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Abstract

Securing coordination between AI agent and teammates (human players or AI agents) in
contexts involving unfamiliar humans continues to pose a significant challenge in Zero-Shot
Coordination. The issue of cooperative incompatibility becomes particularly prominent
when an AI agent is unsuccessful in synchronizing with certain previously unknown partners.
Traditional algorithms have aimed to collaborate with partners by optimizing fixed objec-
tives within a population, fostering diversity in strategies and behaviors. However, these
techniques may lead to learning loss and an inability to cooperate with specific strategies
within the population, a phenomenon named cooperative incompatibility in learning. In
order to solve cooperative incompatibility in learning and effectively address the problem
in the context of ZSC, we introduce the Cooperative Open-ended LEarning (COLE)
framework, which formulates open-ended objectives in cooperative games with two players
using perspectives of graph theory to evaluate and pinpoint the cooperative capacity of each
strategy. We present two practical algorithms, specifically COLESV and COLER, which
incorporate insights from game theory and graph theory. We also show that COLE could
effectively overcome the cooperative incompatibility from theoretical and empirical analysis.
Subsequently, we created an online Overcooked human-AI experiment platform, the COLE
platform, which enables easy customization of questionnaires, model weights, and other
aspects. Utilizing the COLE platform, we enlist 130 participants for human experiments.
Our findings reveal a preference for our approach over state-of-the-art methods using a
variety of subjective metrics. Moreover, objective experimental outcomes in the Overcooked
game environment indicate that our method surpasses existing ones when coordinating with
previously unencountered AI agents and the human proxy model. Our code and demo are
publicly available at https://sites.google.com/view/cole-2023.
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1. Introduction

Significant advancements in artificial intelligence (AI) research have led to groundbreaking
solutions that outperform humans in various tasks (Silver et al., 2018; Kirillov et al., 2023;
Peng et al., 2017; Li et al., 2023b). However, in the real-world scenario, the advanced AI need
to collaborate with human (Dafoe et al., 2021; Zhang et al., 2023, 2024). Establishing efficient
collaboration between AI and unseen partners (either human players or AI agents), a concept
known as zero-shot coordination (ZSC), continues to pose a significant challenge (Legg
& Hutter, 2007; Hu et al., 2020; De Peuter & Kaski, 2022). The significance of zero-
shot human-AI coordination becomes evident in various real-world applications, including
manufacturing (Li et al., 2023a), autonomous vehicles (Aoki et al., 2021), and assistant
robots (de Berardinis et al., 2020). The issue of “cooperative incompatibility” becomes
particularly prominent when an AI agent is unsuccessful in synchronizing with certain
previously unknown partners. As exemplified by multiplayer video games like Honor of
King (Wei et al., 2022) and Overcooked (Carroll et al., 2020), the constant requirement for
players to collaborate with unseen partners is evident. However, AI agents, which are trained
via the maximization of rewards, tend to exhibit deterministic strategies and differ from
those of human players or other AI agents, leading to a failure in coordinating with some
unseen players (Ye et al., 2020; Gao et al., 2023; Yu et al., 2023).

One of the conventional methods to solve zero-shot human-AI coordination is self-
play (Tesauro, 1994), which involves an iterative strategy refinement process through self-
competition. Although SP can achieve equilibrium in a game (Fudenberg & Levine, 1998),
strategies often develop specific behaviors and conventions to secure higher payoffs (Hu
et al., 2020). As a result, a fully-converged SP strategy may face difficulties adapting to
coordination with previously unencountered strategies and humans (Lerer & Peysakhovich,
2018; Hu et al., 2020; Zhao et al., 2021). To address SP’s limitations, current zero-shot
coordination (ZSC) approaches concentrate on enhancing strategic or behavioral diversity
by incorporating population-based training (PBT) to improve adaptability (Carroll et al.,
2020; Canaan et al., 2022; Zhao et al., 2021; Lupu et al., 2021; Charakorn et al., 2023). PBT
aims to boost cooperative performance with other strategies in the population, fostering
zero-shot coordination with unknown strategies, which is achieved by maintaining a set of
strategies to disrupt SP conventions (Tesauro, 1994) and optimizing the rewards for each
pair within the population. Most state-of-the-art (SOTA) methods focus on pre-training
diverse populations (Strouse et al., 2021; Lupu et al., 2021) or introducing handcrafted
techniques (Canaan et al., 2022; Zhao et al., 2021) to excel at cooperative games by optimizing
fixed objectives within the population. And a recent work LIPO (Charakorn et al., 2023)
pursues solutions compatible with their partner agents but incompatible with others in the
population. These approaches have effectively tackled complex cooperative tasks, such as
Overcooked (Carroll et al., 2020) and Hanabi (Bard et al., 2020).

However, optimizing a fixed population-level objective, such as maximizing expected
rewards within the population (Strouse et al., 2021; Lupu et al., 2021; Zhao et al., 2021)
or maximizing self-reward, but minimizing the reward with other agents (Charakorn et al.,
2023), does not guarantee improved coordination capabilities for strategies within the
population. Specifically, although overall performance may improve, simultaneous promotion
of coordination abilities within the population may not occur. This phenomenon, which we
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refer to as “cooperative incompatibility in learning”, underscores the need to carefully weigh
the trade-offs between overall performance and coordination ability when optimizing a fixed
population-level objective.

To more effectively describe and formulate the cooperative incompatibility problem, we
introduce Graphic-Form Games (GFGs) to reframe cooperative tasks from the perspective of
norm-form games. In a GFG, strategies are depicted as nodes, with edge weights between
nodes representing the corresponding cooperative utility of the connected strategies. Addition-
ally, we derive Preference GFGs (P-GFGs) to profile each node’s preferred counterpart in the
population, where “prefer” signifies that a node achieves a higher score when cooperating with
the preferred node rather than its neighbors. Using (P-)GFGs, cooperative incompatibility in
a learning algorithm can be assessed based on the extent to which others prefer the updated
strategy.

To address cooperative incompatibility, we propose the Cooperative Open-ended LEarning
(COLE) framework, which iteratively generates a new strategy that approximates the best
response to empirical gamescapes within P-GFGs. We have shown that COLE framework
converges to the local best-preferred strategy at a Q-sublinear rate when using in-degree
centrality as the preference evaluation metric. We propose two practical algorithms, COLESV
and COLER, both of which comprise of a simulator, a solver, and a trainer that are
incorporated to excel in two-player cooperative game Overcooked (Carroll et al., 2020). The
primary distinguishing factor between COLESV and COLER is the solver component. While
COLESV employs the intuitive concept of the Shapley value to evaluate the adaptability of
strategies and ascertain the cooperative incompatibility distribution, COLER takes a different
approach. It supplants the Shapley value with the average payoffs associated with nodes
in the population as a measure of cooperative capability. The trainer aims to approximate
the best responses to the cooperative incompatibility distribution mixture found in the
population.

The prevailing literature of zero-shot human-AI collaboration largely concentrates on
the quantitative assessment, indicated in the body of works (Carroll et al., 2020; Strouse
et al., 2021; Yu et al., 2023), and often prioritizing metrics such as episode rewards and
frequencies. Some methods conducted human-AI experiments to verify the zero-shot coordi-
nation performance with human players (Strouse et al., 2021; Lou et al., 2023). However,
while these investigations provide valuable insights, most of these methods overlook more
comprehensive aspects of the subject and lack a unified evaluation framework. These over-
sights accentuate the existing deficiencies in the contemporary experimental environments,
which necessitates the urgency to introduce our proposed experimental framework. For the
robust evaluation of human-AI collaboration performance, we devised an online Overcooked
human-AI experimental pipeline, which is a cooperative task environment for two players as
referenced in (Carroll et al., 2020). Our evaluation approach incorporates a broad spectrum
of subjective metrics that assess individual games involving AI agents while implementing
a comprehensive comparison along the entire participation. Primarily, these encompassing
metrics appraise aspects such as intention, contribution, and teamwork during collaboration
with AI agents. Besides, they extend the evaluation to encompass fluency, preference, and
understanding across all the collaborated agents. Moreover, we developed all experimental
components including ethic agreements, instructions, questionnaires, model weights into
a unified experimental platform which we dubbed as the COLE-Platform. To the best of
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our knowledge, our open-source human-AI experiment pipeline is the first comprehensive
human-AI experimentation pipeline for zero-shot human-AI coordination evaluation including
turnkey experimental procedures and scale design.

In this paper, we present the findings of a human-agent study involving 130 participants
conducted on the COLE platform to assess the performance of our proposed algorithm. Par-
ticipants were tasked with evaluating the AI agent’s performance based on three criteria: the
human’s comprehension of AI intentions, AI’s contribution to the task, and the effectiveness
of human-AI collaboration. Furthermore, each participant compared the COLE platform
with another randomly assigned AI agent, ranking the two agents in collaborative fluency,
personal preference, and mutual understanding. Our findings demonstrate a clear preference
for our algorithm over baseline approaches in various evaluation metrics. In addition to
objective evaluations, we also examined zero-shot human-AI coordination performance by
testing our algorithm with previously unencountered baseline agents and a human proxy
model. This approach helps to further demonstrate the adaptability and effectiveness of our
algorithm in novel collaborative scenarios. The human proxy model is a widely used behavior
cloning model (Carroll et al., 2020). The results of the experiment demonstrate that COLESV
surpasses the recent SOTA methods in both evaluation protocols. Furthermore, analysis
of GFGs and P-GFGs during the learning process of COLESV reveals that the framework
effectively overcomes cooperative incompatibility.

This work represents an extension of our conference paper (Li et al., 2023c). Significant
enhancements incorporated in this study include extending the concept of cooperative
incompatibility to include zero-shot human-AI coordination, introducing a comprehensive
human-AI experimental pipeline, providing new theoretical analysis to investigate COLE,
proposing an extra practical algorithm, and executing a broader set of experiments. The
primary contributions in this paper can be summarized as follows.

• We introduce Graphic-Form Games (GFGs) and Preference Graphic-Form Games
(P-GFGs) to intuitively reformulate cooperative tasks, which allows for a more efficient
evaluation and identification of cooperative incompatibility during learning.

• We propose graphic-form gamescapes to help understand the objective and present
the COLE framework to iteratively approximate the best responses preferred by most
others. We prove that the algorithm will converge to the local best-preferred strategy,
and the convergence rate will be Q-sublinear when using in-degree preference centrality.

• To the best of our knowledge, we propose the first comprehensive human-AI experi-
mentation pipeline for zero-shot human-AI coordination evaluation including turnkey
experimental procedures and scale design. And we conducted a human-AI experiment
involving 130 participants, and the results demonstrate a preference for our COLESV
over baselines using various subjective metrics. Additional objective experiments
confirm the effectiveness of our proposed algorithm compared to SOTAs.

The remainder of this paper is structured as follows: Sections 2 and 3 present related works
and preliminaries, while Section 4 formalizes GFGs, and related concepts and introduces
the COLE framework. Section 5 describes two proposed practical algorithms COLER and
COLESV. The COLE human-AI experiment pipeline is detailed in Section 6, and Section 7
outlines the experimental settings and results. Finally, we summarize our findings, limitations,
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and future works in Section 9. Additionally, the Appendix offers supplementary information
and in-depth proofs, including visual overviews of the human-AI experiment platform.

