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Abstract

In this paper, we study the effect of preferences in abstract argumentation under a
claim-centric perspective. Recent work has revealed that semantical and computational
properties can change when reasoning is performed on claim-level rather than on the
argument-level, while under certain natural restrictions (arguments with the same claims
have the same outgoing attacks) these properties are conserved. We now investigate these
effects when, in addition, preferences have to be taken into account and consider four
prominent reductions to handle preferences between arguments. As we shall see, these re-
ductions give rise to four new classes of claim-augmented argumentation frameworks. These
classes behave differently from each other with respect to semantic properties and compu-
tational complexity, but also in connection with structured argumentation formalisms such
as assumption-based argumentation. This strengthens the view that the actual choice for
handling preferences has to be taken with care.

1. Introduction

Arguments vary in their plausibility. Research in formal argumentation has taken up this
aspect in both quantitative and qualitative terms (Li, Oren, & Norman, 2011; Atkinson,
Baroni, Giacomin, Hunter, Prakken, Reed, Simari, Thimm, & Villata, 2017). Indeed, prefer-
ences are nowadays a standard feature of many structured argumentation formalisms (Mod-
gil & Prakken, 2013; Cyras & Toni, 2016). At the same time, there are numerous generaliza-
tions of abstract Argumentation Frameworks (AFs) (Dung, 1995) that consider the impact
of preferences on the abstract level, be it in terms of argument strength (Kaci, van der Torre,
Vesic, & Villata, 2021; Modgil, 2009; Bernreiter, Dvořák, & Woltran, 2024), preferences be-
tween values (Atkinson & Bench-Capon, 2021), or weighted arguments/attacks (Bistarelli
& Santini, 2021). In AFs in which conflicts are expressed as a binary relation between ar-
guments (attack relation), the incorporation of preferences typically results in the deletion
or reversion of attacks. Deciding acceptability of arguments via argumentation semantics
is thus reflected in terms of the modified attack relation (Kaci et al., 2021).

The difference in argument strength and the resulting modification of the attack rela-
tion naturally influences the acceptability of the arguments’ conclusion (the claim of the
argument). Claim acceptance in argumentation systems, i.e., the evaluation of commonly
acceptable statements while disregarding their particular justifications, is an integral part
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of many structured argumentation formalisms (Modgil & Prakken, 2018; Dung, Kowalski,
& Toni, 2009) and has received increasing attention in the literature (Horty, 2002; Baroni
& Riveret, 2019; Dvořák & Woltran, 2020; Rocha & Cozman, 2022b). A simple yet power-
ful generalization of AFs that allow for claim-based evaluation are Claim-augmented AFs
(CAFs) (Dvořák & Woltran, 2020), where each argument is assigned a claim. Semantics
for CAFs can be obtained by evaluating the underlying AF before inspecting the claims
of the acceptable arguments in the final step. CAFs serve as an ideal target formalism
for ASPIC+ (Modgil & Prakken, 2018) and other formalisms which utilize abstract argu-
mentation semantics whilst also considering the claims of the arguments in the evaluation.
Moreover, CAF semantics capture semantics of logic programs without the need of addi-
tional mappings (Rapberger, 2020), in contrast to classical AF-instantiations (Caminada,
Sá, Alcântara, & Dvořák, 2015). Thus, we obtain a direct correspondence between claim-
extensions in the CAF and conclusion-extensions in the original formalism.

Although the acceptance of claims is closely related to argument acceptance, there are
subtle differences as observed in (Dvořák & Woltran, 2020; Prakken & Vreeswijk, 2002;
Modgil & Prakken, 2018) stemming from the fact that claims can appear as conclusion of
several different arguments. As a consequence, several properties of AF semantics cannot
be taken for granted when considered in terms of the arguments’ claims. For instance, the
property of I-maximality, i.e., ⊆-maximality of extensions, which gives insights into the
expressiveness of semantics (Dunne, Dvořák, Linsbichler, & Woltran, 2015) and skeptical
argument justification (Baroni & Giacomin, 2007) is not satisfied by most CAF seman-
tics (Dvořák, Rapberger, & Woltran, 2023). Furthermore, the additional level of claims
causes a rise in the computational complexity of standard decision problems (in particu-
lar, verification is one level higher in the polynomial hierarchy as for standard AFs), see
(Dvořák, Greßler, Rapberger, & Woltran, 2023). Luckily, these drawbacks can be alleviated
by taking fundamental properties of the attack relation into account: the basic observation
that attacks typically depend on the claim of the attacking arguments gives rise to the
central class of well-formed CAFs. This class satisfies that all arguments with the same
claim attack the same arguments; thus modeling a very natural behavior of arguments that
is common to all leading structured argumentation formalisms and instantiations. Well-
formed CAFs have the main advantage that most of the semantics behave ‘as expected’,
e.g., they retain I-maximality, and their computational complexity is located at the same
level of the polynomial hierarchy as for AFs.

Unfortunately, it turns out that well-formedness cannot be assumed if one deals with
preferences in argumentation, as arguments with the same claim are not necessarily equally
plausible. The following example demonstrates this.

Example 1. Consider two arguments a, a′ with claim α, and another argument b having
claim β. Moreover, both a and a′ attack b, while b attacks a. Furthermore assume that we
are given the additional information that b is preferred over a′ (for example, if assumptions
in the support of b are stronger than assumptions made by a′). A common method to
integrate such information on argument rankings is to delete attacks from arguments that
attack preferred arguments. In this case, we delete the attack from a′ to b.

Both frameworks are depicted below: F represents the original situation while F ′ is the
CAF resulting from deleting the unsuccessful attack from a′ on the argument b.
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Note that F is well-formed since all arguments with the same claims attack the same ar-
guments. The unique acceptable argument-set w.r.t. stable semantics (cf. Definition 2) is
{a, a′} which translates to {α} on the claim-level.

The CAF F ′, on the other hand, is no longer well-formed since a′ does not attack b. In
F ′, the argument-sets {a, a′} and {a′, b} are both acceptable w.r.t. to stable semantics. In
terms of claims this translates to {α} and {α, β}, which shows that I-maximality is violated
on the claim-level.

Although well-formedness cannot be guaranteed in view of preferences, this does not
imply arbitrary behavior of the resulting CAF: on the one hand, preferences conform to
a certain type of ordering (e.g., asymmetric, transitive) over the set of arguments; on the
other hand, it is evident that the deletion, reversion, and other types of attack manipula-
tion impose restrictions on the structure of the resulting CAF. Combining both aspects, we
obtain that, assuming well-formedness of the initial framework, it is unlikely that preference
incorporation results in arbitrary behavior. The key motivation of this paper is to identify
and exploit structural properties of preferential argumentation in the scope of claim accep-
tance. The aforementioned restrictions suggest beneficial impact on both the computational
complexity and on desired semantical properties such as I-maximality.

In this paper, we tackle this issue by considering four commonly used methods, so-called
reductions, to integrate preference orderings into the attack relation: the most common
modification is the deletion of attacks in case the attacking argument is less preferred than
its target. This method is typically utilized to transform preference-based argumentation
frameworks (PAFs) (Amgoud & Cayrol, 1998) into AFs but is also used in many structured
argumentation formalisms such as ASPIC+. This reduction has been criticized due to
several problematic side-effects, e.g., it can be the case that two conflicting arguments are
jointly acceptable, and has been accordingly adapted in (Amgoud & Vesic, 2014); two other
reductions have been introduced in (Kaci, van der Torre, & Villata, 2018). We apply these
four preference reductions to well-formed CAFs. In particular, our main contributions are
as follows:

• For each of the four reductions, we characterize the possible structure of CAFs that are
obtained by applying the reduction to a well-formed CAF and a preference relation.
This results in four novel CAF classes, each of which constitutes a proper extension of
well-formed CAFs not retaining full expressiveness of general CAFs. We investigate
the relationship between these classes.

• We study semantic properties of the novel CAF classes. Our results highlight a signifi-
cant advantage of a particular reduction when it comes to admissible based semantics:
under this modification, subset-maximization (as used in preferred semantics for ex-
ample) on the argument-level coincides with subset-maximization on the claim-level.
Moreover, this modification preserves I-maximality. The other reductions fail to pre-
serve these properties in most cases; moreover, for the conflict-free-based naive and
stage semantics, I-maximality cannot be guaranteed for any of the four reductions.
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• We investigate the complexity of reasoning for CAFs with preferences. We show that
for three of the four reductions, the verification problem drops by one level in the
polynomial hierarchy for all except complete semantics and is thus not harder than
for well-formed CAFs (which in turn has the same complexity as the corresponding
AF problems). Complete semantics remain hard for all but one preference reduction.
Moreover, it turns out that verification for the reduction which deletes attacks from
weaker arguments remains as hard as for general CAFs.

• Finally, we examine the relationship between CAFs with preferences and assumption-
based argumentation with preferences (ABA+). Specifically, we show that if pref-
erences in well-formed CAFs are handled via attack reversion, we can fully capture
ABA+ frameworks in which the axiom of weak contraposition is satisfied.

Our results constitute a systematic study of the structural and computational effect of pref-
erences on claim acceptance. Since we use CAFs as our base formalism, our investigations
extend to large classes of formalisms that can be represented as CAFs, just like results on
AFs yield insights for formalisms that can be captured by AFs.

This paper is organized as follows. In Section 2, we recall necessary background. In
Section 3, we introduce Preference-based CAFs (PCAFs) which combine PAFs with well-
formed CAFs. We characterize the novel CAF classes based on the preference reductions
in Section 4, study the I-maximality of the semantics in Section 5, and their computational
complexity in Section 6. We then investigate relationship between PCAFs and ABA+ in
Section 7 and conclude in Section 8.

This is an extended version of a paper published at AAAI 2023 (Bernreiter, Dvořák,
Rapberger, & Woltran, 2023). The following contributions are new in this version: in
addition to inherited CAF-semantics, we now also consider hybrid CAF-semantics (see
Definition 9) and investigate them with respect to their semantic properties (in Section 5)
and their computational complexity (in Section 6). Section 7, where we investigate the
relationship between PCAFs and ABA+, is entirely new. Moreover, this version contains
full proofs for our results, as well as additional figures and explanations.

2. Preliminaries

In this section, we recall the necessary preliminaries needed for this paper. We start with
Dung-style AFs in Subsection 2.1. In Subsection 2.2 we recall PAFs, which provide the
foundation needed to deal with preferences. Finally, in Subsection 2.3 we recall CAFs,
which allow us to take not only arguments but also their claims into account.

2.1 Abstract Argumentation Frameworks (AFs)

Abstract Argumentation Frameworks (AFs) (Dung, 1995) are a simple yet powerful for-
malism that allows us to model discussions. AFs contain abstract arguments, which are
abstract in the sense that we are not concerned with the internal structure of the argument
themselves. Rather, we are interested in the relationship between arguments, which is mod-
eled via attacks between arguments. If there is an attack between two arguments, then the
arguments are in conflict and cannot be jointly accepted. Moreover, usually we require that
an attacked argument must be defended against all its attackers in order to be accepted.
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Definition 1 (AF). An Argumentation Framework (AF) is a tuple F = (A,R) where A is a
finite set of arguments and R ⊆ A×A is an attack relation between arguments. Let S ⊆ A.
We say S attacks b (in F ) if (a, b) ∈ R for some a ∈ S; S+

F = {b ∈ A | ∃a ∈ S : (a, b) ∈ R}
denotes the set of arguments attacked by S. S⊕F = S ∪ S+

F is the range of S in F . An
argument a ∈ A is defended (in F ) by S if b ∈ S+

F for each b with (b, a) ∈ R.

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R) a set
σ(F ) ⊆ 2A of extensions (Baroni, Caminada, & Giacomin, 2018). We consider for σ the func-
tions cf (conflict-free), adm (admissible), com (complete), grd (grounded), naive (naive),
stb (stable), prf (preferred), sem (semi-stable), and stg (stage).

Definition 2 (AF-semantics). Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ),
iff there are no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free
sets of F . For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ adm(F ) iff each a ∈ S is defended by S in F ;

• S ∈ com(F ) iff S ∈ adm(F ) and each a ∈ A defended by S in F is contained in S;

• S ∈ grd(F ) iff S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;

• S ∈ naive(F ) iff there is no T ∈ cf (F ) with S ⊂ T ;

• S ∈ stb(F ) iff each a ∈ A \ S is attacked by S in F ;

• S ∈ prf (F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

• S ∈ sem(F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S⊕F ⊂ T
⊕
F ;

• S ∈ stg(F ) iff there is no T ∈ cf (F ) with S⊕F ⊂ T
⊕
F .

Let us provide a small example. AFs will be depicted as directed graphs, where the
nodes are arguments and the edges are attacks between arguments.

Example 2. Let F = (A,R) be the AF depicted in Figure 1, ignoring claims α, β, and γ,
i.e.,

A = {a, b, c, d, e, f},
R = {(a, b), (b, a), (b, c), (c, f), (d, c), (d, e), (e, d), (f, e), (f, f)}.

Regarding conflict-free semantics, observe that, e.g., {a, b} 6∈ cf (F ) since (a, b) ∈ R. On the
other hand, {a, c} ∈ cf (F ) since (a, c) 6∈ R, (c, a) 6∈ R, (a, a) 6∈ R, and (c, c) 6∈ R. Moreover,
note that {f} 6∈ cf (F ) since the argument f is self-attacking, i.e., since (f, f) ∈ R.

cf (F ) = {∅, {a}, {b}, {c}, {d}, {e},
{a, c}, {a, d}, {a, e}, {b, d}, {b, e}, {c, e}, {a, c, e}}.

Since naive extensions are the subset-maximal conflict-free sets, we have

naive(F ) = {{a, d}, {b, d}, {b, e}, {a, c, e}}.
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Figure 1: Example AF where each argument is associated with a claim α, β, or γ.

Note that there is only one conflict-free set S such that S⊕F = A, namely S = {a, c, e}.
Thus, {a, c, e}⊕F ⊃ T

⊕
F for all T ∈ cf (F ) such that T 6= {a, c, e}. Therefore,

stg(F ) = stb(F ) = {{a, c, e}}.

Regarding admissible semantics we have, e.g., {c} 6∈ adm(F ) since c does not defend itself
against the attacks from b and d. However, {a, c, e} ∈ adm(F ) since a defends c and since
c defends e. Overall we have

adm(F ) = {∅, {a}, {b}, {d}, {a, d}, {b, d}, {a, c, e}}.

The preferred semantics are the subset-maximal admissible sets, i.e.,

prf (F ) = {{a, d}, {b, d}, {a, c, e}}.

Analogously to conflict-free sets, there is only one admissible set S such that S⊕F = A,
namely S = {a, c, e}. Thus,

sem(F ) = stb(F ) = {{a, c, e}}.

As for complete semantics, we have com(F ) = adm(F ) since no admissible set defends an
argument outside of the set. Thus,

com(F ) = {∅, {a}, {b}, {d}, {a, d}, {b, d}, {a, c, e}}.

Lastly, the subset-minimal complete extensions is ∅, i.e.,

grd(F ) = {∅}.

2.2 Preference-based Argumentation Frameworks (PAFs)

Preference-based AFs generalize standard Dung-style AFs by introducing preferences be-
tween arguments (Kaci et al., 2021).

Definition 3 (PAF). A Preference-based AF (PAF) is a triple P = (A,R,�) where (A,R)
is an AF and � is an asymmetric preference relation over A.
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Figure 2: Effect of the four preference reductions on the attack relation.

Notice that preferences in PAFs are not required to be transitive. While transitivity of
preferences is often assumed in argumentation (Amgoud & Vesic, 2014; Kaci et al., 2018), it
cannot always be guaranteed in practice (Kaci et al., 2021). In this paper, we will consider
the effect of transitive orderings when applicable.

If a and b are arguments and a � b holds then we say that a is stronger than b (and that
b is weaker than a). But what effect should this ordering have? How should this influence,
e.g., the admissible extensions of the framework? One possibility is to remove all attacks
from weaker to stronger arguments, and to then determine the admissible extensions in the
resulting AF. This altering of attacks in a PAF based on its preference-ordering is called a
reduction. The literature describes four such reductions for regular AFs (Kaci et al., 2021),
which we now adapt.

Definition 4 (Preference reduction). Given a PAF P = (A,R,�), the corresponding AF
Ri(P ) = (A,R′) is constructed via Reduction i, where i ∈ {1, 2, 3, 4}, as follows:

• i = 1: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ (a, b) ∈ R, b 6� a

• i = 2: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨ ((b, a) ∈ R, (a, b) /∈ R, a � b)

• i = 3: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨ ((a, b) ∈ R, (b, a) 6∈ R)

• i = 4: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨ ((b, a) ∈ R, (a, b) /∈ R, a �
b) ∨ ((a, b) ∈ R, (b, a) 6∈ R)

Figure 2 visualizes the above reductions. Intuitively, Reduction 1 removes attacks that
contradict the preference ordering while Reduction 2 reverts such attacks. Reduction 3
removes attacks that contradict the preference ordering, but only if the weaker argument
is attacked by the stronger argument also. Reduction 4 can be seen as a combination of
Reductions 2 and 3: if a weak argument attacks a stronger argument, and there is no
reverse attack, add a reverse attack but do not remove the attack from the weak to the
strong argument; if a weak argument attacks a stronger argument, but there is a reverse
attack, remove the attack from the weaker argument.

The semantics for PAFs are defined in a straightforward way: first, one of the four
reductions is applied to the given PAF; then, AF-semantics are applied to the resulting AF.

Definition 5 (PAF-semantics). Let P be a PAF and let i ∈ {1, 2, 3, 4}. The preference-
based variant of an AF-semantics σ relative to Reduction i is defined as σi(P ) = σ(Ri(P )).

Example 3. Consider the PAF P = ({a, b, c}, {(a, b), (b, a), (c, b)},�) with b � a and b � c
depicted in Figure 2. The AFs resulting from applying the various preference reductions,
i.e., R1(P ), R2(P ), R3(P ), and R4(P ), are also depicted in Figure 2.
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For Reduction 1 we have adm1(P ) = adm(R1(P )) = {∅, {b}, {c}, {b, c}} and therefore
prf 1(P ) = prf (R1(P )) = {{b, c}}. If we use Reduction 2 we get adm2(P ) = adm(R2(P )) =
{∅, {b}} and therefore prf 2(P ) = prf (R2(P )) = {{b}}.

2.3 Claim-augmented Argumentation Frameworks (CAFs)

CAFs generalize standard AFs by assigning a claim to each argument (Dvořák & Woltran,
2020). The notion of enriching arguments with claims/conclusions appears often and
under various names in the literature. For instance, Conclusion-based AF (Rocha &
Cozman, 2022b, 2022a) are equivalent to CAFs as we consider them, while Argument-
Conclusion Structures (Baroni, Governatori, & Riveret, 2016) are not technically equivalent
but strongly related to CAFs.

Definition 6 (CAF). A Claim-augmented AF (CAF) is a triple F = (A,R, cl) where (A,R)
is an AF and cl : A→ C is a function that maps arguments to an infinite domain of claims C.
The claim-function is extended to sets of arguments S ⊆ A via cl(S) = {cl(a) | a ∈ S}.
A well-formed CAF (wfCAF) is a CAF (A,R, cl) in which all arguments with the same
claim attack the same arguments, i.e., for all a, b ∈ A with cl(a) = cl(b) we have that
{a}+(A,R) = {b}+(A,R).

There are two types of semantics for CAFs, inherited and hybrid. Inherited semantics
apply AF-semantics to the underlying AF of a given CAF, and then collect the claims of
arguments contained in an extension.

Definition 7 (Inherited semantics). Let F = (A,R, cl) be a CAF. The inherited CAF-
variant of an AF-semantics σ is defined as σinh(F) = {cl(S) | S ∈ σ((A,R))}.

Example 4. Let F = (A,R, cl) be the CAF depicted in Figure 1, i.e.,

A = {a, b, c, d, e, f},
R = {(a, b), (b, a), (b, c), (c, f), (d, c), (d, e), (e, d), (f, e), (f, f)},
cl(a) = cl(d) = α,

cl(b) = cl(e) = cl(f) = β,

cl(c) = γ.

Note that F is not well-formed, since, e.g., (a, b) ∈ R but (d, b) 6∈ R despite cl(a) = cl(d).
The underlying AF (A,R) of F is the AF we examined in Example 2. The extensions

of F on the claim-level can be inferred from the extensions of (A,R) on the argument-level
(see Example 2). Thus, we have

cf inh(F) = {∅, {α}, {β}, {γ}, {α, γ}, {α, β}, {β, γ}, {α, β, γ}},
naive inh(F) = {{α}, {β}, {α, β}, {α, β, γ}},
adm inh(F) = com inh(F) = {{∅, {α}, {β}, {α, β}, {α, β, γ}},
prf inh(F) = {{α}, {α, β}, {α, β, γ}},
stg inh(F) = sem inh(F) = stbinh = {{α, β, γ}},

grd(F) = {∅}.
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Hybrid semantics (Rapberger, 2020; Dvořák et al., 2023) employ subset-maximization
(such as in preferred semantics) on the claim-level rather than the argument level.

Definition 8 (Claim-defeat & claim-range). Let F = (A,R, cl) be a CAF. A set of argu-
ments S ⊆ A defeats a claim α ∈ cl(A) in F iff S attacks every a ∈ A with cl(a) = α (in
F). S∗F = {α ∈ cl(A) | S defeats α in F} denotes the set of all claims which are defeated
by S in F . The claim-range of a set S ⊆ A of arguments is denoted by S~

F = cl(S) ∪ S∗F .

Definition 9 (Hybrid semantics). Let F = (A,R, cl) be a CAF with underlying AF F =
(A,R). Consider a set of claims C ⊆ cl(A). We call S ⊆ A a σinh-realization of C in F iff
S ∈ σ(A,R) and cl(S) = C.

• C ∈ prf hyb(F) if C is ⊆-maximal in adm inh(F);

• C ∈ naivehyb(F) if C is ⊆-maximal in cf inh(F);

• C ∈ stb-admhyb(F) if there is a adm inh-realization S of C which defeats any α ∈
cl(A) \ C (i.e., S~

F = cl(A));

• C ∈ stb-cf hyb(F) if there is a cf inh-realization S of C which defeats any α ∈ cl(A)\C
(i.e., S~

F = cl(A));

• C ∈ semhyb(F) if there is an adm inh-realization S of C in F such that there is no
T ∈ adm(F ) with S~

F ⊂ T
~
F ;

• C ∈ stghyb(F) if there is an cf inh-realization S of C in F such that there is no
T ∈ cf (F ) with S~

F ⊂ T
~
F .

In the remainder of the paper, we refer to an arbitrary CAF-semantics via σµ or τν ,
i.e., σµ, τν ∈ {cf inh , adm inh , com inh , grd inh ,naive inh ,naivehyb , stbinh , stb-admhyb , stb-cf hyb ,
prf inh , prf hyb , sem inh , semhyb , stg inh , stghyb}.

