
Journal of Artificial Intelligence Research 80 (2024) 875-918 Submitted 01/2024; published 07/2024

SAT-based Decision Tree Learning for Large Data Sets

André Schidler aschidler@ac.tuwien.ac.at
Stefan Szeider sz@ac.tuwien.ac.at
Algorithms & Complexity,
TU Wien,
Favoritenstrasse 9-11,
1040 Vienna, Austria

Abstract

Decision trees of low depth are beneficial for understanding and interpreting the data
they represent. Unfortunately, finding a decision tree of lowest complexity (depth or size)
that correctly represents given data is NP-hard. Hence known algorithms either (i) utilize
heuristics that do not minimize the depth or (ii) are exact but scale only to small or
medium-sized instances. We propose a new hybrid approach to decision tree learning,
combining heuristic and exact methods in a novel way. More specifically, we employ SAT
encodings repeatedly to local parts of a decision tree provided by a standard heuristic,
leading to an overall reduction in complexity. This allows us to scale the power of exact
SAT-based methods to comparatively very large data sets. We evaluate our new approach
experimentally on a range of real-world instances that contain up to several thousand
samples. In almost all cases, our method successfully decreases the complexity of the initial
decision tree; often, the decrease is significant.

1. Introduction

Decision trees are indispensable tools for the description, classification, and generalization
of data (Rudin, 2019; Larose, 2005; Murthy, 1998; Quinlan, 1986). Since decision trees are
easy to understand, they are particularly attractive for providing interpretable models for
the data they represent. This aspect has been emphasized in recent years (Darwiche &
Hirth, 2020; Doshi-Velez & Kim, 2017; Goodman & Flaxman, 2017; Lipton, 2018; Monroe,
2018). In this context, one prefers trees of low complexity, which are trees of low depth
(length of a longest path from the root to a leaf) and/or of small size (total number of
nodes). A decision tree of low depth guarantees a low number of tests required to classify
a sample (desired if tests are expensive or even intrusive (Podgorelec, Kokol, Stiglic, &
Rozman, 2002); a decision tree of small size limits the overall effort of understanding its
decision-making and thus promotes transparency and interpretability. Decision trees are
also used as part of larger implementations like functional synthesis, where the size of the
decision tree can have a large impact on the runtime of the application (Golia, Roy, &
Meel, 2020; Golia, Slivovsky, Roy, & Meel, 2021). However, inducing decision trees of the
lowest complexity is NP-hard (Hyafil & Rivest, 1976) but fixed-parameter tractable under
suitable parameterization (Eiben, Ordyniak, Paesani, & Szeider, 2023; Kobourov, Löffler,
Montecchiani, Pilipczuk, Rutter, Seidel, Sorge, & Wulms, 2023; Ordyniak, Paesani, Rychlicki,
& Szeider, 2024; Dabrowski, Eiben, Ordyniak, Paesani, & Szeider, 2024; Gahlawat & Zehavi,
2024).

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Schidler & Szeider

Therefore, several exact methods (SAT and CP-based) have been proposed for that
purpose (Bessiere, Hebrard, & O’Sullivan, 2009; Narodytska, Ignatiev, Pereira, & Marques-
Silva, 2018; Avellaneda, 2020; Janota & Morgado, 2020; Hu, Siala, Hebrard, & Huguet, 2020).
Although reducing the depth of the tree decreases the number of required tests, it does not
guarantee that the number of tests is minimal (Izza, Ignatiev, & Marques-Silva, 2022). In
this paper we focus on finding low-complexity decision trees.

Scalability is often an issue with exact methods. For this reason, we propose a novel
approach to learning decision trees of low complexity. We combine the scalability of heuristic
methods with the strength of encoding-based exact methods, thus taking the best of the two
worlds. Our approach follows the principle of SAT-based Local Improvement (SLIM) which
starts with a solution provided by a fast heuristic. It then repeatedly applies a SAT-based
exact method locally to improve the solution. SLIM has shown to be effective in graph
decomposition problems (Lodha, Ordyniak, & Szeider, 2017b; Fichte, Lodha, & Szeider,
2017; Lodha, Ordyniak, & Szeider, 2017a; Ganian, Lodha, Ordyniak, & Szeider, 2019),
graph coloring (Schidler, 2022), boolean circuits (Kulikov, Pechenev, & Slezkin, 2022; Reichl,
Slivovsky, & Szeider, 2023, 2024), anytime MaxSAT (Schidler & Szeider, 2024) and Bayesian
network structure learning (Ramaswamy & Szeider, 2021a, 2021b, 2022). SLIM is similar
to Large Neighborhood Search (Pisinger & Ropke, 2010), where SLIM distinguishes itself
by combining a structurally constrained notion of neighbourhood with a complete method
(SAT).

Key to our approach is a suitable notion of a local instance which is based on using the
decision tree’s subtrees. Given a subtree of the decision tree, a SAT solver tries to find
a subtree of lower complexity that correctly classifies all the samples the selected subtree
classifies correctly. Whenever the SAT solver is successful, the improved subtree can then
replace the selected subtree. This, in turn, may lower the complexity of the whole decision
tree. By adding weights and new classification categories to the local instance, we ensure
that this replacement does not introduce misclassifications or increase the decision tree’s
complexity.

Because of the new classification categories and weights, a local instance poses a more
complex classification problem. We show how SAT encodings can be generalized to ac-
commodate non-binary weighted classification instances and propose a subtree selection
strategy that avoids weights (Corollary 1). We further propose a new encoding based on
a characterization of decision trees in terms of partitions (Theorem 3), which allows us to
handle local instances of higher depth than it is possible with known encodings.

We establish a prototype implementation of our approach (DT-SLIM) and empirically
evaluate it on data sets from the UCI Machine Learning Repository and prior work. Our
experimental results are very encouraging: we can lower the complexity of heuristically
obtained decision trees in almost all cases, in some cases significantly, without sacrificing
much in terms of accuracy on unseen data.

We further apply DT-SLIM in a setting closer to the typical use of decision trees, where
we apply pruning after reducing the complexity of the the decision tree using DT-SLIM.
Pruning is a method where parts of the decision tree are removed that will most likely not
generalize well to unseen data. Our results are again very encouraging, showing SLIMed
and pruned decision trees often outperform pruned decision trees in both complexity and
accuracy.

876

SAT-based Decision Tree Learning for Large Data Sets

This paper is structured as follows. We will first give some necessary background and
notation in Section 2. Next, we discuss the key contribution: how SLIM works in the
context of decision trees (Section 4). In Section 5, we discuss how SAT encodings can
induce decision trees, which includes a description of our new encoding DT_pb. Data
reductions are necessary to solve many instances and are the topic of Section 6. We combine
the previously introduced concepts in our approach DT-SLIM in Section 7 and give some
practical considerations in Section 8. The last remaining piece in our approach is pruning,
which is applied after SLIM and is briefly introduced in Section 9. Finally, we thoroughly
test our approach against the state-of-the-art by a set of experiments in Section 10.

2. Preliminaries

Classification problems A classification instance over a set F of features is a pair
I = (E, c) where E is a finite set of samples and c is a mapping that assigns each sample
e ∈ E a class c(e). CI = { c(e) : e ∈ E } is the set of classes of the instance I. A
sample e ∈ E is a mapping that assigns each feature f ∈ F a value e(f). The domain
of a feature f ∈ F is denoted by D(f) and the feature’s domain relative to E is the set
DI(f) = { e(f) : e ∈ E }. We call I a binary classification instance if |CI | = 2. We assume
w.l.o.g. that the classes are ordered, particularly that we can determine a maximum over the
set of classes. We say a feature is numerical if its domain contains only real numbers and
otherwise we say it is categorical. We denote the set of numerical features by N(F) and the
categorical features by R(F).

Decision Trees A decision tree is a rooted binary tree T with node set V (T), arc set
A(T), and root r; Tv denotes the subtree of T rooted at v ∈ V (T). The depth dT (v) of a
node v in T is the length (i.e., number of edges) of the path from T ’s root r to v; thus r
has depth 0. T ’s depth d(T) is the largest depth over all its nodes; T ’s size is its number of
nodes.

Each internal node v ∈ V (T) is labeled by a feature feat(v), a threshold thresh(v) ∈
D(feat(v)), and a comparison operator ◦v ∈ {=,≤}. If feat(v) is numerical, then ◦v is ≤;
if feat(v) is categorical, then ◦v is =.1 Each internal node has exactly two children, a left
one and a right one. L(T) denotes the set of T ’s leaves. We write feat(T) = { feat(v) : v ∈
V (T) \ L(T) }.

Consider a classification instance (E, c) over a set F of features and a decision tree T
with feat(T) ⊆ F . For each v ∈ V (T), we define a set ET (v) ⊆ E: if r is the root
of T , we put ET (r) = E; if v1 is the left and v2 the right child of a node u, we put
ET (v1) = { e ∈ ET (u) : e(feat(u)) ◦u thresh(u) } and ET (v2) = ET (u) \ ET (v1). We define
the classification cI,T (ℓ) of a leaf ℓ ∈ L(T), with respect to the classification instance
I = (E, c) as

cI,T (ℓ) = argmax
c∈CI

|{ e ∈ ET (ℓ) : c(e) = c }|,

ties are broken arbitrarily. We say T correctly classifies a sample e ∈ E if for the unique
leaf ℓ ∈ L(T) with e ∈ ET (ℓ) we have c(e) = cI,T (ℓ). T correctly classifies I = (E, c) if it

1. Note that in practice, one can enforce any of the two comparison operator for a specific feature by
preprocessing. I.e., ordering a categorical domain and using the order as values, or use non-real
representations of the real values.

877

Schidler & Szeider

◦C Weather Day Length Hike

29.1 Sunny Sat 3 h Yes
22.3 Thunder Mon 2 h No
21.5 Rain Thu 1 h Yes
23.7 Rain Fri 3 h Yes
14.3 Rain Wed 4 h No
14.7 Sunny Tue 3 h Yes

Weather = Thunder

No Duration ≤ 2

Yes Weather = Rain

Yes◦C ≤ 16

YesNo

= ̸=

>≤

̸==

>≤

Figure 1: Left: A classification instance on when to hike and when not, with |E| = 6, |F | = 4,
using numeric and categorical features. Right: a decision tree of depth 4 and size 9 for the
instance on the left.

correctly classifies all the samples e ∈ E; in that case, we simply say T is a decision tree
for I. Figure 1 shows an example decision tree.

We use a training set (E, c) to induce the decision tree and a test set (E′, c′) to determine
the accuracy of the tree, where E ∩ E′ = ∅. The accuracy of a decision tree on a given
instance is the fraction of samples from E′ it correctly classifies. We use the term training
accuracy if the accuracy is measured on E instead of E′.

Problems In this paper we consider optimization methods for complexity-optimal decision
trees:

Definition 1 (Complexity-optimal decision trees). Given a classification instance I and let
T be a decision tree that correctly classifies I:

• T is size-optimal if T has minimum |V (T)|.

• T is depth-optimal if T has minimum d(T).

• T is complexity-optimal if it is either size-optimal or depth-optimal.