2. Related Works

Zero-Shot Human-AI Coordination. The zero-shot human-AI coordination is closely
related to zero-shot coordination (ZSC) (Hu et al., 2020; Wang et al., 2024). ZSC aims
to train a strategy to coordinate effectively with unseen partners (Hu et al., 2020). Self-
play (Tesauro, 1994; Carroll et al., 2020; Wang et al., 2023) is a traditional method of
training a cooperative strategy, which involves iterative improvement of strategies by playing
against oneself, but develops conventions between players and does not cooperate with other
unseen strategies (Lerer & Peysakhovich, 2018; Hu et al., 2020). Other-play (Hu et al.,
2020) is proposed to break such conventions by adding permutations to one of the strategies.
However, this approach may be reduced to self-play if the game or environment does not
have symmetries or has unknown symmetries. Another approach is population-based training
(PBT) (Jaderberg et al., 2017; Carroll et al., 2020), which trains strategies by interacting
with each other in a population. However, PBT does not explicitly maintain diversity and
therefore does not coordinate with unseen partners(Strouse et al., 2021).

To achieve the goal of ZSC, recent research has focused on training robust strategies that
use diverse populations of strategies (Strouse et al., 2021; Lupu et al., 2021; Zhao et al.,
2021). Fictitious co-play (FCP) (Strouse et al., 2021) obtains a population of periodically
saved checkpoints during self-play training with different seeds and then trains the best
response to the pre-trained population. TrajeDi (Lupu et al., 2021) also maintains a pre-
trained self-play population but encourages distinct behavior among the strategies. The
maximum entropy population (MEP) (Zhao et al., 2021) method proposes population entropy
rewards to enhance diversity during pre-training. It employs prioritized sampling to select
challenging-to-collaborate partners to improve generalization to previously unseen policies.
Furthermore, methods such as MAZE (Xue et al., 2022) and CG-MAS (Mahajan et al., 2022)
have been proposed to improve generalization ability through coevolution and combinatorial
generalization. The most recent work of LIPO (Charakorn et al., 2023) pursues solutions
compatible with their partner agents but incompatible with others in the population. LIPO is
also based on the framework of the PBT algorithm, whose objective function consists of two
fixed teams: maximizing the rewards when it pairs with itself, but minimizing the rewards
when it pairs with other agents in the population. Our previous research (Li et al., 2023c)
emphasized the collaboration with unfamiliar AI agents through the continuous formulation
and optimization of objectives. In this study, we expand the scope of COLE framework to
facilitate cooperation with actual human players, which is validated by human players on
the human-AI experimental platform we have developed.

Open-Ended Learning. Another related area of research is open-ended learning, which
aims to continually discover and approach objectives (Srivastava et al., 2012; Team et al.,
2021; Meier & Mujika, 2022; Wen et al., 2024). In MARL, most open-ended learning methods
focus on zero-sum games, primarily posing adaptive objectives to expand the frontiers of
strategies (Lanctot et al., 2017a; Balduzzi et al., 2019; McAleer et al., 2020; Yang et al.,
2021; Liu et al., 2021; McAleer et al., 2022). In the specific context of ZSC, the MAZE
method (Xue et al., 2022) uses open-ended learning by maintaining two populations of
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strategies and partners and training them collaboratively throughout multiple generations. In
each generation, MAZE pairs strategies and partners from the two populations and updates
them together by optimizing a weighted sum of rewards and diversity. This method co-evolves
the two populations of strategies and partners based on naive evaluations such as best or
worst performance with strategies in partners. Our proposed method, COLE framework,
combines GFG and P-GFG in open-ended learning to evaluate and identify the cooperative
ability of strategies to solve cooperative incompatibility efficiently with theoretical guarantee.

Coordination Graphs. Another domain closely associated with our research is the field
of coordination graphs (CGs) (Guestrin et al., 2002). CGs offer an influential framework
for modeling intricate interactions and dependencies among multiple agents, facilitating the
representation and examination of cooperative problem-solving scenarios. Typically, CGs
comprise a vertex (agent) set and an edge set, with each state potentially possessing its
distinct coordination graph(Guestrin et al., 2002). Deep CGs (Böhmer et al., 2020) refine
the joint value function of all agents per coordination graph, factoring payoffs between pairs
of agents to strike a flexible balance between representational capacity and generalization.
In ad hoc teamwork, Deep CGs have been employed by Rahman et al. (2021), albeit under
full observability. The Generalized Policy Learning (GPL) approach (Rahman et al., 2021)
leverages Deep CGs in ad hoc teamwork to learn agent models and joint-action value models
in the face of varying team compositions. Moreover, the Partially Observable GPL (PO-GPL)
method (Rahman et al., 2022) broadens the application of GPL by extending it from the
fully observable problem domain to the partially observable one. In contrast to CGs and
subsequent approaches, our graph-based games conceptualize the cooperative task from the
standpoint of the normal-form game rather than the stochastic game.

3. Preliminaries

Normal-Form Game. A two-player normal-form game is defined as a tuple (N,A,w),
where N = {1, 2} is a set of two players, indexed by i, A = A1×A2 is the joint action space,
and w = (w1, w2) with wi : A → R is a reward function for the player i. In a two-player
common payoff game, two-player rewards are the same, meaning w1(a1, a2) = w2(a1, a2) for
a1, a2 ∈ A.

Open-Ended Meta-Games and Analysis. A meta-game is characterized by the tuple
(N ,S,M), where N represents the set of players, S is a set of policies (like a set of RL
models), and M designates the meta-game payoff matrix. In common payoff cooperative
meta-game with two players, the meta-game payoff isM =

{
ϕ(S1, S2) : (S1, S2) ∈ S1 × S2

}
,

where ϕ : S1 × S2 → R is the utility function. The meta-game payoff is a symmetric matrix.
The primary distinction between a meta-game and a normal-form game lies in their respective
actions. In the case of a meta-game, a strategy such as a DRL model constitutes an action, as
opposed to the atomic actions (e.g., up and down) typical of normal-form games. Open-ended
meta-game refers to the continual learning process, wherein new strategies are persistently
generated and incorporated into the strategy sets throughout the training phase.

Empirical Game-Theoretic Analysis (EGTA) is the study of finding meta-strategies based
on experience with prior strategies (Walsh et al., 2002; Tuyls et al., 2018). An empirical
game is built by discovering strategies and meta-reasoning about exploring the strategy
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space (Lanctot et al., 2017a). Furthermore, empirical gamescapes (EGS) are defined as the
convex hull of the payoff vectors of all strategies (Balduzzi et al., 2019). Given a population
N of n strategies, the empirical gamescapes is often defined as

G = {convex mixture of rows ofM}

=

{∑
i

αi ·mi : α ≥ 1, αT1 = 1,mi =M[i,:]

}
(1)

whereM is the empirical payoff matrix with the expected outcomes for each joint strategy.

Cooperative Theoretic Concepts. In the present study, our main focus is on character-
istic function games, a particular class of cooperative games in which a coalition’s generated
value is represented by a characteristic function (Chalkiadakis et al., 2011). We consider a set
of players N = {1, . . . , n}, where a coalition is denoted as a subset of players N , symbolized
by C ⊆ N . The player set N is also known as the grand coalition. A characteristic function
game, denoted by G, consists of a pair (N, v), where N = {1, . . . , n} represents a finite,
non-empty set of agents, and v : 2N → R is the characteristic function. This function assigns
a real number v(C) to each coalition C ⊆ N , with the number v(C) typically considered as
the coalition’s value.

In addition, in this study, we examine transferable utility games (TU games), which are
based on the underlying assumption that the coalitional value v(C) can be divided among
the members of C in any way agreed upon by the members of the coalition. This assumption
allows for greater flexibility in analyzing cooperative problem solving and the distribution of
the resulting payoffs.

Shapley Value (Shapley, 1971) is one of the important solution concepts for characteristic
function games (Chalkiadakis et al., 2011; Peleg & Sudhölter, 2007). The Shapley Value
aims to distribute fairly the collective value, like the rewards and cost of the team across
individuals by each player’s contribution. Taking into account a coalition game (N , v) with
a strategy set N and characteristic function v, the Shapley Value of a player i ∈ N could be
obtained by

SV (i) =
1

n!

∑
π∈ΠN

v(P π
i ∪ {i})− v(P π

i ), (2)

where π is one of the one-to-one permutation mappings from N to itself in the permutation
set Π and π(i) is the position of player i ∈ N in permutation π. P π

i = {j ∈ N|π(j) < π(i)}
is the set of all predecessors of i in π.

Graph Theoretic Concepts. In graph theory, a weighted directed graph or network can
be represented as D = (V,E,w), consisting of a set of vertices V , a set of directed edges
E, and a weight function w : E → R+ that assigns positive real numbers to each edge. If
the graph has the property that (v, u) ∈ E entails (u, v) ∈ E and w(v, u) = w(u, v) for all
(u, v) ∈ E, it can be considered an undirected weighted graph, also known as a weight graph.
An unweighted graph is a special case of a weighted graph, where the weight function assigns
a value of 1 to every edge (u, v) ∈ E.

Node Centrality is a graph theory concept that quantifies a node’s relative importance or
influence within a network. It is a measure of how central a node is to the overall network
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structure, with higher centrality values indicating greater importance. Degree Centrality
is one of the simplest centrality concepts, based on the number of edges connected to a
node (Freeman, 1978). In directed graphs, it can be further divided into in-degree (number
of incoming edges) and out-degree (number of outgoing edges) Centrality.

PageRank (Page et al., 1999) is a centrality measure used to rank web pages in search
engine results by estimating the relative importance of each page in a hyperlink network.
Weighted PageRank(WPG) (Xing & Ghorbani, 2004) is an extension of the original PageRank
algorithm that considers edge weights in addition to the basic structure of the network. This
modification allows the algorithm to handle networks where the strength of connections
between nodes varies, such as in citation networks or social networks where the influence of
nodes may differ. The formula of WPG is given as follows:

σ(u) = (1− d) + d
∑

v∈B(u)

σ(v)
Iu∑

p∈R(v) Ip

Ou∑
p∈R(v)Op

, (3)

where d is the damping factor set to 0.85, B(u) is the set of nodes that point to u, R(v)
denotes the nodes to which v is linked, and I,O are the degrees of inward and outward of
the node, respectively.

4. Cooperative Open-Ended Learning

In this section, we introduce the cooperative open-ended learning framework designed to
address the cooperative incompatibility problem and enhance zero-shot human-AI coordina-
tion. In Subsection 4.1, we propose graphic-form games and related concepts to model the
coordination relationships in a population of strategies. We then present motivating examples
in Subsection 4.2 to illustrate the importance of studying the cooperative incompatibility
problem. This is followed by a conceptual definition of cooperative incompatibility in Sec-
tion 4.3. Finally, we propose the cooperative open-ended learning framework in Section 4.4.

4.1 Graphic-Form Games (GFGs)

It is important to evaluate cooperative incompatibility and identify those failed-to-collaborate
strategies to conquer cooperative incompatibility. Therefore, we propose graphic-form games
(GFGs) to reformulate normal-form cooperative games from the perspective of game theory
and graph theory, which is the natural development of empirical games (Balduzzi et al.,
2019). The definition of GFG is given below.