Example 5. Consider again the CAF F = (A,R, cl) depicted in Figure 1. Recall that we
already investigated this CAF with regards to inherited semantics in Example 4. In contrast
to inherited semantics, for hybrid naive and preferred semantics we have

naivehyb(F) = prf hyb(F) = {{α, β, γ}}.

Regarding claim-range, notice that the admissible argument-set {a, c, e} already contains
every claim in F , i.e., cl({a, c, e}) = cl(A). Thus, {a, c, e}~F = cl(A). For the admissible
argument set {b, d} we have cl({b, d}) = {α, β} and {b, d}∗F = {γ}, i.e., {b, d}~F = cl(A).
There is no other admissible argument set S ∈ adm(A,R) such that S~

F = cl(A). Thus,

semhyb(F) = stb-admhyb(F) = {{α, β}, {α, β, γ}}.

For the conflict-free (but not admissible) argument set {b, e} we have cl({b, e}) = {β}
and {b, e}∗F = {α, γ}, i.e., {b, e}~F = cl(A). There is no other conflict-free argument set
S ∈ cf ((A,R)) such that S~

F = cl(A). Thus,

stghyb(F) = stb-cf hyb(F) = {{β}, {α, β}, {α, β, γ}}.
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stbinh

stb-admhyb

stb-cf hyb

stghyb stg inh

naive inh naivehyb

semhybsem inh

prf hyb prf inh

grd inh com inh

adm inh

cf inh

(a) General CAFs.

stbinh = stb-admhyb = stb-cf hyb

stghyb stg inh

naive inh

naivehyb

semhybsem inh

prf inh = prf hyb

grd inh com inh

adm inh

cf inh

(b) Well-formed CAFs.

Figure 3: Relations between semantics on (well-formed) CAFs. If there is an arrow from
σµ to τν , then σµ(F) ⊆ τν(F) for all CAFs F of the respective CAF-class. Semantics
highlighted in gray are I-maximal.

The relationship between the various CAF-semantics has been investigated for both
general and well-formed CAFs (Dvořák et al., 2023). See Figure 3 for a summary of these
results. It can be seen that many inherited and hybrid semantics coincide on wfCAFs, but
not on general CAFs.

Many argumentation semantics employ argument maximization (e.g. preferred or naive)
and therefore deliver incomparable extensions on standard AFs: for all S, T ∈ prf (F ), S ⊆ T
implies S = T . This fundamental property is called I-maximality (Baroni & Giacomin,
2007), and is defined analogously for CAFs:

Definition 10 (I-maximality). A CAF-semantics σµ is I-maximal for a class F of CAFs
if, for all CAFs F ∈ F and all C,D ∈ σµ(F), C ⊆ D implies C = D.

Figure 3 shows I-maximality properties of semantics for CAFs (Dvořák et al., 2023),
with the semantics highlighted in gray being I-maximal. I-maximality gives insights into
the expressiveness of semantics both on the argument-level (Dunne et al., 2015) and on
the claim-level (Dvořák et al., 2023), and therefore has been one of the first properties in
claim-based argumentation to be investigated (Dvořák, Rapberger, & Woltran, 2020). For
wfCAFs, I-maximality is preserved in all maximization-based semantics except naive inh ,
implying natural behavior analogous to standard AFs. On the other hand, I-maximality
is not preserved for general CAFs, revealing a fundamental difference regarding how the
various semantics behave on wfCAFs versus on general CAFs.

The computational complexity of CAFs has been investigated before (Dvořák & Woltran,
2020; Dvořák et al., 2023), revealing more differences between general CAFs and wfCAFs.
We assume familiarity with the complexity classes P, NP, and coNP. Moreover, ΣP

2 is the
class of decision problems that can be decided in nondeterministic polynomial time by an
algorithm with access to an NP-oracle (Arora & Barak, 2009). ΠP

2 is the complementary
class of ΣP

2 . DP is the class of languages that can be expressed as an intersection of a
language in NP and a language in coNP.
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Table 1: Computational Complexity of CAFs.

σµ
Cred∆

σµ Skept∆
σµ Ver∆

σµ

∆ ∈ {CAF ,wfCAF} ∆ = CAF ∆ = wfCAF ∆ = CAF ∆ = wfCAF

cf inh in P trivial NP-c in P

adm inh NP-c trivial NP-c in P

com inh NP-c P-c NP-c in P

grd inh in P in P in P

stbinh

NP-c coNP-c NP-c in Pstb-admhyb

stb-cf hyb

naive inh
in P

coNP-c NP-c
in P

naivehyb ΠP
2 -c coNP-c DP-c

prf inh NP-c ΠP
2 -c

ΣP
2 -c

coNP-c
prf hyb DP-c

sem inh
ΣP

2 -c ΠP
2 -c ΣP

2 -c coNP-c
semhyb

stg inh ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c

stghyb

Definition 11 (Decision problems for CAFs). We consider the following decision problems
pertaining to a CAF-semantics σµ:

• Credulous Acceptance (CredCAF
σµ ): Given a CAF F and claim α, is α contained in

some C ∈ σµ(F)?

• Skeptical Acceptance (SkeptCAF
σµ ): Given a CAF F and claim α, is α contained in

each C ∈ σµ(F)?

• Verification (VerCAF
σµ ): Given a CAF F and a set of claims C, is C ∈ σµ(F)?

We furthermore consider these reasoning problems restricted to wfCAFs and denote them
by CredwfCAF

σµ , SkeptwfCAF
σµ , and VerwfCAF

σµ .

Table 1 shows the complexity of these problems as established in (Dvořák et al., 2023).1

The complexity of the verification problem drops by one level in the polynomial hierarchy
when comparing general CAFs to wfCAFs (except for grd inh). This is an important advan-
tage of wfCAFs, as a lower complexity in the verification problem allows for a more efficient
enumeration of claim-extensions (Dvořák & Woltran, 2020).

1. Note that the complexity of grounded semantics has not been investigated explicitly in (Dvořák et al.,
2023), but it is easy to see that CredCAF

grd inh
, SkeptCAF

grd inh
, and VerCAF

grd inh
are in P since the unique grounded

argument-extension can be computed in polynomial time (Dvořák & Dunne, 2018).
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3. Preference-based Claim-augmented AFs (PCAFs)

As discussed in the previous sections, wfCAFs are a natural subclass of CAFs with advanta-
geous semantic and computational properties. However, when resolving preferences among
arguments, the resulting CAFs are typically no longer well-formed (cf. Example 1). In order
to study preferences under a claim-centric view we introduce preference-based CAFs. These
frameworks enrich the notion of wfCAFs with the concept of argument strength in terms of
preferences. Our main goals are then to understand the effect of resolved preferences on the
structure of the underlying wfCAF on the one hand, and to determine whether the advan-
tages of wfCAFs are maintained on the other hand. Given this motivation, it is reasonable
to consider the impact of preferences on well-formed CAFs only.

Definition 12 (PCAF). A Preference-based Claim-augmented AF (PCAF) is a quadruple
P = (A,R, cl ,�) where (A,R, cl) is a wfCAF and (A,R,�) is a PAF.

Preferences in PCAFs are resolved via one of the four preference reductions, analogously
to how they are resolved in PAFs (cf. Definition 4). Observe that all four reductions are
polynomial time computable with respect to the input PCAF.

Definition 13 (Preference reductions applied to PCAFs). Given a PCAF P = (A,R, cl ,�),
the corresponding CAF Ri(P) = (A,R′, cl) is obtained by applying Reduction i, where
i ∈ {1, 2, 3, 4}, to the underlying PAF P = (A,R,�) of P, i.e., (A,R′) = Ri(P ).

The semantics of PCAFs work by first resolving preferences between arguments, and
then applying CAF-semantics to the resulting CAF.

Definition 14 (PCAF-semantics). Let P be a PCAF and let i ∈ {1, 2, 3, 4}. The PCAF-
variant of a CAF-semantics σµ relative to Reduction i is defined as σiµ(P) = σµ(Ri(P)).

Note that many structured argumentation formalisms use preference reductions. For
instance, ABA+ (Cyras & Toni, 2016) employs attack reversal similar to Reduction 2 while
some instances of ASPIC (Modgil & Prakken, 2013) delete attacks from weaker arguments
in the spirit of Reduction 1.

Example 6. Let P = (A,R, cl ,�) be the PCAF with arguments A = {a, a′, b}, attacks
R = {(a, b), (a′, b), (b, a)}, claims cl(a) = cl(a′) = α and cl(b) = β, and the preference
b � a′. The underlying CAF (A,R, cl) of P is the same CAF as F in Example 1.

Note that R1(P) = (A,R′, cl) with R′ = {(a, b), (b, a)}, which is the same CAF as F ′
in Example 1. It can be verified that, e.g., adm1

inh(P) = adm inh(R1(P)) = {{∅, {α}, {β},
{α, β}} and stb1

inh(P) = {{α}, {α, β}}.
As in PAFs (cf. Example 3) the choice of reduction can influence the extensions of a

PCAF. For example, R2(P) = (A,R′′, cl) with R′′ = {(a, b), (b, a), (b, a′)}, adm2
inh(P) = {∅,

{α}, {β}}, and stb2
inh(P) = {{α}, {β}}.

Remark. In this paper we require the underlying CAF of a PCAF to be well-formed. The
reason for this is that we are interested in whether the benefits of well-formed CAFs are
preserved when preferences have to be taken into account. Even from a technical perspec-
tive, admitting PCAFs with a non-well-formed underlying CAF is not very interesting with
respect to the questions addressed in this paper. Indeed, any CAF could be obtained from
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such general PCAFs, regardless of which preference reduction we are using, by simply spec-
ifying the desired CAF and an empty preference relation. Thus, such general PCAFs have
the same properties regarding I-maximality and complexity as general CAFs.

4. Syntactic Characterization & Expressiveness

Our first step towards understanding the effect of preferences on wfCAFs is to examine
the impact of resolving preferences on the structure of the underlying CAF. To this end,
we consider four new CAF classes which are obtained from applying the reductions of
Definition 4 to PCAFs.

Definition 15 (CAF-classes). Ri-CAF denotes the set of CAFs that can be obtained by
applying Reduction i to PCAFs, i.e., Ri-CAF = {Ri(P) | P is a PCAF}.

It is easy to see that Ri-CAF, where i ∈ {1, 2, 3, 4}, contains all wfCAFs (we can simply
specify the desired wfCAF and an empty preference relation). Moreover, not all CAFs are
contained in Ri-CAF, i.e., the four new classes are located in-between wfCAFs and general
CAFs:

Proposition 1. Let CAF be the set of all CAFs and wfCAF the set of all wfCAFs. For
all i ∈ {1, 2, 3, 4} it holds that wfCAF ⊂ Ri-CAF ⊂ CAF.

Proof. Let i ∈ {1, 2, 3, 4}. wfCAF ⊆ Ri-CAF follows from the fact that any (A,R, cl) ∈
wfCAF can be obtained via Reduction i from the PCAF (A,R, cl , ∅).

wfCAF⊂Ri-CAF: consider the PCAF P = ({a, b}, {(a, a), (a, b), (b, a), (b, b)}, cl ,�)
with cl(a) = cl(b), and b � a. For all i ∈ {1, 2, 3, 4} we have Ri(P) = ({a, b}, {(a, a), (b, a),
(b, b)}, cl), i.e., the resulting CAF Ri(P) is not well-formed.

Ri-CAF ⊂ CAF: since CAF contains all CAFs, we have Ri-CAF ⊆ CAF. It
remains to show that Ri-CAF 6= CAF. Towards a contradiction, assume there is a PCAF
P = (A,R, cl ,�) such that Ri(P) = (A,R′, cl) with (a, b), (b, a) ∈ R′ but (a, a), (b, b) 6∈ R′
for some a, b ∈ A with cl(a) = cl(b). This means that either (a, b) ∈ R or (b, a) ∈ R, since
none of four reductions can introduce the attacks (a, b) and (b, a) at the same time. By
symmetry, we only look at the case that (a, b) ∈ R. Then, since (A,R, cl) is well-formed
and since cl(a) = cl(b), (b, b) ∈ R. But � is non-reflexive, i.e., (b, b) is not removed by
Reduction i and therefore (b, b) ∈ R′. Contradiction.

Furthermore, the new classes are all distinct from each other, i.e., we are indeed dealing
with four new CAF classes. Specifically, R1-CAF, R2-CAF, and R4-CAF are incom-
parable while R3-CAF is strictly contained in the other three classes. This reflects the
fact that Reduction 3 is the most conservative of the four preference reductions, removing
attacks from weak to strong arguments only when there is a counter-attack from the strong
argument.

Proposition 2. For all i ∈ {1, 2, 4} and all j ∈ {1, 2, 3, 4} such that i 6= j it holds that
Ri-CAF 6⊆ Rj-CAF and R3-CAF ⊂ Ri-CAF.

Proof. We show the various statements separately.
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aα b α

(a) only in R1-CAF

aα b α

(b) only in R2-CAF

aα b α

(c) only in R4-CAF

Figure 4: CAFs that are contained only in R1-CAF, R2-CAF, and R4-CAF respectively.
Dashed arrows are attacks that are missing for the CAF to be well-formed.

• R1-CAF 6⊆ Rj-CAF with j ∈ {2, 3, 4}: let F be the CAF shown in Figure 4a. F is
in R1-CAF as it can be obtained by applying Reduction 1 to the PCAF (A,R, cl ,�)
with A = {a, b}, R = {(a, b), (b, b)}, cl(a) = cl(b) = α, and b � a. Note that (a, b)
is deleted and is therefore not in R1(P) = F . Towards a contradiction, assume there
is a PCAF P such that Rj(P) = F . Since self-attacks cannot be removed by any of
the four reductions, (b, b) ∈ P. Since the underlying CAF of P must be well-formed,
also (a, b) ∈ P. But then, by the definition of Reduction j, either (a, b) ∈ Rj(P) or
(b, a) ∈ Rj(P). Contradiction.

• R2-CAF 6⊆ Rj-CAF with j ∈ {1, 3, 4}: let F be the CAF shown in Figure 4b. F is
in R2-CAF as it can be obtained by applying Reduction 2 to the PCAF (A,R, cl ,�)
with A = {a, b}, R = {(a, b), (b, b)}, cl(a) = cl(b) = α, and b � a. Towards a
contradiction, assume there is a PCAF P such that Rj(P) = F . Then (b, b) ∈ P and
therefore also (a, b) ∈ P. But (b, a) 6∈ P, since (a, a) 6∈ F and therefore also (a, a) 6∈ P.
But Reductions 1 and 3 cannot introduce (b, a) in this case, while Reduction 4 cannot
introduce (b, a) without retaining (a, b).

• R4-CAF 6⊆ Rj-CAF with j ∈ {1, 2, 3}: let F be the CAF shown in Figure 4c. F is
in R4-CAF as it can be obtained by applying Reduction 4 to the PCAF (A,R, cl ,�)
with A = {a, b}, R = {(a, b), (b, b)}, cl(a) = cl(b) = α, and b � a. Towards a
contradiction, assume there is a PCAF P such that Rj(P) = F . Then (b, b) ∈ P and
therefore also (a, b) ∈ P. But (b, a) 6∈ P, since (a, a) 6∈ P. But Reduction 1, 2 and 3
cannot introduce (b, a), at least not without deleting (a, b).

• R3-CAF ⊂ Rj-CAF with j ∈ {1, 2, 4}: let F be any CAF in R3-CAF. Then there
is a PCAF P = (A,R′, cl ,�) such that R3(P) = F . If (a, b) ∈ P and (a, b) ∈ F we
can assume that b 6� a without loss of generality. If (a, b) ∈ P but (a, b) 6∈ F , then,
by definition of Reduction 3, (b, a) ∈ P and b � a. In this case, Reduction j functions
in the same way as Reduction 3 (cf. Definition 4 and Figure 2), i.e., Rj(P) = F .
This proves R3-CAF ⊆ Rj-CAF. R3-CAF ⊂ Rj-CAF follows from Rj-CAF 6⊆
R3-CAF.

We now know that applying preferences to wfCAFs results in four distinct CAF-classes
that lie in-between wfCAFs and general CAFs. It is still unclear, however, how to determine
whether some CAF belongs to one of these classes or not. Especially for R2-CAF and
R4-CAF this is not straightforward, since Reductions 2 and 4 not only remove but also
introduce attacks and therefore allow for several possibilities by which a particular CAF
can be obtained. We tackle this problem by characterizing the new classes via the so-called
wf-problematic part of a CAF.
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Definition 16 (wf-problematic part). A pair of arguments (a, b) is wf-problematic in a CAF
F = (A,R, cl) iff a, b ∈ A, (a, b) 6∈ R, and there is a′ ∈ A with cl(a′) = cl(a) and (a′, b) ∈ R.
The set wfp(F) = {(a, b) | (a, b) is wf-problematic in F} is called the wf-problematic part
of F .

Intuitively, the wf-problematic part of a CAF F consists of those attacks that are missing
for F to be well-formed (cf. Figure 4). Indeed, F is a wfCAF if and only if wfp(F) = ∅.
The four new classes can be characterized as follows:

Proposition 3. Let F = (A,R, cl) be a CAF. Then

• F ∈ R1-CAF iff (a, b) ∈ wfp(F) implies (b, a) 6∈ wfp(F);

• F ∈ R2-CAF iff there are no arguments a, a′, b, b′ in F with cl(a) = cl(a′) and
cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) ∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R);

• F ∈ R3-CAF iff (a, b) ∈ wfp(F) implies (b, a) ∈ R;

• F ∈ R4-CAF iff there are no arguments a, a′, b, b′ in F with cl(a) = cl(a′) and
cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) 6∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R).

Proof. Here we consider R1-CAF. The remaining cases can be found in Appendix A
(Lemma 40 for R2-CAF, Lemma 41 for R3-CAF, and Lemma 42 for R4-CAF).

“ =⇒ ”: By contrapositive. Suppose there is (a, b) ∈ wfp(F) such that (b, a) ∈ wfp(F).
Towards a contradiction, assume F ∈ R1-CAF. Then there is a PCAF P = (A,R′, cl ,�)
such that R1(P) = F . Since Reduction 1 can only delete but not introduce attacks, and
since the underlying CAF of P must be well-formed, (a, b) ∈ R′ and (b, a) ∈ R′. However,
then also (b � a) and (a � b) which means that P is not asymmetric. Contradiction.

“⇐= ”: Suppose that (a, b) ∈ wfp(F) implies (b, a) 6∈ wfp(F). Then R1(P) = F for the
PCAF P = (A,R′, cl ,�) with R′ = R∪ {(a, b) | (a, b) ∈ wfp(F)} as well as a � b iff (b, a) ∈
R′ \R. The underlying CAF of P is well-formed since wfp((A,R′, cl)) = ∅. Furthermore, �
is asymmetric since (a, b) ∈ wfp(F) implies (b, a) 6∈ wfp(F) and by construction of P.

The above characterizations give us some insights into the effect of the various reduc-
tions on wfCAFs. Indeed, the similarity between the characterizations of R1-CAF and
R3-CAF, resp. R2-CAF and R4-CAF, can intuitively be explained by the fact that Re-
ductions 1 and 3 only remove attacks, while Reductions 2 and 4 can also introduce attacks.
Proposition 3 allows us to decide in polynomial time whether a given CAF F can be ob-
tained by applying one of the four preference reductions to a PCAF. Moreover, in the proof
of Proposition 3 we see how, given F ∈ Ri-CAF, we can construct a PCAF P such that
Ri(P) = F in polynomial time.

But what happens if we restrict ourselves to transitive preferences? Analogously to
Ri-CAF (cf. Definition 15), by Ri-CAFtr we denote the set of CAFs obtained by applying
Reduction i to PCAFs with a transitive preference relation. It is clear that Ri-CAFtr ⊆
Ri-CAF for all i ∈ {1, 2, 3, 4}. Moreover, in the proof of Proposition 1 we actually made use
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aα

a′α b

β

b′

β

cγ c′ γ

Figure 5: A CAF which shows that R3-CAFtr 6⊆ Rj-CAFtr for j ∈ {1, 2, 4}. Dashed
arrows are edges in the wf-problematic part.

of transitive preferences, i.e., wfCAF ⊂ Ri-CAFtr for all i ∈ {1, 2, 3, 4}. Interestingly, how-
ever, the relationship between the classes Ri-CAFtr is different to that between Ri-CAF
(Proposition 2). Specifically, R3-CAFtr is not contained in the other classes. The reason
for this is that, in certain PCAFs P, transitivity can force a1 � an via a1 � a2 � . . . � an
such that (an, a1) ∈ P but (a1, an) 6∈ P. In this case, only Reduction 3 leaves the attacks
between a1 and an unchanged.

Proposition 4. For all i, j ∈ {1, 2, 3, 4} with i 6= j it holds that Ri-CAFtr 6⊆ Rj-CAFtr .

Proof. Note that the preference relations of the PCAFs used in the proof of Proposition 2
are transitive. We therefore have Ri-CAFtr 6⊆ Rj-CAFtr for every i ∈ {1, 2, 4} and
j ∈ {1, 2, 3, 4} such that i 6= j.

It remains to show R3-CAFtr 6⊆ Rj-CAFtr for j ∈ {1, 2, 4}. Let F be the CAF shown
in Figure 5. F is in R3-CAFtr : to see this, let P be the PCAF with the same arguments
and attacks as F , and additionally attacks (a, b) and (b, c); Moreover, let c � b, b � a,
and c � a; the attack (a, c) is not deleted by Reduction 3 if there is no attack (c, a); Thus,
R3(P) = F . We show that F 6∈ Rj-CAFtr for j ∈ {1, 2, 4}.

• F is not in R1-CAFtr since a PCAF that reduces to F would need to have c � b,
b � a, and therefore also c � a. But Reduction 1 would delete the attack (a, c).

• Towards a contradiction, assume there is a PCAF P such that R2(P) = F . First, we
show that (a, b) ∈ P, (b, a) ∈ P, (b, c) ∈ P, and (c, b) ∈ P.

– Assume (a, b) 6∈ P. Then two things most hold. Firstly, it must be that (b, a) ∈
P, otherwise (b, a) 6∈ F . Secondly, (a′, b) 6∈ P, otherwise the underlying CAF of
P would not be well-formed. This means that (a′, b) must have been introduced
into F by applying Reduction 2, i.e., by reversing (b, a′). Therefore, (b, a′) ∈ P.
But then also (b′, a′) ∈ P, otherwise the underlying CAF of P is not well-formed.
But then, by the definition of Reduction 2, either (b′, a′) ∈ F or (a′, b′) ∈ F ,
which is not the case. Contradiction.