Hence, we explore exact and heuristic methods for the following problem:

Definition 2 (Bounded-Complexity Decision Tree Induction). Given a classification instance
I find a depth-optimal decision tree (Bounded-Depth Decision Tree Induction), or a size-
optimal (Bounded-Size Decision Tree Induction) for I.

We extend the depth-optimality definition to weighted classification instances. A weighted
classification instance is a tuple Iw = (E, c, d) where I = (E, c) is a classification instance,
and d is a mapping that assigns each c ∈ CI(E) a positive integer d(c) called its weight. We
purposfully overload d here, as we will use the depth as the weight. I and Iw have the same

878

SAT-based Decision Tree Learning for Large Data Sets

decision trees, just the depth for these decision trees are defined differently for I and Iw.
Consider a decision tree T for Iw. For a leaf ℓ of T with classification c (i.e., cI,T (ℓ) = c),
we define the weighted depth of ℓ in T as dw,T (ℓ) = dT (ℓ) + d(c). The weighted depth dw(T)
of T is the maximum weighted depth over all its leaves.

In this paper we discuss SAT-based methods for complexity-optimal decision trees. These
methods are both exact, finding either size-optimal or depth-optimal decision trees, and
heuristic, finding decision trees of low depth or small size that correctly classify the instance.

3. Related Work

We limit the discussion in this section to the induction of optimal decision trees and refer
the reader to the survey by Costa and Pedreira (2023) for a comprehensive summary of
state-of-the-art methods for different decision tree induction tasks and algorithms. We discuss
two different concepts of optimality: complexity-optimal decision trees and accuracy-optimal
decision trees.

3.1 Complexity-Optimal Decision Trees

Complexity-optimal decision trees correctly classify all training set samples and have mini-
mal depth and/or size. Hence, inducing complexity-optimal decision trees is a knowledge
compilation task. Pruning is usually required for good accuracy on unseen data, as correctly
classifying all training samples often causes overfitting. Inducing decision trees that correctly
classify the training set and then pruning the decision tree follows the approach, which is
not accuracy optimal, of widely used decision tree heuristics like CART and C4.5 (Quinlan,
1993; Breiman, Friedman, Olshen, & Stone, 1984). We discuss pruning in Section 9.

Several SAT-based methods for inducing complexity-optimal decision trees have been
proposed. Initially, Bessiere et al. (2009) explored the use of a SAT encoding, but it
performed poorly compared to their constraint programming approach. The first success
was achieved by Narodytska et al. (2018): their proposed SAT encoding scaled to small
instances. This success sparked a series of further research into SAT encodings for complexity-
optimal decision trees (Avellaneda, 2020; Janota & Morgado, 2020; Schidler & Szeider, 2021;
Ignatiev, Marques-Silva, Narodytska, & Stuckey, 2021; Shati, Cohen, & McIlraith, 2021),
and theoretical work (Ordyniak & Szeider, 2021; Kobourov et al., 2023; Ordyniak et al.,
2024; Dabrowski et al., 2024; Eiben et al., 2023).

The encoding by Narodytska et al. (2018) determines whether there is a decision tree
that correctly classifies the instance with at most k nodes. Repeated calls with varying k can
then determine a size-optimal decision tree for the instance. The encoding does not scale
well if the number of samples or number of nodes increases. This observation led Janota and
Morgado (2020) to try a different approach and encoding. Their encoding can find both size-
and depth-optimal decision trees. The authors observed that the SAT solver fails to find a
decision tree even if the number of possible tree structures is low given the depth or size limit,
but that the SAT solver is much faster at labeling a given structure. Hence, their approach
enumerates part of the structures separately and then asks the SAT solver to complete and
label the structure. Avellaneda (2020) achieves good scalability by fixing the whole structure
of the decision tree for a given depth d to a perfect binary tree. The SAT solver now only
has to label the nodes and leaves. Hence, the encoding finds depth-optimal decision trees

879

Schidler & Szeider

(but can also optimize for size). The encoding by Shati et al. (2021) is based on Avellaneda’s
(2020) encoding. Here, they encounter a different scalability issue: the SAT solver has to
consider each feature value as a possible threshold. Shati et al. (2021) encode this part
differently: instead of explicitly considering every threshold, the SAT solver only labels the
internal nodes with features. The threshold is then implicitly enforced by checking whether
the paths the samples take are consistent with the used features. The encoding’s scalability
still dependents on the number of features, but much less on the number of different values.
This makes the encoding the state-of-the-art SAT encoding for depth-optimal decision trees.
We discuss more details of these approaches in Section 5 and evaluate them in Section 10.

3.2 Accuracy-Optimal Decision Trees

Related to complexity-optimal decision trees are accuracy-optimal decision trees: an accuracy-
optimal decision tree has a constrained structure and maximizes the training accuracy.
Maximizing the training accuracy of small decision trees follows the idea that good accuracy
on the training samples correlates with good accuracy on unknown samples for small decision
trees. Many approaches for inducing accuracy-optimal decision trees have been proposed using
SAT (Hu et al., 2020; Shati et al., 2021), constraint programming (Verhaeghe, Nijssen, Pesant,
Quimper, & Schaus, 2020), mixed integer programming (Bertsimas & Shioda, 2007; Bertsimas
& Dunn, 2017; Zhu, Murali, Phan, Nguyen, & Kalagnanam, 2020; Aghaei, Gómez, & Vayanos,
2021; Hua, Ren, & Cao, 2022; Verwer & Zhang, 2017), binary integer programming (Verwer
& Zhang, 2019), and using dedicated algorithms based on dynamic programming/branch &
bound (Hu, Rudin, & Seltzer, 2019; Aglin, Nijssen, & Schaus, 2020a, 2020b; Lin, Zhong, Hu,
Rudin, & Seltzer, 2020; Demirovic, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao,
& Stuckey, 2022; van der Linden, de Weerdt, & Demirovic, 2023).

A generalization of accuracy-optimality are sparsity-optimal decision trees. These do
not maximize the accuracy, but minimize R(v) = err + α|L(T)|, where err is the error rate,
i.e., the inverse of the accuracy. The parameter α controls how small the induced decision
tree will be. The idea is that parts of the decision tree that do not contribute much to the
training accuracy will be removed by increasing α. This is advantageous as these parts are
also less likely to contribute much to the testing accuracy and can cause overfitting. Several
accuracy-optimal methods support the induction of sparsity-optimal decision trees (Bertsimas
& Dunn, 2017; Hu et al., 2019; Lin et al., 2020; Demirovic et al., 2022; van der Linden et al.,
2023). Further, several of the dynamic programming approaches support optimization goals
beyond accuracy and sparsity, including non-linear metrics (Lin et al., 2020; Demirovic et al.,
2022; van der Linden et al., 2023).

In the context of accuracy-optimal decision trees, the methods vary in how efficiently they
can find an optimal decision tree. SAT, mixed integer programming, and CP approaches
don’t scale well to instances with larger numbers of samples (van der Linden et al., 2023). For
SAT, this is true for both complexity- and accuracy-optimal decision trees, which additionally
motivates the work in this paper. The advantage of these methods is that additional
constraints can easily be added to encode additional requirements. Dynamic programming
approaches scale much better with the number of samples. We will revisit this discussion in
Section 10, when we compare the accuracy-optimal method STreeD (van der Linden et al.,
2023) to our method.

880

SAT-based Decision Tree Learning for Large Data Sets

Accuracy-optimality methods often scale better than complexity-optimal methods, as
the corresponding decision trees are usually smaller, reducing the search space for the solver.
Hence, finding accuracy-optimal decision trees for instances with many thousands of samples
is feasible as long as the decision tree complexity is low. In this paper, we try to make these
complexity-optimal methods scale better, albeit in a heuristic manner. Further, we will see
in Section 10, that not all instances allow for small decision trees that capture the data well.

Most of the methods discussed in this section require a binary instance, exceptions are
the SAT encoding by Shati et al. (2021), GOSDT (Lin et al., 2020) and OCT (Bertsimas &
Dunn, 2017). General classification instances are then binarized, where a binary feature is
introduced for each feature and a value we consider as a possible threshold. Considering all
feature values occurring in an instance, can result in a huge binary instance that is hard to
solve. Hence, several binarization methods have been proposed that strategically reduce the
number of features by discarding some values from consideration. Unfortunately, this can
lead to complexity- and accuracy-sub-optimal decision trees (Lin et al., 2020). One method is
bucketization (Verwer & Zhang, 2019), which for each feature only considers those threshold
values that partition the samples according to their class. Another method is picking a
constant number of values for each feature at random, or dividing the values for a feature
in quantiles and picking a value from each quantile (Günlük, Kalagnanam, Li, Menickelly,
& Scheinberg, 2021). Support sets (Ibaraki, Crama, & Hammer, 2011; Ordyniak & Szeider,
2021) only select a subset of the binary features that is required to distinguish each sample
from each other. Another method is inducing heuristic decision trees and only considering
thresholds used in these trees (McTavish, Zhong, Achermann, Karimalis, Chen, Rudin, &
Seltzer, 2022). The latter corresponds to the union of several support sets. We discuss this
topic further in Section 6.

In practice, decision tree heuristics are commonly used, as they scale very well to very large
instances. Since the introduction of CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993),
several improvements have been proposed, e.g., C5.0 which is more memory efficient and
can handle larger datasets more effectively (Kuhn & Johnson, 2013), Conditional Inference
Trees (Hothorn, Hornik, & Zeileis, 2006) differ from traditional decision tree algorithms by
using a more statistically rigorous method for selecting splits in the tree. Rotation Forest
(Rodriguez, Kuncheva, & Alonso, 2006) and Perfect Random Tree Ensemble (Cutler & Zhao,
2001) algorithms have been used primarily for ensemble methods; the core concept can
enhance decision tree performance when used in isolation. Hoeffding Trees (Domingos &
Hulten, 2000) are designed for high-speed data streams where storing the entire dataset for
analysis is impractical.
However, C4.5 and CART set the standard for decision tree learning and are still used as
benchmark models for comparison with newer algorithms. Despite their age, these algorithms
are still effective for many problems, especially where the data is not excessively large or
complex. While newer algorithms may offer improvements in certain areas (like handling
large datasets, speed, or specific types of data), C4.5 and CART remain relevant for their
simplicity, interpretability, and benchmark standards in decision tree algorithms.

881

Schidler & Szeider

T for I T ′ for I ′ T ′′ for I ′ T ∗ for I

0

0

0
01

1
1

1
0 0

01
10 0 11

01

1
10 0 1

Figure 2: Local improvement workflow.

4. Local Improvement

Assume we are given a classification instance I = (E, c), which is too large for inducing a
decision tree of smallest depth using an exact method such as a SAT encoding. We can use
a heuristic method to compute a non-complexity-optimal decision tree T for I. The idea of
local improvement is to repeatedly select subtrees T ′ of T that induce a local instance I ′
that is small enough (possibly after further simplification and reduction) to be solved by
an exact method. Once we have found an improved decision tree T ′′ for local instance I ′
of smallest depth (or at least a depth that is smaller than the depth of T ′), we can replace
T ′ in T with the improved tree T ′′, obtaining a new decision tree T ∗ for I that improves
upon the heuristic tree T . Figure 2 illustrates this process. We will focus on depth reduction
in the theoretical part. Size reduction works analogously and will be discussed explicitly in
Section 8.