Definition 4.1 (Graphic-Form Game). Let a collection of strategies N = {1, 2, · · · , n}
be given, where each strategy could be a parameterized network or a human player. A
two-player graphic-form game (GFG) can be defined as a triplet G = (N ,E,w), which can
be represented as a weighted directed graph. Here, N , E, and w represent the sets of nodes,
edges, and weights, respectively. For a given edge (i, j), w(i, j) denotes the anticipated
outcome when strategy i competes against strategy j. The visual representation of a GFG is
referred to as a game graph.
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Figure 1: The Game Graph, (sub-) preference graph and corresponding preference centrality
matrix. The (sub-) preference graphs are for all four iterations in the training
process, and the corresponding preference in-degree centrality matrix is based on
them. As it can be observed in G′3 and G′4 in (a), the newly updated strategies fail
to be preferred by others and have centrality values of 1, despite an increase in the
mean of rewards with all others. In (b), we illustrate an ideal learning process in
which a newly generated strategy can achieve higher outcomes than all previous
strategies.

The payoff matrix of G is denoted as M, where M(i, j) = w(i, j),∀i, j ∈ N . Our goal
is to improve the upper bound of other strategies’ outcomes in the cooperation within the
population, which implies that the strategy should be preferred over other strategies.

Moreover, we propose preference graphic-form games (P-GFGs) as an efficient tool to
analyze the current learning state, which can profile the degree of preference for each node in
GFGs. Specifically, P-GFG is a subgraph of GFG, where each node only retains the out-edge
with maximum weight among all out-edges except for its self-loop. Given a GFG (N ,E,w),
the P-GFG could be defined as G′ = {N ,E′,w}, where E′ = {(i, j)| argmaxj w(i, j),∀j ∈
{N\i}, ∀i ∈ N} is the set of edges. The graphic representation of P-GFG is called a preference
graph. The game graph delineates the interaction of players within a weighted directed
graph, in which the weight signifies the payoff or utility derived from two participating
agents. However, the preference graph pertains to the depiction of each agent identifying
the partner with whom they can achieve the most significant utility in the population. This
is the underlying principle behind the term “preference”: an agent demonstrates a strong
tendency to cooperate with a particular endpoint agent to maximize their utility.

To deeply investigate the learning process, we further introduce the sub-preference graphs
based on P-GFGs, which aim to reformulate previous learning states and analyze the
learning behavior of the algorithm. Suppose that there is a set of sequentially generated
strategies Nn = {1, 2, · · · , n}, where the index also represents the number of iterations for
simplicity. For each previous iteration i < n, the sub-preference game form graph is denoted
as {Ni,E

′
i,wi}, where Ni = {1, 2, · · · , i} is the set of strategies in iteration i, and E′

i, and wi

are the corresponding edges and weights.
The semantics of the preference graph is that a strategy or node i prefers to play with

the tailed node to achieve the highest results. In other words, the more in-edges one node
has, the more cooperative ability this node can achieve. Ideally, if one strategy can adapt
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well to all others, all the other strategies in the preference graph will point to this strategy.
To evaluate the adaptive ability of each node, the centrality concept is introduced into the
preference graph to evaluate how a node is preferred.

Definition 4.2 (Preference Centrality). Given a P-GFG {N , E′,w}, preference centrality
of i ∈ N is defined as,

η(i) = 1− norm(di),

where di is a graph centrality metric to evaluate how the node is preferred, and norm :=
R→ [0, 1] is a normalization function.

Note that the d is a kind of centrality that could evaluate how much a node is preferred.
A typical example of d is the centrality of degrees, which calculates how many edges point
to the node. In this work, our primary choice for the graph centrality metric is in-degree
centrality. Besides, the degree centrality values are normalized (norm) by dividing by the
maximum possible degree n− 1 where n is the number of nodes.

Fig. 1 provides examples of the learning processes of two algorithms, one with and
one without a cooperative incompatibility issue. In Fig. 1(a), illustrative of the algorithm
possessing this cooperative incompatibility, the updated strategy is observed to fall short in
elevating the cooperative utility achieved with other strategies after the second generation.
There are no edges pointing towards the node which validates this further, and is confirmed
by the preference centrality matrix, where the strategy at hand is marked with a η = 1.
This suggests that no nodes wish to collaborate with the updated strategies. On the other
hand, Fig. 1(b), devoid of cooperative incompatibility, portrays a different scenario. In this
depiction, every other strategy within the preference graph directs towards the most recent
strategy, signifying the continuous enhancement of the cooperative capability.

4.2 Motivating Examples

The challenge of training AI agents to effectively coordinate with unfamiliar AI counterparts
or human players constitutes a substantial impediment. Predominantly trained through
reward maximization methods, AI agents typically demonstrate deterministic strategies which
often diverge from those employed by human players or other AI agents, thereby resulting in
a coordination failure with previously unseen players (Ye et al., 2020; Gao et al., 2023; Yu
et al., 2023). Fig. 2(a), proposed by HSP (Yu et al., 2023), illustrates a motivating example
in the Overcooked game of how an agent player could collaborate with some players and
fail to collaborate with other players. In this example of the Overcooked game, chefs could
accomplish two recipes: one calls for three onions and the other demands three tomatoes.
The FCP algorithm, however, tends to settle into a distinctive pattern of cooking solely onion
soup (Yu et al., 2023). Consequently, this FCP agent can achieve high scores when paired
with similarly styled human players. Nevertheless, its performance declines significantly
when paired up with a player who prefers the tomato soup style, resulting in a disruption
of the human player’s tomato soup cooking plan, thereby failing to complete the required
recipe. Further instances of miscoordination can be observed in real-world scenarios, such as
autonomous driving, where the question may arise whether the policy should be explorative
or conservative.

1148



Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination

(a) The illustration showcases an instance of an FCP agent’s collaboration failure with specified human
participants. This figure is referenced from HSP (Yu et al., 2023).

Payoff Matrix Preference Centrality Matrix

Iteration

R
ew
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ds

(b) Cooperative incompatibility issue in MEP training process.

Figure 2: Motivating examples. Fig. 2(a) features an analysis conducted by Hidden-utility
Self-Play (HSP) method (Yu et al., 2023). The FCP agent converges to a fixed
pattern of exclusively preparing onion soup, thereby failing to establish coordination
with a human participant who prefers making tomato soup. Fig. 2(b) shows a
training process of the MEP algorithm with several comparative incompatibility
problems. The payoff matrix of each strategy during training and the corresponding
preference centrality matrix of the MEP algorithm in the Overcooked. A deeper
shade of red in the payoff matrix signifies higher utility. The darker the color in
the preference centrality matrix, the lower the centrality value, and the more other
strategies prefer it.

Nevertheless, miscoordination issues exist in the training of some population-based ZSC
algorithms. An analysis of the MEP algorithm (Zhao et al., 2021), as depicted in Fig. 2(b),
reveals a cooperative incompatibility evident during the learning process in the Overcooked
environment (Carroll et al., 2020). The figure on the left represents the payoff matrix,
where a deeper shade of red signifies higher utility. In the accompanying preference indegree
centrality matrix, a darker color is indicative of a strategy being more preferred by others.
Throughout the MEP learning process, despite a consistent improvement in mean rewards
(as depicted in the upper-right of Fig. 2(b)), significant cooperative incompatibility problems
arise post a certain training duration. At this juncture, many strategies show an inclination
to engage with earlier strategies, represented by darker shades, over newer strategies, in an
effort to secure higher rewards. Therefore, addressing this collaboration incompatibility is
crucial to enhance the adaptability of AI agents in coordinating with unseen partners.
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Figure 3: An overview of one generation in COLE framework: The solver derives the cooper-
ative incompatible distribution ϕ using a cooperative incompatibility solver, which
can be any algorithm that evaluates cooperative contribution. The trainer then
approximates the relaxed best response by optimizing individual and cooperative
compatible objectives. The oracle’s training data is generated using partners
selected based on the cooperative incompatibility distribution and the agent’s
strategy. Finally, the approximated strategy sn+1 is added to the population, and
the next generation begins.

4.3 Cooperative Incompatibility

Fig. 1 provides examples of cooperative incompatibility, specifically concerning human-AI
coordination and ZSC algorithm learning. Consequently, this section will delve deeper into a
conceptual understanding of cooperative incompatibility and formally delineate this issue
within the learning process, utilizing the tools previously introduced such as P-GFGs and
preference centrality. The conceptual definition of cooperative incompatibility is as follows:

Definition 4.3 (Cooperative Incompatibility). Cooperative incompatibility pertains to the
occurrence wherein a participant, either an AI agent or a human player, is unable to align
with certain specific partners, who may equally be AI agents or human players.

Cooperative Incompatibility in the learning of ZSC algorithms. A cooperative
incompatibility issue arises in a population-based learning algorithm when the new strategy
st, produced by the algorithm at step t, is unable to boost cooperative utility in conjunction
with existing strategies in the population. This is to say, the preference centrality η(t) of
st is greater than 0. Ideally, an algorithm devoid of cooperative incompatibility issues will
maintain a preference centrality of 0 at each step. This implies that the updated strategy
enhances the collaborative utility of strategies within the population, prompting them to
prefer cooperation with the updated strategy.

In this study, our aim is to resolve the cooperative incompatibility in the learning
process of population-based algorithms, ultimately paving the way to tackle cooperative
incompatibility issues in AI-AI and AI-human coordination.

4.4 Cooperative Open-Ended Learning Framework

To address the problem of cooperative incompatibility, we refine our comprehension of the
objective by formulating empirical gamescapes (Balduzzi et al., 2019) from zero-sum games
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to our studied shared payoff GFGs. This provides us with a geometric representation of
player strategies within a GFG {N ,E,w}, thereby capturing the diversity and adaptive
capacity of cooperative strategic behaviour. However, it is not efficient to directly learn how
to extend the EGS in common payoff games to cooperate effectively with unseen partners.

To conquer cooperative incompatibility, the natural idea is to learn with the mixture of
cooperative incompatible strategies on the most recent population N to improve gamescape.
Given a population N , we present cooperative incompatible solver to assess how strategies
collaborate, especially with those strategies that are difficult to collaborate with. The solver
derives the cooperative incompatible distribution ϕ, where strategies that do not coordinate
with others have higher probabilities. We also optimize the cooperative incompatible mixture
over the individual objective, which is the cumulative self-play rewards to improve the
adaptive ability with expert partners. To simplify, we name it the individual and cooperative
incompatible mixture (IPI mixture). We use an approximate oracle to approach the best
response over the IPI mixture. In general, approximate oracles often employ techniques such
as approximation methods (e.g., function approximation or neural networks), reinforcement
learning (RL) algorithms, and optimization techniques to iteratively improve the agent’s
policy until it converges to a satisfactory solution (McMahan et al., 2003; Balduzzi et al.,
2019). In this study, the approximate oracle functions as a solver utilizing RL algorithms
to efficiently learn and approximate the best-response policy. Given strategy sn, the oracle
returns a new strategy sn+1 : sn+1 = oracle(sn,J (sn, ϕn)), with η(sn+1) = 0 , if possible.
J is the objective function as follows,

J (sn, ϕn) = Ep∼ϕw(sn, pn) + αw(sn, sn). (4)

Here, α represents the balancing hyperparameter, while ϕn denotes the cooperative incom-
patibility distribution calculated by the solver at generation n, in which strategies that fail
to coordinate with others are assigned higher probabilities. The objective consists of the
cooperative compatible objective and the individual objective. The cooperative compatible
objective aims to train the best response to those failed-to-collaborate strategies, and the
individual objective aims to improve the adaptive ability with expert partners. We call the
best response the best-preferred strategy if η(sn+1) = 0.

