free sandwich s
available in kitchen . With Gr3(s) we denote the subgoal states of r3 in s ∈ S2, i.e., states where
s is on p. The tuple ontray(s, p) implies Gr3(s) in s ∈ S2 in the admissible chain that consists of
moving p from t to kitchen , putting s onto p, i.e., (at(p, t), at(p, kitchen), ontray(s, p)). Note
that the feature conditions of r5 are true in states s′ in the subgoal Gr3(s) with nonempty subgoal
Gr5(s′).

Next, we consider rule r5. Intuitively, we show that serving a gluten-allergic child if there is a
gluten-free sandwich is available on a tray has width 1. Consider states S1 ⊆ S where the feature
conditions of r5 are true, i.e., states where there is an unserved gluten-allergic child c and there is a
gluten-free sandwich s on a tray p. With Gr5(s) we denote the subgoal states of r5 in s ∈ S1, i.e.,
states where c is served. The tuple served(c) implies Gr5(s) in s ∈ S1 in the admissible chain that
consists of moving p from kitchen to t , serving c with s , i.e., (ontray(s, p), at(p, t), served(c)).
Note that if all gluten allergic children are served in this way by using rules r1, r3, r5 then ei-
ther G was reached or there are unserved non-allergic children. In the latter case, the problem
is very similar to the one we considered above and rules r2, r4, r6 define the corresponding sub-
goals to serve a non-allergic child. We omit the details but provide the admissible chains that
are necessary to conclude the proof: the tuple served(c) implies Gr6(s) in the admissible chain
(ontray(s, p), at(p, t), served(c)). The tuple ontray(s, p) implies Gr4(s) in the admissible chain
(at(p, t), at(p, kitchen), ontray(s, p)). The tuple at-kitchen-sandwich(s) implies Gr2(s) in the
admissible chain (notexists(s)), at-kitchen-sandwich(s)).

We obtain sketch width 1 because all tuples in admissible chains have a size of at most 1.

5.7 Driverlog

In the Driverlog domain (Long & Fox, 2003), there is a set of drivers, trucks, packages, road loca-
tions and path locations. The two types of locations form two strongly connected graphs and the
two sets of vertices overlap. The road graph is only traversable by trucks, while the path graph is
only traversable by drivers. A package can be delivered by loading it into a truck, driving the truck
to the target location of the package followed by unloading the package. Driving the truck requires
a driver to be in the truck. Not only packages, but also trucks and drivers can have goal locations.
SIW fails because it can be necessary to undo previously achieved goals, like moving a truck away
from its destination to transport a package. The following sketch induces a goal ordering such that
an increasing subset of goal atoms never needs to be undone.

Consider the set of features Φ = {p, t , dg, dt, b, l} where p is the number of misplaced pack-
ages, t is the number of misplaced trucks, dg is the sum of all distances of drivers to their respective
goal locations, dt is the minimum distance of any driver to a misplaced truck, b is true iff there is a
driver inside of a truck, and l is true iff there is a misplaced package in a truck. We define the sketch

188

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

rules RD
Φ as follows:

r1 = {p> 0,¬b} 7→ {dg?, dt?, b}
r2 = {p> 0,¬l} 7→ {t?, dg?, dt?, l}
r3 = {p> 0} 7→ {p↓, t?, dg?, dt?, l?}
r4 = {p = 0, t > 0, dt> 0} 7→ {dg?, dt↓, b?}
r5 = {p = 0, t > 0, dt = 0} 7→ {t↓, dg?, dt?}
r6 = {p = 0, t = 0, dg > 0} 7→ {dg↓, b?}

Rule r1 says that letting a driver board any truck is good if there are undelivered packages and there
is no driver boarded yet. Rule r2 says that loading an undelivered package is good. Rule r3 says that
delivering a package is good. Rule r4 says that moving any driver closer to being in a misplaced
truck is good after having delivered all packages. Rule r5 says that driving a misplaced truck to its
target location is good once all packages are delivered. Rule r6 says that moving a misplaced driver
closer to its target location is good after having delivered all packages and trucks.

Theorem 10. The sketch RD
Φ for the Driverlog domain is well-formed and has width 1.

Proof. The features are goal separating because the feature valuations p = 0, t = 0, dg = 0 hold in
state s iff s is a goal state. We show that the sketch is terminating by iteratively eliminating rules:
r3 decreases the numerical feature p that no other remaining rule increments, so we eliminate r3

and mark p. We can now eliminate r5 = C 7→ E because it decreases the numerical feature t and
the only other remaining rule r2 = C ′ 7→ E′ arbitrarily changes t , but this can only happen finitely
many times, since p is marked and p = 0 ∈ C and p> 0 ∈ C ′. Next, we can eliminate r2 because
it sets the Boolean feature l and no other remaining rule changes l in the opposite direction. We
can now eliminate r4 = C 7→ E because it decreases the numerical feature dt and the only other
remaining rule r1 = C ′ 7→ E′ arbitrarily changes dt, but this can only happen finitely many times,
since p is marked and p = 0 ∈ C and p> 0 ∈ C ′. Next, we can now eliminate r6 = C 7→ E because
it decreases the numerical feature dg and the only other remaining rule r1 = C ′ 7→ E′ arbitrarily
changes dg, but this can only happen finitely many times, since p is marked and p = 0 ∈ C and
p> 0 ∈ C ′. Last, we eliminate the remaining rule r1 because it sets the Boolean feature b to true.

It remains to show that the sketch width is 1. Consider any Driverlog instance with states S. If
there are misplaced packages in the initial state, then rule r3 decrements the number of misplaced
packages. Therefore, we show that moving packages to their target location has width 1. Consider
states S1 ⊆ S where there is a misplaced package p at location cm with target location co. We do
a three-way case distinction over all states S1 and show that moving a package to its target location
has width 1. First, consider rule r1. Intuitively, we show that boarding some driver into a truck has
width 1. Consider states S1

1 ⊆ S1 where the feature conditions of rule r1 are true, i.e., states there
is no driver boarded into any truck. With Gr1(s) we denote the subgoal states of r1 in s ∈ S1

1 , i.e.,
states where a driver d is boarded into a truck t . The tuple driving(d , t) implies Gr1(s) in s ∈ S1

1

in admissible chain that consists of moving d from c1 to cn, each step decreasing the distance to cn,
boarding d into t , i.e.,

(at(d , c1), . . . , at(d , cn), driving(d , t)).

Second, consider rule r2. Intuitively, we show that loading a misplaced package into a truck has
width 1. Consider states S2

1 ⊆ S1 where the feature conditions of rule r2 are true and where d is

189

DREXLER, SEIPP, & GEFFNER

boarded into truck t at location ln, i.e., no misplaced package is loaded, and d is boarded into t at
location ln because boarding has d into t if there is a misplaced package has width 1 (see above).
With Gr2(s) we denote the subgoal states of r2 in s ∈ S2

1 , i.e., states where p is loaded into t . The
tuple in(p, t) implies Gr2(s) in s ∈ S2

1 in the admissible chain that consists of driving t from cn to
cm, each step decreasing the distance to cm, loading p into t , i.e.,

(at(t , cn), . . . , at(t , cm), in(p, t)).

Third, consider rule r3. Intuitively, we show that moving a package to it target location has width
1. Consider states S3

1 ⊆ S1 where the feature conditions of rule r3 are true and where p and d is in
t at cm, i.e., states where p and d is in t at cm because loading driver and misplaced package has
width 1 (see above). With Gr3(s) we denote the subgoal states of r3 in s ∈ S3

1 , i.e., states where p
is at location co. The tuple at(p, co) implies Gr3(s) in the admissible chain that consists of driving
t from cm to co, each step decreasing the distance to co, and unloading p, i.e.,

(at(t , cm), . . . , at(t , co), at(p, co)).