4.1 Local Instances

We need to develop a suitable concept of a local instance to instantiate this general idea.
This concept must guarantee that after replacing the subtree, the new decision tree T ∗ still
correctly classifies all samples. This task becomes harder if we allow that some leaves of T ′

are internal nodes of T , i.e., L(T ′) \ L(T) ̸= ∅. In this case, after replacement T ∗ generally
does not correctly classify I. We achieve correct classification by extending the nodes in
L(T ′′) \ L(T) with parts of the original tree T to complete T ∗. The key to our solution is
based on the introduction of new classes, as follows.

Definition 3 (Local Instance). Let T be a decision tree for instance I, T ′ be a subtree of
T , and r′ be the root of T ′. Further, let ℓ1, . . . , ℓk ∈ L(T ′) \ L(T) be those leaves of T ′ that
are internal nodes of T , where possibly k = 0, and let s = maxe∈E c(e) be the last class used
in I. The local instance induced by T ′ is the pair I ′ = (E′, c′) where E′ = ET (r

′) and c′ is
the mapping defined by

c′(e)=

{
c′(e)=s+ i if e ∈ ET (ℓi) for some 1 ≤ i ≤ k;
c′(e)=c(e) otherwise.

Although |ET (r
′)| is independent of the subtree below r′, the local instance size can be

further reduced by the reduction methods discussed in Section 6.

882

SAT-based Decision Tree Learning for Large Data Sets

T for I

T1 for I

T ′ for I ′ T ′′ for I ′ T0 for I

T ∗ for I

0 0
01

1
1

0
1 0

01

0 0
01

1
0

1 0
0

1 0
1 0

1
31

2
13 3 2

0 0
01

13 3 2

0 0
01

Figure 3: Local improvement workflow using special leaves. The numbers indicate the leaves’
classes; squares indicate special leaves.

4.2 Local Replacement

Let T ′′ be any decision tree for the local instance I ′. Since T ′′ correctly classifies I ′, T ′′ will
contain for each i ∈ {1, . . . , k} at least one leaf m such that cI,T (m) = {s+ i}. We call such
a leaf m a special leaf with classification s+ i. We can see an example of a local instance
with special leaves in the top left part of Figure 3. Here, the special leaves are marked as
squares and are exactly those leaves of the subtree T ′ that have descendants in T . In this
example, the depth of T ′ is 3, while without special leaves, we would need to include all
descendants, raising the depth to 5. Hence, special leaves allow us to reduce the depth of the
subtree we consider for the local instance, which makes reducing the depth easier for the
SAT encoding, as we will discuss in Section 5.

To describe how the new decision tree T ∗ is constructed, we need the following operation
on decision trees: Let T ↑, T ↓ be decision trees, x a leaf of T ↑ and y the root of T ↓. The
extension of T ↑ at x with T ↓ is the decision tree T∪ obtained from T ↑ and T ↓ by taking the
vertex-disjoint union of the two trees and identifying x with y.

To construct T ∗, we start with the decision tree T0 obtained from T by deleting all
descendants of the root r′ of subtree T ′. From T0 we obtain T1 by extending it at r′ by
the improved tree T ′′. Finally, from T1 we obtain T ∗ by extending each special leaf m with
classification s+ i with a new copy Tm

ℓi
of Tℓi . Figure 3 shows an example of this process.

The next theorem states that this replacement process is sound.

Theorem 1. T ∗ correctly classifies I.

Proof. For showing the claim, let ℓ∗ be any leaf of T ∗. We will show that |{ c(e) : e ∈
ET (ℓ

∗) }| ≤ 1 and therefore, that all samples at the leaf are classified correctly. Let P be the
unique path in T ∗ from the root of T ∗ to ℓ∗. We distinguish several cases.

883

Schidler & Szeider

Case 1: Path P does not run through the subtree’s root r′. Hence ℓ∗ is also a leaf
of T . Since the original decision tree T correctly classifies I by assumption, 1 ≥ |{ c(e) : e ∈
ET (ℓ

∗) }| = |{ c(e) : e ∈ ET ∗(ℓ∗) }|.
Case 2: Path P runs through the subtree’s root r′.
Subcase 2.1 : ℓ∗ is a leaf of the improved tree T ′′. Since ℓ∗ is also a leaf of T ∗, it isn’t a

special leaf. Since T ′′ correctly classifies I ′, the latter implies that cI,T ∗(ℓ∗) = cI′,T ′′(ℓ∗)—
the leaves have the same classification in both trees—and, therefore, we have |{ c(e) : e ∈
ET ′′(ℓ∗) }| ≤ 1, hence again |{ c(e) : e ∈ ET ∗(ℓ∗) }| ≤ 1.

Subcase 2.2 : ℓ∗ is not a leaf of the improved tree T ′′. Consequently, path P runs through a
special leaf m of T ′′. Let s+i be the classification of m. By construction, the subtree T ∗

m of T ∗

is a copy of the subtree Tℓi of the original tree T , and the leaf ℓ∗ of T ∗
m is the copy of a leaf ℓ of

Tℓi . Since by definition the classification of m is cI′,T ′′(m) = {s+i}, we have ET ∗(m) ⊆ ET (ℓi).
Consequently ET ∗(ℓ∗) ⊆ ET (ℓ). Since T correctly classifies I, |{ c(e) : e ∈ ET (ℓ) }| ≤ 1, and
from ET ∗(ℓ∗) ⊆ ET (ℓ) we thus get |{ c(e) : e ∈ ET ∗(ℓ∗) }| ≤ 1.

Let us now turn to the question of decreasing the depth of the input decision tree T
employing such a local replacement. This does not work out of the box: Even when
d(T ′′) < d(T ′) it still can happen that d(T ∗) > d(T), since the depth of a special leaf v of T ′′

of classification s+ i can be larger than the depth of the corresponding leaf ℓi of T ′, resulting
in a larger depth of T ∗ if the subtree attached to v at T ∗ is large.

To overcome this problem, we enrich the local instance with additional information,
defining a weighted version of the classification problem.

4.3 Weighted Classification

We will use weighted classification instances (see Section 2) to ensure that the depth of the
original decision tree never increases. Remember that a weighted classification instance is
a tuple Iw = (E, c, d), that in addition to defining a classification instance also defines a
weight for each class c ∈ CI(E). We will show how locally decreasing the weighted depth of
the weighted local instance within our local improvement setting allows us to decrease the
depth of the original decision tree.

Definition 4 (Weighted Local Instance). Let I = (E,C) be a classification instance, T a
decision tree for I, T ′ a subtree of T , I ′ = (E′, C ′) the local instance induced by T ′, T ′′ a
decision tree for I ′ and T ∗ the improved decision tree constructed using T , T ′ and T ′′. Let
I ′w = (E′, C ′, d) denote the weighted local instance, where the weights for c ∈ c′(E′) are
defined as follows: if c = s+ i then d(c) = d(Tℓi); if c ≤ s, then d(c) = 0.

We note that T ′ is a decision tree of the weighted local instance, and hence dw(T
′) is

defined.

Theorem 2. If dw(T ′′) ≤ dw(T
′) then d(T ∗) ≤ d(T).

Proof. Assume dw(T
′′) ≤ dw(T

′) and consider a longest path P ∗ in T ∗ between the root
of T ∗ and a leaf ℓ∗ of T ∗. We denote the length of a path P ∗ by len(P ∗).

If P ∗ does not pass through r′′, the root of T ′′, then it is also a root-to-leaf path of T ,
and so d(T ∗) = len(P ∗) ≤ d(T), and the claim of is established.

884

SAT-based Decision Tree Learning for Large Data Sets

It remains to consider the case where P ∗ passes through r′′. Let P be a longest path
in T which passes through r′′. Consequently, len(P) ≤ d(T).

We can write len(P ∗) = len∗0 + len∗1 + len∗2 where len∗0 is the length of the part of P ∗

between the root of T ∗ and r′′, len∗1 is the length of the part of P ∗ between r′′ and a leaf of
T ′′, and len∗2 is the length of the part of P ∗ between a leaf of T ′′ and ℓ∗. It is possible that
len∗2 = 0.

Similarly, we can write len(P) = len0 + len1 + len2, where the three integers are defined
similarly, using len1 for the length of the part of P inside T ′.

By the definition of the weights, we have len1 + len2 = dw(T
′), and len∗1 + len∗2 = dw(T

′′).
Since dw(T

′′) ≤ dw(T
′), len∗1 + len∗2 ≤ len1 + len2. Since len∗0 = len0 by construction, this

gives d(T ∗) = len(P ∗) ≤ len(P) ≤ d(T), as claimed.

We now identify a special case of Theorem 2 where we only need to consider the unweighted
local instance and still ensure that d(T ∗) ≤ d(T). Let us call a subtree T ′ of T to be safe if
for every leaf ℓ of T ′ it holds that d(T ′) ≤ dw(T

′)− dT (ℓ).

Corollary 1. If T ′ is safe and d(T ′′) ≤ d(T ′) then d(T ∗) ≤ d(T).

Proof. Let T ′ be a safe subtree with d(T ′′) ≤ d(T ′). Let ℓ′′ be a leaf of T ′′ with dw,T ′′(ℓ′′) =
dw(T

′′) and let c be the classification of ℓ′′ in T ′′. From the definitions we get dw(T
′′) =

dw,T ′′(ℓ′′) = d(c) + dT ′′(ℓ′′) ≤ d(c) + d(T ′′) ≤ d(c) + d(T ′). Since T ′ is safe, we have
d(T ′) ≤ dw(T

′) − d(c), and so we get from dw(T
′′) ≤ d(c) + d(T ′) that dw(T

′′) ≤ d(c) +
dw(T

′)− d(c) = dw(T
′). By Theorem 2, d(T ∗) ≤ d(T) follows.

This concludes our concept of local improvement for decision trees. Next, we discuss how
SAT-based decision tree induction works.

5. SAT Encodings

The subsequent SAT encodings address the problem Bounded-Depth Decision Tree Induction:
Given a classification instance I over a classification scheme, find a decision tree of minimal
depth that correctly classifies I. The encodings also allow for minimizing the size for a given
depth.

A SAT approach to Bounded-Depth Decision Tree Induction, given a classification
instance I and an integer d, entails formulating a propositional formula F (I, d), called the
encoding, which is satisfiable if and only if there exists a decision tree of depth at most d that
correctly classifies I. The encoding is then tested by a SAT solver with increasing values
for d until it becomes satisfiable, i.e., represents a (depth-optimal) decision tree. Given a
size z, we can extend this idea to a formula F (I, d, z), which is satisfiable if and only if
there exists a decision tree of depth at most d that has at most z many nodes and correctly
classifies I. Introducing the size as a second minimization goal offers the possibility for
different optimization strategies, prioritizing one or the other.