However, arriving at the best-preferred strategy with η(sn+1) = 0 is hard or even
impossible. Therefore, we seek to approximate the best-preferred strategies by relaxing the
best strategy to the strategy whose preference centrality ranks top k. The approximate
oracle could be rewritten as

sn+1 = oracle(sn,J (sn, ϕn)), with R(η(sn+1)) > k, (5)

where R(·) serves as the ranking function, wherein a lower preference centrality value
corresponds to higher ranks. ϕn refers to the distribution at generation n. For simplicity, we
may forego the use of the subscript n in the remainder of the paper. As illustrated by the
equation, the terminal condition for a single generation of oracle training has been moderated
to satisfy the criterion wherein the rank of preference centrality of optimized strategy resides
within the top k. Instead of calculating best-preferred strategy, the approximate oracle aims
to output best-k-preferred strategy to the IPI mixture.

We extend the approximated oracle to open-ended learning and propose COLE framework
(Fig. 3). The COLE framework iteratively updates new strategies that approximate the
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best-preferred strategies to the cooperative incompatible mixture and the individual objective.
The simulator completes the payoff matrix with the newly generated strategy and others in
the population. The solver aims at derive the cooperative incompatible distribution of the
Game Graph builder and the cooperative incompatible solver. The trainer uses the oracle
to approximate the best-preferred strategy to the cooperative incompatible mixture and
individual objective and outputs a newly generated strategy which is added to the population
for the next generation.

Although we relax the best-preferred strategy to the strategy in the top k centrality in
the constraint, COLE framework still converges to a local best-preferred strategy with zero
preference centrality. Formally, the convergence theorem of the local best preferred strategy
is given as follows.

Theorem 4.4. Let s0 ∈ S be the initial strategy and si = oracle(si−1,J (si−1, ϕi−1)) for
i ∈ N. Under the effective functioning of the approximated oracle as characterized by Eq. 5,
we can say that the sequence {si} for i ∈ N could converge to a local optimal strategy s∗, i.e.,
the local best-preferred strategy.

Proof. See Appendix A.

Furthermore, if we choose in-degree centrality as the preference centrality function, the
convergence rate of COLE framework is Q-sublinear.

Corollary 4.5. Let η : G′ → Rn be a function that maps a P-GFG to its in-degree centrality,
the convergence rate of the sequence {si} is Q-sublinear concerning η.

Proof. See Appendix B.

5. Practical Algorithm

In an endeavour to tackle cooperative incompatibility issues in common-payoff games with
two players, we have developed two practical algorithms, COLER and COLESV. These
are based on the COLE framework, and are specifically designed to reconcile cooperative
incompatibility and augment zero-shot coordination capabilities. As depicted in Fig. 3, these
algorithms, at each generation, accept an input population N and from it, derive a local
best-preferred strategy that is then appended to N in order to extend the population. The
process of generating this strategy involves the collaboration of the simulator, solver, and
trainer modules. While COLESV and COLER utilize a common simulator and trainer, they
each employ a distinct solver. Computation of the payoff matrixM for the input population
N is carried out by the simulator, with each element M(i, j) where i, j ∈ N symbolizing
the cumulative rewards of players i and j at both respective starting positions. The solver’s
role involves assessing and identifying strategies that have failed to collaborate effectively,
achieved through the calculation of an incompatible cooperative distribution. A Graphic
Shapley Value solver is integrated into COLESV enabling it to measure the cooperative
efficacy of each strategy relative to all others. This is achieved by implementing the weighted
PageRank (WPG) (Xing & Ghorbani, 2004) from graph theory into the Shapley Value. This
technique allows for the evaluation of adaptability, particularly in relation to those strategies
that have failed to collaborate effectively. As a contrast, COLER incorporates a simplified
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Algorithm 1 Practical Algorithms
1: Input:population N0, the sample times a, b of Ji,Jc, hyperparameters α, k, solver flag

FLAG
2: for t = 1, 2, · · · , do
3: /* Step 1: Completing the payoff matrix */
4: Mn ← Simulator(Nt)
5: /* Step 2: Solving the cooperative incompatibility distribution */
6: if FLAG is “SV” then
7: /* Selecting Graphic Shapley Value Solver */
8: ϕ = Graphic Shapley Value(Nt) by Algorithm 2
9: else

10: if FLAG is “R” then
11: /* Selecting Reward Solver */
12: ϕ = Reward Solver(Nt)
13: end if
14: end if
15: /* Step 3: Approximate the best-preferred strategy */
16: J =

∑b
p∼ϕ ϕ(p)w(st, p) + α

∑aw(st, st), where st = Nt(t), ϕ is updated each time by
Eq 8

17: st+1 = oracle(st,Jt) with R(η(sn+1)) > k
18: /* Step 4: Expand the population */
19: Nt+1 = Nt ∪ {st+1}
20: end for

solver which computes the cooperative ability by determining the payoff with other members
of the population. Subsequently, the trainer approximates the strategy that is most preferred
against the recently updated population.

5.1 Solvers

Graphic Shapley Value Solver for COLESV. The graphic Shapley value solver is pro-
posed to calculate the cooperative incompatible distribution as a mixture to approximate the
best-preferred strategies in the recent population and overcome cooperative incompatibility.
Specifically, we combine the Shapley Value (Shapley, 1971) solution, an efficient single solution
concept for cooperative games to assign the obtained team value between individuals, with
our GFG to evaluate and identify the strategies that did not cooperate. To apply the Shapley
Value, we define an additional characteristic function to evaluate the value of the coalition.
Formally, given a coalition C ⊆ N , we have the following: v(C) = Ei∼C,j∼Cσ(i)σ(j)w(i, j),
where σ is a mapping function that evaluates how badly a node performs on its game graph.
We use the characteristic function to evaluate the coalition value of how it could cooperate
with those hard-to-collaborate strategies.

We take the inverse of WPG (Xing & Ghorbani, 2004) on the game graph as the metric
σ. WPG is proposed to assess the popularity of a node in a complex network. The formula
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Algorithm 2 Graphic Shapley Value Solver Algorithm
1: Input:: population N , the number of Monte Carlo permutation sampling k, the size of

negative population
2: Initialize ϕ = 0|N |
3: for (1, 2, · · · , k) do
4: π ←− Uniformly sample from ΠC , where ΠC is permutation set
5: for i ∈ N do
6: /* Obtain predecessors of player i in sampled permutation π */
7: Sπ(i)←− {j ∈ N|π(j) < π(i)}
8: /* Update incompatibility weights */
9: ϕi ←− ϕi +

1
k (v(Sπ(i) ∪ {i})− v(Sπ(i)))

10: end for
11: end for
12: ϕ←− ϕ/

∑
ϕ

13: ϕ←− (1− ϕ)/
∑

(1− ϕ)
14: Output:: ϕ

of WPG is given as follows:

σ̂(u) = (1− d) + d
∑

v∈B(u)

σ̂(v)
Iu∑

p∈R(v) Ip

Ou∑
p∈R(v)Op

, (6)

where d is the damping factor set to 0.85, B(u) is the set of nodes that point to u, R(v)
denotes the nodes to which v is linked, and I,O are the degrees of inward and outward of
the node, respectively. Therefore, the metric σ evaluates how unpopular a node is and equals
the inverse of the WPG value σ̂.

Then we calculate the Shapley Value of each node by taking a characteristic func-
tion in equation 2, named the graphic Shapley Value. We use Monte Carlo permutation
sampling (Castro et al., 2009) to approximate the Shapley Value, which can reduce the
computational complexity from exponential to linear time. After inverting the probabilities
of the graphic Shapley Value, we get the cooperative incompatible distribution ϕ, where
strategies that fail to collaborate with others have higher probabilities. The details are given
in Algorithm 2.

Reward Solver for COLER. COLER substitutes the Shapley value for WPG weighted
average rewards within the population. Specifically, for each player i ∈ N , we have

ϕi =
∑
j∈N

σ(i)σ(j)w(i, j), (7)

where w(i, j) is the weight in the game graph, i.e., average payoffs of player i and j. σ
is calculated as same as the calculation of graphic Shapley value solver for COLESV. The
remainder of the reward solver processes are identical to the graphic Shapley value solver.

5.2 Trainer: Approximating Best-Preferred Strategy

The trainer inputs the cooperative incompatible distribution ϕ and samples its teammates to
learn to approach the best-preferred strategy against the IPI mixture.
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Recall the oracle for sn : sn+1 = oracle(sn,J (sn, ϕn)), with R(η(sn+1)) > k. COLESV
aims to optimize the best-preferred strategy over the IPI mixture. J (sn, ϕn) is the joint
objective that consists of individual and cooperative compatible objectives. The individual
objective aims to improve performance within itself and promote adaptive ability with expert
partners, formulated as follows: Ji(sn) = w(sn, sn), where sn is the ego strategy that needs
to be optimized in generation n.

And the cooperative compatible objective aims to improve cooperative outcomes with
those failed-to-collaborate strategies: Jc = Ep∼ϕw(sn, p), where the objective is the expected
rewards of sn with cooperative incompatible distribution-supported partners. w estimates
and records the mean cumulative rewards of multiple trajectories and starting positions. The
expectation can be approximated as follows: Jc =

∑b
1 ϕ(p

i)w(st, p
i), where b is the number

of sampling times.
To balance exploitation and exploration as the learning continues, we present the Sampled

Upper Confidence Bound for Game Graph (SUCG) which combines the Upper Confidence
Bound (UCB) and GFG to control the sampling for more strategies with higher probabilities
or new strategies. Additionally, we view the SUCG value as the probability of sampling
teammates instead of using the maximum item in typical UCB algorithms. Specifically, in the
game graph, we keep the information on the times that a node has been visited. Therefore,
the probability of each node considers both the Shapley Value and visiting times, denoted as
p̂. The SUCG for any node u in N could be calculated as follows:

ϕ̂(u) = ϕ(u) + c

√∑
i∈N N(i)

1 +N(u)
, (8)

where c is a hyperparameter that controls the degree of exploration and N(i) is the visit
times of node i. SUCG could efficiently prevent COLESV from generating data with a few
fixed strategies that did not cooperate, which could lead to loss of adaptive ability.

We conclude COLESV as Algorithm 1. Furthermore, to verify the influence of different
ratios of two objectives, we denote COLESV with different ratios as 0:4, 1:3, 2:2, and 3:1.
Specifically, COLESV with a : b represents different partner sampling ratios for the combining
objective, where a is the corresponding times to generate data using self-play for the individual
objective, and b is the number of sampling times in Jc. For example, COLESV 1:3 trains
using self-play once and sampling from the cooperative incompatible distribution as partners
three times to generate data and update the objectives.