– Assume (b, a) 6∈ P. Then, since the underlying CAF of P must be well-formed,
(b′, a) 6∈ P. This means (a, b′) ∈ P, otherwise we cannot obtain F from P via
Reduction 2. This means that (a′, b′) ∈ P, which is not possible since neither
(a′, b′) ∈ F nor (b′, a′) ∈ P.
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wfCAF

R1-CAFtr R2-CAFtr R3-CAFtr R4-CAFtr

R1-CAF R2-CAF

R3-CAF

R4-CAF

CAF

Figure 6: Relations between the various CAF-classes. An arrow indicates that a class is a
strict subset of the other, e.g. R3-CAF ⊂ R4-CAF.

– Assume (b, c) 6∈ P. Then two things most hold. Firstly, it must be that (c, b) ∈ P,
otherwise (c, b) 6∈ F . Secondly, (b′, c) 6∈ P, otherwise the underlying CAF of P
would not be well-formed. This means that (b′, c) must have been introduced
into F by applying Reduction 2, i.e., by reversing (c, b′). Therefore, (c, b′) ∈ P.
But then also (c′, b′) ∈ P, otherwise the underlying CAF of P is not well-formed.
But then, by the definition of Reduction 2, either (c′, b′) ∈ F or (b′, c′) ∈ F ,
which is not the case. Contradiction.

– Assume (c, b) 6∈ P. Then, since the underlying CAF of P must be well-formed,
(c′, b) 6∈ P. This means (b, c′) ∈ P, otherwise we cannot obtain F from P via
Reduction 2. This means that (b′, c′) ∈ P, which is not possible since neither
(b′, c′) ∈ F nor (c′, b′) ∈ P.

Since (a, b) ∈ P, (b, a) ∈ P, (b, c) ∈ P, and (c, b) ∈ P, the only way to obtain F
form P via Reduction 2 is to set c � b and b � a. But then c � a which means that
(a, c) 6∈ F . Contradiction, i.e., F 6∈ R2-CAFtr .

• Now assume there is a PCAF P ′ such that R4(P ′) = F . It must be that (a, b) ∈ P ′
since we cannot obtain (a′, b) ∈ R4(P ′) and (b, a′) 6∈ R4(P ′) without (a′, b) ∈ P ′.
Analogously, it must be that (b, c) ∈ P ′. Then in order to have R4(P ′) = F we
need to set c � b and b � a. But then c � a which means that it cannot be that
(a, c) ∈ R4(P ′) and (c, a) 6∈ R4(P ′). Contradiction, i.e., F 6∈ R4-CAFtr .

The above result also implies that Ri-CAFtr ⊂ Ri-CAF for i ∈ {1, 2, 4} since we
have R3-CAFtr ⊆ R3-CAF ⊂ Ri-CAF (cf. Proposition 2) and R3-CAFtr 6⊂ Ri-CAFtr

(cf. Proposition 4), which implies Ri-CAFtr 6= Ri-CAF. It is also easy to see that
R3-CAFtr ⊂ R3-CAF: take the CAF from Figure 5 and add the additional attack (c, a).
The resulting CAF is in R3-CAF since we do not need to set the preference c � a, whereas
it is not in R3-CAFtr since c � a is enforced by c � b � a. Figure 6 summarizes the
relationship between the CAF-classes.

We will not characterize all four classes Ri-CAFtr for transitive preferences. Indeed,
while each Ri-CAF and Ri-CAFtr are distinct syntactically, we will show that their se-
mantic properties (cf. Section 5) and their computational complexity (cf. Section 6) are the
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same. However, we will characterize R1-CAFtr as this will prove useful when analyzing
the computational complexity of PCAFs using Reduction 1. Note that wfp(F) can be seen
as a directed graph, with an edge between vertices a and b whenever (a, b) ∈ wfp(F). Thus,
we may use notions such as paths and cycles in the wf-problematic part of a CAF.

Proposition 5. F ∈ R1-CAFtr for a CAF F iff (1) wfp(F) is acyclic and (2) (a, b) ∈ F
implies that there is no path from a to b in wfp(F).

Proof. Let F = (A,R, cl).

• Suppose wfp(F) is acyclic and there is no (a, b) ∈ F with a path from a to b in wfp(F).
Construct the PCAF P = (A,R′, cl ,�) with R′ = R ∪ {(a, b) | (a, b) ∈ wfp(F)}
and b � a iff there is a path from a to b in wfp(F). (A,R′, cl) is well-formed by
construction. � is transitive because if there is a path from a to b and from b to c,
then there is also a path from a to c. � is asymmetric because otherwise there would
be a path from a to b and from b to a, which again would mean that there is a cycle.
It remains to show that R1(P) = F . Let (a, b) be any attack in P. We distinguish
two cases:

– (a, b) ∈ F . Then, since there is no path from a to b in wfp(F), b 6� a. Therefore,
(a, b) ∈ R1(P).

– (a, b) 6∈ F . Then, by construction, (a, b) ∈ wfp(F) and therefore b � a. Thus,
(a, b) is removed from P by Reduction 1, i.e., (a, b) 6∈ R1(P).

Note also that, by construction of P, there can be no (a, b) ∈ F such that (a, b) 6∈ P.

• Suppose wfp(F) is cyclic. Then there are arguments x1, . . . , xn ∈ F such that x1 = xn
and (xi, xi+1) ∈ wfp(F) for all 1 ≤ i < n. Towards a contradiction, assume there is a
PCAF P = (A,R′, cl ,�) such that R1(P) = F . Then (xi, xi+1) ∈ P for all 1 ≤ i < n,
otherwise (A,R′, cl) would not be well-formed. In order to have R1(P) = F we must
have xi+1 � xi for all 1 ≤ i < n. But then, by transitivity and since x1 = xn we
obtain x1 � x1, which is in contradiction to � being asymmetric.

On the other hand, suppose there is an attack (a, b) ∈ F with a path from a to b in
wfp(F). Let us denote this path as x1, . . . , xn with x1 = a and xn = b. By the same
argument as above, if there were a PCAF P = (A,R′, cl ,�) such that R1(P) = F ,
then xn � x1, i.e., b � a. But then (a, b) 6∈ R1(P). Contradiction.

In summary, we have shown that the four new CAF-classes that result from applying
preferences to wfCAFs lie strictly in between wfCAFs and general CAFs (see Proposition 1)
and that they are distinct from each other (see Propositions 2 and 4). Figure 6 summarizes
the relationship between the CAF-classes. Furthermore, we characterize the four classes
(see Proposition 3), which allows us to take any CAF, and, in polynomial time, decide
whether this CAF belongs to one of the four classes.

From a high-level point of view, these characterization results yield insights into the
expressiveness of argumentation formalisms that allow for preferences. Propositions 3 and 5
show which situations can be captured by formalisms which (i) construct attacks based on
the claim of the attacking argument (i.e., formalisms with well-formed attack relation) and
(ii) incorporate asymmetric or transitive preference relations on arguments using one of the
four reductions.
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5. Semantic Properties

There are key differences between wfCAFs and general CAFs with respect to semantic
properties. It has been shown (Dvořák et al., 2023) that inherited and hybrid variants of
stable and preferred semantics coincide on wfCAFs but not on general CAFs (cf. Figure 3).
This simplifies the choice of semantics when working with wfCAFs. Moreover, wfCAFs,
unlike general CAFs, preserve I-maximality under most maximization-based semantics (cf.
Figure 3). This leads to more intuitive behavior of these semantics when considering ex-
tensions on the claim-level. As we have seen in Section 4, resolving preferences on wfCAFs
results in four new CAF-classes that, from a syntactic perspective, lie in between wfCAFs
and general CAFs. We now investigate whether these new CAF-classes retain the benefits
of wfCAFs when it comes to semantic properties. We summarize and discuss our results at
the end of this section (cf. Theorem 18 and Figure 9).

Firstly, we observe that the basic relations between semantics carry over from general
CAFs, i.e., if we have σµ(F) ⊆ τν(F) for two CAF-semantics σµ, τν and all CAFs F , then
we also have also σiµ(P) ⊆ τ iν(P) for all PCAFs P. Likewise, if we have σµ(F) 6⊆ τν(F) for
a wfCAF, then we also have σiµ(P) 6⊆ τ iν(P) for a PCAF.

Secondly, we note that Reductions 2, 3, and 4 cannot entirely remove conflicts between
arguments, and that therefore the resolution of preferences has no impact on conflict-free
extensions (both on the argument- and claim-level) under these preference reductions.

Lemma 6. Let P = (A,R, cl ,�) be a PCAF and let Ri(P) = (A,R′, cl) with i ∈ {2, 3, 4}.
Then cf ((A,R)) = cf ((A,R′)) and cf inh((A,R, cl)) = cf inh((A,R′, cl)).

Proof. Let P = (A,R, cl ,�) be a PCAF and let Ri(P) = (A,R′, cl) for i ∈ {2, 3, 4}. By
definition of Reduction i, if (a, b) ∈ R then either (a, b) ∈ R′ or (b, a) ∈ R′. Conversely, if
(a, b) ∈ R′, then it must be that either (a, b) ∈ R or (b, a) ∈ R. Thus, for any S ⊆ A we
have S ∈ cf ((A,R)) iff S ∈ cf ((A,R′)). This further implies that for any C ⊆ cl(A) we
have C ∈ cf inh((A,R, cl)) iff C ∈ cf inh((A,R′, cl)).

The fact that Reductions 2–4 do not remove conflicts, and the well-formedness of a
PCAF’s underlying CAF, allow us to show that inherited stable semantics and hybrid
admissibility-based stable semantics coincide under Reductions 2–4. Under Reduction 1
the two semantics do not coincide.

Proposition 7. stbiinh(P) = stb-admi
hyb(P), where i ∈ {2, 3, 4}, holds for every PCAF P.

Proof. stbinh(F) ⊆ stb-admhyb(F) holds for all CAFs. We must show that stb-admhyb(F) ⊆
stbinh(F) for all F ∈ Ri-CAF, where i ∈ {2, 3, 4}. Let F = (A,R, cl) ∈ Ri-CAF, and let
P = (A,R′, cl ,�) be a PCAF such that Ri(P) = F . Moreover, let C ∈ stb-admhyb(F).
Then there is an argument-set S ⊆ A such that S ∈ adm(F), cl(S) = C, and C∪S∗F = cl(A).
Let S′ = S ∪ {x ∈ A \ S | (x, y) 6∈ R, (y, x) 6∈ R for all y ∈ S}, i.e., S′ is obtained by adding
all arguments to S that are not in conflict with S. We show that C ∈ stbinh(F) by showing
the following:

1. cl(S′) = C: clearly, cl(S) ⊆ cl(S′). Now consider any x ∈ S′ \ S. Then S does not
defeat cl(x), since there is no conflict between S and x. Since cl(S) ∪ S∗F = cl(A)
there must be x′ ∈ S with cl(x′) = cl(x). Thus, cl(S) ⊇ cl(S′).
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aα a′ α

(a) R1(P) from Proposition 8.

aα b β

b′ β

(b) R1(P) from Proposition 10.

aα a′ α

(c) R2(P) from Proposition 11.

Figure 7: CAFs used to show that some variants of stable semantics do not coincide under
Reductions 1 and 2. Dashed arrows are attacks in the wf-problematic part of the CAF.

2. S′ ∈ cf (A,R): since S ∈ adm(A,R), there is no conflict between any two arguments
in S. Moreover, by construction, there is no conflict between arguments in S and
arguments in S′\S. It remains to show there is no conflict between any two arguments
in S′\S. Towards a contradiction, assume there are x′, y′ ∈ S′\S such that (x′, y′) ∈ R.
Since there is no conflict between S and x′ (resp. y′), S does not defeat cl(x′) (resp.
cl(y′)). Since cl(S) ∪ S∗F = cl(A), there must be x, y ∈ S with cl(x) = cl(x′) and
cl(y) = cl(y′). Since Reductions 2,3,4 cannot remove conflicts, we have (x′, y′) ∈ R′ or
(y′, x′) ∈ R′ in the original PCAF P. By the well-formedness of P, we have (x, y′) ∈ R′
or (y, x′) ∈ R′. Since Reductions 2,3,4 cannot remove conflicts, if (x, y′) ∈ R′ then
(x, y′) ∈ R or (y′, x) ∈ R, and if (y, x′) ∈ R′ then (y, x′) ∈ R or (x′, y) ∈ R. But then
either x′ 6∈ S′ or y′ 6∈ S′. Contradiction.

3. for all z ∈ A \S′ there is x ∈ S′ such that (x, z) ∈ R: let z ∈ A \S′. Then there must
be x ∈ S such that either (x, z) ∈ R or (z, x) ∈ R, otherwise we would have z ∈ S′.
If (z, x) ∈ R but (x, z) 6∈ R, there must be y ∈ S such that (y, z) ∈ R, otherwise we
would have S 6∈ adm(F).

Proposition 8. There is a PCAF P such that stb1
inh(P) 6= stb-adm1

hyb(P).

Proof. Let P = (A,R, cl ,�) with A = {a, a′}, R = {(a, a), (a′, a)}, cl(a) = cl(a′) = α, and
a � a′. Figure 7a depictsR1(P) = (A,R′, cl), i.e., R′ = {(a, a)}. Note that stbinh(R1(P)) =
∅ while stb-admhyb(R1(P)) = stb-cf hyb(R1(P)) = {{α}}.

Similarly, we can show that both variants (conflict-free and admissibility-based) of stable
semantics coincide under Reductions 3 and 4, but not under Reductions 1 and 2.

Proposition 9. stb-admi
hyb(P) = stb-cf ihyb(P), where i ∈ {3, 4}, holds for every PCAF P.

Proof. stb-admhyb(F) ⊆ stb-cf hyb(F) holds for all CAFs. We show that stb-cf hyb(F) ⊆
stb-admhyb(F) for F ∈ Ri-CAF, where i ∈ {3, 4}. Let F = (A,R, cl) ∈ Ri-CAF, and let
P = (A,R′, cl ,�) be a PCAF such that Ri(P) = F . Moreover, let C ∈ stb-cf hyb(F). Then
there is an argument-set S ⊆ A such that S ∈ cf (A,R), cl(S) = C, and C ∪ S∗F = cl(A).
We show that C ∈ stb-admhyb(F) by showing that S ∈ adm(F):

Consider any x ∈ S and y ∈ A \ S such that (y, x) ∈ R but (x, y) 6∈ R. Under
Reductions 3 and 4 a non-symmetric attack (y, x) in R3(P) means that (y, x) was also
present in the original PCAF P, i.e., (y, x) ∈ R′. Towards a contradiction, assume that
S does not defeat cl(y) in F . Since cl(S) ∪ S∗F = cl(A), this means that there is y′ ∈ S
with cl(y′) = cl(y). By the well-formedness of P this further implies (y′, x) ∈ R′. But
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Reductions 3 and 4 cannot remove conflicts, i.e., either (y′, x) ∈ R or (x, y′) ∈ R. Thus,
S 6∈ cf (A,R). Contradiction. Therefore, S defeats cl(y) in F , i.e., there is z ∈ S such that
(z, y) ∈ R. We can conclude that S ∈ adm(F).

Proposition 10. There is a PCAF P such that stb-adm1
hyb(P) 6= stb-cf 1

hyb(P).

Proof. Let P = (A,R, cl ,�) with A = {a, b, b′}, R = {(b, a), (b, b), (b′, a), (b′, b)}, cl(a) = α,
cl(b) = cl(b′) = β, and a � b′, b � b′. The attacks (b′, a) and (b′, b) are deleted in R1(P),
see Figure 7b. Moreover, stb-admhyb(R1(P)) = ∅ but stb-cf hyb(R1(P)) = {{α, β}}.

Proposition 11. There is a PCAF P such that stb-adm2
hyb(P) 6= stb-cf 2

hyb(P).

Proof. Consider the PCAF P = (A,R, cl ,�) with A = {a, a′}, R = {(a, a), (a′, a)}, cl(a) =
cl(a′) = α, and a � a′. Then R2(P) = (A,R′, cl) with R′ = {(a, a), (a, a′)}, see Figure 7c.
Note that stbinh(R2(P)) = stb-admhyb(R2(P)) = ∅ while stb-cf hyb(R2(P)) = {{α}}.

Before investigating whether inherited and hybrid preferred semantics coincide, we ex-
amine the I-maximality property. The following is analogous to Definition 10.

Definition 17 (I-maximality for PCAFs). σiµ is I-maximal for PCAFs if, for all PCAFs P
and all C,D ∈ σiµ(P), C ⊆ D implies C = D.

From known properties of wfCAFs (cf. Figure 3) it follows directly that naiveiinh , where
i ∈ {1, 2, 3, 4}, is not I-maximal for PCAFs. Likewise, from the properties of general CAFs
we know that naiveihyb , prf ihyb , and grd iinh are I-maximal for all i ∈ {1, 2, 3, 4}. It remains

to investigate I-maximality of prf iinh and all inherited and hybrid variants of stable, semi-
stable, and stage semantics.

As it turns out, Reduction 3 manages to preserve I-maximality in all cases except for
inherited and hybrid stage semantics.

Proposition 12. prf 3
inh , sem3

inh , sem3
hyb, stb3

inh , stb-adm3
hyb, and stb-cf 3

hyb are I-maximal
for PCAFs.

Proof. We show this for prf 3
inh . The other results follow from sem3

inh(P) ⊆ prf 3
inh(P)

(by properties of general CAFs), sem3
hyb(P) ⊆ prf 3

inh(P) (by properties of general CAFs),

and stb3
inh(P) = stb-adm3

hyb(P) = stb-cf 3
hyb(P) ⊆ prf 3

inh(P) (by Propositions 7 and 9 as
well as properties of general CAFs). Towards a contradiction, assume there is a PCAF
P = (A,R, cl ,�) such that C ⊂ D for some C,D ∈ prf 3

inh(P). Then there must be S ⊆ A
such that S ∈ prf (R3(P)) and cl(S) = C, as well as T ⊆ A with T ∈ prf (R3(P)) and
cl(T ) = D. Observe that S 6⊆ T , otherwise S 6∈ prf (R3(P)). Thus, there is x ∈ S (with
cl(x) ∈ C) such that x 6∈ T . However, cl(x) ∈ D since C ⊂ D, i.e., there is some x′ ∈ T
such that cl(x′) = cl(x). There are two possibilities for why x is not in T :

1. T ∪ {x} 6∈ cf (R3(P)). By Lemma 6, T ∪ {x} 6∈ cf ((A,R, cl)). Therefore, there
is some y ∈ T such that y 6∈ S and either (x, y) ∈ P or (y, x) ∈ P. Actually, it
cannot be that (x, y) ∈ P, otherwise, by the well-formedness of (A,R, cl), we would
have (x′, y) ∈ P which, also by Lemma 6, would mean that T 6∈ cf (R3(P)). Thus,
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(a) in R3-CAFtr

a
α

b

β

a′α

(b) inR1-CAFtr andR4-CAFtr

aα

a′ αbβ

b′ β

a′′ α

(c) in R2-CAFtr

Figure 8: CAFs used as counter examples for I-maximality of some semantics. Dashed
arrows are edges in the respective wf-problematic part.

(y, x) ∈ P. Since (x, y) 6∈ P, and by the definition of Reduction 3, (y, x) ∈ R3(P). S
must defend x from y in R3(P), i.e., there is some z ∈ S such that (z, y) ∈ R3(P).
Therefore, also (z, y) ∈ P. Since we have that C ⊂ D there is some z′ ∈ T such
that cl(z′) = cl(z). (z′, y) ∈ P by the well-formedness of (A,R, cl). But then, by
Lemma 6, T 6∈ cf (R3(P)). Contradiction.

2. x is not defended by T . Then there is some y ∈ A such that (y, x) ∈ R3(P) and such
that y is not attacked by any argument in T . But S must defend x against y in R3(P),
i.e., there is z ∈ S such that (z, y) ∈ R3(P). Then also (z, y) ∈ P. Since C ⊂ D
there is some z′ ∈ T such that cl(z′) = cl(z). (z′, y) ∈ P by the well-formedness of
(A,R, cl). It cannot be that (z′, y) ∈ R3(P), i.e., y � z′. But then, by the definition of
Reduction 3, we must have (y, z′) ∈ P and also (y, z′) ∈ R3(P), which means that T is
attacked by y but not defended against it, i.e., T 6∈ adm(R3(P)). Contradiction.

For negative results, it suffices to show that I-maximality is not preserved for transitive
preference orderings to obtain results for the more general case.

Proposition 13. stg3
inh and stg3

hyb are not I-maximal for PCAFs, even when considering
only transitive preferences.

Proof. Let F = (A,R, cl) be the CAF shown in Figure 8a, and let F = (A,R) be its
underlying AF. Clearly, F ∈ R3-CAFtr .

We can see that cf (F ) = {∅, {a}, {a′}, {b}, {c}, {a, a′}, {a′, c}} and thus naive(F ) =
{{a, a′}, {a′, c}, {b}}.

Regarding stg3
inh , we have {a, a′}⊕F = {a, a′, b}, {a′, c}⊕F = {a, a′, c}, and {b}⊕F = {a′, b, c}.

The three ranges are incomparable, i.e., stg(F ) = naive(F ) and therefore stg inh(F) =
{{α}, {α, γ}, {β}}.

Regarding stg3
hyb , {a, a′} defeats {β} while {b} defeats {γ}. Thus, {a, a′}~F = {α, β},

{a′, c}~F = {α, γ}, and {b}~F = {β, γ}. The three claim-ranges are incomparable, and we
have stghyb(F) = {{α}, {α, γ}, {β}}.

Reductions 1, 2, and 4 lose I-maximality for all semantics that are I-maximal on wfCAFs
but not on general CAFs.

Proposition 14. For i ∈ {1, 2, 4}, the following semantics are not I-maximal for PCAFs,
even if considering only transitive preferences: stbiinh , stb-admi

hyb , stb-cf ihyb , semi
inh , semi

hyb ,

prf iinh , stg iinh , stg ihyb.
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Proof. We show this for stbiinh . For all other σiµ this follows from stbiinh(P) ⊆ σiµ(P) (which
holds by the properties of general CAFs).

For i ∈ {1, 4}, let F be the CAF shown in Figure 8b. F ∈ R1-CAFtr by Propo-
sition 5. F ∈ R4-CAFtr since R4(P) = F for P = (A,R, cl ,�) with A = {a, a′, b},
R = {(b, a)}, cl(a) = cl(a′) = α, cl(b) = β, and a � b. As required, the underly-
ing CAF of P is well-formed. It can be verified that stb(F) = {{a, a′}, {a′, b}} and thus
stbinh(F) = {{α}, {α, β}}.

For i = 2, let F ′ be the CAF of Figure 8c. F ′ ∈ R2-CAFtr since R2(P ′) = F ′
for the PCAF P ′ = (A′, R′, cl ′,�) with R′ = {(b, a), (b, a′), (b′, a), (b′, a′)}, a � b, and
a′ � b′. As required, the underlying CAF of P ′ is well-formed. It can be verified that
stb(F ′) = {{a, a′, a′′}, {a′′, b, b′}} and thus stbinh(F ′) = {{α}, {α, β}}.