Different encodings have been proposed that mainly differ in two respects: (i) how they
model the decision tree and (ii) how they assign thresholds to internal nodes. A common
way to represent thresholds is via binary encodings, where each possible threshold value is
represented by one binary variable. This requires

∑
f∈F |DI(f)| many binary variables if

all values are considered as thresholds, resulting in large encodings for instances with large

885

Schidler & Szeider

feature domains. Not considering all values as thresholds can cause the decision tree to be
deeper or larger than necessary.

We will first discuss our encoding DT_pb, and then discuss the main ideas for encodings
from related work.

5.1 DT_pb

The idea behind DT_pb is to formulate the problem in terms of partitions: Starting from a
partition containing only the set of all samples, a decision tree refines this partition more
and more, until at the leaves, each set in our partition contains only samples of a single
class. This approach has been used successfully for different graph-related problems and was
introduced by Heule and Szeider (2015) for clique-width computation. We first reformulate
the problem of finding a decision tree of a given depth for a classification instance I by
partitioning the set of samples (Theorem 3). We then directly convert this definition into a
propositional CNF formula F (I, d), that is satisfiable if and only if a decision tree of depth d
that correctly classifies I exists (Theorem 4).

Let I = (E, c) be a classification instance and S = (S0, . . . , Sd) a sequence of partitions
of E. We refer to the classes as groups and partitions S0, . . . , Sd as the levels 0, . . . , d. S is a
DT-sequence that correctly classifies I if the following conditions hold.

DT1 S0 = {E}.

DT2 For all 1 ≤ m ≤ d it holds that, for each group g ∈ Sm−1 \ Sm, there are groups
g′, g′′ ∈ Sm with g = g′ ∪ g′′, such that for some f ∈ feat(E) and t ∈ DI(f) it holds
that e′(f) ◦ t for all e′ ∈ g′, and there exists no e′′ ∈ g′′, such that e′′(f) ◦ t, where ◦ is
≤ if f is numerical and = if f is categorical.

DT3 For each g ∈ Sd it holds that for all e1, e2 ∈ g we have c(e1) = c(e2).

We note that the definition implies that Sm is a refinement of Sm−1, for 1 ≤ m ≤ d. The
definition of DT-sequences corresponds to the definition of ET (v) and it is easy to see that a
decision tree of depth d can be converted into a DT-sequence of length d+ 1; and the other
way around. This leads us to the following theorem.

Theorem 3. A classification instance can be classified by a decision tree of depth d if and
only if it can be classified by a DT-sequence of length d.

Figure 4 shows an example DT-sequence that follows the example shown in Figure 1.
We encode a DT-sequence of length d for I = (E, c) where E = {e1, . . . , en} and

F = feat(E) = {f1, . . . , fk}. The result of our encoding is a propositional formula F (I, d).
This formula is satisfiable if and only if there exists a DT-sequence of length d, and therefore
a decision tree of depth d that correctly classifies I.

We use the variables

• gi,j,m, for 1 ≤ i < j < n, 0 ≤ m ≤ d, with the semantics that gi,j,m is true if and only
if samples ei and ej are in the same group at level m,

• si,m,ℓ for 1 ≤ i ≤ n, 0 ≤ m < d, 1 ≤ ℓ ≤ k, where si,m,ℓ is true if and only if the group
of sample ei at level m is split into two groups using feature fℓ.

886

SAT-based Decision Tree Learning for Large Data Sets

Id ◦C Weather Day Length Hike

e1 29.1 Sunny Sat 3 h Yes
e2 22.3 Thunder Mon 2 h No
e3 21.5 Rain Thu 1 h Yes
e4 23.7 Rain Fri 3 h Yes
e5 14.3 Rain Wed 4 h No
e6 14.7 Sunny Tue 3 h Yes

{e1, . . . , e6}

{e2} {e1, e3, e4, e5, e6}

{e3} {e1, e4, e5, e6}

{e1, e6}{e4, e5}

{e4}{e5}

{e2}

{e2}

{e2}

{e3}

{e3} {e1, e6}

Figure 4: Left: The example classification instance used in Figure 1. Right: a DT-sequence
corresponding to the decision tree in Figure 1.

• li,m for 1 ≤ i ≤ n, 0 ≤ m < d, that is true if and only if the sample ei at level m is in
the group where e(f) ◦ t.

At the start, i.e., the first set of partitions in the sequence, all samples belong to the
same group (DT1). We add the unary clauses∧

1≤i<j≤n

gi,j,0.

At the last level, all samples in one group must belong to the same class (DT3). We enforce
this by adding the unary clauses ∧

1≤i<j≤n
c(e1)̸=c(e2)

¬gi,j,d

.
The remaining clauses enforce DT2. As Sm is a refinement of Sm−1, we have to ensure

that samples in different groups cannot be in the same group at a higher level. We state this
by adding the clauses ∧

1≤i<j≤n
0≤m<d

gi,j,m ∨ ¬gi,j,m+1.

Next, we ensure that at each level m, for every sample i there exists a corresponding
feature to satisfy. For this purpose, we add the clauses∧

1≤i≤n
0≤m<d

∨
1≤ℓ≤k

si,m,ℓ,

887

Schidler & Szeider

and ensure consistency within groups by adding the clauses∧
1≤i<j≤n,
0≤m<d,
1≤ℓ≤k

¬gi,j,m ∨ ¬si,m,ℓ ∨ sj,m,ℓ.

The next step in encoding DT2 is determining in which group the sample is in the next
level. We distinguish between numerical and categorical features and add the following
clauses. First, we handle categorical features and samples that agree on this feature value:∧

fℓ∈R(F),
1≤i,j≤n,i ̸=j
ei(f)=ej(f),

0≤m<d

¬gi,j,m ∨ ¬si,m,ℓ ∨ ¬li,m ∨ lj,m.

Next, we handle those samples that disagree on the feature value:∧
fℓ∈R(F),
1≤i<j≤n

ei(f)̸=ej(f),
0≤m<d

¬gi,j,m ∨ ¬si,m,ℓ ∨ ¬li,m ∨ ¬lj,m.

For numerical features, we handle the sample based on the ordering of the feature value. We
use the shorthand notation g∗ as follows:

g∗i,j,m =

{
gi,j,m if i < j;
gj,i,m otherwise.

We can now state that the split in two groups has to be consistent with the ordering of
the feature values: ∧

fℓ∈N(F),
1≤i,j≤n

ei(f)≤ej(f),
0≤m<d

¬g∗i,j,m ∨ ¬si,m,ℓ ∨ ¬lj,m ∨ li,m.

For the case the two features have the same feature value, we add the following clauses:∧
fℓ∈N(F),
1≤i<j≤n

ei(f)=ej(f),
0≤m<d

¬g∗i,j,m ∨ ¬si,m,ℓ ∨ ¬li,m ∨ lj,m.

We finalize the encoding of DT2 by ensuring that the refinement into groups is according
to the values in l: ∧

1≤i<j≤n,
0≤m<d

gi,j,m+1 ↔ (gi,j,m ∧ (li,m ↔ lj,m)).

By construction of the formula and from Theorem 3 we obtain the following result.

888

SAT-based Decision Tree Learning for Large Data Sets

Theorem 4. F (I, d) is satisfiable if and only if there exists a decision tree of depth at most
d that correctly classifies I.

The number of clauses in F (I, d) is O(|E|2 · |feat(E)| · d). While most of these clauses
are short, the number of literals per clause is in O(|feat(E)|). Therefore, the main factor
determining the encoding size is the number of samples and not the depth.

Encoding Weights. We can encode weights with DT_pb by using different maximum
depths for the different classes. Let dmin be the lowest weight among all classes. Given a
class c, for all ei, ej ∈ E such that C(ei) = c, C(ej) ̸= c, we add the clauses ¬gi,j,w, where
w = d− d(c) + dmin is the allowed depth in regards to the weight of c.

Minimizing Size. We define the formula F (I, d, z) for limiting the size of the decision
tree. The following modification does not guarantee that the decision tree has at most z
nodes but that the decision tree has at most z leaves. For this purpose, we add variables zi
for 1 ≤ i ≤ n, where zi is true if ei is the first sample in its group, i.e., ei is not in any leaf
that correctly classifies any ej with 1 ≤ j < i. We express these semantics with the following
clauses: ∧

1≤j≤n,
0≤m<d

zj ∨
∨

1≤i<j,
c(ei)=c(ej)

gi,j,d.

The number of leaves can then be restricted using any cardinality constraint encoding. We use
totalizer constraints (Bailleux & Boufkhad, 2003), as they performed best for our purposes.

5.2 Further Encodings

We discuss representative encodings from the literature. Each of these encodings consists of
three parts that they approach differently:

1. Encoding the decision tree structure.

2. Encoding the labeling of the internal nodes.

3. Encoding the paths that the samples take. This is then used to verify the correct
classification of the sample.

The classes for the leaves implicitly follow from the paths of the samples.
The encoding by Narodytska et al. (2018) defines a propositional Formula F (I, z), which

is satisfiable if and only if there exists a decision tree for I with at most z nodes. In the
encoding, the structure of the z many nodes is not fixed, and the solver can arrange them as
needed. Further, the encoding requires the instance to be binarized and, consequently, only
labels the internal nodes with features. The dynamic structure of the decision tree limits the
performance of this encoding, as it requires many clauses to express the relationship between
nodes, more precisely, the encoding size is quadratic in the number of nodes. The dynamic
structure also makes encoding the samples’ paths less efficient. Consequently, finding a model
for F (I, z) is comparatively hard, as our experiments show (Section 10). The advantage of
this encoding is that it minimizes the size of the decision tree without fixing the depth.

Janota and Morgado (2020) devised a new encoding that does not encode the structure
of the decision tree, but the paths of the decision tree. The encoding then enforces that these

889

Schidler & Szeider

paths are consistent with a decision tree. Hence, the structure of the decision tree is encoded
implicitly, which makes the encoding more succinct. Indeed, the encoding’s size is now only
linear in the number of nodes. The samples are then associated with exactly one path. As in
the previous encoding, the instance must be binary. Further, the encoding is parameterized
by the depth and the number of leaves of the decision tree, where the number of leaves
corresponds to the number of paths in the decision tree. Janota and Morgado (2020) noticed
that both their encoding and the encoding by Narodytska et al. (2018) often struggle even
for very simple instances. Specifically, the encodings struggle on instances, where it would
be possible to enumerate all possible decision trees in a reasonably short time. Additionally,
the encodings are good at labeling the nodes of a decision tree if the decision tree’s structure
is fixed. Janota and Morgado (2020) used these observations in an incremental approach:
instead of computing a complexity-optimal decision tree in one SAT call, they enumerate
all possible tree structures of a specific depth. These enumerated structures are usually
incomplete and for each enumerated structure they call the SAT solver. The SAT solver
then completes the decision tree. Their experiments show that this “topology enumeration”
indeed speeds up the search for both encodings.