Now, consider states S2 where all packages are at their respective target location and there is a
misplaced truck t at location ln with target location lm. This can either be the case in the initial state
or after moving the packages because it requires to use trucks. We do a two-way case distinction
over all states S2 and show that moving a truck to its target location has width 1. Consider rule r4.
Intuitively, we show that boarding a driver into a misplaced truck without using any truck has width
1. Consider states S1

2 ⊆ S2 where the feature conditions of rule r4 are true, i.e., where there is a
driver d at location c1 with nonzero distance until being boarded into t . With Gr4(s) we denote the
subgoal states of r4 in s ∈ S1

2 , i.e., states where d is one step closer to being boarded into t . There
are three possible admissible chains that must be considered. (1) unboarding d from some truck t ′,
i.e., tuple at(d , c1) implies Gr4(s) in s ∈ S1

2 in the admissible chain (driving(d , t ′), at(d , c1)), (2)
moving d closer to cn over ci−1 to ci, i.e., tuple at(d , ci) impliesGr4(s) in s ∈ S1

2 in the admissible
chain (at(d , ci−1), at(d , ci)), and (3) boarding d into t at cn, i.e., driving(d , t) implies Gr4(s) in
s ∈ S1

2 in the admissible chain (at(d , cn), driving(d , t)). Second, consider rule r5. Intuitively, we
show that moving a misplaced truck to its target location has width 1. Consider states S2

2 ⊆ S2

where the feature conditions of rule r5 are true and where some driver is boarded into t , i.e., states
where d is boarded intro t at cn. With Gr5(s) we denote the subgoal states of r5 in s ∈ S2

2 ,
i.e., states where t is at its target location. The tuple at(t , cn) implies Gr5(s) in s ∈ S2

2 in the
admissible chain that consists of moving t from cn to cm, each step decreasing the distance to cm,
i.e., (at(t , cn), . . . , at(t , cm)).

Now, consider states S3 where all packages and trucks are at their respective target location and
there is a misplaced driver d boarded or unboarded at location l1 with target location ln. This can
either be the case in the initial state or after moving the packages and trucks. Consider rule r6.
Intuitively, we show that moving a driver to its target location without using any truck has width 1.
WithGr6(s) we denote the subgoal states of r6 in s ∈ S3, i.e., states where d is at its target location.
There are two possible admissible chains that must be considered. (1) unboarding d at location c1,
i.e., tuple at(d , c1)) implies Gr6(s) in s ∈ S3 in the admissible chain (driving(d , t), at(d , c1)),
and (2) moving d closer from location ci−1 to ci, i.e., tuple at(d , ci) implies Gr6(s) in s ∈ S3 in
the admissible chain (at(d , ci−1), at(d , ci)).

We obtain sketch width 1 because all tuples in admissible chains have size 1. Note that when
dropping rules r1 and r2, as well as features l and b, the sketch width becomes 2 because we must

190

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

merge the three admissible chains of the first subproblem. When merging, tuples of size 2 must
be considered, each consisting of a location and whether the driver drives the truck or whether the
package is loaded.

5.8 Schedule

In the Schedule domain (Bacchus, 2001), there is a set of objects that can have different values
for the following attributes: shape, color, surface condition, and temperature. Also, there is a set
of machines where each is capable of changing an attribute with the side effect that other attributes
change as well. For example, rolling an object changes its shape to cylindrical and has the side effect
that the color changes to uncolored, any surface condition is removed, and the object becomes hot.
Often, there are multiple different work steps for achieving a specific attribute of an object. For
example, both rolling and lathing change an object’s shape to cylindrical. But rolling makes the
object hot, while lathing keeps its temperature cold. Some work steps are only possible if the object
is cold. Multiple work steps can be scheduled to available machines, which sets the machine’s status
to occupied. All machines become available again after a single do-time-step action. The goal is to
change the attributes of objects.

SIW fails in Schedule because it gets trapped into deadends when an object’s temperature be-
comes hot, possibly blocking other required attribute changes. The following sketch uses this obser-
vation and defines an ordering over achieved attributes where first, the desired shapes are achieved,
second, the desired surface conditions are achieved, and third, the desired colors are achieved.

Consider the set of features Φ = {p1, p2, p3, h, o} where p1 is the number of objects with the
wrong shape, p2 is the number of objects with the wrong surface condition, p3 is the number of
objects with the wrong color, h is the number of hot objects, and o is true iff there is an object
scheduled or a machine occupied. We define the following sketch rules RS

Φ:

r1 = {p1> 0} 7→ {p1↓, p2?, p3?, o}
r2 = {p1 = 0, p2> 0} 7→ {p2↓, p3?, o}
r3 = {p1 = 0, p2 = 0, p3> 0} 7→ {p3↓, o}
r4 = {o} 7→ {¬o}

Rule r1 says that achieving an object’s goal shape is good. Rule r2 says that achieving an object’s
goal surface condition is good after achieving all goal shapes. Rule r3 says that achieving an object’s
goal color is good after achieving all goal shapes and surface conditions. Rule r4 says that making
objects and machines available is good. Note that r4 does not decrease the sketch width but it
decreases the search time by decreasing the search depth. Note also that h never occurs in any rule
because we want its value to remain constant.

Theorem 11. The sketch RS
Φ for the Schedule domain is well-formed and has width 0.4

Proof. The features are goal separating because the feature valuations p1 = 0, p2 = 0, p3 = 0 hold in
state s iff s is a goal state. We show that the sketch is terminating by iteratively eliminating rules:
Rule r1 decreases the numerical feature p1 that no other remaining rule increments, so we eliminate
r1 and mark p1. Rule r2 decreases the numerical feature p2 that no other remaining rule increments,

4. In previous work (Drexler et al., 2021) we missed the fact that every subproblem is solved in at most one step and
hence, the sketch width is 0.

191

DREXLER, SEIPP, & GEFFNER

so we eliminate r2 and mark p2. Rule r3 decreases the numerical feature p3 that no other remaining
rule increments, so we eliminate r3 and mark p3. Last, we eliminate the only remaining rule r4

because it sets the Boolean feature o to false.
It remains to show that the sketch width is 0. Consider any Schedule instance with states S.

First, consider states S1 ⊆ S where the feature conditions of r4 are true, i.e., there is either a
scheduled object or a machine occupied. This can be the case in the initial state or if an object
is scheduled to be processed by a machine. With Gr4(s) we denote the subgoal states of r4 in
s ∈ S1, i.e., states where no object is scheduled and no machine is occupied and all objects have the
same shape, surface condition, color, and temperature. The action that performs a time step always
reaches a subgoal state in Gr4(s) in a single step.

Now, consider states S2 ⊆ S where the feature conditions of r1 are true and there is no object
scheduled and no occupied machine, i.e., states where there is an object a that has shape x that is
not the shape y mentioned in the goal, and there is no object scheduled and no occupied machine
because this can be achieved with width 0 (see above). With Gr1(s) we denote the set of subgoal
states of r1 in s ∈ S2, i.e., states where a has shape y and all objects have the same temperature.
The action that changes the shape of an object to its goal shape while not changing the temperature
of an object reaches a subgoal state in Gr1(s) in a single step.

Now, consider states S3 ⊆ S where the feature conditions of r2 are true, there is no object
scheduled and no machine occupied, and objects have their correct shape, i.e., states where there
is an object a that has surface x that is not the surface y mentioned in the goal, there is no object
scheduled and no occupied machine because this can be achieved with width 0 (see above), and all
objects have their correct shape because changing the shape has width 0 (see above). With Gr2(s)
we denote the set of subgoal states of r2 in s ∈ S3, i.e., states where a has surface y and all objects
have the same shape and temperature. The action that changes the surface condition of an object
to the goal surface condition while not changing a correct shape or the temperature of an object
reaches a subgoal state in Gr2(s) in a single step.