6. Human-AI Experiment Pipeline

In this section, we present our Overcooked human-AI experiment pipeline, explicitly crafted
for a comprehensive and streamlined assessment of the cooperative performance of AI agents,
working in collaboration with novice human players. Fig. 4 illustrates the proposed experi-
mental framework integrating human and AI participants, encompassing six crucial sequential
stages. The crux of this pipeline lies in its human-AI evaluation design, integrating a broad
array of subjective metrics. These metrics scrutinize individual games involving AI agents,
along with providing a comprehensive comparative analysis across the entire participant
pool. These encompassing metrics primarily evaluate vital aspects such as intentionality,
contribution, and teamwork within human-AI collaborations. Moreover, these metrics facili-
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Figure 4: The illustrated figure characterizes the conceptual architecture of the proposed
human-AI experimental pipeline, structured around six critical stages. (Stage 1)
Experiment Statement delineates the nature of the experiment, associated risks,
and ethical considerations among other relevant aspects. (Stage 2) Before-game
Survey principally focuses on the acquisition of participant information. Delving
deeper, (Stage 3) Experimental Instructions dispenses extensive procedural
guidelines for the experiment. Subsequently, participants are invited to engage in
a sequence of trial games to acquaint themselves with the experimental procedure
in (Stage 4) Game Tutorial. Proceeding to (Stage 5) Main Experiment, it
entails various rounds with a diverse array of differentiated AI agents. Post each
round, participants are obliged to fill out a survey. The entire experimental process
culminates with a comprehensive evaluation of the collaborative AI counterparts
in (Stage 6) Final Survey. The pipeline is integrated into one platform designed
for seamless interaction. Researchers have the flexibility to tailor the pipeline
according to their needs, while participants benefit from a user-friendly interface
that enables them to complete the stages with ease.

tate an extension of this evaluation to include parameters such as fluency, preference, and
comprehension across all collaborating agents. Besides, all six steps are integrated into one
platform, named COLE-Platform, designed for seamless interaction. Researchers have the
flexibility to tailor the pipeline according to their needs, while participants benefit from a
user-friendly interface that enables them to complete the stages with ease.

As shown in Fig. 4, the initial stage entails the formulation of an experiment statement,
where the ethical considerations and potential risks associated with the experiment are
thoroughly assessed, alongside the information of pertinent experimental details. Subse-
quently, participants are required to complete a preliminary survey, which seeks to gather
fundamental information like their familiarity with the game and their age for more nuanced
analyses. The next stage comprises detailed experimental instructions and a game tutorial,
equipping participants with the necessary knowledge and skills to play the game and allowing
them some initial exposure to the game for familiarization purposes. Then, the process
transitions into various game stages, encompassing a game tutorial and the main experiment,
which comprises multiple rounds against a range of distinct AI agents. After each round,
participants are required to complete a survey. The experiment is concluded with a final
survey. Comprehensive data, encompassing player trajectories and AI network parameters,
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are meticulously recorded and stored in the respective database. In Appendix E, screenshots
from different phases of the pipeline can be found (Figs. 14-19).

The remainder of this section is devoted to introducing the Overcooked game, an overview
of the Human-AI Experiment Platform, and a discussion on the design of the experimental
scale.

6.1 Overcooked Environment

Our paper implements the platform in the Overcooked environment (Carroll et al., 2020;
Charakorn et al., 2020; Knott et al., 2021), a simulation environment for reinforcement
learning derived from the Overcooked!2 video game (Carroll et al., 2020). The Overcooked
environment features a two-player collaborative game structure with shared rewards, where
each player assumes the role of a chef in a kitchen, working together to prepare and serve soup
for a team reward of 20 points. The environment consists of five distinct layouts: Cramped
Room (Cramped Rm.), Asymmetric Advantages (Asymm. Adv.), Coordination Ring (Coord.
Ring), Forced Coordination (Forced Coord.), and Counter Circuit (Counter Circ.). Visual
representations of these layouts can be found in Fig. 5. The detailed introduction of five
layouts is as follows.

Forced Coordination. The Forced Coordination environment is designed to necessitate
cooperation between the two players, as they are situated in separate, non-overlapping
sections of the kitchen. Furthermore, the available equipment is distributed between these
two areas, with ingredients and plates located in the left section and pots and the serving
area in the right section. Consequently, the players must work together and coordinate their
actions to complete a recipe and earn rewards successfully.

Counter Circuit. The Counter Circuit layout features a ring-shaped kitchen with a
central, elongated table and a circular path between the table and the operational area. In
this configuration, pots, onions, plates, and serving spots are positioned in four distinct
directions within the operational area. Although the layout does not explicitly require
cooperation, players may find themselves obstructed by narrow aisles, prompting the need
for coordination to maximize rewards. One example of an advanced technique players can
learn is to place onions in the middle area for quick and efficient passing, thereby enhancing
overall performance.

Asymmetric Advantages. In the Asymmetric Advantages layout, players are divided into
two separate areas, but each player can independently complete the cooking process in their
respective areas without cooperation. However, the asymmetrical arrangement of the left
and right sides encourages collaboration to achieve higher rewards. Specifically, two pots are
placed in the central area, accessible to both players. The areas for serving and ingredients,
however, are completely distinct. The serving pot is placed near the middle on the left side
and far from the middle on the right side, with the ingredients area arranged oppositely.
Players can minimize their walking time and improve overall efficiency by learning how to
collaborate effectively.

Cramped Room. The Cramped Room layout presents a simplistic environment in which
two players share an open room with a single pot at the top and a serving area at the bottom
right. In this setup, players could score high even without extensive coordination.
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(a) Forced Coord. (b) Counter Circ.

(c) Asymm. Adv.

(d) Cramped Rm. (e) Coord. Ring

Figure 5: Overcooked environment layouts. The Cramped Rm., Asymm. Adv., and Coord.
Ring layouts are more conducive to higher rewards when players cooperate with
different partners. On the other hand, the Forced Coord., Counter Circ., and
Asymm. Adv. layouts offer distinct designs that serve as ideal testbeds to explore
and foster cooperation between players.
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Figure 6: This figure outlines the structure of our human-AI experimental platform, including
front-end, back-end, and database components. The front-end, where participants
interact, starts with a pre-game process (experiment statement, before-game
survey, and experimental instructions) and moves into game stages involving a
game tutorial and main experiment with multiple rounds against varying AI agents.
A survey follows each round, and a final survey concludes the experiment. All
data, including player paths and AI weights, are stored in the database.

Coordination Ring. The Coordination Ring layout is another ring-shaped kitchen, similar
to the Counter Circuit. However, this layout is considerably smaller than Counter Circuit,
with a close arrangement that makes it easier for players to complete soups. The ingredients,
serving area, and plates are all in the bottom left corner, while the two pots are in the top
right. As a result, this layout allows more easily achieving high rewards.

In summary, the Cramped Rm., Asymm. Adv., and Coord. Ring layouts are more
conducive to achieving higher rewards when players cooperate with different partners. On
the other hand, the Forced Coord., Counter Circ., and Asymm. Adv. layouts, due to their
unique designs, provide more suitable testbeds for investigating and promoting cooperation
among players.

6.2 Details on Human-AI Experiment Platform

We delve into the details of our Human-AI Experiment Platform, offering a comprehensive
overview of its components and functionality. To better understand the system’s user
interface, layout, and functionality, a visual representation of the Human-AI Experiment
Platform can be found in Appendix E.

As illustrated in Fig. 6, our human-AI experimental platform is composed of three primary
elements: the front-end interface, the back-end server, and the database. The front-end
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interface is tasked with both rendering the game and recording real-time human keyboard
input. Subsequently, at each frame, it engages in communication with the back-end server,
transmitting the current game state and keyboard input as serialized data. On receiving this
data, the back-end server initially processes it into an observation for the AI agent. Following
this, it alters the game environment in response to the actions taken by both the AI agent
and the human player. This newly altered game state is then conveyed back to the front-end
interface for the human player’s perusal. Simultaneously, the server captures the trajectories
of both the human player and the AI agent during each game, storing this information
for future analysis. Once the online experiments conclude, these captured trajectories are
employed to conclude objective and subjective metrics.

Pre-experiment Pages. Before beginning the experiment, participants are presented
with a page containing terms and conditions (e.g., experiment statement) and must decide
if they agree to proceed. We provide the experimental statement used in our experiments
as reported in Section 7, which includes information on Experimental Purpose, Procedure,
Risks and Discomforts, Costs, and Confidentiality. If participants agree to the terms and
conditions, they will be asked to complete a form with personal information, such as age, sex,
level of skills in the game, etc. These data are used to facilitate a more in-depth analysis of
the experiment results and will not be used for any purpose other than the experiment itself.

The instruction page then familiarizes participants with the mechanics of the game and
the experiment process. Our example instruction page (Fig. 15) offers details on game
settings, world objects, and game controls through both text and images. Following the
instruction page, human players need to participate in a trial game to further practice how to
play the game. Both the instruction page and trial game contribute to participants gaining a
preliminary understanding of the experiment.

Gaming and Questionnaire Pages. The next component is the core of the Human-AI
experiment, where participants play with randomly sampled AI teammates and complete
questionnaires to evaluate the performance of these AI partners. Specifically, in our initial
platform setup (more details are provided in Section 7.6.1), participants play with two
different AI teammates on five Overcooked layouts, resulting in 10 games per participant.
After each game, they are required to complete a questionnaire that assesses their cooperative
gameplay with the AI partner. The final questionnaire primarily focuses on coordination
with the AI agent with whom they collaborated and the game they just played. Upon
completing all games, participants are directed to the final questionnaire page, where they
are asked to provide preliminary feedback on AI agents based on their overall performance,
considering factors such as fluency, legibility, and reliability. In contrast to individual game
questionnaires, the purpose of this feedback is to analyze and compare the capacities of
different agents.

The Human-AI Experiment Platform is designed for seamless customization, enabling
users to easily modify various aspects of the system, such as statements, instructions,
questionnaires, and game settings. Most customizations can be achieved simply by editing
configuration files, streamlined for users to adapt the platform to their specific needs.
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Table 1: Evaluation statements for the after-game and final questionnaires consist of three
statements each. After-game statements aim to assess the cooperative experience
with the AI agent in a single game, while final statements require participants to
compare the two AI partners and rate their performance after all games have been
completed.

Type Index Scale statement

After-game

Q1 The agent and I have good teamwork.

Q2 The agent is contributing to the success of the team.

Q3 I understand the agent’s intentions.

Final

Q1 Which agent cooperates more fluently?

Q2 Which agent did you prefer playing with?

Q3 Which agent did you understand with?

6.3 Experimental Scale

In our effort to thoroughly examine the performance of human-AI coordination in a zero-shot
scenario, we advocate for a systemically designed experimental scale. This scale incorporates
an expansive range of subjective metrics that appraise individual games involving AI agents
while providing a holistic comparison across multiple coordinated players. The metrics
utilized extend beyond the superficial, capturing elements such as intention, contribution,
and team dynamics during human-AI interactions. Furthermore, the evaluation process
encompasses additional aspects such as fluency, participant preferences, and comprehension
across all collaborated agents. More specifically, participants are requested to participate in
after-game surveys and final-game surveys to assess the performance of AI agent collaboration.
Each of these surveys comprises three questions that use a 7-point Likert scale, illustrated
in Table 1. The selected survey questions for our experiment draw heavily from a pool of
analogous questions found in (Hoffman, 2019). For the after-game surveys, the 7-point Likert
scales are arranged with 1 denoting "strongly disagree" and 7 indicating "strongly agree".
In the final experiment questionnaire, ratings from 1 to 7 reflect preferences from "strongly
favoring the first agent" to "strongly favoring the second agent", for instance, a rating of 4
symbolizes an absence of preference. The rating system adopts a star-assigning format, with
the rules clearly stated at the onset of each questionnaire.

7. Experiments

We carry out a series of experiments involving AI agents, human proxies, and human players
to assess the performance of COLESV compared to the baseline methods when collaborating
with partners in zero-shot settings. Our experiments focus on the following research questions
(RQ):
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Figure 7: The result of the combining objectives’ effectiveness evaluation. Mean episode
rewards over 400 timesteps trajectories for COLESV s with different objective
ratios 0:4, 1:3, 2:2, and 3:1, paired with the unseen human proxy partner Hproxy.
The ratios 0:4, 1:3, 2:2, and 3:1 denote varying proportions between individual and
cooperative compatible objectives. The gray bars behind present the rewards of
self-play.