Avellaneda (2020) achieved even better scalability by fixing the structure of the decision
tree to a perfect tree of a given depth d. Therefore, enumerating the structures is not
necessary and the SAT solver only has to label the nodes with binary features, as this
encoding expects a binary instance. The paths of the samples are encoded explicitly, which
is straightforward, due to the fixed structure. Since the encoding uses a perfect tree, it
requires Ω(2d) many clauses. In comparison to the encoding by Narodytska et al. (2018), the
encoding’s size is now linear and not quadratic in the number of nodes.

Shati et al. (2021)’s encoding also fixes the structure of the decision tree to a perfect
tree. The key feature is that the encoding does not require a binary instance. Instead, the
internal nodes of the decision tree are only labeled with features. The thresholds are encoded
implicitly using the samples’ paths, as encoded in the previous encoding. The encoding
enforces that these paths are consistent with a threshold as follows. For an internal node
and potential feature, the paths that the samples take at this node have to be consistent
with a single split, i.e., for categorical features all samples going to the left have to have the
same feature value and for numerical features all the samples going to the left have to have a
feature value lower than the samples going to the right. The threshold is then implied. This
encoding’s size is, therefore, only dependent on the number of features, not the domain size,
which can severely decrease the overall size compared to the encoding by Avellaneda (2020).

Our encoding DT_pb differs in several ways from the other encodings. Similar to the
encoding by Shati et al. (2021), DT_pb does not require a binary instance. Hence, the
encoding size depends (linearly) on the number of features. DT_pb does not encode the
structure of the decision tree besides the maximum depth. The structure is implicit in the
refinement, which makes the depth only a linear factor in the encoding size. This is a drastic
reduction as compared to the previous encodings. Further, while the previous encodings
require an explicit encoding of each leaf’s class, this is also implicit in DT_pb, making the
size independent of the number of classes. DT_pb also does not encode the samples’ paths,
as these are implicit in the refinement. The weakness of this encoding is that it requires one
variable per pair of samples, making the encoding size quadratic in the number of samples,
while the size of all other encodings is linear in the number of samples. Therefore, DT_pb

890

SAT-based Decision Tree Learning for Large Data Sets

performs better than other encodings, whenever the complexity-optimal decision tree has large
depth but few samples, e.g., instances that require one very deep branch in a comparatively
small decision tree. This case does not occur often for full classification instances, but occurs
frequently for local instances created by DT-SLIM. When using DT-SLIM, instances may
also have many classes due to special leaves, which is also comparatively easy for DT_pb.

All the SAT encodings discussed here do not scale well to instances with many samples,
this is due to the explicit encoding of a path for each sample in all encodings but DT_pb.
These constraints are necessary to ensure the decision tree is correctly classifying the instance.
We discuss the empirical evaluation of how different encodings perform in Section 10. Further,
the encodings can easily be adapted to induce accuracy-optimal decision trees using MaxSAT,
as has been shown by Hu et al. (2020) and Shati et al. (2021). Instead of forcing the samples
to be classified correctly, the corresponding clause becomes a soft clause and the MaxSAT
solver then optimizes the accuracy. A similar approach could also be used for our encoding.

6. Instance Size Reduction

As we have seen in the previous section, the number of samples is one of the main factors
determining encoding size. Encoding size, in turn, often correlates with the solving time.
Since we cannot reduce the optimal size or depth, we try to reduce the number of samples.
Hence, we try to speed up solving time by reducing the encoding size, and since we cannot
reduce the required depth, we have to reduce the number of samples using the data reduction
methods proposed subsequently. Additionally, our methods often remove features, further
decreasing the encoding size.

The main idea behind our methods is that we can ignore duplicate samples: given two
samples with the same values for all features, we can remove one of them and still obtain
a classifying decision tree for the original instance. Hence, these data reduction methods
strategically modify the samples to reduce the number of values in each feature’s domain.
This, in turn, increases the chance that two samples have the same values. The drawback of
these data reduction methods is that we lose optimality: a complexity-optimal decision tree
for the reduced instance might be deeper and/or larger than a complexity-optimal decision
tree for the unreduced instance. The methods and concerns are closely related to binarization,
discussed in Section 3.

We formalize this idea using active domains DA
I (f) ⊆ DI(f): the set of domain values of

a feature f that we consider as possible thresholds. We first show how small active domains
help to reduce the number of samples and then introduce our methods for finding small
active domains.

6.1 Removing Samples

Given active domains DA
I (f) ⊆ DI(f) for each feature f , we create the reduced instance

Ir = (Er, cr) as follows. First, we remove all features f with DA
I (f) = ∅. Next, we add for

each numerical feature f the value maxDI(f) to the feature’s active domain. Finally, we
add for each e ∈ E a reduced sample er to Er defined as

891

Schidler & Szeider

er(f) :=


e(f), if e(f) ∈ DA

I (f)

min{ t ∈ DA
I (f) : t > e(f) }, if f is numerical

unused, otherwise.

Further, cr is defined such that for each er ∈ Er where er corresponds to an unreduced
sample e ∈ E, it holds that cr(er) = c(e).

Here, the unused value for categorical features is a special value that is not used as a
threshold when inducing a decision tree for Ir. Hence, at every node that uses the feature,
the corresponding samples will always take the right path. The reduction in the number of
samples is then automatically achieved whenever several samples in E map to one sample
in Er.

Since in a decision tree for Ir each sample’s path is, by construction, the path that the
unreduced sample would take, we observe the following:

Observation 1. A decision tree that correctly classifies the reduced instance Ir also correctly
classifies I.

Next, we discuss our methods for computing small active domains. Our first method
applies only to numerical features, while the second method applies to both numerical and
categorical features.

6.2 Bucketization

Bucketization (Verwer & Zhang, 2019) aims to reduce the active domain size of a single
numerical feature independent of the other features. This can already drastically reduce the
encoding size for encodings that use a binary representation for the possible thresholds.

For each numerical feature f ∈ F , we denote by Ef [i] the i-th sample in E sorted by the
values for f . We now define

DA
I (f) := {Ef [i](f) : 1 ≤ i ≤ |E| − 1, c(Ef [i]) ̸= c(Ef [i+ 1]) }.

In other words: for each numerical feature, we only consider those values that partition the
samples according to the samples’ class.

The runtime of this method is in O(|F | · |E| · log |E|), as we have to sort the samples
according to each feature. However, for most non-trivial instances, it holds that |F | ≪ |E|.
Although using these methods’ active domains may lead to more complex decision trees (Lin
et al., 2020), we could not observe this sub-optimality in our experiments. We do not use
other related methods that could reduce even more values, such as uniformly picking a
constant number of values, or using quantiles (Günlük et al., 2021; van der Linden et al.,
2023), as this could cause a decrease in training accuracy.

6.3 Feature Reduction

Classification instances with fewer features result in smaller SAT encodings, and it is,
therefore, useful to remove features as long as we do not misclassify samples in the original
instance. A support set, for an instance I = (E, c) over a feature set F , is a subset F ′ ⊆ F ,
such that for any two samples that have a different class, the support set contains at least

892

SAT-based Decision Tree Learning for Large Data Sets

one feature the two samples disagree on (Ibaraki et al., 2011; Ordyniak & Szeider, 2021).
Removing features as long as the remaining features form a support set guarantees that the
induced decision tree will still classify the original instance. However, we observed that it is
rarely possible to remove features this way for instances with few features and large domains,
as in this case, the set of features is often already a minimal support set.

We, therefore, refine the notion of support sets to threshold support sets, which gives us
more potential for data reduction. A threshold support set S for instance I is a set of pairs
(f, t) with f ∈ F and t ∈ DI(f). Further, for any two samples e1, e2 ∈ E with c(e1) ̸= c(e2),
S contains a tuple (f, t) such that t separates e1 and e2 on feature f , which means that, if
f is numerical, then e1(f) ≤ t < e2(f) or e1(f) > t ≥ e2(f), and if f is categorical, then
e1(f) = t ̸= e2(f) or e1(f) ̸= t = e2(f). Given a threshold support set S, we define the
active domain as follows:

DA
I (f) := { t : (f ′, t) ∈ S, f ′ = f }.

We can compute a subset-minimal threshold support S set by starting with S = ∅, and
by comparing all samples of different classes, adding a new pair to S whenever none of the
existing thresholds separate the two samples. Let D = maxf∈F |DI(f)|, then this algorithm
runs in time O(|E|2 · |F | ·D) where the actual running time strongly depends on the instance.
Which features and thresholds are chosen for S in what order can determine the quality of
the result. We choose these elements randomly.

A quick way to find a support set is given by the following observation:

Observation 2. For a given decision tree T the set { (feat(v), thresh(v)) : v ∈ V (T) \L(T) }
is a threshold support set.

Although the resulting support set is usually not as useful for our purposes, as improve-
ments often require using different thresholds, we can compute this support set much faster,
making it an attractive alternative, whenever the instance is too large for the heuristic above.
This concept is also used in binarization, often using an ensemble of trees rather than a
single tree (McTavish et al., 2022).

In general, threshold support sets result in smaller active domains compared to bucketiza-
tion. Nonetheless, it is useful to apply the simpler method, as it is usually much faster, and
it speeds up and informs the second method, providing overall better threshold support sets.

We now combine all discussed components in our approach DT-SLIM, the topic of the
next section.

7. DT-SLIM

In this section, we describe DT-SLIM, the overall algorithm that facilitates the SAT-based
local improvement, building upon the theoretical results of Section 4, the encodings described
in Section 5, and using the data reductions from the previous section.

As before, let T be a decision tree for a classification instance I = (E, c). Our aim is
to select a subtree T ′ which gives rise to a local instance I ′ = (E′, c′) and a weighted local
instance I ′w = (E′, c′, d). Since we will try to find a better decision tree T ′′ for I ′w with a
SAT encoding, we need to select T ′ in such a way that the encoding size remains feasible.

893

Schidler & Szeider

We ensure that the local instance is small enough using a budget given by integer-valued
parameters d̂ and ĉ. The maximum depth of T ′ is limited by d̂, thereby limiting one of the
main factors for the encoding size. The other main factor, the number of samples, is limited
by ĉ. Further, since the depth of T ′ gives us an upper bound, we search for an improved
decision tree starting with F (I ′, d(T ′)− 1) and incrementally decrementing the depth limit.
Therefore, with each successful SAT call, we improve upon T ′, even if we cannot find the
optimal depth.

7.1 Operations

Given an internal node r′ of T that is the root of subtree T ′, we have three different operations
we can perform:

Leaf select: Whenever d(Tr′) ≤ d̂ and |ET (r
′)| ≤ ĉ, hence, the subtree’s depth and local

instance’s number of samples are within the budget, we can simply create a local instance
using all the samples in ET (r

′) as they are.

Leaf reduce: In case d(Tr′) ≤ d̂ and |ET (r
′)| > ĉ, we need to reduce the number of samples

in ET (r
′) using the reduction methods discussed in Section 6. We can use the local instance

if the number of samples after the reduction does not exceed ĉ.