We can now use the fact that inherited preferred semantics are I-maximal under Reduc-
tion 3 to show that inherited and hybrid preferred semantics coincide under Reduction 3.

Proposition 15. prf 3
inh(P) = prf 3

hyb(P) for every PCAF P.

Proof. prf hyb(F) ⊆ prf inh(F) holds for all CAFs. We must show prf inh(F) ⊆ prf hyb(F)
for all F ∈ R3-CAF. Towards a contradiction, assume there is F = (A,R, cl) ∈ R3-CAF
such that C ∈ prf inh(F) but C 6∈ prf hyb(F) for some C ⊆ cl(A). Then C ∈ adm inh(F).
Since C 6∈ prf hyb(F), there must be D ∈ prf hyb(F) such that D ⊃ C. Since prf hyb(F) ⊆
prf inh(F) we have D ∈ prf inh(F). But then we have C,D ∈ prf inh(F) and D ⊃ C. This
means that prf inh is not I-maximal for CAFs inR3-CAF, which contradicts Proposition 12.

Our results regarding I-maximality also allow us to infer negative results regarding the
relationship between semantics: if σiµ is I-maximal while τ iν is not, then there must be a
PCAF P such that σiµ(P) 6⊆ τ iν(P). Thus, we can conclude:

Proposition 16. For every i ∈ {1, 2, 4} there is:

• a PCAF P such that prf iinh(P) 6⊆ prf ihyb(P);

• a PCAF P such that semi
inh(P) 6⊆ prf ihyb(P);

• a PCAF P such that semhyb(P) 6⊆ prf hyb(P).

Proposition 17. For every i ∈ {1, 2, 3, 4} there is:

• a PCAF P such that stg iinh(P) 6⊆ naiveihyb(P);

• a PCAF P such that stg ihyb(P) 6⊆ naiveihyb(P).

We have now determined the relationship between PCAF-semantics and their properties
with respect to I-maximality. In summary:

Theorem 18. The results depicted in Figure 9 hold, even when considering only PCAFs
with transitive preferences.
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Figure 9: Relations between PCAF-semantics. If there is an arrow from σ to τ , then
σ(P) ⊆ τ(P) for all PCAFs P. Semantics highlighted in gray are I-maximal.

Reduction 3 preserves the properties of wfCAFs for semantics that are based on admis-
sibility (stable, semi-stable, preferred) but not semantics that are based on conflict-freeness
(stage, naive). Reductions 1, 2, and 4 on the other hand lose the I-maximality properties
of wfCAFs in all cases (except for those semantics that are I-maximal on general CAFs
already). Under Reduction 4 all variants of stable semantics coincide, while under Reduc-
tion 2 the inherited and admissibility-based hybrid stable semantics coincide. Reduction 1
preserves none of the investigated semantic properties of wfCAFs.

Intuitively, these results can be explained by the fact that Reduction 3 is the most
conservative of the reductions, not adding new attacks and preserving conflict-freeness (i.e.,
given a PCAF P, a set of arguments E is conflict-free in the underlying CAF of P iff E
is conflict-free in R3(P)). Reductions 2 and 4 preserve conflict-freeness too, but they may
introduce new attacks in contrast to Reduction 3. Reduction 1 on the other hand does not
preserve conflict-freeness. In fact, it has been deemed problematic for exactly this reason
when applied to regular AFs (Amgoud & Vesic, 2014), although it is still discussed and
considered in the literature alongside the other reductions (Kaci et al., 2021).
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Our results support the decision-making process when choosing how preferences should
be resolved (i.e., which preference reduction should be used). For example, if Reduction 3
is chosen then no attention has to be paid to the existence of several variants for preferred
or stable semantics, since all the variants coincide. What is more, we know that these
semantics are I-maximal and therefore behave ‘as expected’ on the claim level. If on the
other hand Reduction 1 is chosen, then one must be aware that the different variants for
stable and preferred semantics may deliver different extensions, and that none of them
(except hybrid preferred semantics) are I-maximal.

6. Computational Complexity

In this section, we investigate the impact of preferences on the computational complexity of
claim-based reasoning. To this end, we define the three main decision problems for PCAFs
analogously to those for CAFs (cf. Definition 11), except that we take a PCAF instead of
a CAF as input and appeal to PCAF-semantics σiµ instead of CAF-semantics σµ.

Definition 18 (Decision problems for PCAFs). We consider the following decision problems
pertaining to a PCAF-semantics σiµ:

• Credulous Acceptance (CredPCAF
σiµ

): Given a PCAF P and claim α, is α contained in

some C ∈ σiµ(P)?

• Skeptical Acceptance (SkeptPCAF
σiµ

): Given a CAF P and claim α, is α contained in

each C ∈ σiµ(P)?

• Verification (VerPCAF
σiµ

): Given a CAF P and a set of claims C, is C ∈ σiµ(P)?

Membership results for PCAFs can be inferred from results for general CAFs (recall
that the preference reductions from PCAFs to CAFs can be done in polynomial time), and
hardness results from results for wfCAFs. Thus, except for naiveihyb , the complexity of
credulous and skeptical acceptance follows immediately from known results for CAFs and
wfCAFs (cf. Table 1):

Observation 19. Let i ∈ {1, 2, 3, 4} and let σiµ be any PCAF-semantics considered in

this paper. CredPCAF
σiµ

has the same complexity as CredwfCAF
σµ . SkeptPCAF

σiµ
has the same

complexity as SkeptwfCAF
σµ , except for σiµ = naiveihyb. Moreover, VerPCAF

grdiinh
has the same

complexity as VerwfCAF
grd inh

.

The computational complexity of the verification problem, on the other hand, is one level
higher on the polynomial hierarchy for general CAFs compared to wfCAFs (cf. Table 1),
i.e., the bounds that existing results yield for PCAFs are not tight. We address this open
problem and comprehensively analyze VerPCAF

σiµ
for each of the considered reductions and

semantics. Moreover, we investigate the complexity of SkeptPCAF
naiveihyb

.

Regarding conflict-free and naive semantics, the fact that Reductions 2–4 do not remove
conflicts straightforwardly implies that the properties of wfCAFs are preserved.
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Figure 10: Reduction of 3-SAT-instance ω1 = {x, y}, ω2 = {¬x,¬y}, ω3 = {¬x, z}, ω4 =
{y,¬z}, to an instance (P, C) of VerPCAF

cf 1inh
. Dashed arrows are attacks deleted in R1(P),

i.e., they are edges in wfp(R1(P)).

Proposition 20. VerPCAF
σiµ

is in P for σµ ∈ {cf inh ,naive inh ,naivehyb} and i ∈ {2, 3, 4}.

Proof. Let P = (A,R, cl ,�) be a PCAF, C a set of claims, and i ∈ {2, 3, 4}. To check
whether C ∈ cf iinh(P), by Lemma 6, it suffices to check whether C ∈ cf inh((A,R, cl)). This
can be done in polynomial time on wfCAFs (cf. Table 1). Analogously for naiveiinh(P) and
naiveihyb(P).

Proposition 21. SkeptPCAF
naiveihyb

is coNP-complete for σiµ = naiveihyb and i ∈ {2, 3, 4}.

Proof. coNP-hardness follows from known results for wfCAFs (see Table 1). Regarding
coNP-membership, let P = (A,R, cl ,�) be a PCAF, α ∈ cl(A), and i ∈ {2, 3, 4}. To decide
whether α is skeptically accepted in P under naiveihyb-semantics, by Lemma 6, it suffices to
decide whether α is skeptically accepted in the underlying CAF (A,R, cl) of P. This can
be done in coNP-time on wfCAFs (cf. Table 1).

6.1 Hardness under Reduction 1

Since Reduction 1 does remove conflicts between arguments, we cannot apply the same
reasoning as above when analyzing the complexity of conflict-free and naive semantics under
Reduction 1. Indeed, it turns out that we lose the benefits of wfCAFs for these semantics
(as well as stb-cf hyb). In the proof of Proposition 22 we make use of Reduction 1’s ability
to remove conflicts in order to show hardness.

Proposition 22. VerPCAF
σiµ

is NP-hard for σiµ ∈ {cf 1
inh ,naive1

inh , stb-cf 1
hyb}, even if we

restrict ourselves to PCAFs with transitive preference relations.

Proof. Let ϕ be an arbitrary instance of 3-SAT given as a set Ω = {ω1, . . . , ωm} of clauses
over variables X. Without loss of generality, we can assume that every variable appears
both positively and negatively in ϕ. We construct a PCAF P = (A,R, cl ,�) as well as a
set of claims C:

• A = V ∪ V ∪H where V = {xi | x ∈ ωi, 1 ≤ i ≤ m}, V = {xi | ¬x ∈ ωi, 1 ≤ i ≤ m},
and H = {xT , xF | x ∈ X};

• R = {(xT , xi), (xF , xi) | xi ∈ V } ∪ {(xT , xi), (xF , xi) | xi ∈ V };
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• cl(xi) = cl(xi) = i for all xi, xi ∈ V ∪ V , cl(xT ) = cl(xF ) = x for all x ∈ X;

• xi � xT for all xi ∈ V and xi � xF for all xi ∈ V ;

• C = {1, . . . ,m} ∪X.

Figure 10 illustrates the above construction. Note that the preferences xi � xT remove
all conflicts between the ‘true’ variable arguments xT and their unnegated occurrences xi.
Likewise for preferences of the form xi � xF . Now let F = R1(P) = (A,R′, cl). We must
show that ϕ is satisfiable iff C ∈ σµ(F) for σµ ∈ {cf inh ,naive inh , stb-cf hyb}.

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {xT ∈ H | x ∈ I} ∪ {xF ∈ H | x 6∈ I} ∪ {xi ∈ V | x ∈ I} ∪ {xi ∈ V | x 6∈ I}. It can be
easily verified that S is conflict free in (A,R′) and that cl(S) = C. Note that C contains
all claims in F , i.e., C = cl(A). Thus, C ∈ stb-cf hyb(F). Moreover, C ∈ naive inh(F) and
C ∈ cf inh(F) since stb-cf hyb(F) ⊆ naive inh(F) ⊆ cf inh(F).

Assume C ∈ cf inh(F). Then there is some S ⊆ A such that S ∈ cf ((A,R′)) and
cl(S) = C. Let x be any variable in X. Since x ∈ cl(S) it must be that either xT ∈ S
or xF ∈ S. Thus, for all i, j, we have xi ∈ S =⇒ xj 6∈ S and xi ∈ S =⇒ xj 6∈ S
(otherwise, we would need both xT 6∈ S and xF 6∈ S for S to be conflict-free). Furthermore,
for any i ∈ {1, . . . ,m}, there must be some x such that xi ∈ S or xi ∈ S. Let I = {x |
xi ∈ S for some i}. Then for every i there is some x such that either x ∈ ωi and x ∈ I
or ¬x ∈ ωi and x 6∈ I. Thus, I satisfies all clauses ω1, . . . , ωm which means that ϕ is
satisfiable. The proof works likewise if we assume C ∈ naive inh(F) or C ∈ stb-cf hyb(F)
since stb-cf hyb(F) ⊆ naive inh(F) ⊆ cf inh(F).

Note that the above construction does not work for admissible-based semantics, since the
variable-arguments xi resp. xi in the extension S would remain undefended. The existing
hardness proof for general CAFs (Dvořák & Woltran, 2020, Proposition 2) cannot be used
either, as the constructed CAFs are not in R1-CAF. Specifically, there are symmetric
attacks between arguments whose claims occur multiple times, which leads to cycles in the
wf-problematic part of the constructed CAF. Instead, we show hardness via a more involved
construction in which symmetric attacks are avoided.

Proposition 23. VerPCAF
σiµ

is NP-hard for σiµ ∈ {stb1
inh , stb-adm1

hyb , com1
inh , adm1

inh}, even

if we restrict ourselves to PCAFs with transitive preference relations.

Proof. Let ϕ be an arbitrary 3-SAT-instance given as a set Ω = {ω1, . . . , ωm} of clauses
over variables X. For convenience, we directly construct a CAF F = (A,R, cl) with F ∈
R1-CAFtr instead of providing a PCAF P such that R1(P) = F . This is legitimate, as, by
our characterization of R1-CAFtr (see Proposition 5), we can obtain P by simply adding
all edges in wfp(F) to R and defining � accordingly. We also construct a set of claims C.

• A = V ∪ V ∪H where V = {xi | x ∈ ωi, 1 ≤ i ≤ m}, V = {xi | ¬x ∈ ωi, 1 ≤ i ≤ m},
and H = {xki,j , x̂ki,j | 1 ≤ k ≤ 4, xi ∈ V, xj ∈ V };

• R = {(xi, x1
i,j), (x

1
i,j , x

2
i,j), (x

2
i,j , xj), (xj , x

3
i,j), (x

3
i,j , x

4
i,j), (x

4
i,j , xi) | xi ∈ V, xj ∈ V };

• cl(xi) = cl(xi) = i for all xi, xi and cl(xki,j) = cl(x̂ki,j) = xki,j for all xki,j , x̂
k
i,j ;
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Bernreiter, Dvořák, Rapberger & Woltran

x1

1

x2 2

x1
1,2

x1
1,2

x2
1,2

x2
1,2

x3
1,2

x3
1,2

x4
1,2

x4
1,2

y2 2y3

3

y1
2,3

y1
2,3

y2
2,3

y2
2,3

y3
2,3

y3
2,3

y4
2,3

y4
2,3

z3 3

x̂1
1,2 x1

1,2

x̂2
1,2 x2

1,2

x̂3
1,2x3

1,2

x̂4
1,2x4

1,2

ŷ1
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ŷ3
2,3 y3

2,3

ŷ4
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Figure 11: Reduction of 3-SAT-instance ω1 = {x}, ω2 = {¬x, y}, ω3 = {¬y, z}, to an
instance (P, C) of VerPCAF

stb1inh
. Dashed arrows are attacks deleted in R1(F ′), i.e., they are

edges in wfp(R1(P)).

• C = {1, . . . ,m} ∪ {cl(a) | a ∈ H}.

Figure 11 illustrates the above construction. In general, every x̂ki,j only has outgoing edges

in the wf-problematic part, and no incoming or outgoing attacks in R. Every xki,j only
has incoming edges in the wf-problematic part. Finally, there can be no edges in the
wf-problematic part between any xi (or xi) and any other xj (or xj). From this, and
by the above construction, we can infer that (A,R, cl) fulfills all of the conditions to be in
R1-CAFtr (cf. Proposition 5). It remains to show the correctness of the above construction.

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {xi ∈ V | x ∈ I} ∪ {xi ∈ V | x 6∈ I} ∪ {x2

i,j , x
3
i,j | xi, xj ∈ A, x ∈ I} ∪ {x1

i,j , x
4
i,j | xi, xj ∈

A, x 6∈ I} ∪ {x̂ki,j | x̂ki,j ∈ A}. It can be verified that S ∈ stb((A,R)) and that cl(S) = C.
Thus, C ∈ stbinh(F). Moreover, C ∈ stb-admhyb(F), C ∈ com inh(F), and C ∈ adm inh(F),
since stbinh(F) ⊆ stb-admhyb(F) ⊆ com inh(F) ⊆ adm inh(F).

Assume C ∈ adm inh(F). Then there is some S ⊆ A such that S ∈ adm((A,R)) and
cl(S) = C. Thus, for any i ∈ {1, . . . ,m}, there must be some x such that xi ∈ S or
xi ∈ S. Consider the case that xi ∈ S. Since S is admissible, x1

i,j 6∈ S for any j such that

xj ∈ A. This further means that xj 6∈ S for any xj ∈ A, since we would need x1
i,j ∈ S to

defend xj from the attack by x2
i,j . Likewise, if xi ∈ S, then xj 6∈ S for all xj ∈ A. Let

I = {x | xi ∈ S for some i}. Then for every i there is some x such that either x ∈ ωi and
x ∈ I or ¬x ∈ ωi and x 6∈ I. Thus, I satisfies all clauses ω1, . . . , ωm which means that ϕ
is satisfiable. The proof works likewise if we assume C ∈ stbinh(F), C ∈ stb-admhyb(F), or
C ∈ com inh(F), since stbinh(F) ⊆ stb-admhyb(F) ⊆ com inh(F) ⊆ adm inh(F).

Regarding semi-stable and inherited preferred semantics, we can build upon the stan-
dard translation for skeptical acceptance of preferred-semantics (Dvořák & Dunne, 2018,
Reduction 3.7). We introduce helper arguments and avoid symmetric attacks between ar-
guments of the same claim.
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Figure 12: Reduction of the QBF2
∀ instance Φ = ∀y1, y2∃z1, z2ϕ with ϕ given by clauses

ω1 = {y1,¬y2, z1}, ω2 = {¬y1,¬z1, z2}, ω3 = {y2, z1,¬z2} to an instance of VerPCAF
sem1

inh
.

Proposition 24. VerPCAF
σiµ

is ΣP
2 -hard for σiµ ∈ {prf 1

inh , sem1
inh , sem1

hyb , stg1
inh , stg1

hyb},
even if we restrict ourselves to PCAFs with transitive preference relations.

Proof. We show hardness for σµ ∈ {prf 1
inh , sem1

inh , sem1
hyb}. The remaining cases can be

found in Appendix B (Lemma 43). Let Φ = ∀Y ∃Zϕ be an instance of QBF2
∀, where ϕ

is given by a set Ω of clauses over atoms X = Y ∪ Z. We provide a reduction to the
complementary problem of VerPCAF

σ1
µ

. In particular, we construct the CAF F = (A,R, cl)

with underlying AF F = (A,R) and a set of claims C:

• A = {ϕ,ϕ}∪Ω∪X∪X∪Ya∪Y a∪Yb∪Y b, where X = {x | x ∈ X}, Ya = {ay | y ∈ Y },
Y a = {ay | y ∈ Y }, Yb = {by | y ∈ Y }, Y b = {by | y ∈ Y };

• R = {(x, x), (x, x) | x ∈ X} ∪ {(ω, ω), (ω, ϕ) | ω ∈ Ω} ∪ {(ϕ,ϕ), (ϕ,ϕ)}∪
{(x, ω) | x ∈ ω, ω ∈ Ω} ∪ {(x, ω) | ¬x ∈ ω, ω ∈ Ω} ∪
{(av, av), (v, av) | v ∈ Y ∪ Y } ∪ {(ϕ, z), (ϕ, z) | z ∈ Z};

• cl(bv) = v for bv ∈ Yb ∪ Y b and cl(v) = v else;

• C = Y ∪ Y .

Figure 12 illustrates the above construction. Note that F ∈ R1-CAFtr (cf. Proposi-
tion 5) since all paths in wfp(F) = {(ba, v) | v ∈ Y ∪ Y } are of length 1 (only arguments in
Yb∪Y b have outgoing edges in wfp(F)). It remains to verify the correctness of the reduction,
i.e., we will show that Φ is valid iff C /∈ σµ(F).

“ =⇒ ”: Assume Φ is valid. Consider any S ⊆ A such that S ∈ adm(F ) and cl(S) = C.
Then S ⊆ Y ∪ Y ∪ Yb ∪ Y b. Let Y ′ = S ∩ Y . Since Φ is valid, there is Z ′ ⊆ Z such
that M = Y ′ ∪ Z ′ is a model of ϕ. Let T = M ∪ {x | x ∈ X \ M} ∪ Yb ∪ Y b ∪ {ϕ}.
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Note that S ⊂ T and T ∈ cf (F ) by construction. Moreover, T ∈ adm(F ) since ϕ defends
v ∈ Z ′ ∪ {z | z ∈ Z \ Z ′} against ϕ; moreover, each argument v ∈ X defends itself against
v and vice verca; also, M ∪ {x | x ∈ X \M} defends ϕ against each attack from clause-
arguments ω ∈ Ω since M |= ϕ: for each clause ω ∈ Ω, there is either v ∈M with v ∈ ω or
¬v ∈ ω for some v /∈ M . In the first case, (v, ω) ∈ R and v ∈ S, in the latter, (v, ω) ∈ R
and v ∈ S. Thus, S 6∈ prf (F ). Since S was chosen as an arbitrary admissible set such
that cl(S) = C, we can conclude that C 6∈ prf inh(F). Moreover, C 6∈ sem inh(F) and
C 6∈ semhyb(F), since sem inh(F) ⊆ prf inh(F) and semhyb(F) ⊆ prf inh(F).

“⇐= ”: Assume C /∈ sem inh(F) (resp. C 6∈ semhyb(F)). Consider any Y ′ ⊆ Y . We will
show that there is some Z ′ ⊆ Z such that Y ′∪Z ′ |= ϕ. Let S = Y ′∪{y | y ∈ Y \Y ′}∪Yb∪Y b.
Observe that cl(S) = C and S ∈ adm(F ). Since C /∈ sem inh(F) (resp. C /∈ semhyb(F)),
there is T ∈ adm(F ) with T ∪ T+

F ⊃ S ∪ S
+
F (resp. cl(T ) ∪ T ∗F ⊃ cl(S) ∪ S∗F ).

In particular, we have Y ′∪{y | y ∈ Y \Y ′} ⊆ T since each av ∈ S+
F (resp. av ∈ S∗F ) with

v ∈ Y ∪Y has precisely one non-self-attacking attacker (namely the argument v). Moreover,
we can assume that T contains each argument v ∈ Yb ∪ Y b since each such v is unattacked
and does not attack any other argument. We can conclude that T ⊃ S.

It follows that ϕ ∈ T : since S ⊂ T , there is some v ∈ A \ S such that v ∈ T . Clearly,
v ∈ {ϕ} ∪ Z ∪ Z since each remaining argument is either self-attacking or attacked by S
(and thus also by T ). In case v = ϕ, we are done; in case v ∈ Z ∪ Z, we have ϕ ∈ T by
admissibility of T (observe that ϕ is the only attacker of ϕ). Consequently, T defends ϕ
against each attack from each clause-argument ω ∈ Ω.

Now, let Z ′ = Z∩T . We show that M = Y ′∪Z ′ is a model of ϕ. Consider some arbitrary
clause ω ∈ Ω. Since ϕ ∈ T , there is some v ∈ T such that (v, ω) ∈ R by admissibility of T .
In case v ∈ X, we have v ∈ M and v ∈ ω by construction of F ; similarly, in case v ∈ X
we have v /∈ M and ¬v ∈ ω. Thus, ω is satisfied by M . Since ω was chosen arbitrarily
it follows that M |= ϕ. We can conclude that Φ is valid. The proof works likewise if we
assume C 6∈ prf inh(F) since sem inh(F) ⊆ prf inh(F) (resp. semhyb(F) ⊆ prf inh(F)).

Just like inherited preferred/naive semantics, hybrid preferred/naive semantics are DP-
complete and thus preserve the high complexity of general CAFs. To show this for prf 1

hyb ,
we adapt an existing reduction from SAT-UNSAT to general CAFs (Dvořák et al., 2023).