Now, consider states S4 ⊆ S where the feature conditions of r3 are true, there is no object
scheduled, no machine occupied, and all objects have their correct shape and surface, i.e., states
where there is an object a that has color x that is not the color y mentioned in the goal, there
is no object scheduled and no occupied machine because this can be achieved with width 0 (see
above), all objects have their correct shape because changing the shape has width 0 (see above), and
all objects have their desired surface because changing the surface has width 0 (see above). With
Gr3(s) we denote the set of subgoal states of r3 in s ∈ S3, i.e., states where a has color y and all
objects have the same shape, surface condition and temperature. The action that changes the color
of an object to the goal color while not changing the shape, surface condition or the temperature of
an object reaches a subgoal state in Gr3(s) in a single step. Note that r3 achieves the goal when the
color of the last object changes to the color mentioned in the goal.

We obtain sketch width 0 because each subproblem is solvable in a single step.

6. Experiments

Even though the focus of our work is on proving polynomial runtime bounds for planning domains
theoretically, we evaluate in this section how these runtime guarantees translate into practice. We
implemented two versions of SIWR: one version, denoted by SIWG

R , is based on the LAPKT plan-
ning system (Ramirez, Lipovetzky, & Muise, 2015) and grounds the input task to a propositional

192

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

representation before the search, the other version, denoted by SIWL
R, is implemented in the Mimir

planning system (Ståhlberg, 2023) and searches on the lifted task representation directly. Both ver-
sions use the DLPlan library (Drexler, Francès, & Seipp, 2022) to represent and evaluate features
(see the appendix for details). We use the Lab toolkit (Seipp, Pommerening, Sievers, & Helmert,
2017) for running experiments on Intel Xeon Gold 6130 CPU cores. For each planner run, we limit
time and memory by 30 minutes and 3 GiB.

We collected benchmark tasks for the domains analyzed above from two different sources. The
first source is the satisficing track of previous IPCs. Since many of these tasks are trivial for state-
of-the-art planners, we also consider tasks from the new Autoscale benchmark set (Torralba, Seipp,
& Sievers, 2021). The Autoscale benchmark set is optimized to contain tasks where current state-
of-the-art planners show differences in coverage.5 The Grid* tasks in the Autoscale benchmark set
are different from the Grid tasks in the IPC benchmark set. The difference is that in Grid* tasks, it is
not always possible to reach every lock for the unlock operation. Hence, rule r3 can define picking
a wrong key, increasing the width of these subproblems to 2. However, a sketch of width 1 can
be obtained by picking only keys for which there exists a locked door that is reachable, which can
be computed by using transitive closure on the connectivity relation. As discussed in the section
about the Grid domain, dropping a key at its target location by exchanging it with a key at the
current location increases the width of a subproblem from 1 to 2. Therefore, for the domain Grid
(resp. Grid*), we also include a simplified domain GridS (resp. GridS

*) where we removed the action
to exchange the key that is being held with a key at the current location.

The main question we want to answer empirically is how much an SIW search benefits from
using policy sketches. To this end, we compare SIW(2) to SIWR(2), which uses the sketches pre-
sented above. We use a width bound of k = 2 because SIW(k) and SIWR(k) are too slow to
compute in practice for larger values of k. We also include two well-known, state-of-the-art plan-
ners, LAMA (Richter & Westphal, 2010) and Dual-BFWS (Lipovetzky & Geffner, 2017a), to show
that the considered planning tasks are hard to solve for the strongest domain-independent plan-
ners. However, since SIWR(2) is a domain-dependent planner, we cannot directly compare it to the
domain-independent approaches. The code and data are available online (Drexler, Seipp, & Geffner,
2023a).

Table 1 shows results for the five planners. In addition to the number of solved tasks and planner
runtimes, which we discuss below, for the planners based on SIW, the table also holds data about
the effective width. The effective width for a problem P and one of SIW(k), SIWG

R(k), or SIWL
R(k)

is the smallest natural number k the algorithm needs to solve P . The effective width can be smaller
than the actual width of the problem and depends on the order in which a specific implementation
of the SIW-based algorithms generates successor states. For more robust and comparable results,
we always randomly shuffle the applicable actions of a state before generating its successor states.
Since an SIWR(k) search splits a problem into subproblems, we further distinguish between the
maximum effective width (M) among all subproblems and the average effective width (A) over all
subproblems. We see that the maximum effective width for SIWR(2) equals the theoretical upper
bounds established in the previous section, suggesting that the bounds are indeed tight. We can
see that the maximum effective width of SIWL

R(2) in Grid (2) is larger than the maximum effective
width of the same algorithm in GridS (1). In one subproblem in Grid, the exchange key action is
applied before the drop key action, resulting in the pruning of the actual subgoal state where the key

5. The Autoscale benchmark set does not contain tasks from the Schedule domain.

193

DREXLER, SEIPP, & GEFFNER

LAMA BFWS SIW(2) SIWG
R(2) SIWL

R(2)

Domain S T S T S A M S T A M S T A M

IP
C

Barman (40) 40 760 40 248 0 – – 40 3 0.8 2 40 8 0.9 2
Childsnack (20) 6 3 9 172 0 – – 20 2 0.6 1 20 5 0.6 1
Driverlog (20) 20 39 20 3 7 1.5 2 20 4 0.4 1 20 9 0.4 1
Floortile (40) 9 202 6 865 0 – – 40 1 1.2 2 40 1 1.2 2
Grid (5) 5 3 5 3 2 2.0 2 5 2 0.8 2 5 1 0.9 2
GridS (5) 5 2 5 1 1 2.0 2 5 2 0.8 1 5 1 0.8 1
Schedule (150) 150 38 150 103 78 1.1 2 150 13 0.0 0 – – – –
TPP (30) 30 12 30 1234 21 2.0 2 30 8 0.2 1 30 3 0.2 1

A
ut

os
ca

le

Barman (30) 25 4 5 1468 0 – – 30 8 0.9 2 26 25 1.0 2
Childsnack (30) 9 2 5 714 0 – – 30 1 0.6 1 30 2 0.6 1
Driverlog (30) 30 1194 30 691 1 1.9 2 30 461 0.6 1 30 417 0.6 1
Floortile (30) 2 45 2 854 1 1.3 2 15 1 1.2 2 17 1 1.2 2
Grid* (30) 17 5 9 15 4 1.9 2 9 34 0.9 2 6 270 0.9 2
GridS

* (30) 9 4 9 37 4 1.9 2 10 37 0.9 2 6 1776 0.9 2
TPP (30) 25 154 11 1406 11 2.0 2 21 64 0.3 1 30 4 0.2 1

Table 1: Comparison of the first iteration of LAMA, Dual-BFWS (BFWS), SIW(2), SIWG
R(2), and

SIWL
R(2). The table shows the number of solved tasks (S), the maximum runtime (T) in

seconds for tasks commonly solved by LAMA, Dual-BFWS, SIWG
R(2), and SIWL

R(2), and
the average (A) and maximum (M) effective width over all encountered subtasks. The top
and bottom parts show results for the IPC and Autoscale benchmark sets, respectively. We
highlight the maximum number of solved tasks (S) per domain in boldface.

is at its target location. Inspecting the average effective width for SIWR(2), we see that the value
is always closer to 1 than to 2 for the domains with sketch width 2. The sketch for the Schedule
domain is a general policy where every subproblem is solved in a single step.