Mid reduce: In case both d(Tr′) > d̂ and |ET (r
′)| > ĉ, we need to select a subtree of Tr′

as T ′ in a way such that d(T ′) ≤ d̂. Afterwards, we introduce special leaves as discussed in
Section 4, and modify ET (r

′) accordingly to obtain our local instance. Finally, we apply
Section 6’s data reductions to the local instance and thereby try to get the size of the local
instance to conform to ĉ. We only select safe subtrees in this operation.

We try to apply the three operations in the above order, and whenever one is applicable,
after performing the respective reductions, we do not need to try the others for the same r′.

7.2 Subtree Selection

We propose the following search strategy for local instances. We find a leaf ℓ of maximum
depth and proceed on the path P (ℓ) from the root to ℓ. We try each internal node in turn as
the subtree’s root r′ until we reach ℓ or we can apply leaf selection or reductions, at which
point we know that no further improvements on this path are possible. We then proceed
with the next leaf and never use a node in P (ℓ) as a possible root r′ again. In general, we
never choose a node for r′ as the subtree’s root that has already been tried unsuccessfully in
a prior iteration. Once we tried all nodes, we exhausted our options. Whenever we find an
improvement, we discard the path P (ℓ) and start again, as there might be a different leaf of
maximum depth after the improvement. The reason why we proceed from top to bottom is
that changes in the top affect the path that samples take later on, and the top-down order
requires fewer tries.

The structure of the subtree T ′ for leaf selection and leaf reduction is clear; for mid
reduction we propose the following strategy. We start with T ′ consisting only of the root
r′ and then incrementally grow T ′ as follows: in each iteration, we add all nodes v from
V (Tr′) \ V (T ′) where depth d(Tv) is maximal until we either hit d̂ or after data reductions
|E′| > ĉ. Maximizing the depth has two advantages: (i) T ′ is usually unbalanced, which

894

SAT-based Decision Tree Learning for Large Data Sets

creates more opportunities for depth reduction, and (ii) T ′ is always safe. We, therefore, do
not have to use weights.

Data Reductions The heuristic for computing threshold support sets discussed in Sec-
tion 6.3 is quadratic in the number of samples and therefore becomes prohibitively slow when
the number of samples becomes too high. Whenever the runtime of the heuristic becomes
infeasible, we use the thresholds used in the subtree T ′ as our threshold support set.

7.3 Algorithm

We can now formulate the entire algorithm, which we refer to as DT-SLIM(H), where H
denotes the heuristic used to generate the initial decision tree T . The pseudo-code for
DT-SLIM(H) is shown in Algorithm 1. It iteratively selects a leaf ℓ with maximum depth,
ignoring those in the set D of completed nodes. The algorithm proceeds top-down from the
root, as any improvements, affect the subtrees. In a bottom-up approach, later improvements
could change already explored parts of the decision tree, which would necessitate re-exploring
these parts. Hence, the top-down approach avoids the need for re-exploration.

The three operations are stated as an if-then-else construct. Leaf select in Line 8, leaf
reduce in Line 12, and mid reduce in Line 17. These operations are performed for each
node v on the path from the root to ℓ. Each operation constructs a local instance I ′, which
is optionally reduced in size by a call to reduce. Whenever I ′ is within the budget, the SAT
solver call is triggered by induce_dt. In case one operation succeeds in finding an improved
subtree, the other operations are skipped. The method construct_subtree constructs the
subtree for mid reduction as described in the previous section.

In case an improved tree T ′′ has been found, it is used to improve T ∗. Since this changes
the structure of the subtree below v, the path to the leaf ℓ is invalid. Hence, we recompute the
path and start again. Further, the change in the subtree may enable further improvements.
Therefore, v is not marked as done.

Depending on how the SAT encoding is used in the induce_dt call, the guarantees on T ∗

change. Independent of the SAT encoding, DT-SLIM never increases the depth, hence it
always holds that d(T ∗) ≤ d(T). The size of T ∗ depends on what the SAT encoding optimizes
for. Whenever size is optimized, before depth, it holds that |V (T ∗)| ≤ |V (T)|. Otherwise,
the size can theoretically increase to O(2d(T)). We discuss the practical considerations in
Section 8.3.

Whenever no improvements are found, the node is marked as done. The algorithm
terminates when no improvements can be found for any node. Without the mid reduce
operation, the algorithm terminates after O(2d(T)) many iterations, as DT-SLIM never
increases the depth. The increase in size is usually not drastic, hence, the number of
iterations is usually in O(|V (T)|). The mid reduce operation has to choose from a large
number of possible subgraphs. Hence, each improvement can enable another improvement,
making the number of iterations unpredictable. In practice, we never observed this behaviour
and the number of iterations is usually in O(|V (T)|).

895

Schidler & Szeider

Algorithm 1: DT-SLIM(H)
Data: An instance I = (E, c), a decision tree T = (V,A) with root r induced using

H, a depth limit d̂, a sample limit ĉ.
Result: A new decision tree T ∗ with d(T ∗) ≤ d(T).

1 D ← ∅ // D keeps track of visited roots.
2 T ∗ = T // T ∗ contains the current best decision tree.
// Run until all nodes are marked as done.

3 while V (T ∗) \D ̸= ∅ do
4 ℓ← arg maxℓ∈L(T)\Dd(ℓ) // Find deepest leaf ignoring visited roots.
5 P ← path(r, ℓ) // Path starts at the root and leads to the leaf.
6 foreach v ∈ P do
7 if v /∈ D then

// Perform leaf select.
8 if d(T ∗

v) ≤ d̂ and |ET ∗(v)| ≤ ĉ then
9 I ′ ← (ET ∗(v), c)

10 T ′′ ← induce_dt(I ′, d(Tv)− 1)
11 D ← D ∪ P

// Perform leaf reduce.
12 else if d(T ∗

v) ≤ d̂ then
13 I ′ ← (ET ∗(v), c)
14 I ′ ← reduce(I ′)
15 if |E′

T ∗(v)| ≤ ĉ then
16 T ′′ ← induce_dt(I ′, d(Tv)− 1)

// Perform mid reduce.
17 else
18 T ′, E′, c′ ← construct_subtree(v)
19 I ′ ← (E′

T ′(v), c′)
20 I ′ ← reduce(I ′)
21 if |E′

T ′(v)| ≤ ĉ then
22 T ′′ ← induce_dt(I ′, d(T ′)− 1)

/* Whenever we change the structure of the subtree, we do not
mark v as done. Further, since P becomes invalid, we find
a new leaf ℓ and path P. */

23 if any T ′′ found then
24 T ∗ = replace(T ∗, T ′, T ′′)
25 break
26 D ← D ∪ {v}

8. Implementation

So far, we have discussed our approach conceptually. In this section, we will discuss the
practical aspects: which encoding we use, why we use it, and how we determine good values
for the budget.

896

SAT-based Decision Tree Learning for Large Data Sets

8.1 Choosing an Encoding

We tested all the encodings we discussed so far (see Section 10). Overall, the encoding
by Shati et al. (2021) performed best. As expected from the asymptotics, at higher depths,
when the encoding can handle only a limited number of samples, our encoding DT_pb starts
to perform better. For this reason, we use a Dynamic Encoding in our implementation: up
to depth 9, we use Shati et al.’s encoding, and for higher depths, we use DT_pb.

DT-SLIM is designed for instances that can not be tackled directly by an encoding. In
general, local instances could be encoded in two ways: (i) each local instance is encoded
separately and then solved by a new SAT solver instance, or (ii) we encode the full instance
once and use one SAT solver instance throughout the whole DT-SLIM run. Local instances
are then run using assumptions in an incremental call. Since we target instances that cannot
be solved directly by an encoding, very often because the encoding would be too large, we
use option (i).

8.2 Determining the Budget

With the encodings in hand, the next question is, which value to use for our depth budget d̂
and sample budget ĉ, and at which depth should we switch encodings.

We used randomly generated subsets of increasing size from different instances (see
Section 10 for details on the instances). We increased the size until the respective encoding
failed.

Further, we also used a heuristically computed decision tree T and used different nodes
v ∈ V (T) to generate local instances from ET (v). Our results show that instead of an
absolute sample limit, it works best to define for each 1 ≤ m ≤ d̂ a specific ĉm. With
increasing m, the value of ĉm decreases until it reaches 0 when m > d̂.

The depth and number of samples provide a crude estimate for the solver’s running time,
as the solving time can greatly vary for the same depth and number of samples. Therefore,
we picked our limits such that it is reasonable to expect that the solver will finish within
a given timeout, in our case five minutes. While choosing higher values allows DT-SLIM
to try more improvements, it also means that the timeout will be exceeded very often, and,
therefore, a lot of time is spent on SAT-solver runs that will not find a reduction in depth or
size.

We use a sample limit of 25000 samples for low depths and incrementally lower it to 250
until the maximal depth of 14.

8.3 Size Minimization

Minimizing only the depth can severely increase the decision tree’s size, as the solver balances
the tree and often requires more nodes to achieve lower depths. The use of special leaves
aggravates this problem, as any duplication of a special leaf effectively duplicates a whole
subtree. We propose several options that directly address that issue and limit the size
increase in a single DT-SLIM iteration.

The core technique uses the size minimization offered by all the encodings. This gives us
the choice of size as an additional optimization goal, either before or after depth. Alternatively,
we can enforce that the size does not increase without minimizing it. Special leaves can

897

Schidler & Szeider

be constrained such that they can only occur once by stating that all samples whose class
corresponds to the special leaf have to be classified by the same leaf. These options highlight
another benefit of using a SAT-based approach: adding extra constraints that constrain the
decision tree to fit application-specific requirements is easy.

These options directly tackle the size of a decision tree after a single DT-SLIM iteration.
It is important to mention that this does not automatically lead to smaller decision trees
after a full DT-SLIM run for several iterations. For example, duplicating special leaves may
be beneficial, as it might enable more improvements in the subtrees, decreasing the overall
size later on. Similar effects occur when minimizing the size first, where later improvements
are made impossible. In fact, the only configuration that showed an overall benefit, compared
to only minimizing the depth, was minimizing the size as a secondary objective. For this
reason, we only consider the minimization of depth and depth then size in our experiments.

8.4 Unknown Values

Sometimes e(f) is unknown for a feature f and a sample e, i.e., e is a partial function. In
such a case, we use the most prevalent value for f among the other samples. In case this
causes inconsistencies, i.e., using the most prevalent value for sample ei causes it to be
equal to another sample ej that was previously different, but c(ei) ̸= c(ej), we ignore this
sample when inducing the decision tree. Without using a replacement for the unknown value,
we could not consider samples with unknown values, which can lead to very low training
accuracy on instances with many unknown values.

9. Decision Tree Pruning

Decision tree pruning is well known to be an essential tool for generalization, i.e., high accuracy
on unseen data. Surprisingly, it has not been considered in the literature in conjunction
with SAT-based methods. We provide the first integration of SAT-based methods and
state-of-the-art pruning techniques. We use established post-pruning methods, i.e., methods
that are applied after inducing a classifying decision tree. We first briefly discuss these
techniques and then their integration with SAT-based methods.

u w

v v wv

Tu Tw

Tw

(a) (b) (c)

u

Tu

Figure 5: The illustration shows the original tree (a) and result of subtree-replacement (b)
and subtree-lifting (c).