• RQ1: What is the optimal balance between individual and socially compatible objec-
tives? (Section 7.1)

• RQ2: How do the COLESV and baseline agents perform when cooperating with agents
of varying skill levels in a zero-shot setting? (Section 7.2)

• RQ3: Does COLESV effectively address the issue of cooperative incompatibility?
(Section 7.3)

• RQ4: How do each modules within COLESV contribute to its overall performance?
(Section 7.4)

• RQ5: Which solver exhibits superior performance? (Section 7.5)

• RQ6: How do the COLESV and baseline agents perform when working with humans in
a zero-shot setting, and which algorithm do human users prefer? (Section 7.6)

7.1 Evaluation of Combining Objectives’ Effectiveness

We construct evaluations with different ratios between individual and cooperative compatible
objectives, such as 0:4, 1:3, 2:2, and 3:1. These studies demonstrate the effectiveness of
optimizing both individual and cooperative incompatible goals.

7.1.1 Experimental Setting

We divided each training batch into four parts, the ratio indicating the proportion of data
generated by self-play and data generated by playing with strategies from the cooperative
incompatible distribution. We omitted the 4:0 ratio as it would result in the framework
degenerating into self-play.

1162



Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination

Frame A : time left 53s Frame B : time left 42s Frame C : time left 35s 

Figure 8: Trajectory snapshots of the COLESV 0:4 model (blue) with one of the expert
partners - PBT model (green).

7.1.2 Results

Fig. 7 shows the mean rewards of episodes over 400 time steps of gameplay when paired with
the unseen human proxy partner Hproxy (Carroll et al., 2020). We found that COLESV with
ratios 0:4 and 1:3 achieved better performance than the other ratios. In particular, COLESV,
with a ratio of 1:3, outperformed the other methods in the Cramped Room, Coordination
Ring, and Counter Circuit layouts. On the Forced Coordination layout, which is particularly
challenging for cooperation due to the separated regions, all four ratios performed similarly on
average across different starting positions. Interestingly, COLESV with only the cooperative
compatible objective (ratio 0:4) performed better on the Asymmetric Advantages and Forced
Coordination layouts when paired with the human proxy partner. Effectiveness evaluations
indicate that the combination of individual and cooperatively compatible objectives is crucial
to improving performance with unseen partners. In general, we choose the ratio of 1:3 as the
best choice.

We further visualize the trajectories produced by COLESV 1:3 and 0:4 with human proxy
and expert partners in Overcooked on our demo page. Fig. 8 presents three screenshots of
the COLESV 0:4 model (blue player) that collaborates with one of the expert partners, the
PBT model (green player). The case illustrates the importance of the individual objects in
zero-shot coordination with expert partners. Frame A is a screenshot taken at 53s when the
two players start to impede each other. The PBT model has taken the plate and wants to
load and serve the dish. The blue player wants to take the plate but does not know how to
change the objective to allow the green player to load the dish. After blocking for about 11s,
the blue player starts to move and lets the green player go to the pots (Frame B). However,
the process is not smooth and takes 7s to reach Frame C. This phenomenon does not occur
in COLESV 1:3 coordination with expert partners, which shows that including individual
objectives might improve the cooperative ability with expert partners.

7.2 Evaluation with Human Proxy and AI Agents

To thoroughly assess the ZSC ability, we evaluated the algorithms with unseen human
proxy and expert partners. We compare our method with other methods, including self-
play (Tesauro, 1994; Carroll et al., 2020), PBT (Jaderberg et al., 2017; Carroll et al., 2020),
FCP (Strouse et al., 2021), and MEP (Zhao et al., 2021), all of which use PPO (Schulman
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Figure 9: Performance with the human proxy partner. The performance of COLESV with
human proxy partners is presented in terms of mean episode rewards over 400
timesteps trajectories for different objective ratios of 0:4 and 1:3, when paired with
the unseen human proxy partner Hproxy. The ratios 0:4 and 1:3 denote varying
proportions between individual and cooperative compatible objectives. The results
include the mean and standard error over five different random seeds. The gray
bars indicate the rewards obtained when playing with themselves; the hashed bars
indicate the performance when starting positions are switched.

et al., 2017) as the RL algorithm. We use the human proxy model Hproxy proposed in (Carroll
et al., 2020) as human proxy partners and the models trained with baselines and COLESV
as expert partners.

7.2.1 Experimental Setting

We adopted two sets of evaluation protocols for the evaluation. The first protocol involves
playing with a trained human model Hproxy trained in behavior cloning. Due to the quality
and quantity of human data used for behavior cloning to train the human model is limited,
the capabilities of the human proxy models are limited. Therefore, we use an additional
evaluation protocol to coordinate with unseen expert partners. We selected the best models
of our reproduced baselines and COLESV 0:4 and 1:3 as expert partners. The mean of
the rewards is recorded as the performance of each method in collaborating with expert
teammates. Appendix C and Appendix D give details of the implementation of COLESV
and baselines.

7.2.2 Results with Human Proxy and AI Agents

Fig. 9 presents the performance of SP, PBT, MEP, and COLESV with 0:4 and 1:3 when
cooperating with human proxy partners. We observed that different starting positions on
the left and right in asymmetric layouts resulted in significant performance differences for
the baselines. For example, in the Asymmetric Advantages, the cumulative rewards of all
baselines in the left position were nearly one-third of those in the right position. On the
contrary, COLESV performed well at the left and right positions.
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Table 2: Performance with expert partners. Mean episode rewards over 1 min trajectories
for baselines and COLESV with ratio 0:4, 1:3. The ratios 0:4 and 1:3 denote varying
proportions between individual and cooperative compatible objectives. Each column
represents a different expert group, in which the result is the mean reward for each
model playing with all others.

Layout Ratio
Baselines

COLEs
SP PBT FCP MEP

Cramped Rm.
0:4 153.00 198.50 199.83 178.83 169.76

1:3 165.67 209.83 207.17 196.83 212.80

Asymm.Adv.
0:4 108.17 164.83 175.50 179.83 182.80

1:3 108.17 161.50 172.17 179.83 178.80

Coord. Ring
0:4 132.00 106.83 142.67 130.67 118.08

1:3 133.33 158.83 144.00 124.67 166.32

Forced Coord.
0:4 58.33 61.33 50.50 79.33 46.40

1:3 61.50 70.33 62.33 38.00 86.40

Counter Circ.
0:4 44.17 48.33 60.33 21.33 90.72

1:3 65.67 64.00 46.50 76.67 105.84

As shown in Fig. 9, COLESV outperforms other methods in all five layouts when paired
with the human proxy model. Interestingly, COLESV 0:4 with only the cooperatively
compatible objective achieves better performance than COLESV 1:3 on some layouts, such
as Asymmetric Advantages. However, the self-play rewards of COLESV 0:4 are much lower
than COLESV 1:3 and even other baselines. The objective function of COLESV 0:4 consists
of only cooperative compatible term Ep∼ϕw(sn, p). We believe that focusing solely on
cooperative compatible objectives may lead to learning stagnation when collaborating with
low-performing partners sampled from distribution ϕ. Consequently, the self-play rewards
may be limited. Furthermore, the performance with unseen experts of COLESV 0:4 as shown
in Table 2, is sometimes lower than the baselines.

Table 2 presents the outcomes of each method when cooperating with expert partners.
Each column in the table represents different expert groups, including four baselines and
one COLESV with a ratio of 0:4 or 1:3. The last column, labeled “COLEs”, represents the
mean rewards of the corresponding COLESV when working with other baselines. The table
displays the mean cumulative rewards of each method when working with all other models
in the expert group. The results indicate that COLESV 1:3 outperforms the baselines and
COLESV 0:4, except in the layout of Asymmetric Advantages. In the Asymmetric Advantages,
COLESV 0:4 only achieved a four-point victory over COLESV 1:3, which can be considered
insignificant considering the margin of error. In the other four layouts, the rewards obtained
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Payoff matrix Preference centrality matrix

Figure 10: The learning process analysis of COLESV 1:3. A deeper shade of red in the
payoff matrix signifies higher utility, while the darker-colored element on the
right represents lower centrality. Clustering of darker-colored areas around the
diagonal on the right indicates that the new strategy adopted in each generation
is preferred by most strategies, thus overcoming the cooperative incompatibility.

by COLESV 1:3 while working with expert partners are significantly higher than those of
COLESV 4:0 and the baselines.

Our findings indicate that COLESV 1:3 exhibits superior adaptive capacity when dealing
with partners of expert levels, emphasising individual objectives is key to achieving zero-
shot coordination with expert partners. To summarize, COLESV 1:3 manifests enhanced
robustness and versatility in real-world environments, making it apt for collaboration with
partners across a spectrum of expertise levels. Hence, in the forthcoming experiments and
human-AI interaction studies, we will implement COLESV 1:3 as our definitive agent, tailored
to adapt to human players of diverse skill levels.

7.3 Effectively Conquer Cooperative Incompatibility

To We analyze the learning process of COLESV, which shows that our method overcomes
cooperative incompatibility.

In our analysis of the learning process of COLESV 1:3 in the Overcooked environment,
as shown in Fig. 10, we observe that the method effectively overcomes the problem of
cooperative incompatibility. The figure on the left in Fig. 10 shows the payoff matrix of 50
uniformly sampled checkpoints during training, with the upper left corner representing the
starting point of training. Darker red elements in the payoff matrix indicate higher rewards.
The figure on the right displays the centrality matrix of preferences, which is calculated
by analyzing the learning process. Unlike the payoff matrix, the darker elements in the
centrality matrix indicate lower values, indicating that more strategies prefer them in the
population. As shown in the figure, the darker areas cluster around the diagonal of the
preference centrality matrix, indicating that most of the others prefer the updated strategy
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Figure 11: Performance comparison of module effectiveness in COLESV performance.
The performance is presented in terms of mean episode rewards over 400
timesteps trajectories, when paired with the unseen human proxy partner Hproxy.
COLESV-WPG excludes the WPG element (Eq. 3) while computing the Shapley
value. COLESV-UCGG eliminates the SUCG component (Eq. 8) while sampling
training partners. The results include the mean and standard error over five
different random seeds. The gray bars indicate the rewards obtained when playing
with themselves; the hashed bars indicate the performance when starting positions
are switched.

of each generation. Thus, we can conclude that our proposed COLESV effectively overcomes
the problem of cooperative incompatibility.

7.4 Ablation Study

In this section, we aim to investigate the efficiency of each component within our proposed
algorithm. Refer to Fig. 11 where we compare the performance of our algorithm against three
ablated models namely, COLESV-WPG, COLESV-UCGG, thereby study the individual impact
of these specific components. Specifically, COLESV-WPG excludes the WPG element (Eq. 3)
while computing the Shapley value. Therefore, in the case of COLESV-WPG, the computation
of the coalition value employs the average of all utilities within the coalition. That is,
v(C) = 1

n2

∑
i∈C

∑
j∈C w(i, j), where C represents a coalition within the full coalition set N .

Additionally, we examine the effect of the SUCG element (Eq. 8) on the performance of our
proposed algorithm during the sampling of training partners. This model is referred to as
COLESV-UCGG.