The original SIW(2) planner (without sketches) solves very few tasks across the board. In both
the IPC and the Autoscale set, there are four domains where SIW(2) solves at most a single task.
These results confirm that in many domains, the problem width is too large for plain SIW. In
contrast, the sketches allow SIWR(2) to solve all IPC tasks with an exception in Schedule where
SIWL

R(2) does not support quantified preconditions that are used in the domain description.
On the harder Autoscale benchmark set, we observe that SIWG

R(2) solves three domains com-
pletely (Barman, Childsnack, Driverlog), has a coverage similar to SIWL

R in Floortile, and a lower
coverage than LAMA in Grid*. There are two reasons why SIWG

R(2) solves fewer Grid* tasks than
LAMA, both related to memory usage. First, SIWG

R(2) runs out of memory while trying to initial-
ize the novelty table for width 2 in six tasks. Second, SIWG

R(2), which is implemented in LAPKT,
fails to ground all other remaining tasks because it uses more memory for representing the ground
propositional task compared to LAMA. In TPP, SIWG

R(2) solves all tasks where there is sufficient
memory to compute the ground tasks and fails to ground all other remaining tasks. In Floortile,
SIWG

R(2) fails because the search requires too much time.

194

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

Our lifted planner SIWL
R runs out of memory in only the four most difficult Grid* and GridS

*
tasks and runs out of time in all other unsolved tasks. It significantly outperforms all other planners
in TPP, solving the most difficult task in only 53 seconds. In Grid*, the successor generation is
much slower compared to the grounded version SIWG

R . SIWL
R typically uses much less memory

compared to SIWG
R because the number of reached atoms grows dynamically during search and is

usually much smaller compared to the number of ground atoms.
Overall, our results show that our sketch rules capture useful information and that adding this

domain-specific knowledge to a width-based planner allows it to solve whole problem domains very
efficiently.

7. Related Work

We first review other approaches for expressing domain control knowledge for planning and then
discuss some related work on polynomial planning algorithms and subgoal decomposition for domain-
independent classical planning. The distinction between actions that are “good” or “bad” in a fixed
tractable domain can often be characterized explicitly. Indeed, general policies, unlike sketches,
can provide such a classification of all possible state transitions (s, s′) over the problems in Q. Do-
ing so, they ensure that the goal can always be reached by following any good transition (Bonet &
Geffner, 2018; Bonet et al., 2019; Francès et al., 2021). Francès, Corrêa, Geissmann, and Pom-
merening (2019) use the same type of description logic features (Baader et al., 2003) to define and
learn general policies in terms of linear value functions. Sketch rules have the same syntax as policy
rules, but instead of constraining state transitions, they define subgoals.

Logical approaches to domain control have been used to provide partial information about good
and bad state transitions in terms of suitable formulas (Bacchus & Kabanza, 2000; Kvarnström &
Doherty, 2000). For example, for the Schedule domain, one may have a formula in linear temporal
logic (LTL) expressing that objects that need to be lathed and painted should not be painted in
the next time step, since lathing removes the paint. This partial information about good and bad
transitions can then be used by a forward-state search planner to heavily prune the state space. A
key difference between these formulas and sketches is that sketch rules are not about state transitions
but about subgoals, and hence they structure the search for plans in a different way, in certain cases
ensuring a polynomial search.

Baier, Fritz, Bienvenu, and McIlraith (2008) combine control knowledge and preference formu-
las to improve search behavior and obtain plans of high quality, according to user preferences. The
control knowledge is given in the Golog language (Levesque, Reiter, Lespérance, Lin, & Scherl,
1997) and defines subgoals such that a planner has to fill in the missing parts. Since the control
knowledge is compiled directly to PDDL, they are able to leverage off-the-shelve planners. The
user preferences are encoded in an LTL-like language. Like our policy sketches, their approach
can be applied to any domain. However, policy sketches aim at ensuring polynomial searches in
tractable domains.

Hierarchical task networks or HTNs are used mainly for expressing general top-down strategies
for solving classes of planning problems (Erol, Hendler, & Nau, 1994; Nau, Au, Ilghami, Kuter,
Murdock, Wu, & Yaman, 2003; Georgievski & Aiello, 2015). The domain knowledge is normally
expressed in terms of a hierarchy of methods that have to be decomposed into primitive methods
that cannot be decomposed any further. While the solution strategy expressed in HTNs does not
have to be complete, it is often close to complete, as otherwise the search for decompositions easily

195

DREXLER, SEIPP, & GEFFNER

becomes intractable. For this reason, crafting good and effective HTNs encodings is not easy. For
example, the HTN formulation of the Barman domain in the 2020 Hierarchical Planning Competi-
tion (Höller, Behnke, Bercher, Biundo, Fiorino, Pellier, & Alford, 2019) contains 10 high-level tasks
(like AchieveContainsShakerIngredient), 11 primitive tasks (like clean-shot) and 22 methods (like
MakeAndPourCocktail). In contrast, the PDDL version of Barman has only 12 action schemas, and
the sketch above has 4 rules over 4 linear features. Note, however, that comparing different forms
of control knowledge in terms of their compactness is not well-defined.

Hierarchical Goal Networks, HGNs, are a hybrid approach between classical planning and
HTNs (Shivashankar, Kuter, Nau, & Alford, 2012). So-called HGN methods are similar to ac-
tions in classical planning, but with an additional set of subgoals and a goal network that encodes a
partially ordered sequence of goals. HGN methods are an alternative way to define PDDL actions,
while sketches work directly on top of the PDDL planning formalism. HGNs, unlike HTNs, use a
planning mechanism where ground methods are selected based on the current goals and state of the
system, similar to sketches.

The need to represent the common subgoal structure of dynamic domains arises also in rein-
forcement learning (RL), where knowledge gained in the solution of some domain instances can be
applied to speed up the learning of solutions to new instances of the same family of tasks (Finn,
Abbeel, & Levine, 2017). In recent work in deep RL (DRL) these representations, in the form
of general intrinsic reward functions (Singh, Lewis, Barto, & Sorg, 2010), are expected to be
learned from suitable DRL architectures (Zheng, Oh, Hessel, Xu, Kroiss, van Hasselt, Silver, &
Singh, 2020). Sketches provide a convenient high-level alternative to describe common subgoal
structures, but opposed to the related work in DRL, the policy sketches above are not learned but
are written by hand. We describe the challenge of automatically learning sketches briefly below.

Temporal abstraction is another method from reinforcement learning that addresses the prob-
lem of reward sparsity by decomposing tasks (Sutton, Precup, & Singh, 1999). Temporal abstrac-
tions consider a set of high-level macro actions in the form of options. Each option consists of a
dedicated policy, reward function and termination criterion. In the options framework, an RL agent
chooses one of its options based on its current state and executes the option’s policy until it ter-
minates. The policy learning happens at two levels: each option policy is learned individually on
the low level and the high-level controller learns which option to select in which state. Recently,
there have been several works on defining symbolic options, allowing the RL agent to use reasoning
instead of learning for finding (partially-ordered) plans over the set of options (Illanes, Yan, Icarte,
& McIlraith, 2020; Lee, Katz, Agravante, Liu, Klinger, Campbell, Sohrabi, & Tesauro, 2021; Jin,
Ma, Jin, Zhuo, Chen, & Yu, 2022). These approaches are very similar in spirit to policy sketches
and future research could even define options based on sketch rules.

Approaches based on temporal abstraction, such as the options framework or angelic hierarchi-
cal planning (Marthi, Russell, & Wolfe, 2008), use high-level actions to abstract away primitive
actions, thereby reducing the size of the state space. Another way to simplify the state space is to
use state abstraction, where multiple states are grouped into a single abstract state (e.g., Holte,
Perez, Zimmer, & MacDonald, 1996). Policy sketches combine both types of abstraction: they use
state abstraction by considering the feature valuation space and they use temporal abstraction since
the subgoals are usually several steps away. In contrast to sketches, general policies only use state
abstraction, but not temporal abstraction, because they operate directly on primitive actions.