Proposition 25. VerPCAF
σiµ

is DP-hard for σiµ ∈ {prf 1
hyb ,naive1

hyb}, even if we restrict

ourselves to PCAFs with transitive preference relations.

Proof. We show hardness for σµ = prf 1
hyb . The proof for σµ = naive1

hyb can be found in
Appendix B (Lemma 44). Let (ϕ1, ϕ2) be an arbitrary instance of SAT-UNSAT, where ϕi
is given over a set of clauses Ωi and a set of variables Xi such that X1 ∩X2 = ∅. Given Xi,
we define Xi = {x | x ∈ Xi}. Instead of constructing a PCAF, we directly construct a CAF
F = (A,R, cl) ∈ R1-CAFtr :

• A = A1 ∪A2, where Ai = Xi ∪Xi ∪ Ωi ∪ {ϕi} ∪ {dx | x ∈ Xi ∪Xi};

• R = R1 ∪ R2, where Ri = {(x, ω) | ω ∈ Ωi, x ∈ Ωi} ∪ {(x, ω) | ω ∈ Ωi,¬x ∈
Ωi} ∪ {(x, x), (x, x) | x ∈ Xi} ∪ {(ω, ϕi), (ω, ω) | ω ∈ Ωi};

• cl(dx) = x for x ∈ Xi ∪Xi, cl(x) = x for all other arguments in A.
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Figure 13: Reduction of the QBF2
∀ instance Φ = ∀y, y′∃zϕ with ϕ given by ω1 = {y, y′, z},

ω2 = {y,¬y′,¬z}, ω3 = {y,¬y′, z}, to an instance of SkeptPCAF
naive1hyb

.

The claim-set to be verified is C = X1 ∪X1 ∪X2 ∪X2 ∪ {ϕ1}. Observe that C = cl(A) \
(Ω1 ∪ Ω2 ∪ {ϕ2}), i.e., all claims except those of clauses and ϕ2 are contained in C. We
show that (ϕ1, ϕ2) is a yes-instance of SAT-UNSAT if and only if C ∈ prf hyb(F):

Assume (ϕ1, ϕ2) is a yes-instance of SAT-UNSAT. Then there is an interpretation I
such that I |= ϕ1, but there is no interpretation that satisfies ϕ2. Thus, ϕ2 cannot be part
of any admissible extension, since it must be defended against all clause arguments from
Ω2. Let S = I ∪ {x | x ∈ (X1 ∪X2) \ I} ∪ {dx | x ∈ X1 ∪X2} ∪ {ϕ1}. It can be verified that
cl(S) = C, S ∈ adm((A,R)), and that there is no S′ ∈ adm((A,R)) with cl(S′) ⊃ cl(S).

Assume (ϕ1, ϕ2) is a no-instance of SAT-UNSAT. There are two cases: (1) ϕ1 is unsatisfi-
able. Then ϕ1 cannot be part of any admissible extension, i.e., C 6∈ adm inh(F). (2) Both ϕ1

and ϕ2 are satisfiable. Since ϕ1 and ϕ2 share no variables, there is an interpretation I such
that I |= ϕ1 and I |= ϕ2. Let S = I∪{x | x ∈ (X1∪X2)\I}∪{dx | x ∈ X1∪X2}∪{ϕ1, ϕ2}.
Note that cl(S) ⊃ C and S ∈ adm((A,R)). Thus, C 6∈ prf hyb(F).

It only remains to investigate skeptical acceptance for naive1
hyb , which, as we show, also

preserves the higher complexity of general CAFs. This means that Reduction 1 loses the
computational benefits of wfCAFs for all semantics considered in this paper.

Proposition 26. SkeptPCAF
σiµ

is ΠP
2 -hard for σiµ = naive1

hyb, even if we restrict ourselves to

PCAFs with transitive preference relations.

Proof. Let Φ = ∀Y ∃Zϕ be an instance of QBF2
∀, where ϕ is given by a set Ω = {ω1, . . . , ωm}

of clauses over atoms X = Y ∪ Z. We construct F = (A,R, cl) with

• A = {ϕ} ∪ Ω ∪ {x, x | x ∈ X} ∪ {z∗, z∗ | z ∈ Z} ∪
{xi | x ∈ X,x ∈ ωi, 1 ≤ i ≤ m} ∪ {xi | x ∈ X,¬x ∈ ωi, 1 ≤ i ≤ m} ;

• R = {(ϕ, ω) | ω ∈ Ω} ∪ {(x, x) | x ∈ X} ∪ {(z∗, z∗) | z ∈ Z} ∪
{(x, xi) | x ∈ X,¬x ∈ ωi, 1 ≤ i ≤ m} ∪ {(x, xi) | x ∈ X,x ∈ ωi, 1 ≤ i ≤ m};

• cl(xi) = cl(xi) = cl(ωi) = i for 1 ≤ i ≤ m,
cl(z∗) = z, cl(z∗) = cl(z), and
cl(v) = cl(v) for all other v ∈ A.

Figure 13 illustrates the above construction. Note that F ∈ R1-CAFtr (cf. Proposi-
tion 5): the only arguments with both incoming and outgoing edges in wfp(F) are the z∗

arguments, with z ∈ Z. The edge leading to z∗ comes from z, and the edge going out of
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z∗ leads to some zi. Thus, there is no cycle in wfp(F). Moreover, the only path in wfp(F)
with more than one edge is from z to some zi, while (z, zi) 6∈ R. It remains to verify the
correctness of the reduction: we show that Φ is valid iff ϕ ∈ C for all C ∈ naivehyb(F).

“ =⇒ ”: Assume Φ is valid. Let C ∈ naivehyb(F). Note that, for each y ∈ Y , we cannot
have y ∈ C and y ∈ C at the same time. Consider the argument set SY = (Y ∩C)∪{y | y ∈
Y \ C}. Note that cl(SY ) ⊇ (C ∩ {y, y | y ∈ Y }). Let Y ′ = SY ∩ Y . Since Φ is valid there
is Z ′ ⊆ Z such that I |= ϕ for I = Y ′ ∪ Z ′. Let SZ = {z, z∗ | z ∈ Z ′} ∪ {z, z∗ | z ∈ Z \ Z ′}.
Note that cl(SZ) = {z, z | z ∈ Z} ⊇ (C ∩ {z, z | z ∈ Z}). Now let SX = SY ∪ SZ
and finally S = SX ∪ {xi | x ∈ SX , xi ∈ A} ∪ {xi | x ∈ SX , xi ∈ A} ∪ {ϕ}. Note that
S ∈ cf ((A,R)) by construction. Moreover, since I satisfies all clauses in Ω we have cl(S) ⊇
{1, . . . ,m} ⊇ (C ∩ {1, . . . ,m}). Since also ϕ ∈ cl(S) we can conclude that cl(S) ⊇ C. But
C ∈ naivehyb(F), i.e., it cannot be that cl(S) ⊃ C. Thus, cl(S) = C and therefore ϕ ∈ C.

“⇐= ”: Assume Φ is not valid. Then there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z we have
Y ′ ∪ Z ′ 6|= ϕ. Let S = Y ′ ∪ {y | y ∈ Y \ Y ′} ∪ {z, z∗ | z ∈ Z} ∪ {ω1, . . . , ωm}. Towards
a contradiction, assume there is T ∈ cf ((A,R)) such that cl(T ) ⊃ cl(S). Since for every
y ∈ Y we already have y ∈ S or y ∈ S, and since y and y are in conflict, we have y ∈ T iff
y ∈ S and y ∈ T iff y ∈ S. Moreover, since ({z, z∗ | z ∈ Z} ∪ {1, . . . ,m}) ⊆ cl(S) ⊂ cl(T )
it must be that ϕ ∈ T . This further implies that ωi 6∈ T for all ωi ∈ Ω. Note that for every
z ∈ Z we must have z, z∗ ∈ T or z, z∗ ∈ T since {z, z∗ | z ∈ Z} ⊂ cl(T ). Let Z ′ = T ∩ Z.
Since {1, . . . ,m} ⊂ cl(T ), we can infer that every clause ωi ∈ Ω is satisfied by Y ′ ∪ Z ′, i.e.,
Y ′ ∪ Z ′ |= ϕ. Contradiction.

6.2 Efficient Algorithms for Reductions 2–4

We have already seen that the computational benefits of wfCAFs are preserved when using
Reductions 2–4 and considering conflict-free/naive semantics (cf. Propositions 20 and 21).
In this subsection we show that the benefits of wfCAFs are in fact retained under Re-
ductions 2–4 for the vast majority of admissible-based semantics, with the only exception
being complete semantics under Reductions 2 and 4. To do so, we require a more in-
volved algorithm than in the case of conflict-free/naive semantics, since Reductions 2–4
may very well cause certain arguments to be undefended. Consider for example the PCAF
P = (A,R, cl ,�) with two arguments A = {x, y}, attacks R = {(x, y), (y, x)}, claims
cl(x) = x and cl(y) = y, and the preference x � y. The preferred claim-extensions before
resolving preferences are prf inh((A,R, cl)) = {{x}, {y}} while the only preferred claim-
extension after resolving preferences is prf inh(Ri(P)) = {{x}}.

Given a wfCAF F and a set of claims C, a set of arguments S can be constructed
in polynomial time such that S is the unique maximal admissible set in F with claim
cl(S) = C (Dvořák & Woltran, 2020). Making use of the fact that Reductions 2–4 do not
alter conflicts between arguments, we can construct such a maximal set of arguments also
for PCAFs: given a PCAF P and set C of claims, we define the set E0(C) containing all
arguments of P with a claim in C; the set Ei1(C) is obtained from E0(C) by removing all
arguments attacked by E0(C) in the underlying CAF of P; finally, the set Ei∗(C) is obtained
by repeatedly removing all arguments not defended by Ei1(C) in Ri(P) until a fixed point
is reached.
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Definition 19. Given a PCAF P = (A,R, cl ,�), a set of claims C, and i ∈ {2, 3, 4}, let

E0(C) ={a ∈ A | cl(a) ∈ C};
Ei1(C) =E0(C) \ E0(C)+

(A,R);

Eik(C) ={x ∈ Eik−1(C) | x is defended by Eik−1(C) in Ri(P)} for k ≥ 2;

Ei∗(C) =Eik for k ≥ 2 such that Eik(C) = Eik−1(C).

The above definition is based on (Dvořák & Woltran, 2020, Definition 5), but with the
crucial differences that undefended arguments are (i) computed w.r.t. Ri(P) and (ii) are
iteratively removed until a fixed point is reached.

Lemma 27. Let P be a PCAF, C a set of claims, and i ∈ {2, 3, 4}. The following holds:

• C ∈ cf iinh(P) iff cl(Ei1(C)) = C. Moreover, if C ∈ cf iinh(P) then Ei1(C) is the unique
maximal conflict-free set S in Ri(P) such that cl(S) = C;

• C ∈ admi
inh(P) iff cl(Ei∗(C)) = C. If C ∈ admi

inh(P) then Ei∗(C) is the unique
maximal admissible set S in Ri(P) such that cl(S) = C.

Proof. We consider the two statements separately:

• Conflict-freeness: let P = (A,R, cl ,�) be a PCAF. From (Dvořák & Woltran, 2020,
Lemma 1) we know that C ∈ cf inh((A,R, cl)) iff cl(Ei1(C)) = C, as well as that, if
C ∈ cf inh((A,R, cl)) then Ei1(C) is the unique maximal conflict-free set S in (A,R, cl)
with cl(S) = C. From this and our Lemma 6, our result follows immediately.

• Admissibility: let P = (A,R, cl ,�) be a PCAF, C a set of claims, and i ∈ {2, 3, 4}.
Assume cl(Ei∗(C)) = C. By construction, Ei∗(C) ∈ adm(Ri(P)), and thus C ∈
admi

inh(P).

Now assume C ∈ admi
inh(P). Then there exists S ⊆ A such that cl(S) = C and S ∈

adm(Ri(P)). Furthermore, C ∈ cf iinh(P) and therefore S ⊆ Ei1(C). By construction,
Ei∗(C) ⊆ Ei1(C). Moreover, any x ∈ S is defended by S in Ri(P) and therefore also
by Ei1(C). Thus, by definition, x ∈ Ei2(C). By the same argument, if x ∈ S and
x ∈ Eik(C) then x ∈ Eik+1(C). We can conclude that S ⊆ Ei∗(C) ⊆ Ei1(C) and thus
cl(Ei∗(C)) = C. By the above we have that Ei∗(C) is admissible and each S ⊆ A such
that cl(S) = C is a subset of Ei∗(C). In other words Ei∗(C) is the unique maximal
admissible set S in Ri(P) such that cl(S) = C.

By computing the maximal conflict-free (resp. admissible) argument sets Ei1(C) (resp.
Ei∗(C)) for a claim set C, verification becomes easier for most semantics.

Proposition 28. VerPCAF
σiµ

is in P for σµ ∈ {adm inh , stbinh , stb-admhyb , stb-cf hyb} and

i ∈ {2, 3, 4}, as well as for σiµ = com3
inh .

Proof. Let P = (A,R, cl ,�) be a PCAF, let C be a set of claims, and let i ∈ {2, 3, 4}. Our
goal is to verify that C ∈ σiµ(P). Note that we can compute Ri(P) = (A,R′, cl), Ei1(C),
and Ei∗(C) in polynomial time.

235
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• σiµ = admi
inh : by Lemma 27, it suffices to test whether cl(Ei∗(C)) = C.

• σiµ ∈ {stbiinh , stb-admi
hyb}: note that stbiinh(P) = stb-admi

hyb(P) for Reductions 2,3,4

(cf. Proposition 7), i.e., we must only verify that C ∈ stbiinh(P). We first check whether
C ∈ admi

inh(P). If not, C 6∈ stbiinh(P). If yes, then cl(Ei∗(C)) = C by Lemma 27. We
can check in polynomial time if Ei∗(C) ∈ stb((A,R′)). If yes, we are done. If no, then
there is an argument x that is not in Ei∗(C) but is also not attacked by Ei∗(C) in
Ri(P). Moreover, there can be no other S ∈ stb((A,R′)) with cl(S) = C since for
any such S we would have S ⊆ Ei∗(C) by Lemma 27, which would imply that S does
not attack x and that x 6∈ S.

• σiµ = stb-cf ihyb : we first check whether C ∈ cf iinh(P). If not, C 6∈ stb-cf ihyb(P).

If yes, then, by Lemma 27, cl(Ei1(C)) = C. We can check in polynomial time if

Ei1(C)
~
(A,R′) = cl(A). If yes, then C ∈ stb-cf hyb(Ri(P)) and we are done. If no, then

there is an argument x such that x 6∈ Ei1(C), cl(x) 6∈ C, and x is not attacked by
Ei1(C) in Ri(P). Moreover, there can be no other S ∈ cf ((A,R′)) with cl(S) = C
and S~

(A,R′) = cl(A) since for any such S we would have S ⊆ Ei1(C) by Lemma 27,
which would imply that S does not attack x.

• σiµ = com3
inh : we first check if C ∈ adm3

inh(P). If not, C 6∈ com3
inh(P). If yes, then

cl(E3
∗(C)) = C. We can check in polynomial time if E3

∗(C) ∈ com(R3(P)). If no,
then E3

∗(C) defends some x 6∈ E3
∗(C) in R3(P). Towards a contradiction, assume

there is some S ⊆ A such that S ∈ com(R3(P)) and cl(S) = C. By Lemma 27,
S ⊆ E3

∗(C), which implies x 6∈ S. Then S cannot defend x in R3(P), i.e., there must
be y and z such that y ∈ E3

∗(C), y 6∈ S, (z, x) ∈ R3(P), and (y, z) ∈ R3(P). Then
also (y, z) ∈ P by the definition of Reduction 3. But there must also be some y′ ∈ S
with cl(y′) = cl(y), and since the underlying CAF of P is well-formed there must be
(y′, z) ∈ P. Since there cannot be (y′, z) ∈ R3(P), otherwise S would defend x, it
has to be that z � y′. For Reduction 3 this further requires (z, y′) ∈ P. Crucially,
(z, y′) ∈ R3(P). But then S must be defended from z, i.e., there must be some w ∈ S
such that (w, z) ∈ R3(P). But this means that S defends x, i.e., S is not complete.
Contradiction.

Proposition 29. VerPCAF
σiµ

is in coNP for σµ ∈ {prf inh , prf hyb , sem inh , semhyb , stg inh ,

stghyb} and i ∈ {2, 3, 4}.

Proof. We show that the complementary problem is in NP. Let P = (A,R, cl ,�) be a
PCAF with Ri(P) = (A,R′, cl) for i ∈ {2, 3, 4}. Let C ⊆ cl(A) be a set of claims. Our
algorithm must verify that C 6∈ σiµ(P) in NP-time. Note that the argument-sets Ei1(C) and
Ei∗(C) can be computed in polynomial time with respect to P (cf. Definition 19).

• σiµ ∈ {prf iinh , prf ihyb , semi
inh , semi

hyb}: first, guess a set of claims D ⊆ cl(A). Then,

check whether cl(Ei∗(C)) = C. If no, then, by Lemma 27, C 6∈ adm inh(Ri(P)) and we
are done. If yes, we proceed differently depending on which semantics we consider:

– σiµ = prf iinh : verify that D ∈ admi
inh(P) and Ei∗(C) ⊂ Ei∗(D). Since Ei∗(C) is

the unique maximal admissible set in Ri(P) with claim C (cf. Lemma 27), we
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have S ⊆ Ei∗(C) ⊂ Ei∗(D) for every S ∈ adm((A,R′)) with cl(S) = C. Hence,
C 6∈ prf iinh(P).

– σiµ = prf ihyb : verify that D ∈ admi
inh(P) and C ⊂ D. Then C 6∈ prf ihyb(P).

– σiµ = semi
inh : verify that D ∈ admi

inh(P) and Ei∗(C)
⊕
(A,R′) ⊂ Ei∗(D)

⊕
(A,R′).

As above, we have S ⊆ Ei∗(C) and therefore also S⊕(A,R′) ⊆ Ei∗(C)
⊕
(A,R′) ⊂

Ei∗(D)
⊕
(A,R′) for every S ∈ adm((A,R′)) with cl(S) = C. Hence, C 6∈ semi

inh(P).

– σiµ = semi
hyb : verify that D ∈ admi

inh(P) and Ei∗(C)
~
Ri(P ) ⊂ Ei∗(D)

~
Ri(P ). As

above, we have S ⊆ Ei∗(C) and therefore also S~
Ri(P ) ⊆ E

i
∗(C)

~
Ri(P ) ⊂ Ei∗(D)

~
Ri(P )

for every S ∈ adm((A,R′)) with cl(S) = C. Hence, C 6∈ semi
hyb(P).

• σiµ ∈ {stg iinh , stg ihyb}: first, guess a set of claims D ⊆ cl(A). Then, check whether

cl(Ei1(C)) = C. If no, then, by Lemma 27, C 6∈ cf inh(Ri(P)) and we are done. If yes,
we proceed differently depending on which semantics we consider:

– σiµ = stg iinh : verify that D ∈ cf iinh(P) and Ei1(C)
⊕
(A,R′) ⊂ Ei1(D)

⊕
(A,R′). Since

Ei1(C) is the unique maximal conflict-free argument set in Ri(P) with claim C

(cf. Lemma 27), we have S ⊆ Ei1(C) and therefore also S⊕(A,R′) ⊆ Ei1(C)
⊕
(A,R′) ⊂

Ei1(D)
⊕
(A,R′) for every S ∈ cf ((A,R′)) with cl(S) = C. Hence, C 6∈ stg iinh(P).

– σiµ = stg ihyb : verify that D ∈ cf iinh(P) and Ei1(C)
~
Ri(P ) ⊂ Ei1(D)

~
Ri(P ). As above,

we have S ⊆ Ei1(C) and therefore also S~
Ri(P ) ⊆ Ei1(C)

~
Ri(P ) ⊂ Ei1(D)

~
Ri(P ) for

every S ∈ cf ((A,R′)) with cl(S) = C. Hence, C 6∈ stg ihyb(P).

For complete semantics, only Reduction 3 retains the benefits of wfCAFs. Here, the
fact that Reductions 2 and 4 can introduce new attacks leads to an increase in complexity.

Proposition 30. VerPCAF
σiµ

is NP-hard for σµ = com inh and i ∈ {2, 4}, even if we restrict

ourselves to PCAFs with transitive preference relations.

Proof. We show NP-hardness for σiµ = com4
inh . The proof for σiµ = com2

inh is similar and
can be found in Appendix B (Lemma 45).

Let ϕ be an arbitrary instance of 3-SAT given as a set Ω of clauses over variables X and
let X = {x | x ∈ X}. We construct a PCAF P = (A,R, cl ,�) as well as a set of claims C:

• A = {ϕ} ∪ Ω ∪X ∪X ∪ {ax | x ∈ X ∪X} ∪ {bx | x ∈ X};

• R = {(ω, ϕ) | ω ∈ Ω} ∪ {(ω, ω) | ω ∈ Ω} ∪
{(ω, x) | x ∈ ω, ω ∈ Ω} ∪ {(ω, x) | ¬x ∈ ω, ω ∈ Ω} ∪
{(ax, x) | x ∈ X ∪X} ∪ {(ax, bx), (ax, bx) | x ∈ X};

• cl(x) = cl(x) = x for x ∈ X, cl(v) = v otherwise;

• x � ω, x � ax for all x ∈ X ∪X and all ω ∈ Ω;

• C = X ∪ {ϕ}.
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Bernreiter, Dvořák, Rapberger & Woltran

xx x x

bx

bx

axax ax ax

yy y y

by

by

ayay ay ay

zz z z

bz

bz

azaz az az

ω1

ω1

ω2

ω2

ϕϕ

Figure 14: R4(P) from the proof of Proposition 30, with ϕ given by clauses ω1 = {x, y, z},
ω2 = {¬x,¬y,¬z}. Symmetric attacks (gray/thick) have been introduced by Reduction 4.

Figure 14 illustrates the above construction. It remains to show that ϕ is satisfiable if and
only if C ∈ com inh(R4(P)).

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {x | x ∈ X,x ∈ I} ∪ {x | x ∈ X,x 6∈ I} ∪ {ϕ}. Clearly, cl(S) = C. Furthermore, S
defends ϕ in R4(P) since each clause is satisfied by I, and thus each clause argument ωj is
attacked by some x (or x) in S. Each variable x ∈ X clearly defends itself. Moreover, if
x ∈ S, then x 6∈ S and none of bx, x, or ax is defended by S. Analogously for the case that
x ∈ S. Thus, S is admissible, and contains all arguments it defends, i.e., S ∈ com(R4(P)).