Fig. 11 illustrates the performance in terms of average episode rewards over trajectories
of 400 timesteps, when coupled with the unseen human proxy partner Hproxy. This data
presents both the mean and the standard error across five unique random seeds. The gray bars
reveal the rewards yielded when the models compete against themselves, while the hashed
bars represent the performance when the starting positions are alternated. It is evident
from the figure that the WPG element (Eq. 3) significantly contributes to the performance
when interacting with the human proxy partner, particularly noticeable in the Asymm.
Adv. layout. Furthermore, as depicted in Fig. 11, all baseline models demonstrate subpar
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Table 3: Performance comparison of COLESV and COLER on five layouts. Mean scores and
standard errors (denoted in parentheses) are measured over five different seeds. In
the Position column, L and R signify respective initial positions on the left and
right of the layout. The term AVG stands for the average score obtained from both
sides. COLESV has demonstrated significantly superior performance compared to
COLER across all layouts, with the exception of the Asymm. Adv. layout. Within
this specific Asymm. Adv. setting, COLER outperformed in the left position and
exhibited a comparable score in the right position.

Methods Position
Layouts

CRAMPED RM. ASYMM. ADV. COORD. RING FORCED COORD. COUNTER CIRC.

COLER

L 131.20 (14.18) 158.40 (31.66) 80.80 (9.60) 21.60 (10.91) 63.20 (9.93)

R 135.20 (14.40) 156.80 (19.17) 116.00 (8.39) 27.20 (26.70) 52.00 (10.73)

AVG 133.20 (14.43) 157.60 (26.18) 98.40 (19.77) 24.40 (20.59) 57.60 (11.76)

COLESV

L 144.00 (9.80) 142.40 (35.29) 116.00 (17.53) 36.00 (11.31) 77.60 (6.50)

R 148.00 (5.66) 155.20 (12.75) 141.60 (4.80) 56.80 (15.05) 86.40 (10.61)

AVG 146.00 (8.25) 148.80 (27.29) 128.80 (18.14) 46.40 (16.89) 82.00 (9.84)

performance when coordinating with the human proxy model in position 0 of the Asymm.
Adv. layout. The computation of the Shapley value employing the WPG is fundamental to
resolving the asymmetry, as depicted in Fig. 9. We think the reason behind it is that WPG
can provide a just evaluation of each position’s strategic cooperative ability. In relatively
straightforward layouts such as Cramped Rm. and Asymm. Adv., the algorithm displays
performance comparable to the ablated models COLESV-WPG, COLESV-UCGG. However, in
the remaining three complex layouts, there is a significant enhancement in the COLESV’s
performance.

7.5 Comparison of COLESV and COLER

Table 3 presents a comparative analysis of the coordination payoffs achieved by two practical
algorithms, COLESV and COLER, across five different layouts. The results, acquired via
five distinct seed values with the human proxy model Hproxy, feature standard errors, which
are indicated within parentheses. The column named ‘position’ designates the diverse initial
positions of the two practical algorithms respectively; here, ‘L’ stands for left, ‘R’ for right,
while ‘AVG’ signifies the average derived from the two positions.

As demonstrated in Table 3, COLESV, utilizing the Shapley value as the core, substantially
outperforms COLER in the Cramped Rm., Coord. Ring, Forced Coord., and Counter Circ.
layouts. For the latter, more challenging layouts (Coord. Ring, Forced Coord., and Counter
Circ.), the average scores of COLESV with the Hproxy model have shown approximately
30%, 91%, and 43% improvements over COLER. Interestingly, despite the two algorithms
demonstrating similar performance on the right-hand starting position of the Asymm. Adv.
layout, COLER exhibits superior performance when initiated from the left-hand starting
position.
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7.6 Evaluation with Human Players

We recruited 130 students as participants from universities in different majors, and each
provided written informed consent. Each participant received a reward of 50 CNY for
their participation. To motivate them to be more engaged and attentive, we established a
goal (a number of rewards) for each layout. Participants who successfully reached the goal
were awarded an additional bonus of 5 CNY for each layout. Experiments were conducted
online where each participant completed their own experiment on a certain web page using
a computer, and each experiment costs about 15 to 20 minutes. We do not collect any
personally identifiable information, and no significant risk to participants was expected.

7.6.1 Experimental Setting

Participants were first acquainted with the experiment and the rules of Overcooked, with
details provided in Section 6. Each participant played a sequence of 5 pairs of games, totaling
10 rounds, with 2 agents (one being COLE, while the other was randomly selected from the
four agents in section 7.2.1). The experiment employed the in-group setting for each baseline
and COLESV pair. We also randomized the order of agents within each pair to account for
skill differences arising from the inner order variance.

The sequence of five different layouts remained consistent, and we did not compare
objective scores across layouts. The five pairs corresponded to five distinct layouts, arranged
in the same order for all experiments (1. Cramped Rm., 2. Asymm. Adv., 3. Coord. Ring, 4.
Forced Coord., 5. Counter Circ.). Each pair featured one round with the COLESV agent and
one round with the other agent. Under these conditions, we can assume that each participant
possesses the same skill level and prior knowledge when encountering the same layouts.

During the experiment, participants were unaware of the specific algorithm names. To
ensure fairness, only the color of the chef’s hat in the game was used to differentiate between
the two algorithms. Each game lasted for 1 minute (approximately 400 steps).

7.6.2 Results of Human Evaluation

In this section, we discuss the findings from our Human-AI experiment. We initially recruited
148 participants from Shanghai Jiaotong University to participate in the study. However, we
had to exclude 18 questionnaires from our analysis due to issues such as incomplete responses
or negative scoring (e.g., awarding 0 points to all aspects). Thus, our final sample consisted
of 130 valid data entries.

The demographic breakdown of the 130 valid participants is as follows: 91 males and
39 females. In terms of prior experience with the Overcooked video game, 70 participants
had never played it, 28 had played it but did not consider themselves skilled, 25 regarded
themselves as intermediate players, and 7 viewed themselves as experts.

As described in Section 7.2.1, all participants are required to fill in after-game and final
questionnaires. The after-game questionnaires are about the subjective evaluation of the
playing between participants and one AI agent. The subjective evaluation needs human
players to score three questions from 1 to 7, “the agent and I have good teamwork” (short as
teamwork), “the agent is contributing to the success of the team” (short as contribution), and
“I understand the agent’s intentions” (short as intention). As illustrated in Fig. 7.6.2, our
proposed COLESV surpasses all baseline algorithms in three layouts that require cooperation
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Figure 12: Comparison of subjective evaluation scores and rewards between our COLESV
method and baseline algorithms across five different layouts. “Intention”, “Contri-
bution” and “Teamwork” are shorts for “I understand the agent’s intentions”, “The
agent is contributing to the success of the team”, and “the agent and I have good
teamwork”, respectively. Fig. (d) depicts the average rewards comparison. Our
COLESV method obviously outperforms the baselines in Forced Coordination,
Counter Circulation, and Asymmetric Advantage. The first three layouts neces-
sitate cooperation for higher rewards. In the simplest layout, Cramped Room,
PBT, FCP, MEP, and COLESV all achieve comparably high scores when playing
with humans. In the Coordinated Ring layout, COLESV’s performance is slightly
below MEP but surpasses the other algorithms.

(Forced Coord., Counter Circ., and Asymm Adv) based on subjective evaluations of intention,
contribution, teamwork, and the objective metric of game rewards. Additionally, human
players perceive that all methods, except SP, exhibit similar performance in the Crampped
Rm layout. In Crampped Rm., both players are situated within a small rectangular area,
enabling them to achieve high scores even with minimal cooperation.

In the Coord. Ring layout, COLESV marginally underperforms MEP yet surpasses
other baseline algorithms. Analyzing human and MEP co-play trajectories revealed MEP’s
enhanced performance in human subjective experiments arises from its consistent counter-
clockwise strategy on the layout. This allows humans to effortlessly adapt to the MEP
agent during human-AI experiments by selecting the opposite direction. This predictability
leads to misconceptions in questionnaire responses regarding AI’s contribution, intention,
and teamwork. Participants may perceive a better grasp of MEP’s intentions and a more
substantial contribution from the agent, but this is primarily due to its easily adaptable and
fixed strategy. Nonetheless, when MEP collaborates with diverse partners lacking human-level
intelligence, its performance declines, as shown in Fig.9. In contrast, COLE’s strategies
exhibit greater diversity and are less predictable than MEP’s. COLE adapts its routes based
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Table 4: The average scores obtained by COLESV when participants were asked to answer
three evaluation questions comparing COLESV to an assigned baseline. The ques-
tions were: “Which agent cooperates more fluently?” (abbreviated as fluency),
“Which agent did you prefer playing with?” (abbreviated as preference), and “Which
agent did you understand better?” (abbreviated as understanding). A value closer
to 1 indicates a stronger preference for COLESV among participants.

Metrics
COLESV v.s. Baselines

SP PBT FCP MEP

Fluency 0.87 0.71 0.78 0.60

Preference 0.88 0.70 0.85 0.68

Understanding 0.80 0.63 0.78 0.61

on varying situations, which can lead to more conflicts. Consequently, in human subjective
evaluations, COLE slightly underperforms compared to MEP. Trajectory visualizations of
humans with MEP and COLE are available on our demo page.

In addition to evaluating individual games, human players are also asked to compare
the two AI models they played with. They are required to rate the AI performances across
three dimensions: fluency through “Which agent cooperates more fluently?”, preference by
“Which agent did you prefer playing with?”, and understanding with “Which agent did you
understand better?”. The mean rating scores are presented in Table 1.

When the value is greater than 0.5, it indicates that human players prefer COLESV over
the baseline. Consequently, a value closer to 1 signifies a more pronounced preference for
COLESV compared to the baseline model. As demonstrated in the table, all values are larger
than 0.6, suggesting that human players concur that COLESV performs better.

When compared to the SP method, COLESV receives the highest scores (above 0.8),
implying that participants believe that COLESV will outperform SP with a probability of
over 80%. In comparison to the state-of-the-art MEP, COLESV’s scores also exceed 0.6.
These results indicate that human players agree that COLESV performs better in terms of
fluency, preference, and understanding compared to the baseline.

In summary, human players concur that COLESV is more understandable and contributes
significantly to their teamwork, particularly in the three layouts that necessitate cooperation:
Forced Coord., Counter Circ., and Asymm Adv.

8. Discussion

In this section, we discuss the limitations of our work, with a particular focus on the
theoretical aspects, and outline directions for future work.

In this work, we theoretically prove that the algorithm will converge to the local best-
preferred strategy, with a convergence rate that is Q-sublinear when using in-degree preference
centrality. However, this claim is based on the strict assumption that the RL oracle can train
an approximate best response that ranks among the top-k most preferred strategies. The
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oracle is proposed as a solver that utilizes a series of techniques such as approximation methods,
reinforcement learning algorithms, and optimization techniques to efficiently learn and
approximate the best-response policy, which is commonly used in multi-agent reinforcement
learning (McMahan et al., 2003; Lanctot et al., 2017b; McAleer et al., 2020; Balduzzi
et al., 2019). However, in practice, the approximate best-response policy may deviate
significantly from the true best-response policy, which can influence the convergence results.
Our implementation includes an additional judge module. If the preference centrality η
does not rank among the top-k most preferred strategies, the training process is repeated.
However, this approach cannot completely resolve the issue. If k is too large, resulting in a
lower ranking, the framework will converge slowly (may be n → ∞) to the best-preferred
strategy. Conversely, if k is too small, resulting in a higher ranking, the assumption for each
generation will not be guaranteed, which can easily lead to learning failure.