Another approach for decomposing reinforcement learning tasks are reward machines (Icarte,
Klassen, Valenzano, & McIlraith, 2022). A reward machine is a finite state machine that represents

196

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

a coarse version of the underlying RL task. Each transition is labeled with a conjunction over a set
of propositions. To illustrate the concept, assume that we have a reward machine with two states s
and s′ and a transition from s to s′ labeled with conjunction c. When the reward machine is in state
s and the RL agent observes a situation where c holds, the reward machine transitions into state s′

and yields a reward function that is deemed useful for the agent in the new subproblem captured
by s′. Even with policy sketches that only use Boolean features it is straightforward to capture the
task decomposition of any reward machine. The main difference between the two approaches is that
reward machines are defined solely via the transition labels and they consider their states as black
boxes, whereas the rule conditions and effects for policy sketches are observable, i.e., amenable
for reasoning by the planning algorithm that uses the sketch. Policy sketches are more general
than reward machines since they can also use numerical features, allowing them to reason about
quantitative change between states in addition to qualitative differences.

Hoffmann (2005) analyzes the local search topology of the optimal delete-relaxed heuristic h+

and shows that enforced hill climbing using h+ runs in polynomial time for many IPC domains.
Since the FF heuristic hFF (Hoffmann & Nebel, 2001) often closely approximates h+, his findings
explain the strong performance of the FF planner, which uses enforced hill climbing with hFF (fol-
lowed by a greedy best-first search using hFF). Enforced hill climbing repeatedly runs a breadth-first
search to find the next state with a lower heuristic value, which is similar to the breadth-first searches
done by SIW and SIWR. A difference is that in the former case the breadth-first search is exponen-
tial in the search depth, while in the latter case it is exponential only in the width. Usually, the width
is much smaller than the search depth required to escape a heuristic plateau or local minimum.

Seipp, Pommerening, Röger, and Helmert (2016) point to shortcomings of the notion of width
in planning domains with conjunctive goals, and introduce the correlation complexity measure
that is given by the maximum size of the Boolean features needed in linear heuristic functions,
called potential heuristics, to lead greedily to the goal. The Boolean features in that setting are
conjunctions of facts in the planning problem. The authors show that many domains have a bounded
and small correlation complexity, which however, unlike the notion of width, does not bound the
complexity of the instances.

Subgoals have also been studied in the context of domain-independent planning. Porteous, Se-
bastia, and Hoffmann (2001) introduce landmarks as a method for decomposing problems into
subproblems and use them within an incomplete hierarchical search algorithm. A way to use land-
marks efficiently within a complete search algorithm was developed in the LAMA planner (Richter
& Westphal, 2010) that runs a greedy best-first search with multiple queues, some ordered by goal-
distance estimation heuristics like hFF and others by a landmark counting heuristic.

8. Conclusions and Future Work

We have shown that the language of policy sketches as introduced by Bonet and Geffner provides a
simple, elegant, and powerful way for expressing the common subgoal structure of many planning
domains. The SIWR algorithm can then solve these domains effectively, in provable polynomial
time, where SIW fails either because the problems are not easily serializable in terms of the top
goals or because some of the resulting subproblems have a high width. A big advantage of pure
width-based algorithms like SIW and SIWR is that unlike other planning-based methods they can

197

DREXLER, SEIPP, & GEFFNER

be used to plan with simulators in which the structure of states is available but the structure of
actions is not.6

While all sketches in this paper are designed by hand, we have shown in follow-up work to
the original conference paper that it is possible to learn sketches automatically (Drexler et al.,
2022). Our method for learning policy sketches is related to the method for learning general poli-
cies by Francès et al. (2021) which uses the state language (primitive PDDL predicates) to define a
large pool of Boolean and numerical features via a description logic grammar (Baader et al., 2003).
As shown in the appendix, all features used in the sketches above can be generated in this way.
A longer-term challenge is to learn the sketches automatically when using the same inputs as DRL
algorithms, where there is no state representation language. Recent works that learn first-order sym-
bolic languages from black-box states or from states represented by images (Asai, 2019; Bonet &
Geffner, 2020a; Rodriguez, Bonet, Romero, & Geffner, 2021) are important steps in that direction.

Acknowledgments

This work was partially supported by an ERC Advanced Grant (grant agreement no. 885107), by
project TAILOR, funded by EU Horizon 2020 (grant agreement no. 952215) and by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. Hector Geffner is a Wallenberg Guest Professor at Linköping University, Sweden. The
computations were enabled by resources provided by the National Academic Infrastructure for Su-
percomputing in Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC)
at the National Supercomputer Centre at Linköping University partially funded by the Swedish
Research Council through grant agreements no. 2022-06725 and no. 2018-05973.

Appendix A. Feature Definitions and Grammar

In this section, we describe how we represent and evaluate the features used in the sketches above.
Following Francès et al. (2021), we define the features in terms of a grammar based on the predicates
of each planning domain and description logics (Baader et al., 2003). Description logics are based
on the notion of concepts, i.e., sets of objects that share some characteristic, and roles, i.e., relations
between pairs of objects. We have published the code for constructing and evaluating such features
in the form of a new C++ library (with Python bindings), called DLPlan (Drexler et al., 2022).

A.1 Syntax and Semantics

The following definition of syntax and semantics is based on the one given by Francès et al. (2021).
As in their work, we start from a set of primitive concepts and roles: the unary and binary predicates
in the planning domain. We extend their definition slightly to handle domains with predicates of
higher arity by including primitive concepts and roles obtained from projections of predicates of
the planning domain. Another difference to the work by Francès et al. (2021) is that we obtain the
features by hand instead of generating them exhaustively until reaching a given bound in feature
complexity.

6. A minor difference then is that the novelty tests in IW(k) are not exponential in k − 1 but in k.

198

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

Consider concepts C,D and roles R,S and let the universe ∆ be the set of all objects in the
planning task. The set of concepts and roles for a state s are inductively defined as:

• The primitive concept p[i] has denotation (p[i])s = {ci | p(c0, . . . , ci, . . . , cn−1) ∈ s} where
p(c0, . . . , ci, . . . , cn−1) is a ground atom of predicate p with arity n and objects c0, . . . , cn−1.

• The primitive role p[i, j] has denotation (p[i, j])s = {(ci, cj) | p(c0, . . . , ci, . . . , cj , . . . ,
cn−1) ∈ s} where p(c0, . . . , ci, . . . , cj , . . . , cn−1) is a ground atom of predicate p with ar-
ity n and objects c0, . . . , cn−1.

• The universal concept > and the bottom concept ⊥ are concepts with denotations >s = ∆
and ⊥s = ∅.

• The union C tD, intersection C uD and negation ¬C are concepts with denotations (C t
D)s = Cs ∪Ds, (C uD)s = Cs ∩Ds and (¬C)s = ∆ \ Cs.

• The existential abstraction ∃R.C and the universal abstraction ∀R.C are concepts with de-
notations (∃R.C)s = {a ∈ ∆ | ∃b : (a, b) ∈ Rs ∧ b ∈ Cs}, (∀R.C)s = {a ∈ ∆ | ∀b :
(a, b) ∈ Rs → b ∈ Cs}.

• If a is a constant in the planning domain, the nominal a is a concept with denotation as = {a}.

• The unionRtS, intersectionRuS and complement ¬R are roles with denotations (RtS)s =
Rs ∪ Ss, (R u S)s = Rs ∩ Ss and (¬R)s = (∆×∆) \Rs.