Assume C ∈ com inh(R4(P)). Then there is S ⊆ A such that cl(S) = C and S ∈
com(R4(P)). For each x ∈ X, at least one of x, x must be contained in S. In fact, it
cannot be that x ∈ S and x ∈ S, otherwise bx would be defended by S and we would have
cl(S) 6= C. Thus, for each x ∈ X, there is either x ∈ S or x ∈ S, but not both. Furthermore,
S defends ϕ, i.e., S attacks all clause arguments ωj . Thus, I |= ϕ for I = X ∩ S.

6.3 Summary and Impact of Complexity Results

When using Reduction 1 we obtain the same complexity as for general CAFs, i.e., the ben-
efits of wfCAFs are lost. On the other hand, Reductions 2–4 preserve the lower complexity
of wfCAFs for almost all semantics. Intuitively, this can be explained by the fact that these
reductions do not remove conflicts between arguments. This in turn means that Reduc-
tions 2–4 retain enough of the structure of wfCAFs in order to, given a claim, efficiently
compute a subset-maximal admissible argument set with that claim. The only outlier are
complete semantics, for which verification remains hard under Reductions 2 and 4 but not
Reduction 3. Here, the fact that Reductions 2 and 4 can introduce new attacks leads to an
increase in complexity. We conclude:

Theorem 31. The complexity results in Table 2 hold, even if we restrict ourselves to PCAFs
with transitive preference relations.
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Table 2: Computational Complexity of PCAFs. Results in boldface had to be proven
explicitly. All other results follow directly from known properties (cf. Observation 19).

σiµ
CredPCAF

σiµ
SkeptPCAF

σiµ
VerPCAF

σiµ

i ∈ {1, 2, 3, 4} i = 1 i ∈ {2, 3, 4} i = 1 i ∈ {2, 4} i = 3

cf inh in P trivial NP-c in P

adm inh NP-c trivial NP-c in P

com inh NP-c P-c NP-c in P

grd inh in P in P in P

stbinh

NP-c coNP-c NP-c in Pstb-admhyb

stb-cf hyb

naive inh
in P

coNP-c NP-c
in P

naivehyb ΠP
2-c coNP-c DP-c

prf inh NP-c ΠP
2 -c

ΣP
2-c

coNP-c
prf hyb DP-c

sem inh
ΣP

2 -c ΠP
2 -c ΣP

2-c coNP-c
semhyb

stg inh ΣP
2 -c ΠP

2 -c ΣP
2-c coNP-c

stghyb

The lower complexity of the verification problem is crucial for enumerating claim-
extensions in wfCAFs (Dvořák & Woltran, 2020). Indeed, this is also true for PCAFs
using Reductions 2–4. If claim sets can be verified in polynomial time we can simply iterate
through all claim sets. For preferred, semi-stable, and stage semantics the algorithm builds
heavily on the existence and polynomial-time computability of unique maximal realizations
for conflict-free and admissible claim-sets, i.e., Ei1(C) and Ei∗(C) (cf. Definition 19).

Proposition 32. Consider PCAFs P = (A,R, cl ,�) with |A| ≤ n and |cl(A)| ≤ k.

• If VerPCAF
σiµ

is in P for a PCAF-semantics σiµ, then there is a polynomial poly(·) such

that σiµ(P) can be enumerated in O(2k · poly(n)) time.

• For σiµ with σµ ∈ {prf inh , prf hyb , sem inh , semhyb , stg inh , stghyb} and i ∈ {2, 3, 4} there

is a polynomial poly(·) such that σiµ(P) can be enumerated in O(4k · poly(n)) time.

Proof. If VerPCAF
σiµ

is in P we can iterate through all 2k claim-sets C ⊆ cl(A) and check

whether C ∈ σi(F) in polynomial time. This procedure runs in O(2k · poly(n)) time.
For σiµ with σµ ∈ {prf inh , prf hyb , sem inh , semhyb , stg inh , stghyb} and i ∈ {2, 3, 4}, recall

the proof of Proposition 29. There, to decide that C 6∈ σiµ(P), we guessed a claim-set
D ⊆ cl(A) and performed some checks in polynomial time. Instead of guessing D, we
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can iterate through all 2k claim-sets D ⊆ cl(A). If C ∈ adm inh(P) (resp. C ∈ cf inh(P)
in case σiµ ∈ {stg iinh , stg ihyb}), and if no D that witnesses C 6∈ σiµ(P) is found, we have

C ∈ σiµ(P). Therefore, to enumerate σiµ(P) we can iterate through all (2k)2 = 4k pairs

(C,D) of claim-sets. This procedure runs in O(4k · poly(n)) time.

Proposition 32 directly implies that deciding the main decision problems is tractable if
the number of claims is bounded by a constant k. In particular, these problems are fixed
parameter tractable (FPT) with respect to the number of claims.

Corollary 33. For all PCAF-semantics σiµ considered in this paper, except for those such
that i = 1 and except for com2

inh and com4
inh , there is a polynomial poly(·) such that

CredPCAF
σiµ

, SkeptPCAF
σiµ

, and VerPCAF
σiµ

can be solved in time O(4k · poly(n)) for PCAFs

(A,R, cl ,�) with |cl(A)| ≤ k.

7. Excursion: Instantiating ABA+

PCAFs and CAFs are a natural target formalism for many structured argumentation for-
malisms in which claims/conclusions play a central role. As we have seen, the semantical
and computational properties of a given framework depend on how preferences are dealt
with, i.e., which preference reduction is used. Thus, given a CAF instantiated from some
structured formalism, we can infer some of its properties by checking which CAF-class it
belongs to, i.e., which preference reduction has been used to obtain the CAF.

Preferences play an important role in structured argumentation formalisms (Modgil &
Prakken, 2018; Cyras, Fan, Schulz, & Toni, 2018). Structured formalisms allow for qualita-
tive comparisons between defeasible elements of the knowledge base, e.g., between assump-
tions (Cyras et al., 2018) or defeasible rules (Modgil & Prakken, 2018). Hence, in contrast
to abstract argumentation, preferences are usually not directly given between arguments.
Similar to abstract formalisms, popular preference incorporation techniques alter the attack
relation before the outcome of the framework is computed, given a specific semantics. In
ASPIC+, for instance, preferences result in the deletion of attacks, similar to Reduction 1.
In this work, we focus on preference incorporation techniques in assumption-based argu-
mentation (ABA) (Bondarenko, Dung, Kowalski, & Toni, 1997) which is one of the most
prominent structured argumentation formalism. Central concepts of ABA are assumptions,
their contraries and inference rules; notions of attacks, defense, and semantics in ABA are
defined on sets of assumptions. ABA and abstract formalisms such as AFs and CAFs are
closely related; instantiating an ABA framework as (C)AF preserves the assumption-based
semantics of the framework (Cyras et al., 2018; König, Rapberger, & Ulbricht, 2022). In
ABA, arguments are built from rules and assumptions; each argument has a claim that
determines outgoing attacks of the arguments: if the claim corresponds to the contrary of
an assumption a, then each argument that contains a is attacked. Hence, arguments with
the same claim attack the same arguments. Indeed, each ABA framework satisfies the well-
formedness condition, as already observed by Kö nig, Rapberger and Ulbricht (2022). This
fundamental property is however violated if preferences are taken into account. ABA with
preferences (ABA+) (Cyras et al., 2018) incorporates preferences between assumptions by
reversing attacks between assumption sets, which can lead to a violation of well-formedness.
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In this section, we examine the close relation between ABA+ and PCAFs. Specifi-
cally, we show that, for a prominent fragment of ABA+, the application of Reduction 2
in the PCAF captures the way how preferences are handled on the assumption level in
the corresponding ABA+ framework. It is well-known that generalized ABA formalisms,
including ABA+, often cannot be instantiated via the classical AF model. Bao, Cyras,
and Toni (2017) show that, under certain restrictions, it is possible to instantiate ABA+

frameworks as AFs by using an instantiation method that associates sets of assumptions
with arguments. The central condition that is necessary to accomplish this is called weak
contraposition. In their work, the authors show that the presented AF instantiation pre-
serves the classical complete-based Dung semantics (grounded, complete, preferred, stable
semantics) if the ABA+ framework satisfies weak contraposition. In this work, we show
that PCAFs admit an even closer correspondence to the ABA+ fragment. We show that
each ABA+ framework satisfying weak contraposition can be instantiated as a PCAF which
preserves inherited grounded, complete, preferred, and stable semantics under Reduction 2.
We furthermore show that hybrid semi-stable semantics preserve the native ABA semi-
stable semantics, i.e., we provide an abstract counterpart for assumption-based semi-stable
semantics.

Below, we recall the necessary background before presenting our instantiation. We need
to pay special attention to the particular way in which the preferences on the assumptions
are lifted to the arguments, because the preference relation is no longer strict. In Sec-
tion 7.2, we present our main result and show that this instantiation preserves the classical
complete-based inherited Dung semantics (grounded, complete, preferred, stable semantics)
and hybrid semi-stable semantics under Reduction 2.

7.1 Background

In this section, we recall assumption-based argumentation with preferences (Cyras et al.,
2018). We assume a deductive system (L,R), where L is a formal language, i.e., a set of
sentences, and R is a set of inference rules over L. A rule r ∈ R has the form

a0 ← a1, . . . , an

where ai ∈ L, head(r) = a0 is the head, and body(r) = {a1, . . . , an} is the (possibly empty)
body of r.

Definition 20 (ABA+ framework). An ABA+ framework is a tuple D = (L,R,A, ,≤),
where

• (L,R) is a deductive system,

• A ⊆ L a non-empty set of assumptions,

• is a function mapping assumptions a ∈ A to sentences L (contrary function),

• and ≤ is a transitive binary relation on A.

As usual, we write a < b if a ≤ b and b 6≤ a. D is an ABA framework (without
preferences) if ≤ is empty.

In this work, we focus on frameworks which are flat, i.e., head(r) /∈ A for each rule
r ∈ R, and finite, i.e., L, R, A are finite.
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Definition 21 (Tree-derivation). A sentence p ∈ L is tree-derivable from assumptions
U ⊆ A and rules R′ ⊆ R, denoted by U `R′ p, if there is a finite rooted labeled tree V such
that the root is labeled with p, the set of labels for the leaves of V is equal to U or U ∪ {>},
and there is a surjective mapping from the set of internal nodes to R′ satisfying for each
internal node q there is a rule r ∈ R′ such that q is labeled with head(r) and the set of all
successor nodes corresponds to body(r) or > if body(r) = ∅.

Definition 22 (ABA arguments). We call U ` p an (ABA) argument iff there is a tree-
derivation U `R′ p for some set of rules R′ ⊆ R.

Each assumption a ∈ A gives rise to an argument {a} ` a. Since we consider only flat
arguments, {a} ` a is the unique argument with claim a in a given ABA framework.

Example 7. Let D = (L,R,A, ,≤) be an ABA+ framework with L = {a, b, c, p, q, a, b, c},
assumptions A = {a, b, c}, their contraries a, b and c, preference b < a, and rules

a← p, q p← b q ← c b← a c← b.

We can derive the contrary a from assumptions b, c via the following tree derivation

{b, c} `{a←p,q;p←b;q←c} a:

a

p q

b c

The leaves are labeled with b and c, and the root of the tree is a. The tree derivation
corresponds to the argument {b, c} ` a. Further arguments of our D are {a} ` a, {b} ` b,
{c} ` c (corresponding to the assumptions a, b, and c, respectively), {a} ` b, {b} ` c,
{b} ` o, and {c} ` q.

Definition 23 (ABA+ attacks). Given an ABA+ framework (L,R,A, ,≤), a set of as-
sumptions U ⊆ A attacks a set of assumptions V ⊆ A iff

1. there is some U ′ ⊆ U such that U ′ ` q for some q ∈ V, and there is no p ∈ U ′ with
p < q (we say that U normally attacks V); or

2. there is some V ′ ⊆ V such that V ′ ` p for some p ∈ U , and there is some q ∈ V ′ with
q < p (we say that U reversely attacks V).

For ABA without preferences, only normal attacks can take place: a set of assumptions
U attacks another set of assumptions V iff (a subset of) U derives a contrary of some
assumption in V. Taking preferences into account might result into an attack reversal, as
formalized in item two.

Example 8. Consider again our ABA+ framework D from Example 7. The set U = {a}
reversely attacks the set V = {b, c} because {b, c} ` a and b < a, i.e., V contains an element
which is weaker than a. As a result, the attack is reversed.

Let U+
D = {x ∈ A | U attacks {x}} denote the set of all attacked assumptions. We drop

subscript D if clear from context.
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Definition 24 (ABA+ conflict-freeness and defense). For a set of assumptions U ⊆ A,

• U is conflict-free iff it does not attack itself;

• U defends itself iff U attacks all attackers V ⊆ A of U .

Next we recall admissible, complete, grounded, preferred, stable, and semi-stable se-
mantics for ABA+ (abbreviated by adm, com, grd , prf , stb, sem).

Definition 25 (ABA+ semantics). Let D = (L,R,A, ,≤) be an ABA+ framework. Fur-
ther, let U ⊆ A be conflict-free. Then

• U ∈ adm(D) iff U defends itself;

• U ∈ com(D) iff U is admissible and contains every assumption set it defends;

• U ∈ grd(D) iff U is ⊆-minimal in com(D);

• U ∈ prf (D) iff U is ⊆-maximal in com(D);

• U ∈ stb(D) iff U attacks each {x} for every x ∈ A \ U ;

• U ∈ sem(D) iff U ∈ adm(D) and U ∪ U+
D is ⊆-maximal among admissible sets.

Notation 34. Let D = (L,R,A, ,≤) be an ABA+ framework. For an argument x =
U ` p, we use asms(x) = U and cl(x) = p to denote the assumptions and the claim of x,
respectively. We generalize the notion to sets of arguments as expected, i.e., for a set of
arguments X, we let asms(X) =

⋃
x∈X asms(x) and cl(X) =

⋃
x∈X cl(x). For a set U ⊆ A,

we let U = {a | a ∈ U}.

Example 9. Let D be the ABA+ framework from Example 7. The admissible extensions
of D are ∅, {a}, and {a, c}: first note that the set {a} is unattacked in D. Since b < a the
attack from {b, c} to {a} is reversed; hence, {a} attacks {b, c}. The set {a, c} is admissible
because {a} defends {c} against {b}. The remaining sets are not admissible: {b} cannot
defend itself against the attack from {a}; likewise, {c} cannot defend itself against {b}; {a, b}
is conflicting and {b, c} does not defend itself. It can be checked that {a, c} is furthermore
the unique complete, grounded, preferred, semi-stable and stable extension.

It is well known that each ABA framework without preferences can be captured by an
AF (Cyras et al., 2018). In this work, we instantiate only arguments that either derive the
contrary of an assumption or that correspond to a single assumption (following Bao, Cyras,
and Toni (2017)).

Notation 35. We write ArgsU = {U ′ ` p, | U ′ ⊆ U , p ∈ A ∪ A} to denote the set of all
arguments having either a contrary or an assumption as claim that can be obtained from U .

Definition 26 (AF instantiation of ABA+). The associated AF FD = (A,R) of an ABA+

framework D = (L,R,A, ) is given by A = ArgsA and attack relation (U ` p,U ′ ` p′) ∈ R
iff p ∈ U ′.
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Since each assumption a ∈ A gives rise to argument {a} ` a, each assumption is
represented on claim-level by a unique argument (recall that we consider flat frameworks).

We recall the correspondence between ABA without preferences and abstract argumen-
tation (Cyras et al., 2018, Theorem 4.3).

Theorem 36. Given an ABA framework without preferences D = (L,R,A, ), its corre-
sponding AF FD and a semantics σ ∈ {grd , com, prf , stb}, the following holds:

• if S ∈ σ(FD) then asms(S) ∈ σ(D);

• if U ∈ σ(D) then ArgsU ∈ σ(FD).

The result has been extended to well-formed CAFs for conclusion extensions of ABA
without preferences (König et al., 2022). However, when considering preferences, the corre-
spondence is no longer preserved. The underlying issue can be traced back to the violation
of the fundamental lemma, stating that if an admissible set U defends an assumption a,
then U ∪ {a} is admissible as well. A sufficient criteria for the fundamental lemma to hold
is the Axiom of Weak Contraposition (Bao et al., 2017).

Definition 27 (Weak contraposition). An ABA+ framework D = (L,R,A, ,≤) satisfies
the Axiom of Weak Contraposition (WCP) iff for all U ⊆ A and b ∈ A, it holds that, if
U ` b and there is a′ ∈ U with a′ < b, then, for some ≤-minimal a ∈ U with a < b, there is
U ′ ⊆ (U \ {a}) ∪ {b} such that U ′ ` a.

Example 10. The ABA+ framework in Example 7 satisfies WCP: it holds that {b, c} ` a
and b < a, hence, WCP is satisfied if there is some argument U ` b with U ⊆ ({b, c}\{b})∪
{a}. Since {a} ` b, we indeed obtain that WCP is satisfied in D.

Bao, Cyras, and Toni (2017) show that the semantic correspondence between ABA+

instances and an abstract representation can be preserved if WCP is satisfied. Instead of
the standard instantiation (Definition 26), they focus on the so-called assumption graph
which is obtained by computing all ABA arguments and extracting the corresponding set
of assumptions.

7.2 Capture ABA+ as PCAF

In this subsection, we show that PCAFs can be used to more directly capture ABA+ when
WCP is satisfied. In contrast to Bao, Cyras, and Toni (2017), we use the standard ABA+-
instantiation, which demonstrates that PCAFs constitute a natural formalism to directly
capture ABA+. Moreover, we obtain a semantical correspondence also for semi-stable
semantics.

As a first step, we will lift the preference relation of ABA+ from sets of assumptions to
sets of arguments.

Definition 28 (Preferences over ABA+ arguments). Let D = (L,R,A, ,≤) be an ABA+

framework. We define the preference relation � over the set of all arguments of D as follows:

U ` p � U ′ ` p′ ⇔ a = p for some a ∈ U ′ and there is some b ∈ U s.t. b < a.
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{a} ` a
a

{b} ` b
b

{c} ` c
c

{b, c} ` ā
a

{a} ` b̄ b

{b} ` c̄
c

(a) PCAF PD, {b, c}` ā≺{a}`a, {b, c}` ā≺{a}` b̄.

{a} ` a
a

{b} ` b
b

{c} ` c
c

{b, c} ` ā
a

{a} ` b̄ b

{b} ` c̄
c

(b) CAF FD. Reversed attacks are dotted.

Figure 15: PCAF and CAF instantiation of the ABA+ framework D from Example 7.

We write U ` p ≺ U ′ ` p′ iff U ` p � U ′ ` p′ and U ′ ` p′ 6� U ` p. Moreover, we write
U ` p ≈ U ′ ` p′ iff U ` p � U ′ ` p′ and U ′ ` p′ � U ` p. We observe that the resulting
ordering is not strict, that is, it can indeed be the case that U ` p ≈ U ′ ` p′ for two ABA
arguments.

Example 11. Consider the arguments {a, b} ` c, {c, d} ` b, and the preference relation
a < c and d < b. The first inequality yields {a, b} ` c � {c, d} ` b, and the second inequality
yields {a, b} ` c � {c, d} ` b.

Since these equalities between arguments can only appear in case the arguments symmet-
rically attack each other, it is safe to simply ignore these cases. For our PCAF instantiation,
we consider only the strict preference relations between ABA arguments.

Definition 29 (PCAF instantiation of ABA+). Let D = (L,R,A, ,≤) be an ABA+ frame-
work. Let FD = (A,R) be the associated AF of D (cf. Definition 26). The associated PCAF
PD of D is given by PD = (A,R, cl ,�) with claim function cl(U ` p) = p and preference
relation

U ` p ≺ U ′ ` p′ ⇔ U ` p � U ′ ` p′ and U ′ ` p′ 6� U ` p.

In terms of the standard construction, the CAF associated to an ABA framework with
preferences looks as follows:

Definition 30 (CAF instantiation of ABA+). Let D = (L,R,A, ,≤) be an ABA+ frame-
work. We define the associated CAF FD = (A,R, cl) with A = ArgsA, R = Rnor ∪ Rrev

where

Rnor = {(U ` p,U ′ ` p′) | p = a ∈ U ′ and there is no b ∈ U with b < a}
Rrev = {(U ` p,U ′ ` p′) | p′ = a′ ∈ U and there is b ∈ U ′ such that b < a′}

and claim function cl(U ` p) = p. We call attacks in Rnor normal attacks and Rrev reversed
attacks between arguments.

Applying Reduction 2 to a PCAF PD yields FD, as expressed by the following proposi-
tion (see Appendix C for the proof).
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Proposition 37. Let D = (L,R,A, ,≤) be an ABA+ framework, let PD = (A,R, cl ,≺) be
the corresponding PCAF (cf. Definition 29), and let FD = (A′, R′, cl ′) be the corresponding
CAF (cf. Definition 30). It holds that R2(PD) = FD.

Figure 15 shows the PCAF PD and CAF FD instantiated from the ABA+ framework
D of Example 7.

To prove that PCAFs capture ABA+ instances if WCP is satisfied, we will first show
that crucial properties of the AF standard instantiation can be preserved when moving from
ABA to ABA with preferences under WCP. We show that each admissible set of arguments
induces an admissible set of assumptions; moreover, for each admissible set of assumptions
U , it holds that the set of all arguments ArgsU that can be constructed is admissible in
the corresponding AF. Most crucially, as formalized in the following proposition, we show
that each of complete, grounded, preferred, and stable ABA semantics are in one-to-one
correspondence to the respective AF semantics (see Appendix C for the proof).

Proposition 38. Let D = (L,R,A, ,≤) be an ABA+ framework that satisfies weak con-
traposition, FD = (A,R, cl) its associated CAF, and FD = (A,R) the underlying AF, and
let σ ∈ {grd , com, prf , stb} be a semantics.

• If S ∈ σ(FD) then asms(S) ∈ σ(D);

• if U ∈ σ(D) then ArgsU ∈ σ(FD);

• the correspondence is one-to-one; i.e., S = Argsasms(S) for each S ∈ σ(FD) and
U = asms(ArgsU ) for all U ∈ σ(D).

In contrast to complete, grounded, preferred, and stable semantics, semi-stable seman-
tics for ABA and AF cannot be translated into each other. As discussed by Caminada
et al. (2015), semi-stable semantics are not preserved, even for ABA without preferences.
However, as recently shown (Rapberger, 2023), hybrid semi-stable CAF semantics provide
an abstract counterpart for semi-stable ABA semantics for ABA without preferences. We
show that this correspondence can be preserved when moving to ABA+ frameworks that
satisfy WCP.

We are ready to give the proof for the considered semantics.

Theorem 39. Let D = (L,R,A, ,≤) be an ABA+ framework that satisfies weak contra-
position, and let PD = (A,R, cl ,�) be the associated PCAF of D. It holds that

σ(D) = {C ∩ A | C ∈ σ2
inh(PD)} for σ ∈ {grd , com, prf , stb},

sem(D) = {C ∩ A | C ∈ sem2
hyb(PD)}.