898

SAT-based Decision Tree Learning for Large Data Sets

Pruning heuristically removes subtrees from a decision tree to achieve a better gener-
alization. In other words, pruning is a method that trades an increased error rate on the
training data for a lower estimated error rate on unseen data. Pruning of a decision tree T
is performed relative to a specific non-leaf node v ∈ V (T) \ L(T); there are two pruning
operations illustrated in Figure 5: make v a leaf and thereby omit Tv (subtree-replacement),
or, let u and w be the children of v in any order, replace v by u, thereby lifting Tu and
removing Tw (subtree-lifting). We consider two different pruning methods. Each method
defines its metric and checks the tree’s nodes in turn. A pruning operation is then performed
whenever it improves the metric. More specifically, we use the following methods. Let f
denote the error rate of the decision tree (misclassifications divided by the number of samples)
after pruning.

Cost-complexity pruning (Breiman et al., 1984). We prune a node v if the pruning
decreases R(v) = f + α|L(T)|. The parameter α controls the trade-off between error rate
and the number of leaves; the higher α, the smaller the resulting tree.

C4.5’s pruning (Quinlan, 1993). We prune a node v if eT (v) < e′T (v), where e′T (v)
and eT (v) are the estimates for error rates before and after pruning, respectively, defined as

follows: eT (v) =
(
f + z2

2|ET (v)| + z ·
√

f
|ET (v)| −

f2

|ET (v)| +
z2

4|ET (v)|2

)
·
(
1 + z2

|ET (v)|

)−1
where z

is the percent point function value for confidence c (Tan, Steinbach, Karpatne, & Kumar,
2019). The error estimate for the current subtree is calculated by e′T (v) =

(∑
ℓ∈L(Tv)

(|ET (ℓ)|·
eT (ℓ))

)
·
(
|ET (v)|

)−1
. C4.5’s pruning uses another parameter m: all leaves ℓ ∈ L(T) with

|ET (ℓ)| < m are pruned immediately.
Cost-complexity pruning and C4.5’s pruning come with hyperparameters α and (c,m)

respectively. These hyperparameters have to be tuned to good values using for example cross
validation. We assume that the hyperparameter settings are part of the input.

Pruning for SAT-based methods SAT-based methods offer several options for pruning.
The straightforward approach is to induce a decision tree first and then prune it, using
the same process as widely used heuristics like C4.5 and CART. There is also the option
to encode the pruning itself. Shati et al. (2021) showed that their SAT encoding could be
modified, such that not the depth but the training accuracy is minimized. Yu, Ignatiev,
Stuckey, and Bodic (2021) encoded cost-complexity pruning for decision lists and sets. The
two ideas could, therefore, be combined to directly apply cost-complexity pruning for SAT
encodings for inducing decision trees.

Pruning for DT-SLIM The options for DT-SLIM look different. Since we run the
SAT encoding many times on different parts of the decision tree and pruning decreases the
training accuracy, the pruned decision tree does not necessarily correctly classify the instance.
Non-classifying decision trees are generally not an issue to the SLIM approach, and DT-SLIM
handles them by correctly classifying the samples that were correctly classified before, thereby
not decreasing the training accuracy. Therefore, it is possible to integrate pruning directly
into DT-SLIM, but it is not trivial, as there are different ways of handling non-classifying
decision trees, applying pruning, handling hyperparameters, developing selection strategies,
picking termination criteria, etc., which would exceed the scope of this paper. We, therefore,

899

Schidler & Szeider

keep to the established process of improving the decision tree, keeping it classifying, and
then pruning it afterwards.

In the final section, we will evaluate DT-SLIM with and without pruning.

10. Experimental Results2

In our experiments we aim to answer several questions:

1. How well do different SAT encodings induce complexity-optimal decision trees? (Sec-
tion 10.1)

2. Can DT-SLIM reduce the complexity of decision trees? (Section 10.2)

3. How important are the different DT-SLIM operations? (Section 10.3)

4. How does pruning impact the results of DT-SLIM? (Section 10.4)

5. How do DT-SLIM decision trees compare against accuracy-optimal decision trees?
(Section 10.5)

Instances We collected a comprehensive set of instances used in related work (Bessiere
et al., 2009; Olson, La Cava, Orzechowski, Urbanowicz, & Moore, 2017; Narodytska et al.,
2018; Verwer & Zhang, 2019; Avellaneda, 2020; Schidler & Szeider, 2021), totaling 69 base
instances. Eight of these instances come with a test set. We split the other 61 instances
into five folds for cross validation, resulting in 313 instances in total. This section reports
results for the 69 base instances, averaged over the folds. The instances provide a good
variety in the number of samples, features, and classes, as Table 1 shows. Features vary from
all-numerical to mixed and to all-categorical. As we will discuss below, SAT encodings were
able to optimally solve 37 of the base instances, and we only consider the remaining 32 base
instances for our DT-SLIM experiments.

Setup Our implementation uses Python 3.9 and PySAT 0.1.73 (Ignatiev, Morgado, &
Marques-Silva, 2018). We use an adapted version of the Glucose 3.04 (Audemard & Si-
mon, 2009) SAT solver, as it is among PySAT’s solvers that performed best and has a
low memory profile. We induce heuristic initial decision trees using C4.5 implemented in
Weka 3.8.55 (Frank, Hall, Holmes, Kirkby, & Pfahringer, 2005) and CART implemented in
scikit-learn 0.24.16 (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Pret-
tenhofer, Weiss, Dubourg, VanderPlas, Passos, Cournapeau, Brucher, Perrot, & Duchesnay,
2011). Additionally, we compare DT-SLIM to the dynamic programming tool STreeD (van der
Linden et al., 2023)7. We ran the experiments with a memory limit of 12 GB on servers with
two Intel Xeon E5-2640 v4 CPUs running at 2.40 GHz and using Ubuntu 18.04. DT-SLIM
and STreeD were limited to 12 hours per run.

2. Results and source code are available at https://doi.org/10.5281/zenodo.11314227 and the current
version of the source code is available at https://github.com/ASchidler/decision_tree.

3. https://pysathq.github.io/
4. https://www.labri.fr/perso/lsimon/glucose/
5. https://www.cs.waikato.ac.nz/~ml/weka/
6. https://scikit-learn.org/
7. https://github.com/AlgTUDelft/pystreed, Commit 6aed94a

900

SAT-based Decision Tree Learning for Large Data Sets

Instance |E| |F | |C| Solved Instance |E| |F | |C| Solved

anneal 798 38 5 iris 150 4 3 x
appendicitis 106 7 2 x irish 500 5 2 x
audiology 200 70 24 x kr-vs-kp 3196 36 2
australian 690 14 2 letter recognition 20000 16 26
backache 180 32 2 x lymphography 148 18 4 x
balance-scale 625 4 3 x magic04 19020 10 2
banknote 1372 4 2 x messidor 1151 19 2
bank conv 4521 51 2 meteo 14 4 2 x
biodeg 1055 41 2 monks-1 124 6 2 x
breast-cancer-wisconsin 699 10 2 x monks-2 169 6 2 x
cancer 683 9 2 x monks-3 122 6 2 x
car 1728 6 2 x mouse 70 5 2 x
ccdefault 30000 23 2 mushroom 8124 22 2 x
cleve 303 13 2 x musk1 476 166 2
cleveland 303 13 5 x musk2 6598 166 2
colic 368 22 2 x mux6 128 6 2 x
compas-scores 11752 16 11 new-thyroid 215 5 3 x
corral 160 6 2 x objectivity 1000 59 2
german-credit 1000 24 2 pendigits 7494 16 10
haberman 306 3 2 x primary-tumor 339 17 21 x
hand posture 78095 36 5 promoters 106 58 2 x
heart-statlog 270 13 2 x segment 2310 19 7
heloc dataset 10459 23 2 seismic bumps 2584 18 2
hepatitis 155 19 2 x shuttleM 14500 9 2 x
hiv 1625 1625 8 2 soybean-large 307 35 19 x
hiv 746 746 8 2 spambase 4601 57 2
hiv impens 947 8 2 spect 267 22 2 x
hiv schilling 3272 8 2 splice 3190 60 3
house-votes-84 435 16 2 x Statlog satellite 4435 36 6
HTRU 2 17898 8 2 tic-tac-toe 958 9 2
hungarian 294 13 2 x vehicle 846 18 4
hypothyroid 3163 25 2 x wine 178 13 3 x
ida 60000 170 2 yeast 1484 8 10
IndiansDiabetes 768 8 2 zoo 101 16 7 x
Ionosphere 351 34 2 x

Table 1: A list of all instances considered for our experiments. Solved indicates that a
depth-optimal decision tree for the instance could be induced by a SAT encoding.

10.1 Encodings

In our first experiment, we were interested in the performance of the encodings themselves.
We did not include the approach by Janota and Morgado (2020) as the approach is not just
an encoding and their results show that the approach performs worse than the encodings by
Avellaneda (2020) and Shati et al. (2021).

We can see in Table 2 that the encodings alone can already solve a majority of the
instances. The encoding by Shati et al. (2021) and the Dynamic Encoding performed best
overall. Besides solving the most instances, they were also the fastest, solving many of the
instances within the first minute. This is unsurprising, as almost all induced decision trees
were below depth 10, therefore, the Dynamic Encoding was not using DT_pb most of the
time. On closer look, the Dynamic Encoding solved two more slices than Shati et al. (2021)’s
encoding, exactly where a decision tree of depth 10 was required.

901

Schidler & Szeider

Our encoding DT_pb performed similarly to the encoding by Avellaneda (2020). The
encoding by Narodytska et al. (2018) solved the fewest instances but is the only encoding
that minimizes the size independent of a depth limit.

<1m <5m <10m <1h <3h <6h
Instance S P S P S P S P S P S P

Narodytska et al. 8 0 10 0 10 0 11 1 12 1 12 2
Avellaneda 18 0 19 0 20 0 27 0 29 1 30 2
Avellaneda + Size 16 0 17 0 18 0 21 1 25 2 26 2
DT_pb 15 0 20 0 20 0 26 0 29 1 30 2
DT_pb + Size 11 0 14 0 16 0 18 0 20 1 20 1
Shati et al. 23 0 26 0 27 0 31 0 35 0 36 2
Shati et al. + Size 18 0 20 0 20 1 24 1 26 2 27 2
Dynamic Encoding 23 0 27 0 27 0 32 0 35 0 36 2
Dynamic Encoding + Size 17 0 20 0 21 1 24 1 26 2 27 2

Table 2: Solved instances by encoding grouped by runtime. For each encoding, S (Solved)
indicates the number of instances where all slices were solved and P (Partial) the number
of instances where at least one but not all slices were solved. For each depth-minimizing
encoding, the table also shows the variant, where the size is minimized as a secondary
objective.

Adding size minimization, after finding the optimal depth, makes the problem considerably
harder for each of the depth-minimizing encodings, severely decreasing the number of solved
instances. Interestingly, with size minimization, the encodings by Avellaneda and Shati et al.
perform very similarly.