• The role-value maps R = S and R ⊆ S are concepts with denotations (R = S)s = {a ∈ ∆ |
∀b : (a, b) ∈ Rs ↔ (a, b) ∈ Ss} and (R ⊆ S)s = {a ∈ ∆ | ∀b : (a, b) ∈ Rs → (a, b) ∈
Ss}.

• The composition R ◦ S is a role with denotation (R ◦ S)s = {(a, c) ∈ ∆ × ∆ | (a, b) ∈
Rs ∧ (b, c) ∈ Ss}.

• The inverse R−1 is a role with denotation (R−1)s = {(b, a) ∈ ∆×∆ | (a, b) ∈ Rs}.

• The transitive closure R+ and the reflexive-transitive closure R∗ are roles with denotations
(R+)s =

⋃
n≥1(Rs)n and (R∗)s =

⋃
n≥0(Rs)n, where the iterated composition is defined as

(Rs)0 = {(d, d) | d ∈ ∆} and (Rs)n+1 = (Rs)n ◦Rs.

• The restriction R|C is a role with denotation (R|C)s = Rs u (∆× Cs).

• The identity id(C) is a role with denotation (id(C))s = {(a, a) | a ∈ Cs}.

• The (concept) difference C \D is a concept with denotation (C \D)s = Cs u (¬D)s.

• The (role) difference R \ S is a role with denotation (R \ S)s = Rs u (¬S)s.

• The extraction R[i] with i ∈ {0, 1} is a concept with denotation (R[0])s = ∃Rs.>s and
(R[1])s = ∃(Rs)−1.>s. 7

7. Concept difference, role difference, and extraction do not increase expressiveness but make expressing some features
more convenient.

199

DREXLER, SEIPP, & GEFFNER

Furthermore, for each primitive concept C and primitive role R we allow for corresponding
goal versions denoted by Cg and Rg that are evaluated in the goal of the planning instance instead
of the state s, as described by Francès et al. (2021).

A.2 From Concepts and Roles to Features

We define Boolean and numerical features with an additional level of composition as follows. Con-
sider concepts C,D, roles R,S, T , and X being either a role or a concept. The set of possible
Boolean and numerical features for each state s are defined as:

• Empty(X) is a Boolean feature that evaluates to true iff |Xs| = 0.

• Count(X) is a numerical feature that evaluates to |Xs|.

• ConceptDist(C,R,D) is a numerical feature that evaluates to the smallest n ∈ N0 s.t. there
are objects x0, . . . , xn with x0 ∈ Cs, xn ∈ Ds, and (xi, xi+1) ∈ Rs for i = 0, . . . , n− 1. If
no such n exists then the feature evaluates to∞.

• RoleDist(R,S, T) is a numerical feature that evaluates to the smallest n ∈ N0 s.t. there are
objects x0, . . . , xn, there exists some (a, x0) ∈ Rs, (a, xn) ∈ T s, and (xi, xi+1) ∈ Ss for
i = 0, . . . , n− 1. If no such n exists, the feature evaluates to∞.

• SumRoleDist(R,S, T) is a numerical feature that evaluates to
∑

r∈Rs RoleDist({r}, S, T),
where the sum evaluates to∞ if any term is∞.

A.3 Floortile

The domain defines the following predicates: available-color(c: color), clear(x: tile), down(x: tile,
y: tile), left(x: tile, y: tile), painted(x: tile, c: color), right(x: tile, y: tile), robot-at(r: robot, x: tile),
robot-has(r: robot, c: color), up(x: tile, y: tile).

Consider the following concepts and roles:

x1 ≡ (paintedg[0, 1] \ painted [0, 1])[0]

x2 ≡ (left [0] t left [1]) \ paintedg[0])

x3 ≡ up[0, 1] t down[0, 1] t id(left [0] t left [1])

x4 ≡ ((x3|x1)−1|x1)−1

x5 ≡ ((x3|x2)−1|x1)−1

Concept x1 is the set of all unpainted tiles. Concept x2 is the set of all normal tiles that must not
be painted. Role x3 is the set of pairs of tiles (t, t′) where t is above or below of t′ and the identity
t = t′. Role x4 is the set of pairs of tiles (t, t′) where t is above or below of t′ and both are unpainted.
Role x5 is the set of pairs of tiles (t, t′) where t is unpainted and above or below of normal tile t′.
The features Φ = {v, g} used in the sketch for Floortile are constructed as follows:

v = Empty(x1 \ ((x4)∗ ◦ x5)[0])

g = Count(x1)

200

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

A.4 TPP

The domain defines the following predicates: at(t: truck, p: place), connected(p1: place, p2:
place), loaded(g: goods, t: truck, l: level), next(l1: level, l2: level), on-sale(g: goods, m: market, l:
level), ready-to-load(g: goods, m: market, l: level), stored(g: goods, l: level).

Consider the following concepts and roles:

x1 ≡ (storedg[0, 1] \ stored [0, 1])[0]

x2 ≡ next [0]

Concept x1 is the set of goods of which some quantity remains to be stored. Concept x2 is the set of
nonempty levels. The features Φ = {b, l ,n} used in the sketch for TPP are constructed as follows:

b ≡ Count(x1 \ ∃ready-to-load [0, 2].x2)

l ≡ Count(x1 \ ∃loaded [0, 2].x2)

n ≡ SumRoleDist(storedg[0, 1],next [0, 1], stored [0, 1])

A.5 Barman

The domain defines the following predicates: clean(c: container), cocktail-part1(c: cocktail, i:
ingredient), cocktail-part2(c: cocktail, i: ingredient), contains(c: container, b: beverage), dis-
penses(d: dispenser, i: ingredient), empty(c: container), handempty(h: hand), holding(h: hand,
c: container), next(l1: level, l2: level), ontable(c: container), shaked(s: shaker), shaker-empty-
level(s: shaker, l: level), shaker-level(s: shaker, l: level), unshaked(s: shaker), used(c: container, b:
beverage).

Consider the following concepts and roles:

x1 ≡ (containsg[0, 1] \ contains[0, 1])

x2 ≡ (containsg[0, 1] u contains[0, 1])

x3 ≡ ∃cocktail -part1 [0, 1].∃contains[1, 0].shaker -level [0]

x4 ≡ ∃cocktail -part2 [0, 1].∃contains[1, 0].shaker -level [0]

Role x1 is the set of unserved beverages paired with the corresponding shot that must be used. Role
x2 is the set of served beverages paired with the corresponding shot that was used. Concept x3 is
the set of cocktails where the first ingredient mentioned in its recipe is in the shaker. Concept x4 is
the set of cocktails where the second ingredient mentioned in its recipe is in the shaker. The features
Φ = {g , u, c1, c2} used in the sketch for Barman are constructed as follows:

g ≡ Count(x1)

u ≡ Count(used [0] \ x2[0])

c1 ≡ ¬Empty(x3 u x1[1])

c2 ≡ ¬Empty(x3 u x4 u x1[1])

A.6 Grid

The domain defines the following predicates: arm-empty(), at(r: object, x: object), at-robot(x:
object), conn(x: object, y: object), holding(k: object), key(k: object), key-shape(k: object, s: ob-

201

DREXLER, SEIPP, & GEFFNER

ject), lock-shape(x: object, s: object), locked(x: object), open(x: object), place(p: object), shape(s:
object).