Proof. First, we show the statement for σ ∈ {grd , com, prf , stb}.

(⊆) Let U ∈ σ(D). From Proposition 38, we obtain that ArgsU ∈ σ(FD), where FD
denotes the corresponding AF of D. By Proposition 37, it holds that R2(PD) = FD.
By definition of PCAF semantics, cl(ArgsU ) ∈ σ2

inh(PD). For each assumption a ∈ U ,
the argument {a} ` a is contained in ArgsU . Therefore, we obtain U = cl(ArgsU )∩A.
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(⊇) For the other direction, we consider C∩A for some C ∈ σ2
inh(PD). By Proposition 37,

it holds thatR2(PD) = FD. Let FD denote the corresponding AF, and let S denote the
σinh -realisation of C∩A in FD. From Proposition 38, we obtain U = asms(S) ∈ σ(D).

It remains to prove the statement for semi-stable semantics. By Proposition 37 we have
R2(PD) = FD. We prove sem(D) = {C ∩ A | C ∈ sem2

hyb(PD)}. Let FD denote the corre-
sponding AF. Again, we can exploit the one-to-one correspondence between complete sets.
Let U ∈ sem(D) and let S = ArgsU denote the corresponding complete set of arguments in
FD corresponding to U . It holds that S and U attack the same assumptions (∗): U attacks
assumption a ∈ A iff U derives the contrary of a, which implies that the unique argument
with claim a is defeated in FD by S. Moreover (∗∗), we observe that S defeats a conclusion
a iff S attacks all arguments that derive a iff the assumption a (the corresponding argument
{a} ` a) is contained in S.

(⊆) First, let U ∈ sem(D) and let S = ArgsU denote the corresponding complete set
of arguments in FD. We show that cl(S) is hybrid semi-stable in FD. Towards a
contradiction, assume there is S′ ∈ com(FD) with S~

FD
⊂ S′~FD . By Proposition 38,

U ′ = asms(S′) is complete in D. Moreover, S′ and U ′ attack the same assumptions by
(∗). It holds that U ∪ U+

D ⊆ S~
FD

and U ′ ∪ (U ′)+
D ⊆ S′~FD . We obtain U ∪ U+

D ⊂ S′~FD .

Since U is semi-stable in FD, it follows that U ∪ U+
D = U ′ ∪ (U ′)+

D, and S = S′. This
proves that sem(D) ⊆ {C ∩ A | C ∈ sem2

hyb(PD)}.

(⊇) Next, consider a set C ∈ semhyb(FD), and let S denote a semhyb-realization of C
in FD. We can assume that S is complete. Let U = asms(S). We show that U is
semi-stable in D. Towards a contradiction, assume there is another set of assumptions
U ′ in D with U ∪ U+

D ⊂ U ′ ∪ (U ′)+
D. Let S′ = ArgsU ′ denote the corresponding set of

arguments in FD.

From observations (∗) and (∗∗), we obtain S~
FD

= U ∪ U+
D ∪ U .

From (∗), we obtain U ′ ∪ (U ′)+
D ⊆ S′~FD , hence, also U ∪ U+

D ⊆ S′~FD . We show that

U ⊆ S′~FD . Let a ∈ U . Then a ∈ U , hence, a ∈ U ′ ∪ (U ′)+
D. In case a ∈ U ′ we have

that a is defended by U ′, and hence, a is defeated by S′. In case a ∈ (U ′)+
D we have

that {a} ` a is attacked, and hence, there is an argument with claim a ∈ S′. In both
cases, we obtain U ⊆ S′~FD . Therefore, S~

FD
= U ∪ U+

D ∪ U ⊆ S′~FD , contradiction to
the assumption.

We have shown that sem(D) ⊇ {C ∩ A | C ∈ sem2
hyb(PD)}.

In summary, we have shown that PCAFs are a natural target formalism to capture ABA
with preferences if WCP is satisfied. Instead of reversing the attacks and instantiating the
resulting CAF, it is equally possible to instantiate the ABA without preferences and perform
attack reversal on the instantiated framework. This can be beneficial when considering
dynamic updates (Kaci et al., 2018; Rapberger & Ulbricht, 2023; Cayrol, de Saint-Cyr, &
Lagasquie-Schiex, 2010), particularly in situations in which the preference relation evolves
over time. Instead of instantiating the framework from scratch after each update, we can
keep the CAF instantiation of the ABA knowledge base and adapt the preferences, as
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needed. Moreover, we extend a result by Rapberger (2023) who shows that hybrid semi-
stable semantics capture ABA semi-stable semantics, even when considering preferences,
which is not possible under traditional AF semantics.

The instantiation furthermore offers alternative ways to handle preferences in ABA by
considering other reductions for preference handling. Instead of applying Reduction 2, for
instance, it could be beneficial to adapt a more cautious approach and revert attacks only
between symmetric attacks (that is, apply Reduction 3). Further studies and comparisons
of these different approaches would be an interesting avenue for future research.

8. Conclusion

Many approaches to argumentation assume that arguments with the same claims attack the
same arguments. This gives rise to the natural class of wfCAFs, which enjoy several desired
semantic and computational properties (Dvořák et al., 2023, 2023). However, in formalisms
in which preferences are used, well-formedness cannot be assumed in general. In this paper,
we analyzed whether the desired properties of wfCAFs still hold when preferences are taken
into account. To this end, we introduced Preference-based CAFs (PCAFs) and investigated
the impact of the four commonly used preference reductions on PCAFs.

We examined and characterized resulting CAF-classes, yielding insights into the ex-
pressiveness of argumentation formalisms that can be instantiated as CAFs and allow for
preference incorporation. Furthermore, we investigated PCAFs with respect to semantic
properties, computational complexity, and their relationship to structured formalisms. Pre-
serving semantic properties such as I-maximality can be desirable since it implies intuitive
behavior of maximization-based semantics, while the complexity of the verification problem
is crucial for the enumeration of claim-extensions. Insights in terms of both semantical and
computational properties provide necessary foundations towards a practical realization of
this particular argumentation paradigm (we refer to, e.g., (Baumeister, Järvisalo, Neuge-
bauer, Niskanen, & Rothe, 2021; Fazzinga, Flesca, & Furfaro, 2020), for a similar research
endeavor in terms of incomplete AFs).

Our results show that (i) Reduction 3 exhibits the same properties as wfCAFs regarding
computational complexity, and mostly preserves semantic properties such as I-maximality;
(ii) Reductions 2 and 4 retain the advantages of wfCAFs regarding complexity for all but
complete semantics, but do not preserve I-maximality; (iii) under Reduction 1, neither
complexity properties nor semantic properties are preserved. The above results hold even if
we restrict ourselves to transitive preferences. It is worth noting that Reduction 3 behaves
favorably on regular AFs as well, fulfilling many principles for preference-based semantics
laid out by Kaci et al. (2021).

Regarding future work, one could consider different methods for handling preferences,
and examine the effect of these methods in (well-formed) CAFs. In this paper, we dealt
with preferences via preference reductions that modify the attack relation, which means that
hard- and soft-constraints are closely interlinked (Bernreiter, 2024). Another approach is to
lift orderings over arguments to sets of arguments and select extensions in this way (Brewka,
Truszczynski, & Woltran, 2010; Amgoud & Vesic, 2014; Kaci et al., 2018; Alfano, Greco,
Parisi, & Trubitsyna, 2022, 2023). These two paradigms interpret the meaning of preferences
between arguments differently: using reductions, x � y expresses that x is stronger than
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y, while in the second approach x � y expresses that it is preferred to have outcomes with
x rather than with y. Interestingly, under Reduction 3, the admissible/complete/stable
extensions of a preference-based AF are also extensions in the underlying AF (Kaci et al.,
2021). Thus, Reduction 3 selects the ‘best’ extensions from the underlying AF in these cases.
A similar dichotomy concerning preference handling can be observed in related areas such as
logic programs, where preferences are incorporated either on the syntactic level (Delgrande,
Schaub, & Tompits, 2003) or by ranking the outcome (Sakama & Inoue, 2000).

Another possibility for future work is to investigate whether the resolution of preferences
in wfCAFs affects semantical properties (van der Torre & Vesic, 2017; Dvořák et al., 2023)
other than I-maximality. Moreover, one could lower the level of abstraction used, e.g., by
incorporating more structure into arguments, by allowing arguments to act in support of
other arguments as is done in bipolar AFs (Amgoud, Cayrol, Lagasquie, & Livet, 2008), or
by preserving more information about the claims of arguments. Regarding the latter point,
recent research (Wakaki, 2020) has shown that formalisms that permit strong negation
require careful examination with regards to consistency.
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Appendix A. Remaining Proofs for Section 4

Lemma 40. Let F = (A,R, cl) be a CAF. F ∈ R2-CAF iff there are no arguments
a, a′, b, b′ in F with cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R,
(a′, b) ∈ R, and either (b, a′) ∈ R or ((a′, b′) 6∈ R and (b′, a′) 6∈ R).

Proof. “ =⇒ ”: By contrapositive. Suppose that there are a, a′, b, b′ ∈ A with cl(a′) = cl(a)
and cl(b′) = cl(b) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) ∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R). Towards a contradiction, assume that F ∈ R2-CAF.
Then there must be a PCAF P = (A,R′, cl ,�) such that R2(P) = F . Reduction 2 cannot
completely remove conflicts between arguments. Since there is no conflict between a and b
in F there can be no conflict in P either, i.e., (a, b) 6∈ R′ and (b, a) 6∈ R′. Therefore, since
the underlying CAF (A,R′, cl) of P must be well-formed, (a′, b) 6∈ R′. Since (a′, b) ∈ R
it must be that (b, a′) ∈ R′ and a′ � b. Then (b, a′) 6∈ R2(P). Furthermore, by the well-
formedness of (A,R′, cl), we have that (b′, a′) ∈ R′ and therefore either (a′, b′) ∈ R2(P) or
(b′, a′) ∈ R2(P). Contradiction to R2(P) = F .

“⇐= ”: Our underlying assumption is that there are no arguments a, a′, b, b′ in F with
cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either
(b, a′) ∈ R or ((a′, b′) 6∈ R and (b′, a′) 6∈ R). We will construct a PCAF P = (A,R′′, cl ,�)
such that R2(P) = F .

But first, as an intermediate step, we construct the CAF F ′ = (A,R′, cl). We say
that (b, a) is forced in F if (a, b) ∈ R and if there is an argument a′ with cl(a′) = cl(a)
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such that (a′, b) 6∈ R and (b, a′) 6∈ R. Observe that if (b, a) is forced in F , then (a, b)
cannot be forced in F by our underlying assumption. Furthermore, if (b, a) is forced in
F , then (b, a) 6∈ R, again by our underlying assumption. We construct R′ = (R ∪ {(b, a) |
(b, a) is forced in F}) \ {(a, b) | (b, a) is forced in F}. Note that (a, b) ∈ wfp(F ′) implies
(b, a) ∈ R′ for all arguments a, b: towards a contradiction, assume otherwise. Then there is
some (a, b) ∈ wfp(F ′) such that (b, a) 6∈ R′. Then (a, b) 6∈ R and (b, a) 6∈ R by construction
of R′. Furthermore, since (a, b) ∈ wfp(F ′), there must be some a′ with cl(a′) = cl(a)
and (a′, b) ∈ R′. It cannot be that (a′, b) ∈ R, otherwise (b, a′) would be forced in F and
(a′, b) 6∈ R′. Thus, (b, a′) ∈ R and (a′, b) was added to R′ because it is forced in F . But this
is only possible if there is some b′ with cl(b′) = cl(b) and (a′, b′) 6∈ R and (b′, a′) 6∈ R. This
contradicts our underlying assumption: (b′, a′) ∈ wfp(F), (a′, b′) 6∈ R, (b, a′) ∈ R, (a, b) 6∈ R,
and (b, a) 6∈ R.

Now we construct R′′ = R′ ∪ {(a, b) | (a, b) ∈ wfp(F ′)}. Furthermore, b � a ⇐⇒
(a, b) ∈ R′′ \R. This gives us P = (A,R′′, cl ,�). The underlying CAF of P is well-formed
since wfp((A,R′′, cl)) = ∅ by construction. Moreover, � is asymmetric since if (a, b) ∈ R′′
and (b, a) ∈ R′′ then, by construction of R′ and R′′, either (a, b) ∈ R or (b, a) ∈ R. Lastly,
we show that R2(P) = F : if (a, b) ∈ R′′ \R, then we defined b � a and thus (a, b) 6∈ R2(P).
If (a, b) ∈ R \ R′′, then (b, a) was forced in F , i.e., (b, a) 6∈ R but (b, a) ∈ R′ and therefore
also (b, a) ∈ R′′. Thus, we define a � b which means that (a, b) ∈ R2(P).

Lemma 41. Let F = (A,R, cl) be a CAF. F ∈ R3-CAF iff (a, b) ∈ wfp(F) implies
(b, a) ∈ R.

Proof. “ =⇒ ”: By contrapositive. Suppose there is (a, b) ∈ wfp(F) such that (b, a) 6∈ R.
Towards a contradiction, assume F ∈ R3-CAF. Then there is a PCAF P = (A,R′, cl ,�)
such that R3(P) = F . Since Reduction 3 can only delete but not introduce attacks, and
since (A,R′, cl) must be well-formed, (a, b) ∈ R′. However, Reduction 3 cannot completely
remove conflicts between arguments, i.e., either (a, b) ∈ R3(P) or (b, a) ∈ R3(P). Contra-
diction.

“ ⇐= ”: Suppose (a, b) ∈ wfp(F) implies (b, a) ∈ R. Then R3(P) = F for the PCAF
P = (A,R′, cl ,�) with R′ = R ∪ {(a, b) | (a, b) ∈ wfp(F)} as well as a � b ⇐⇒ (b, a) ∈
R′ \ R. (A,R′, cl) is well-formed since wfp((A,R′, cl)) = ∅. Furthermore, � is asymmetric
by construction.

Lemma 42. Let F = (A,R, cl) be a CAF. F ∈ R4-CAF iff there are no arguments
a, a′, b, b′ in F with cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R,
(a′, b) ∈ R, and either (b, a′) 6∈ R or ((a′, b′) 6∈ R and (b′, a′) 6∈ R).

Proof. Similar to the proof of Lemma 40:

“ =⇒ ”: By contrapositive. Suppose that there are a, a′, b, b′ ∈ A with cl(a′) = cl(a)
and cl(b′) = cl(b) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) 6∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R). Towards a contradiction, assume that F ∈ R4-CAF.
Then there must be a PCAF P = (A,R′, cl ,�) such that R4(P) = F . Reduction 4 cannot
completely remove conflicts between arguments. Since there is no conflict between a and b
in F there can be no conflict in P either, i.e., (a, b) 6∈ R′ and (b, a) 6∈ R′. Therefore, since the
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underlying CAF of P must be well-formed, (a′, b) 6∈ R′. The only way to obtain (a′, b) ∈ R
from (a′, b) 6∈ R′ via Reduction 4 is to have (b, a′) ∈ R′ and a′ � b. Then (b, a′) ∈ R4(P).
Furthermore, by the well-formedness of (A,R′, cl), we have that (b′, a′) ∈ R′ and therefore
either (a′, b′) ∈ R4(P) or (b′, a′) ∈ R4(P). Contradiction to R4(P) = F .

“⇐= ”: Our underlying assumption is that there are no arguments a, a′, b, b′ in F with
cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈ wfp(F), (b, a) 6∈ R, (a′, b) ∈ R, and either
(b, a′) 6∈ R or ((a′, b′) 6∈ R and (b′, a′) 6∈ R). We will construct a PCAF P = (A,R′′, cl ,�)
such that R4(P) = F .

But first, as an intermediate step, we construct the CAF F ′ = (A,R′, cl). We say
that (b, a) is forced in F if (a, b) ∈ R, (b, a) ∈ R, and if there is an argument a′ with
cl(a′) = cl(a) such that (a′, b) 6∈ R and (b, a′) 6∈ R. Observe that if (b, a) is forced in F , then
(a, b) cannot be forced in F by our underlying assumption. We construct R′ = R \ {(a, b) |
(b, a) is forced in F}. Note that (a, b) ∈ wfp(F ′) implies (b, a) ∈ R′ for all arguments a, b:
towards a contradiction, assume otherwise. Then there is some (a, b) ∈ wfp(F ′) such that
(b, a) 6∈ R′. Then (a, b) 6∈ R and (b, a) 6∈ R by construction of R′. Furthermore, there must
be some a′ with cl(a′) = cl(a) and (a′, b) ∈ R′. It cannot be that (a′, b) ∈ R and (b, a′) ∈ R,
otherwise (b, a′) would be forced in F and (a′, b) 6∈ R′. Thus, (a′, b) ∈ R and (b, a′) 6∈ R
by construction of F ′. But this contradicts our underlying assumption: (a, b) ∈ wfp(F),
(b, a) 6∈ R, (a′, b) ∈ R, and (b, a′) 6∈ R.

Now we construct R′′ = R′ ∪ {(a, b) | (a, b) ∈ wfp(F ′)}. Furthermore, b � a ⇐⇒
(a, b) ∈ R′′ \ R or (b, a) ∈ R \ R′′. This gives us, P = (A,R′′, cl ,�). The underlying CAF
of P is well-formed since wfp((A,R′′, cl)) = ∅ by construction. Moreover, � is asymmetric:
if b � a, there are two cases.

1. (a, b) ∈ R′′ \ R. Clearly, (a, b) 6∈ R \ R′′. Moreover, (a, b) ∈ R′′ \ R implies (b, a) ∈ R
since we did not add attacks to R′′ if there was no conflict between these attacks in
R. Thus, (b, a) 6∈ R′′ \R. We can conclude a 6� b.

2. (b, a) ∈ R \R′′. Clearly, (b, a) 6∈ R′′ \R. Moreover, (b, a) ∈ R \R′′ implies (a, b) ∈ R′′,
since we never completely removed conflicts when constructing R′′ from R. Thus,
(a, b) 6∈ R \R′′. We can conclude a 6� b.

Lastly, we show that R4(P) = F : if (a, b) ∈ R′′ \ R, then we defined b � a. As above,
(a, b) ∈ R′′ \R implies (b, a) ∈ R. The only possible reason for why we added (a, b) to R′′ is
because (a, b) ∈ wfp(F ′). As previously discussed, this means that (b, a) ∈ R′ and therefore
also (b, a) ∈ R′′. Thus, (a, b) 6∈ R4(P). If (a, b) ∈ R \R′′, then a � b. As above, this implies
(b, a) ∈ R′′, and therefore (a, b) ∈ R4(P).

Appendix B. Remaining Proofs for Section 6

Lemma 43. VerPCAF
σiµ

is ΣP
2 -hard for σiµ ∈ {stg1

inh , stg1
hyb}, even if we restrict ourselves to

PCAFs with transitive preference relations.

Proof. We provide a reduction from QBF2
∀ to the complementary problem. Let Φ = ∀Y ∃Zϕ

be an instance of QBF2
∀, where ϕ is given by a set Ω of clauses over atoms X = Y ∪Z. We

construct the CAF F = (A,R, cl) with underlying AF F = (A,R) and a set of claims C:
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Figure 16: Reduction of the QBF2
∀ instance Φ = ∀y1, y2∃z1, z2ϕ with ϕ given by clauses

ω1 = {y1,¬y2, z1}, ω2 = {¬y1,¬z1, z2}, ω3 = {y2, z1,¬z2} to an instance of VerPCAF
stg1inh

.

• A = {ϕ}∪Ω∪X ∪X ∪Ya ∪Y a ∪Yb ∪Y b, where X = {x | x ∈ X}, Ya = {ay | y ∈ Y },
Y a = {ay | y ∈ Y }, Yb = {by | y ∈ Y }, Y b = {by | y ∈ Y };

• R = {(x, x), (x, x) | x ∈ X} ∪ {(ω, ω), (ϕ, ω) | ω ∈ Ω}∪
{(x, ω) | x ∈ ω, ω ∈ Ω} ∪ {(x, ω) | ¬x ∈ ω, ω ∈ Ω} ∪
{(av, av), (v, av) | v ∈ Y ∪ Y } ∪ {(z, ϕ), (z, ϕ) | z ∈ Z};

• cl(bv) = v for bv ∈ Yb ∪ Y b and cl(v) = v else;

• C = Y ∪ Y ∪ {ϕ}.

Figure 16 illustrates the above construction. Note that F ∈ R1-CAFtr since all paths
in wfp(F) = {(bv, v) | v ∈ Y ∪ Y } are of length 1 (only arguments in Yb ∪ Y b have outgoing
edges in wfp(F)). It remains to verify the correctness of the reduction, i.e., we will show
that Φ is valid iff C /∈ σµ(F). The proof proceeds similar as the proof of Proposition 24.

“ =⇒ ”: Assume Φ is valid. Consider any S ⊆ A such that S ∈ cf (F ) and cl(S) = C.
Then S ⊆ Y ∪ Y ∪ Yb ∪ Y b ∪ {ϕ}. Let Y ′ = S ∩ Y . Since Φ is valid, there is Z ′ ⊆ Z
such that M = Y ′ ∪ Z ′ is a model of ϕ. Let T = M ∪ {x | x ∈ X \M} ∪ Yb ∪ Y b. Note
that T ∈ cf (F ) by construction. Moreover, S \ {ϕ} ⊆ T . Since for each z ∈ Z we have
either z ∈ T or z ∈ T , and since (z, ϕ), (z, ϕ) ∈ R, we have ϕ ∈ T+

F (resp. ϕ ∈ T ∗F ). Since
M |= ϕ, all clause-arguments ω ∈ Ω are attacked by T and we have {ϕ}+F = Ω ⊆ T+

F (resp.
{ϕ}∗F = Ω ⊆ T ∗F ). We can conclude that S ∪ S+

F ⊂ T ∪ T
+
F (resp. cl(S)∪ S∗F ⊂ cl(T )∪ T ∗F ),

i.e., C 6∈ stg inh(F) (resp. C 6∈ stghyb(F)).
“⇐= ”: Assume C /∈ stg inh(F) (resp. C /∈ stghyb(F)) and consider an arbitrary subset

Y ′ ⊆ Y . We must show that there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ |= ϕ. Let S = Y ′ ∪ {y | y ∈
Y \Y ′}∪Y ∗∪Y ∗∪{ϕ}. Observe that cl(S) = C and that S ∈ cf (F ). By C /∈ stg inh(F) (resp.
C /∈ stghyb(F)) there is some T ∈ cf (F ) with S∪S+

F ⊂ T∪T
+
F (resp. cl(S)∪S∗F ⊂ cl(T )∪T ∗F ).
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In particular, we have Y ′∪{y | y ∈ Y \Y ′} ⊆ T since each av ∈ S+
F (resp. av ∈ S∗F ) with

v ∈ Y ∪Y has precisely one non-self-attacking attacker (namely the argument v). Moreover,
we can assume that T contains each argument v ∈ Yb ∪ Y b since each such v is unattacked
and does not attack any other argument. Thus, T ⊇ S \ {ϕ}.