Besides, in our implemented algorithm COLESV, we introduce the Shapley Value as the
tool and develop the Graphic Shapley Value to analyze the cooperative ability. Although we
have utilized Monte Carlo permutation sampling to reduce the computational complexity,
the computational complexity is still high. Therefore, we only maintain a population of 50
for the limitation of computational resources.

Future Work. Future research will focus on exploring more relaxed assumptions for
the theoretical analysis and developing an adaptive mechanism that automatically selects a
suitable value for the hyperparameter k to enhance the convergence rate without requiring
additional iterations for each update. Additionally, improving the efficiency of the graphical
Shapley Value solver and exploring other solvers for evaluating cooperative abilities are
crucial for further refining the framework. Beyond this, future work will also involve creating
practical algorithms for more complex games beyond Overcooked, extending the applicability
and robustness of our approach to a wider range of scenarios and challenges.

9. Conclusion

In this study, we introduce graphic-form games and preference graphic-form games as intuitive
reformulations of cooperative games. These reformulations can effectively evaluate and
pinpoint cooperative incompatibility during the learning process of Zero-Shot Coordination
(ZSC) algorithms, thereby further addressing the issue of cooperative incompatibility in zero-
shot human-AI coordination. Additionally, we propose the COLE framework, designed to
iteratively approximate the best response preferred by teammates within the latest population.
Theoretically, we provide proof that COLE framework converges towards the locally optimal
strategy preferred by the rest of the population. If the in-degree centrality is selected as the
preference centrality function, the convergence rate would achieve Q-sublinear status.

We also implemented an online pipeline for the Overcooked Human-AI experiment,
which allows for easy modifications of questionnaires, model weights, and other elements.
To the best of our knowledge, it is the first comprehensive human-AI experimentation
pipeline for zero-shot human-AI coordination evaluation including turnkey experimental
procedures and scale design. Through the pipeline, we engaged 130 participants in human
experiments, and the results highlighted a general preference for our approach over SOTA
methods across various subjective metrics. Furthermore, our objective experiments in the
Overcooked environment demonstrated that our algorithm, referred to as COLESV, exceeded
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the performance of SOTA algorithms when coordinating with new AI agents and the human
proxy model. It also demonstrated the efficient resolution of cooperative incompatibility.
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Appendix A. Proofs of Theorem 4.4

Theorem 4.4. Let s0 ∈ S be the initial strategy and si = oracle(si−1,J (si−1, ϕi−1)) for
i ∈ N. Under the effective functioning of the approximated oracle as characterized by Eq. 5,
we can say that the sequence {si} for i ∈ N could converge to a local optimal strategy s∗, i.e.,
the local best-preferred strategy.

Proof. According to the definition of the local best-preferred strategy, the local optimal
strategy is the node with zero preference centrality (η). Therefore, we need to prove that the
value of η will approach zero.

Let ηt denote the centrality value of the preference of the updated strategy st in
generation t, where 0 ≤ η ≤ 1. We first remark on the RL oracle defined in Eq. 5:
sn+1 = oracle(sn,J (sn, ϕn)), with R(η(sn+1)) > k. Under the assumption of the approxi-
mated oracle functioning effectively, it follows that the preference centrality ηt associated
with generated strategy st at generation t resides among the first k positions when arranged
in ascending order of centrality values. For simplicity, We define a group gt at generation t
as the set of strategies with the lowest k preference centrality values.

Lemma A.1. Provided that the approximated oracle is functioning effectively, the maximal
preference centrality value, denoted as ηgt, within group gt is expected to exhibit a non-
increasing trend with each successive generation. Furthermore, a consistent non-change trend
will last for no more than k generations, followed by a decrease.

Proof. In light of the approximated oracle’s definition, the preference centrality value of
the strategy st, generated at generation t, will occupy one of the first k positions when
sorted in ascending order based on preference centrality values. Consequently, the initial
k strategies of group gt will undergo an update, in which the strategy ranking k-th with
the highest preference centrality value is substituted by either the (k − 1)-th strategy or the
newly generation strategy, st.

• (Case 1.) If the k-th strategy is replaced by the newly generated strategy st, the
maximum preference value within the group will experience a reduction.

• (Case 2.) If the k-th strategy is replaced by the (k − 1)-th strategy, the maximum
preference value within the group may remain unchanged or experience a reduction.
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– (Case 2.1.) If the preference values of sk−1 and sk are not identical, meaning
η(sk−1) < η(sk), the replacement will cause a reduction in the maximum preference
value.

– (Case 2.2.) If the preference values of sk−1 and sk are identical, meaning η(sk−1) =
η(sk), the replacement will result in no change in the maximum preference value.
The number of generations without changes is limited and may not always occur.
In the extreme case where the preference values of all top-k strategies are identical,
the k replacements will cause a decrease in the maximum preference value within
the group. Thus, we can conclude that in this case, the maximum preference
value in the group will decrease after at most k generations.

Until now, we have proven that the group gt will exhibit a non-increasing trend if the
approximated oracle is functioning effectively. Furthermore, a consistent non-change trend
will last for no more than k generations before a decrease occurs.

Let ηgt denote the largest preference centrality in the group g. Thus, we can derive the
subsequent equation based on Lemma A.1.

ηgt = ηgt−1 − ϵt−1, (9)

where ϵt−1 is a non-negative value and 0 ≤ ϵ ≤ ηgt−1 . By further simplifying the equation,
we have

ηgt = ηgt−1 − ϵt−1,

= ηgt−1 − αt−1ηgt−1 ,

= βt−1ηgt−1 ,

(10)

where the second line employs ηgt−1 to substitute the residual term, with the adjustment
parameters 0 ≤ αt−1 ≤ 1 and βt−1 = 1− αt−1.

Assuming that the centrality value of the preference in the initial step is 0 ≤ η0 ≤ 1, we
can recursively calculate the following formula:

ηgt = βt−1ηgt−1 ,

= βt−1βt−2ηgt−2 ,

= · · · ,

=

t−1∏
i=0

βi × ηg0 .

(11)

For any β ∈ {β0, · · · , βt−1}, we have 1 ≥ β ≥ 0. In addition, we set βt as a very small positive
number if ηt = 0. Furthermore, we ascertain that the coefficient β is not consistently zero.
This is due to the fact that β = 0 would imply a preference centrality of zero for the strategy,
which is not universally attainable within the context of the RL oracle. This very limitation
underpins our rationale for introducing the approximated RL oracle. Besides, according to
Lemma A.1, we conclude that β = 1 do not always hold in every generation. Thus, we can
conclude that ηt will approach zero within the population as outlined in equation 11.

Through this proof, we have substantiated that under the effective functioning of the RL
oracle as characterized by Eq. 5, the sequence si is progressing towards the zero of preference
centrality within the population. That is, the sequence is converging to a strategy denoted
by s∗, which represents a locally best-preferred solution.
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Appendix B. Proof of Corollary 4.5

Corollary 4.5. Let η : G′ → Rn be a function that maps a P-GFG to its in-degree centrality,
the convergence rate of the sequence {si} is Q-sublinear concerning η.

Proof. In Theorem 4.4, we have proved that the strategies generated by the COLE frame-
work will converge to the local best-preferred strategy. When we use the in-degree centrality
function as η, the preference centrality function can be rewritten as:

η(i) = 1− Ii
n− 1

, (12)

where Ii is the in-degree of node i and n is the size of the strategy set N .
Therefore, we have

lim
t→∞

|ηt+1 − 0|
|ηt − 0|

= lim
t→∞

ηt+1

ηt

= lim
t→∞

1− It+1

t

1− It
t−1

= lim
t→∞

t− 1

t

t− It+1

t− It − 1

= lim
t→∞

t− It+1

t− It − 1

=1

(13)

Therefore, using the in-degree centrality, we can conclude that the COLE framework will
converge to the local optimal strategy at a Q-sublinear rate.

Appendix C. Experimental Details of COLESV

This paper utilizes Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the
oracle algorithm for our set of strategies N , which consists of convolutional neural network
parameterized strategies. Each network is composed of 3 convolution layers with 25 filters
and 3 fully-connected layers with 64 hidden neurons. To manage computational resources,
we maintain a population size of 50 strategies. In instances where the population exceeds
this limit, we randomly select one of the earliest ten removal strategies.

We run and evaluate all our experiments on Linux servers, which include two types of
nodes: 1) 1-GPU node with NVIDIA GeForce 3090Ti 24G as GPU and AMD EPYC 7H12
64-Core Processor as CPU, 2) 2-GPUs node with GeForce RTX 3090 24G as GPU and AMD
Ryzen Threadripper 3970X 32-Core Processor as CPU. On the Overcooked game environment,
COLESV takes one to two days on the 2-GPUs machine for one layout’s training.

The hyperparameter setup is similar to those in PBT and MEP, which are given as
follows.

• The learning rate for each layout is 2e-3 , 1e-3 , 6e-4 , 8e-4 , and 8e-4.

• The gamma γ is 0.99.
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Figure 13: Screenshots of the Human-AI Experiment Platform - participant information
questionnaire.

• The lambda λ is 0.98.

• The PPO clipping factor is 0.05.

• The VF coefficient is 0.5.

• The maximum gradient norm is 0.1.

• The total training time steps for each PPO update is 48000, divided into 10 mini-batches.

• The total numbers of generations for each layout are 80, 60, 75, 70, and 70, respectively.

• For each generation, we update 10 times to approximate the best-preferred strategy.

• The α is 1.

Appendix D. Implementations of Baselines

In this part, we will introduce the detailed implementations of baselines. We train and evaluate
self-play and PBT based on the Human-Aware Reinforcement Learning repository∗ (Carroll
et al., 2020) and used Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the

∗. https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019.
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Figure 14: Screenshots of the Human-AI Experiment Platform - experiment statement.

RL algorithm. We implement FCP according to the FCP paper (Strouse et al., 2021) and use
PPO as the RL algorithm. The implementation is based on the Human-Aware Reinforcement
Learning repository (the same used in the self-paly and PBT). The MEP agent is trained
with population size as 5, following the MEP paper (Zhao et al., 2021) and used the original
implementation†.

†. The code of MEP original implementation: https://github.com/ruizhaogit/maximum_entropy_
population_based_training.
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Figure 15: Screenshots of the Human-AI Experiment Platform - instruction providing an
overview of the environment interface, operation instructions, and game objectives.

Appendix E. Visual Overview of the Human-AI Experiment Platform

In this section, we provide a visual representation of the Human-AI Experiment Platform to
offer readers a better understanding of the system’s user interface, layout, and functionality.
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Figure 16: Screenshots of the Human-AI Experiment Platform - trial playing: players engage
with the human proxy model to familiarize themselves with the system.

Figure 17: Screenshots of the Human-AI Experiment Platform - Game Playing: displaying
the layout name, game length (in seconds), and game number at the top, followed
by reminders about hat colors and the bonus awarded for the current game. The
middle area is the game interface, where human players interact with the AI
agent.

The code of the platform can be find at https://github.com/liyang619/COLE-Platform.
By including screenshots of various stages of the experiment process in Fig. 14, Fig. 13,
Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 19, we aim to provide a comprehensive overview of
the platform, enabling readers to better grasp its design and implementation.
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Figure 18: Screenshots of the Human-AI Experiment Platform - Individual Questionnaire:
Participants score the performance of the AI teammate in the finished game.

Figure 19: Screenshots of the Human-AI Experiment Platform - Final Questionnaire: Par-
ticipants compare and rank the performance of AI partners.
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