Consider the following concepts and roles:

x1 ≡ atg[0, 1] \ at [0, 1]

x2 ≡ ∃key-shape[0, 1].∃lock -shape[1, 0].locked [0]

Role x1 is the set of misplaced key paired with their respective target location. Concept x2 is the set
of keys for which a closed lock with the same shape as the key exists. The features Φ = {l , k , o, t}
used in the sketch for Grid are constructed as follows:

l ≡ Count(locked [0])

k ≡ Count(x1)

o ≡ ¬Empty(holding [0] u x2)

t ≡ ¬Empty(holding [0] u x1[0])

A.7 Childsnack

The domain defines the following predicates: allergic-gluten(c: child), at(t: tray, p: place),
at-kitchen-bread(b: bread-portion), at-kitchen-content(c: content-portion), at-kitchen-sandwich(s:
sandwich), no-gluten-bread(b: bread-portion), no-gluten-content(c: content-portion), no-gluten-
sandwich(s: sandwich), not-allergic-gluten(c: child), notexist(s: sandwich), ontray(s: sandwich, t:
tray), served(c: child), waiting(c: child, p: place).

Consider the following concepts and roles:

x1 ≡ servedg[0] \ served [0]

x2 ≡ no-gluten-sandwich[0]

Concept x1 is the set of unserved children. Concept x2 is the set of gluten-free sandwiches. The
features Φ = {cg , cr , skg , sk , s tg , s t} used in the sketch for Childsnack are constructed as follows:

cg ≡ Count(allergic-gluten[0] u x1)

cr ≡ Count(not-allergic-gluten[0] u x1)

skg ≡ ¬Empty(at-kitchen-sandwich[0] u x2)

sk ≡ ¬Empty(at-kitchen-sandwich[0])

s tg ≡ ¬Empty(ontray [0] u x2)

s t ≡ ¬Empty(ontray [0])

A.8 Driverlog

The domain defines the following predicates: at(obj: object, loc: object), driver(d: object), driv-
ing(d: object, v: object), empty(v: object), in(obj1: object, obj: object), link(x: object, y: object),
location(loc: object), obj(obj: object), path(x: object, y: object), truck(truck: object).

202

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

Consider the following concepts and roles:

x1 ≡ (atg[0, 1] \ at [0, 1])

x2 ≡ (at [1, 0] t driving [1, 0])|atg [0]udriver [0])
−1

x3 ≡ (driving [1] t (at [1, 0]|driver [0])[0])

x4 ≡ at [0, 1] t at [1, 0] t path[0, 1]

Role x1 is the set of misplaced packages, drivers and trucks, paired with their respective target
location. Role x2 is the set of misplaced drivers paired with their current location. Concept x3 is
the set of trucks with a boarded driver and the location of unboarded drivers. Role x4 is the set
of pairs of trucks and locations reachable by a single unboard, board or walk action. The features
Φ = {p, t , dg, dt, b, l} used in the sketch for Driverlog are constructed as follows:

p ≡ Count(obj [0] u x1[0])

t ≡ Count(truck [0] u x1[0])

dg ≡ SumRoleDist(x2, x4, atg[0, 1])

dt ≡ ConceptDist(x3, x4, truck [0] u x1[0])

b ≡ ¬Empty(driving [0])

l ≡ ¬Empty(obj [0] u in[0] u atg[0])

A.9 Schedule

The domain defines the following predicates: busy(machine: machine), can-orient(machine: ma-
chine, orientation: anorient), has-bit(machine: machine, width: width), has-hole(obj: part, width:
width, orientation: anorient), has-paint(machine: machine, colour: colour), objscheduled(), painted(obj:
part, colour: colour), scheduled(obj: part), shape(obj: part, shape: ashape), surface-condition(obj:
part, surface-cond: surface), temperature(obj: part, temp: temperature-type).

The features Φ = {p1, p2, p3, h, o} used in the sketch for Schedule are constructed as follows:

p1 ≡ Count(shapeg[0, 1] \ shape[0, 1])

p2 ≡ Count(surface-conditiong[0, 1] \ surface-condition[0, 1])

p3 ≡ Count(paintedg[0, 1] \ painted [0, 1])

h ≡ Count(temperature[0, 1]|hot)
o ≡ ¬Empty(scheduled [0] t busy [0])

References

Asai, M. (2019). Unsupervised grounding of plannable first-order logic representation from images.
In Lipovetzky, N., Onaindia, E., & Smith, D. E. (Eds.), Proceedings of the Twenty-Ninth
International Conference on Automated Planning and Scheduling (ICAPS 2019), pp. 583–
591. AAAI Press.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.). (2003).
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press.

203

DREXLER, SEIPP, & GEFFNER

Bacchus, F. (2001). The AIPS’00 planning competition. AI Magazine, 22(3), 47–56.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 116(1–2), 123–191.

Baier, J. A., Fritz, C., Bienvenu, M., & McIlraith, S. A. (2008). Beyond classical planning: Proce-
dural control knowledge and preferences in state-of-the-art planners. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 1509–1512. AAAI
Press.

Bonet, B., Francès, G., & Geffner, H. (2019). Learning features and abstract actions for computing
generalized plans. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI 2019), pp. 2703–2710. AAAI Press.

Bonet, B., & Geffner, H. (2018). Features, projections, and representation change for generalized
planning. In Lang, J. (Ed.), Proceedings of the 27th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2018), pp. 4667–4673. IJCAI.

Bonet, B., & Geffner, H. (2020a). Learning first-order symbolic representations for planning from
the structure of the state space. In De Giacomo, G. (Ed.), Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI 2020), pp. 2322–2329. IOS Press.

Bonet, B., & Geffner, H. (2020b). Qualitative numeric planning: Reductions and complexity. Jour-
nal of Artificial Intelligence Research, 69, 923–961.

Bonet, B., & Geffner, H. (2021). General policies, representations, and planning width. In Leyton-
Brown, K., & Mausam (Eds.), Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021), pp. 11764–11773. AAAI Press.

Daggelinckx, A. (2023). Generating and verifying planning sketches using temporal logic. Master’s
thesis, Utrecht University.

Dalmau-Moreno, M., Garcı́a, N., Gómez, V., & Geffner, H. (2023). Combined task and motion
planning via sketch decompositions. In ICAPS 2023 Planning and Robotics Workshop (Plan-
Rob).

Drexler, D., Francès, G., & Seipp, J. (2022). Description logics state features for planning (DLPlan).
https://doi.org/10.5281/zenodo.5826139.

Drexler, D., Seipp, J., & Geffner, H. (2021). Expressing and exploiting the common subgoal struc-
ture of classical planning domains using sketches. In Erdem, E., Bienvenu, M., & Lakemeyer,
G. (Eds.), Proceedings of the Eighteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2021), pp. 258–268. IJCAI Organization.

Drexler, D., Seipp, J., & Geffner, H. (2022). Learning sketches for decomposing planning problems
into subproblems of bounded width. In Thiébaux, S., & Yeoh, W. (Eds.), Proceedings of
the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS
2022), pp. 62–70. AAAI Press.

Drexler, D., Seipp, J., & Geffner, H. (2023a). Code and data for the article “Expressing and Exploit-
ing the Common Subgoal Structure Using Sketches”. https://doi.org/10.5281/
zenodo.10037802.

Drexler, D., Seipp, J., & Geffner, H. (2023b). Learning hierarchical policies by iteratively reducing
the width of sketch rules. In Marquis, P., Son, T. C., & Kern-Isberner, G. (Eds.), Proceedings

204

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

of the Twentieth International Conference on Principles of Knowledge Representation and
Reasoning (KR 2023). IJCAI Organization.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), pp.
1123–1128. AAAI Press.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of
deep networks. In Precup, D., & Teh, Y. W. (Eds.), Proceedings of the 34th International
Conference on Machine Learning (ICML 2017), pp. 1126–1135. JMLR.org.