Furthermore, ϕ /∈ T since S ∈ naive(F ) (note that ϕ attacks each z, z with z ∈ Z as
well as every clause-argument ω ∈ Ω and thus cannot be extended any further). Therefore,
it must be that ϕ ∈ T+

F (resp. ϕ ∈ T ∗F ). Also, we have that T attacks each clause-argument
ω ∈ Ω since Ω ⊆ S+

F (resp. Ω ⊆ S∗F ), and since each clause-argument ω ∈ Ω is self-attacking.
Now, let Z ′ = Z ∩ T . We show that M = Y ′ ∪ Z ′ is a model of ϕ. Consider some

arbitrary clause ω ∈ Ω. Then there is some argument v ∈ T such that (v, ω) ∈ R. As
outlined above, v 6= ϕ since ϕ is not contained in T . Consequently, we have v ∈ X ∪X. In
case v ∈ X we have v ∈ M ∩ ω, in case v ∈ X we have ¬v ∈ ω and v /∈ M by definition of
R. In every case, the clause ω is satisfied by M . As ω was chosen arbitrary it follows that
M |= ϕ. We can conclude that Φ is valid.

Lemma 44. VerPCAF
σiµ

is DP-hard for σiµ = naive1
hyb, even if we restrict ourselves to PCAFs

with transitive preference relations.

Proof. Before showing DP-hardness, we show NP- and coNP-hardness separately:
Let (P, C) be an instance of VerPCAF

cf 1inh
, i.e., P = (A,R, cl ,�) is a PCAF and C ⊆ cl(A)

is the claim-set to be verified for conflict-freeness. Recall that VerPCAF
cf 1inh

is NP-complete,

even when restricted to transitive preferences (see Proposition 22).

• First, we construct a PCAF P ′ = (A′, R′, cl ′,�′) with A′ = {x | x ∈ A, cl(x) ∈ C} as
well as R′ = {(x, y) | x, y ∈ A′, (x, y) ∈ R}, cl ′(x) = cl(x) for all x ∈ A′, and x �′ y iff
x � y and x, y ∈ A′. Observe that (A′, R′, cl ′) is still well-formed. Furthermore, if � is
transitive, then so is �′. It is easy to see that C ∈ cf inh(R1(P)) iff C ∈ cf inh(R1(P ′)).
Since C = cl(A′), C ∈ cf inh(R1(P)) iff C ∈ naivehyb(R1(P ′)).

• Second, we construct another PCAF P ′′ = (A′′, R′′, cl ′′,�′′). Without loss of gener-
ality, we can assume C 6= ∅. We fix an arbitrary claim c ∈ C and for each claim
d ∈ C \ {c} introduce a fresh argument zd. Let Z be the set of those fresh argu-
ments. Then A′′ = A′ ∪ Z, R′′ = R′ ∪ {(x, zd) | cl(x) = c, zd ∈ Z} ∪ {(zd, y) | zd ∈
Z, y ∈ A′, there exists x ∈ A′ with cl(x) = d such that (x, y) ∈ R′}, cl ′′(x) = cl ′(x)
for all x ∈ A′, cl ′′(zd) = d for all zd ∈ Z, and x �′′ y iff x �′ y. (A′′, R′′, cl ′′)
is well-formed by construction, and �′′ can still be assumed to be transitive. Now
we show that C 6∈ cf inh(R1(P)) iff C \ {c} ∈ naivehyb(R1(P ′′)): (1) assume C ∈
cf inh(R1(P)). Then also C ∈ cf inh(R1(P ′′)) and thus C \ {c} 6∈ naivehyb(R1(P ′′)).
(2) assume C 6∈ cf inh(R1(P)). Then also C 6∈ cf inh(R1(P ′′)) since all arguments x
with cl(x) = c are in conflict with the fresh arguments zd. But because the fresh
arguments zd do not attack each other, C \ {c} ∈ cf inh(R1(P ′′)). Since C = cl(A′′),
C \ {c} ∈ naivehyb(R1(P ′′)).

The construction of P ′ shows NP-hardness, while the construction of P ′′ shows coNP-
hardness. Now we show DP-hardness: let (ϕ1, ϕ2) be an arbitrary instance of SAT-UNSAT,
with ϕ1 and ϕ2 sharing no variables. We can construct instances (P1 = (A1, R1, cl1,�1
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Figure 17: R2(P) from the proof of Lemma 45, with ϕ given by clauses ω1 = {x, y},
ω2 = {¬x,¬y}. Gray/thick attacks have been reversed by Reduction 2.

), C1) and (P2 = (A2, R2, cl2,�2), C2) of VerPCAF
naive1hyb

such that ϕ1 is satisfiable iff C1 ∈
naivehyb(R1(P1)) and ϕ2 is unsatisfiable iff C2 ∈ naivehyb(R1(P2)). Note that we can
assume P1 and P2 to be disjoint, i.e., they share no arguments and claims. Let P =
(A1 ∪ A2, R1 ∪ R2, cl1 ∪ cl2,�1 ∪ �2) be the combination of P1 and P2. Observe that
C1 ∪ C2 ∈ naivehyb(R1(P)) iff C1 ∈ naivehyb(R1(P1)) and C2 ∈ naivehyb(R1(P2)). Thus,
(ϕ1, ϕ2) is a yes-instance of SAT-UNSAT iff C1 ∪ C2 ∈ naivehyb(R1(P)).

Lemma 45. VerPCAF
σiµ

is NP-hard for σiµ = com2
inh , even if we restrict ourselves to PCAFs

with transitive preference relations.

Proof. Let ϕ be an arbitrary instance of 3-SAT given as a set Ω of clauses over variables X
and let X = {x | x ∈ X}. We construct a PCAF P = (A,R, cl ,�) as well as a set of claims
C:

• A = {ϕ}∪Ω∪X ∪X ∪{ax | x ∈ X ∪X}∪{bx | x ∈ X}∪{djx | x ∈ X ∪X, 1 ≤ j ≤ 3};

• R = {(ω, ϕ) | ω ∈ Ω} ∪ {(ω, ω) | ω ∈ Ω} ∪
{(ω, x) | x ∈ ω, ω ∈ Ω} ∪ {(ω, x) | ¬x ∈ ω, ω ∈ Ω} ∪
{(d1

x, x), (d1
x, d

2
x), (d3

x, d
2
x), (d3

x, x), (ax, x) | x ∈ X ∪X} ∪
{(ax, bx), (ax, bx) | x ∈ X};

• cl(x) = cl(x) = cl(d2
x) = cl(d2

x) = x for x ∈ X, cl(v) = v else;

• x � ω, x � d1
x, x � ax, d2

x � d3
x for all x ∈ X ∪X and all ω ∈ Ω;

• C = X ∪ {ϕ}.

Figure 17 illustrates the above construction. It remains to show that ϕ is satisfiable if and
only if C ∈ com inh(R2(P)).
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Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {x, d2

x | x ∈ X,x ∈ I} ∪ {x, d2
x | x ∈ X,x 6∈ I} ∪ {ϕ}. Clearly, cl(S) = C. Furthermore,

S defends ϕ in R2(P) since each clause is satisfied by I, and thus each clause argument ωj
is attacked by some x (or x) in S. For each variable x, if x ∈ S, then x defends d2

x and d2
x

defends x. Moreover, if x ∈ S, then x 6∈ S and none of x, ax, bx, or djx with 1 ≤ j ≤ 3 is
defended by S. Analogously for the case that x ∈ S. Thus, S is admissible, and contains
all arguments it defends, i.e., S ∈ com(R2(P)).

Assume C ∈ com inh(R2(P)). Then there is S ⊆ A such that cl(S) = C and S ∈
com(R2(P)). For each x ∈ X, at least one of x, x, d2

x, d
2
x must be contained in S. In fact,

if x ∈ S, then also d2
x ∈ S and vice versa. Analogous for x and d2

x. However, it cannot be
that x ∈ S and x ∈ S, otherwise bx would be defended by S and we would have cl(S) 6= C.
Thus, for each x ∈ X, there is either x ∈ S or x ∈ S, but not both. Furthermore, S defends
ϕ, i.e., S attacks all clause arguments ωj . Therefore, I |= ϕ for I = X ∩ S.

Appendix C. Remaining Proofs for Section 7

Proposition 37. Let D = (L,R,A, ,≤) be an ABA+ framework, let PD = (A,R, cl ,≺) be
the corresponding PCAF (cf. Definition 29), and let FD = (A′, R′, cl ′) be the corresponding
CAF (cf. Definition 30). It holds that R2(PD) = FD.

Proof. Let R2(PD) = (A′′, R′′, cl). By Definition 4, (a, b) ∈ R′′ if and only if (i) ((a, b) ∈ R,
b 6� a) or (ii) ((b, a) ∈ R, (a, b) /∈ R, a � b). We show that R′′ = R′.

(⊆) Let (U ` p,U ′ ` p′) ∈ R′′. In case (i) we have (U ` p,U ′ ` p′) ∈ R and U ′ ` p′ 6� U `
p. Hence there is some a ∈ A such that a = p and either there is no b ∈ U that is strictly
weaker than a or U ` p ≈ U ′ ` p′. In the latter case, U ` p and U ′ ` p′ symmetrically
attack each other, hence p′ = a′ ∈ U and there is b ∈ U ′ such that b < a′. In both cases, we
obtain (U ` p,U ′ ` p′) ∈ R′. In case (ii) we have (U ′ ` p′,U ` p) ∈ R, (U ` p,U ′ ` p′) /∈ R,
and U ` p � U ′ ` p′, i.e., p′ = a′ ∈ U and there is b ∈ U ′ such that b < a′ (and either p is
not the contrary of an assumption or p = c for some c ∈ U ′ there is no assumption d ∈ U
which is strictly weaker than c). We obtain (U ` p,U ′ ` p′) ∈ R′. Hence, we have shown
that R′′ ⊆ R′.

(⊇) Let (U ` p,U ′ ` p′) ∈ R′. Then either (i) (p = a ∈ U ′ and there is no b ∈
U with b < a) or (ii) (p′ = a′ ∈ U and there is b ∈ U ′ such that b < a′). In case (i),
we obtain U ′ ` p′ 6≺ U ` p by Definition. We obtain (U ` p,U ′ ` p′) ∈ R′′. In case (ii)
we have (U ′ ` p′,U ` p) ∈ R and U ` p � U ′ ` p′. In case U ` p 6≈ U ′ ` p′ it holds that
U ` p � U ′ ` p′ and (U ` p,U ′ ` p′) /∈ R, hence (U ` p,U ′ ` p′) ∈ R′′ by Definition 4 (cf.
case (ii) above). In case U ` p ≈ U ′ ` p′ we have (U ` p,U ′ ` p′) ∈ R and U ′ ` p′ � U ` p,
i.e., both attacks from U ′ ` p′ to U ` p and vice versa are reversed in the corresponding
CAF. Consequently, we obtain (U ` p,U ′ ` p′) ∈ R′′. Hence, R′′ ⊇ R′.

Lemma 46. Let D = (L,R,A, ,≤) be an ABA+ framework that satisfies weak contraposi-
tion, FD = (A,R, cl) its associated CAF, and FD = (A,R) the underlying AF of FD. Then
S ∈ adm(FD) implies asms(S) ∈ adm(D).

Proof. Let S ∈ adm(FD), and let U = asms(S).
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Bernreiter, Dvořák, Rapberger & Woltran

We show that U is conflict-free. Towards a contradiction, assume U is conflicting. That
is, U either normally or reversely attacks itself.

In the first case, there is U ′ ` a with U ′ ⊆ U and a ∈ U , and no assumption b ∈ U ′
is weaker than a. Hence, some argument x ∈ S is attacked by U ′ ` a in FD. Since S is
admissible in FD, there is some counter-attack on U ′ ` a. Since no assumption b ∈ U ′ is
weaker than a, it cannot be the case that the attack on the argument U ′ ` a stems from
a normal attack in the ABA+ framework D: Towards a contradiction, assume there is an
argument W ` c which reversely attacks the argument U ′ ` a in the underlying ABA. By
Definition 30, it holds that a ∈ W and there is b ∈ U ′ such that b < a. This is a contradiction
to our assumption. Hence, there is y ∈ S which normally attacks the argument U ′ ` a on
some claim u ∈ U ′. However, this implies that there is an argument z ∈ S with u ∈ asms(z)
which is attacked by y, contradiction to conflict-freeness of S.

Now assume U reversely attacks itself. Then there is U ′ ` a, U ′ ⊆ U , a ∈ U , and there
is b ∈ U ′ with b < a. Wlog, let b be <-minimal in U ′. By WCP, there is an argument V ` b
with V ⊆ (U ′ \ {b})∪ {a}. By <-minimality of b, no originating attacks from the argument
are reversed. Hence, U normally attacks itself (V ⊆ U and b ∈ U). We proceed as in the
previous case.

Next, we show that U is admissible. Let V ⊆ A attack U . Again, we distinguish the
cases where V normally resp reversely attacks U .

In the first case, there is V ′ ⊆ V, a ∈ U such that V ′ ` a. Hence, there is an argument
x ∈ S which is attacked by V ′ ` a in FD. Since S is admissible in FD, there is some
counter-attack on V ′ ` a. Since no assumption b ∈ V ′ is weaker than a, the only way to
attack V ′ ` a is via a normal attack. Hence, there is y ∈ S which normally attacks the
argument V ′ ` a, i.e., y = U ′ ` v with U ′ ⊆ U and v ∈ V. We have shown that U defends
itself against the attack from V.

In the second case, there is U ′ ` a, a ∈ V, U ′ ⊆ U , and there is b ∈ U ′ with b < a. Wlog,
let b be <-minimal in U ′. By WCP, there is an argument W ` b with W ⊆ (U ′ \ {b})∪ {a}.
By <-minimality of b, no originating attacks from the argument are reversed. Hence, to
defend itself from the attack, S normally attacks W ` b. Let y ∈ S normally attack the
argument W ` b, i.e., y = U ′ ` w with U ′ ⊆ U and w ∈ W. We have w = a (otherwise,
w ∈ U ′ and U is not conflict-free). Hence, U attacks V on a. We have shown that U defends
itself against the attack.

Lemma 47. Let D = (L,R,A, ,≤) be an ABA+ framework that satisfies weak contra-
position, FD = (A,R, cl) its associated CAF, and FD = (A,R) the underlying AF. Then
U ∈ adm(D) implies ArgsU ∈ adm(FD).

Proof. First, we show that ArgsU is conflict-free. Let x = V ` q and y = U ′ ` p denote two
arguments in ArgsU . It holds that V ⊆ U and U ′ ⊆ U . Hence, in case x attacks y we have
V (normally or reversely) attacks U . Hence we obtain that ArgsU is conflict-free.

Next, we show that ArgsU is admissible. Let x = V ` q denote an argument in A which
attacks an argument y = U ′ ` p in ArgsU with U ′ ⊆ U . Since U defends itself, there is either
a normal or a reversed counter-attack. In the first case, there is U ′′ ⊆ U such that U ′′ ` b
for some b ∈ V. Then U ′′ ` b ∈ ArgsU and ArgsU defends itself against the attack from x,
as desired. In the second case, there is some assumption d ∈ A with q = d and some c ∈ V
with c < d. The derivation V ` d can be seen as failed attempt to attack the assumption d
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(and every set containing d). Hence, the argument z = {d} ` d which denotes the argument
corresponding to the assumption d defends y against the attack from x.

Proposition 38. Let D = (L,R,A, ,≤) be an ABA+ framework that satisfies weak con-
traposition, FD = (A,R, cl) its associated CAF, and FD = (A,R) the underlying AF, and
let σ ∈ {grd , com, prf , stb} be a semantics.

• If S ∈ σ(FD) then asms(S) ∈ σ(D);

• if U ∈ σ(D) then ArgsU ∈ σ(FD);

• the correspondence is one-to-one; i.e., S = Argsasms(S) for each S ∈ σ(FD) and
U = asms(ArgsU ) for all U ∈ σ(D).

Proof. We first prove the statement for complete semantics. Since the fundamental lemma
is satisfied, each preferred, grounded, and stable assumption set is complete, hence the proof
for the remaining semantics will be based on complete semantics.

We proceed in four steps. First, we show that each complete set S in FD is of the
form Argsasms(S) (first part of the 1-1 correspondence). Second, we show that for each
S ∈ com(FD), asms(S) is complete. Third, we prove that for each complete set U , the set
of arguments ArgsU is complete. Lastly, we show that U = asms(ArgsU ) for each complete
assumption set U , to finish the proof of the 1-1 correspondence for complete sets.

• We show that for each S ∈ com(FD), it holds that S = Argsasms(S). Let U = asms(S).
By Lemma 46, U is admissible. We show that S defends all arguments ArgsU .

Towards a contradiction, assume there is U ′ ` p, U ′ ⊆ U , which is not contained in
S. Let x denote an attack on U ′ ` p. First assume x normally attacks U ′ ` p. Then
cl(x) ∈ U and hence x attacks S. Therefore, there is y ∈ S which counter-attacks
the attack. Next, assume the attack is reversed. Then p = a for some a ∈ asms(x),
and there is b ∈ U ′ with b < a. Wlog, let b be <-minimal in U ′. By WCP, there is
an argument W ` b with W ⊆ (U ′ \ {b}) ∪ {a}. By <-minimality of b, no originating
attacks from the argument are reversed. Hence, to defend itself from the attack, S
normally attacks W ` b. Since S is admissible, a ∈ W and there is y ∈ S with cl(a)
which normally attacks W ` b. Therefore, y attacks x.

We have shown that each argument in ArgsU is defended by S. Hence, we obtain
S = ArgsU .

• Let S ∈ com(FD). We show that asms(S) ∈ com(D). Let U = asms(S). By
Lemma 46, U ∈ adm(D). It remains to show that U contains all assumption sets
it defends. As shown in the above item, it holds that S = ArgsU . Let V denote
an assumption set that is defended by U . We show that S defends all arguments
constructible from V.

Let V ′ ` q with V ′ ⊆ V and let x denote an attacker of V ′ ` q.
First assume x normally attacks V ′ ` q. Then x =W ` v for some v ∈ V ′. Moreover,
there is no w ∈ W with w < v (otherwise, the attack would not have been successful).
Since U defends V there is U ′ ` w for some w ∈ W. Hence S defends V ′ ` q.
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Next assume x reversely attacks V ′ ` q. That is, q = a, b < a for some b ∈ V ′, and
a ∈ asms(x). Wlog, let b be <-minimal in asms(x). By WCP, there is an argument
W ` b with W ⊆ (V ′ \ {b}) ∪ {a}. By <-minimality of b, no originating attacks from
the argument are reversed. Since U defends V there is U ′ ` w for some w ∈ W, U ′ ⊆ U .
We have w = a, otherwise U must attack itself in order to defend V, contradiction. It
follows that x is attacked on a, hence, S defends V ′ ` q.
We have shown that S defends all arguments constructible from V.

• Let U ∈ com(D). We show that ArgsU ∈ com(FD). By Lemma 47, we have that ArgsU
is admissible. It remains to show that ArgsU contains each argument it defends. Let
x = V ` q denote an argument in A which is defended by ArgsU . We show that U
defends V in D.

Let W be a set of assumptions attacking V in D.

First assume W normally attacks V. Then there is W ′ ` a with W ′ ⊆ W, a ∈ V,
and a is not weaker than any assumption in W ′. Then W ′ ` a attacks the argument
V ` q in FD. By assumption, there is an argument y ∈ ArgsU that attacks W ′ ` a.
Since a is not weaker than any assumption in W ′, the argument W ′ ` a has no
incoming reversed attack (otherwise, there would be some b ∈ W ′ such that b < a,
contradiction). Hence, there is U ′ ⊆ U such that U ′ ` b for some b ∈ W ′. We obtain
that U defends V against the attack from W.

Now assume W reversely attacks V. By definition, there is V ′ ⊆ V such that V ′ ` w
for some w ∈ W and there is v ∈ V ′ with v < w. Wlog, let v be the <-minimal element
in V ′ with v < w. By WCP, there is W ′′ ` v with W ′′ ⊆ (V ′ \ {v}) ∪ {w}. Hence,
the argument W ′′ ` v attacks V ` q in FD. By assumption, there is an argument
y ∈ ArgsU which attacks W ′′ ` v. Since v is the <-minimal element among W ′′ ∪{v},
the only way to attack the argument is via a normal attack. Hence, y =W∗ ` w′′ for
some w′′ ∈ W ′′,W∗ ⊆ U , and there is no element inW∗ that is weaker than w′′. Now,
from W ′′ ⊆ (V ′ \ {v}) ∪ {w} we get that either w′′ ∈ V ′ or w′′ = w. In the first case,
we derive a contradiction: if w′′ ∈ V ′ then y attacks V ` q. Hence, in order to defend
the argument, ArgsU must attack y ∈ ArgsU , and hence ArgsU is not conflict-free,
contradiction. In the other case, i.e., if w′′ = w, we have that y attacks the argument
W ′′ ` v on the assumption w ∈ W. Hence we obtain that U defends V against the
attack from W.

We obtain that U defends V in D. Since U is complete, we have V ⊆ U . Consequently,
x = V ` q ∈ ArgsU and we obtain that ArgsU defends each argument, as desired.

• We show that U = asms(ArgsU ) for all U ∈ com(D): Let U ∈ com(D). By the second
item, ArgsU is complete in FD. By the first item, asms(ArgsU ) is complete in D. We
obtain U = asms(ArgsU ) because each argument of the form {a} ` a is contained in
ArgsU .

We have shown that the instantiation preserves complete semantics when D satisfies WCP.
Moreover, the correspondence between the extensions of FD and D is one-to-one. Hence, for
σ ∈ {grd , prf }, the statement follows immediately by taking the⊆-minimal resp.⊆-maximal
extensions.
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It remains to prove the statement for stable semantics.

• First, let S ∈ stb(FD), and let U = asms(S). Since each stable extension is complete,
we can assume S = ArgsU . To show that U ∈ stb(D), it remains to prove that each
assumption a ∈ A \ U is attacked. Let a ∈ A \ U , and tet x = {a} ` a denote
the argument corresponding to a. Since S is stable, S attacks x. An assumption
argument receives only normal attacks (since the support cannot be weaker than the
claim), hence, we can construct an argument U ′ ` a with U ′ ` U and obtain that U
attacks a. Since a was arbitrary, it follows that U is stable in D.

• Now, let U ∈ stb(D), and let S = ArgsU . We show that S ∈ stb(FD). Let x be
an argument in FD. We show that x is either attacked by or contained in S. Let
x = V ` q. In case there is a ∈ V with a ∈ A \ U , it holds that x is attacked by S
since U attacks each assumption in A \ U . In case V ⊆ U we have x ∈ ArgsU = S.
This proves the statement.
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