Francès, G., Bonet, B., & Geffner, H. (2021). Learning general planning policies from small exam-
ples without supervision. In Leyton-Brown, K., & Mausam (Eds.), Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), pp. 11801–11808. AAAI Press.

Francès, G., Corrêa, A. B., Geissmann, C., & Pommerening, F. (2019). Generalized potential heuris-
tics for classical planning. In Kraus, S. (Ed.), Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI 2019), pp. 5554–5561. IJCAI.

Francès, G., Ramı́rez, M., Lipovetzky, N., & Geffner, H. (2017). Purely declarative action repre-
sentations are overrated: Classical planning with simulators. In Sierra, C. (Ed.), Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 4294–
4301. IJCAI.

Geffner, T., & Geffner, H. (2015). Width-based planning for general video-game playing. In Jhala,
A., & Sturtevant, N. (Eds.), Proceedings of the Eleventh AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE 2015), pp. 23–29. AAAI Press.

Georgievski, I., & Aiello, M. (2015). HTN planning. Artificial Intelligence, 222, 124–156.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Deterministic planning
in the fifth international planning competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence, 173(5–6), 619–668.

Grundke, C. S. (2022). Compilability between generalized representations for classical planning.
Master’s thesis, University of Basel.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local search topology in planning bench-
marks. Journal of Artificial Intelligence Research, 24, 685–758.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 253–302.

Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2019). HDDL
- A language to describe hierarchical planning problems. In Second ICAPS Workshop on
Hierarchical Planning.

Holte, R. C., Perez, M. B., Zimmer, R. M., & MacDonald, A. J. (1996). Hierarchical A∗: Searching
abstraction hierarchies efficiently. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI 1996), pp. 530–535. AAAI Press.

Icarte, R. T., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2022). Reward machines: Ex-
ploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence
Research, 73, 173–208.

205

DREXLER, SEIPP, & GEFFNER

Illanes, L., Yan, X., Icarte, R. T., & McIlraith, S. A. (2020). Symbolic plans as high-level instructions
for reinforcement learning. In Beck, J. C., Karpas, E., & Sohrabi, S. (Eds.), Proceedings of
the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020),
pp. 540–550. AAAI Press.

Jin, M., Ma, Z., Jin, K., Zhuo, H. H., Chen, C., & Yu, C. (2022). Creativity of AI: Automatic
symbolic option discovery for facilitating deep reinforcement learning. In Honavar, V., &
Spaan, M. (Eds.), Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence
(AAAI 2022), pp. 7042–7050. AAAI Press.

Kvarnström, J., & Doherty, P. (2000). TALplanner: A temporal logic based forward chaining plan-
ner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

Lee, J., Katz, M., Agravante, D. J., Liu, M., Klinger, T., Campbell, M., Sohrabi, S., & Tesauro, G.
(2021). AI planning annotation in reinforcement learning: Options and beyond. In ICAPS
2021 Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning
(PRL).

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., & Scherl, R. B. (1997). GOLOG: A logic
programming language for dynamic domains. The Journal of Logic Programming, 31(1),
59–83.

Linares López, C., Celorrio, S. J., & Olaya, A. G. (2015). The deterministic part of the seventh
international planning competition. Artificial Intelligence, 223, 82–119.

Lipovetzky, N., & Geffner, H. (2012). Width and serialization of classical planning problems. In De
Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., & Lucas, P. (Eds.),
Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp.
540–545. IOS Press.

Lipovetzky, N., & Geffner, H. (2017a). Best-first width search: Exploration and exploitation in
classical planning. In Singh, S., & Markovitch, S. (Eds.), Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 3590–3596. AAAI Press.

Lipovetzky, N., & Geffner, H. (2017b). A polynomial planning algorithm that beats LAMA and
FF. In Barbulescu, L., Frank, J., Mausam, & Smith, S. F. (Eds.), Proceedings of the Twenty-
Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017), pp.
195–199. AAAI Press.

Lipovetzky, N., Ramirez, M., & Geffner, H. (2015). Classical planning with simulators: Results
on the Atari video games. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1610–1616. AAAI
Press.

Long, D., & Fox, M. (2003). The 3rd International Planning Competition: Results and analysis.
Journal of Artificial Intelligence Research, 20, 1–59.

Marthi, B., Russell, S., & Wolfe, J. (2008). Angelic hierarchical planning: Optimal and online
algorithms. In Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008).
AAAI Press.

McDermott, D. (2000). The 1998 AI Planning Systems competition. AI Magazine, 21(2), 35–55.

206

EXPRESSING AND EXPLOITING SUBGOAL STRUCTURE IN CLASSICAL PLANNING USING SKETCHES

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
An HTN planning system. Journal of Artificial Intelligence Research, 20, 379–404.

Porteous, J., Sebastia, L., & Hoffmann, J. (2001). On the extraction, ordering, and usage of land-
marks in planning. In Cesta, A., & Borrajo, D. (Eds.), Proceedings of the Sixth European
Conference on Planning (ECP 2001), pp. 174–182. AAAI Press.

Ramirez, M., Lipovetzky, N., & Muise, C. (2015). Lightweight Automated Planning ToolKiT.
http://lapkt.org/.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Rodriguez, I. D., Bonet, B., Romero, J., & Geffner, H. (2021). Learning first-order representations
for planning from black-box states: New results. In Erdem, E., Bienvenu, M., & Lakemeyer,
G. (Eds.), Proceedings of the Eighteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2021), pp. 539–548. IJCAI Organization.

Seipp, J., Pommerening, F., Röger, G., & Helmert, M. (2016). Correlation complexity of classical
planning domains. In Kambhampati, S. (Ed.), Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016), pp. 3242–3250. AAAI Press.

Seipp, J., Pommerening, F., Sievers, S., & Helmert, M. (2017). Downward Lab. https://doi.
org/10.5281/zenodo.790461.

Shivashankar, V., Kuter, U., Nau, D., & Alford, R. (2012). A hierarchical goal-based formalism
and algorithm for single-agent planning. In Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems - Volume 2, pp. 981–988. International
Foundation for Autonomous Agents and Multiagent Systems.

Shleyfman, A., Tuisov, A., & Domshlak, C. (2016). Blind search for Atari-like online planning
revisited. In Kambhampati, S. (Ed.), Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2016), pp. 3251–3257. AAAI Press.

Singh, S. P., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement
learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Develop-
ment, 2, 70–82.

Srivastava, S., Zilberstein, S., Immerman, N., & Geffner, H. (2011). Qualitative numeric planning.
In Burgard, W., & Roth, D. (Eds.), Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI 2011), pp. 1010–1016. AAAI Press.

Ståhlberg, S. (2023). Lifted successor generation by maximum clique enumeration. In Gal, K.,
Nowé, A., Nalepa, G. J., Fairstein, R., & Rădulescu, R. (Eds.), Proceedings of the 26th Euro-
pean Conference on Artificial Intelligence (ECAI 2023), pp. 2194–2201. IOS Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.

Torralba, Á., Seipp, J., & Sievers, S. (2021). Automatic instance generation for classical planning. In
Goldman, R. P., Biundo, S., & Katz, M. (Eds.), Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS 2021), pp. 376–384. AAAI Press.

207

DREXLER, SEIPP, & GEFFNER

Vallati, M., Chrpa, L., & McCluskey, T. L. (2018). What you always wanted to know about the
deterministic part of the international planning competition (IPC) 2014 (but were too afraid
to ask). The Knowledge Engineering Review, 33.

Zheng, Z., Oh, J., Hessel, M., Xu, Z., Kroiss, M., van Hasselt, H., Silver, D., & Singh, S. (2020).
What can learned intrinsic rewards capture?. In Proceedings of the 37th International Con-
ference on Machine Learning (ICML 2020), pp. 11436–11446. JMLR.org.

208