Depth Limit To gauge the maximum depth any of the encodings can handle, we devised
a small experiment. We incrementally created an artificial instance with d+ 1 samples, such
that any decision tree needs exactly a branch with depth d to correctly classify the instance.
Hence, it is the smallest instance that requires depth d. We gave each encoding up to one
hour per instance. The encoding by Avellaneda (2020) managed depth 11 in 635 seconds.
Further, the encoding by Shati et al. (2021) was able to handle depth 12 in 2247 seconds.
The encoding by Narodytska et al. (2018) had an advantage here, as although the depth was
high, the number of nodes was low. This encoding managed 29 nodes or depth 14 in 1263
seconds. Finally, DT_pb was able to handle depth 15 in 342 seconds. This shows the unique
property of our encoding to handle high depths comparatively well, as long as the number of
samples is low.

10.2 DT-SLIM

In this experiment, we tested how well DT-SLIM can improve the decision trees induced
by the state-of-the-art decision tree heuristics, C4.5 and CART, and the results are listed
in Tables 3 and 4. We consider plain DT-SLIM, where only the depth is minimized, and
DT-SLIM + Size, where in each iteration, after trying to improve the depth, the solver gets
the same time for improving the size. The tables are sorted by the number of samples. In

902

SAT-based Decision Tree Learning for Large Data Sets

both tables, it is noteworthy that for the largest initial decision trees, the size after running
DT-SLIM is actually higher than without DT-SLIM.

Figures 6 and 7 show why this is the case, illustrated by two instances HTRU 2 and
ida, plotting the trajectories of depth, size, and accuracy over time. While the first figure
shows one of the larger initial decision trees in our experiments, the second figure shows the
decision tree for one of the largest instances in our set in terms of the number of samples.
In both cases, the depth decreases monotonically, but the size goes up and down in waves.
The reason for this is that DT-SLIM balances the tree, since we minimize the depth (first),
and might require more nodes than before to achieve this. This also means that after the
improvement, the same number of samples is spread over more branches. This, in turn, gives
DT-SLIM more chances for improvement. Hence, the number of nodes goes up when the
subtrees are balanced and down once DT-SLIM improves the new branches.

0 100 200 300 400 500
Minutes

10

12

14

16

18

20

22

24

De
pt

h

DT-SLIM D + S
DT-SLIM D

0 100 200 300 400 500
Minutes

600

650

700

750

800

850

900

950

Si
ze

DT-SLIM D + S
DT-SLIM D

0 100 200 300 400 500
Minutes

0.964

0.966

0.968

0.970

Ac
cu

ra
cy

DT-SLIM D + S
DT-SLIM D

Figure 6: The DT-SLIM progression for instance HTRU 2.

100 200 300 400 500 600 700
Minutes

22

24

26

28

30

32

De
pt

h

DT-SLIM D + S
DT-SLIM D

100 200 300 400 500 600 700
Minutes

350

400

450

500

550

600

650

Si
ze

DT-SLIM D + S
DT-SLIM D

100 200 300 400 500 600 700
Minutes

0.978

0.979

0.980

0.981

0.982

Ac
cu

ra
cy

DT-SLIM D + S
DT-SLIM D

Figure 7: The DT-SLIM progression for instance ida.

In comparison, Figure 8 shows the progression for the largest initial decision tree. Here,
DT-SLIM never got to the phase where it reduces the branches, as the run did not finish.
Indeed, looking at Tables 3 and 7 we see that a large increase in the number of nodes only
happens for decision trees where DT-SLIM timed out, which occurs for decision trees with
more than 3000 nodes and the CART decision tree for instance ida, which has a very large
number of features. Extending the runtime for this instances could still result in a smaller
decision tree. The obvious solution, immediately trying the improve the new, larger, subtree,
turns out to perform worse, as it drastically increases the overall runtime.

DT-SLIM works well for initial decision trees induced by C4.5. The depth is almost
always significantly reduced, and even without minimizing the size, DT-SLIM is often able
to reduce the size. With size minimization, DT-SLIM reduces the size of almost all C4.5
decision trees. In terms of accuracy, C4.5 performs a little better, although, on the instances

903

Schidler & Szeider

0 100 200 300 400 500 600 700
Minutes

56

58

60

62

64

66

68
De

pt
h

DT-SLIM D + S
DT-SLIM D

0 100 200 300 400 500 600 700
Minutes

8000

9000

10000

11000

12000

13000

Si
ze DT-SLIM D + S

DT-SLIM D

0 100 200 300 400 500 600 700
Minutes

0.730

0.732

0.734

0.736

0.738

0.740

Ac
cu

ra
cy

DT-SLIM D + S
DT-SLIM D

Figure 8: The DT-SLIM progression for instance ccdefault.

where the accuracy decreases, it does so only slightly. Overall, the accuracy stays relatively
stable, while depth and size are often greatly reduced.

The results are different for CART. When comparing CART and C4.5, the decision
tree sizes are similar—with CART decision trees being slightly smaller—but the depth
differs significantly. CART produces more balanced decision trees, hence, we expected that
DT-SLIM would not work as well here, since, as we have seen above, balancing the subtrees
is an important mechanism, and CART trees do not give many opportunities for it. Indeed,
while DT-SLIM still manages to improve the depth of almost all instances, the size reduction
was not as successful. In terms of size, DT-SLIM can achieve better size, if it minimizes the
depth and size. Particularly, again, on the largest instances, where DT-SLIM does not finish,
CART achieves better results. Interestingly, although CART achieves, in general, a better
accuracy on most instances, for the largest instances, the accuracy using DT-SLIM is better.

The complexity of the tree is visible to the user. Hence, although DT-SLIM does not
perform better than the heuristic on all instances, the user can, in these cases, decide to
either give DT-SLIM more time, or use the original decision tree instead.

10.3 Operations

Table 5 shows how often the three different DT-SLIM operations are applied per run. The
results also contain the average change in depth and number of nodes. All three operations are
necessary for most instances to achieve the best possible depth reduction. This highlights the
importance of the instance size reductions—required for leaf reduce and mid reduce—and the
importance of special leaves that enable the mid reduce operation. Particularly the instances
ccdefault, heloc dataset, and compas-scores would allow almost no reductions without mid
reduce.

All three operations consistently reduce the depth of the decision tree. While leaf select
reduces the decision tree size on most instances, leaf reduce only does so on about half the
instances, and mid reduce almost always increases the decision tree size. Hence, the mid
reduce operation requires the other to operations to eventually decrease the decision tree size.
Whenever this is possible, the overall size decreases, such as with the instances pendigits,
HTRU 2, or spambase.

10.4 Pruning

C4.5 and CART both perform their pruning after inducing the decision tree, in a separate
step. This allows us to insert DT-SLIM between the decision tree induction and the pruning.

904

SAT-based Decision Tree Learning for Large Data Sets

C4.5 DT-SLIM(C4.5) DT-SLIM (C4.5) + Size
Instance Size Depth Acc. Size Depth Acc. t [h] Size Depth Acc. t [h]

musk1 67.4 18.6 0.74 51.4 6.0 0.54 1.8 37.4 5.2 0.61 1.5
australian 139.8 16.0 0.82 145.8 7.0 0.80 1.5 114.6 7.0 0.79 2.0
hiv 746 168.6 47.0 0.73 172.6 24.0 0.76 4.9 152.6 25.6 0.79 5.5
IndiansDiabetes 225.4 18.6 0.71 227.0 7.8 0.66 2.4 195.4 7.4 0.69 3.0
vehicle 238.2 34.8 0.71 272.2 9.4 0.68 6.6 188.2 9.0 0.68 6.0
anneal 123.0 23.0 0.72 109.0 7.0 0.80 1.5 79.0 7.0 0.90 1.4
hiv impens 183.4 21.6 0.83 201.0 15.6 0.84 1.8 176.6 16.2 0.85 1.7
tic-tac-toe 125.4 11.6 0.77 139.4 7.0 0.80 0.6 115.8 7.0 0.79 0.8
german-credit 349.4 22.6 0.68 344.6 10.0 0.66 4.5 259.8 9.6 0.67 6.0
objectivity 201.0 18.4 0.73 203.0 8.4 0.74 4.6 157.0 8.4 0.72 5.5
biodeg 195.4 19.6 0.79 187.8 7.8 0.78 3.1 159.4 8.8 0.78 4.7
messidor 370.2 32.4 0.62 376.6 10.6 0.59 6.0 311.4 11.6 0.60 7.2
yeast 831.0 26.8 0.47 925.0 13.4 0.47 5.7 753.4 13.2 0.47 6.5
hiv 1625 208.2 21.8 0.87 220.6 11.6 0.87 0.3 176.6 11.6 0.87 0.4
segment 125.4 13.6 0.96 121.4 7.6 0.95 1.7 96.6 8.2 0.96 1.9
seismic bumps 360.2 24.2 0.82 339.4 11.4 0.83 3.8 274.6 11.4 0.82 4.0
splice 253.0 14.4 0.91 308.2 10.0 0.90 3.3 237.0 9.8 0.92 4.0
kr-vs-kp 87.4 15.2 0.98 139.4 10.0 0.93 1.0 106.6 10.0 0.95 1.0
hiv schilling 539.0 30.8 0.73 601.8 18.0 0.74 3.2 497.8 18.0 0.74 3.9
Statlog satellite 610.6 32.8 0.81 675.8 12.8 0.79 10.5 503.4 11.8 0.79 11.5
bank conv 664.2 27.8 0.87 640.2 16.4 0.86 11.3 502.2 16.0 0.87 11.4
spambase 483.8 29.2 0.88 455.0 21.6 0.87 5.0 364.6 21.2 0.87 4.5
musk2 233.8 19.8 0.66 233.8 11.6 0.60 8.6 248.2 12.4 0.64 8.7
heloc dataset 3107.4 44.8 0.66 5406.2 36.2 0.65 12.0 4105.0 36.6 0.66 12.0
pendigits 507.0 17.0 0.92 457.0 11.0 0.92 6.1 407.0 10.0 0.91 6.1
compas-scores 3846.2 58.8 0.76 5487.4 33.6 0.77 12.0 4611.8 37.0 0.77 12.0
HTRU 2 702.2 23.2 0.97 661.8 10.6 0.96 9.3 563.4 10.6 0.96 8.4
magic04 3120.2 38.0 0.82 6029.8 27.8 0.82 12.0 4219.0 28.4 0.82 12.0
letter recognition 3751.8 27.0 0.87 5088.6 22.0 0.87 12.0 4243.4 22.2 0.87 12.0
ccdefault 7800.2 67.8 0.73 12036.2 55.4 0.74 12.0 9362.6 57.6 0.73 12.0
ida 693.0 33.0 0.98 391.0 22.0 0.98 12.0 309.0 24.0 0.98 11.3
hand posture 3010.6 36.4 0.72 3561.4 31.0 0.72 12.0 3226.2 30.4 0.72 12.0

Table 3: Size, depth, test accuracy, and DT-SLIM runtime of decision trees induced by C4.5
and improved by DT-SLIM(C4.5). The decision trees are unpruned.

In this experiment, we compare the decision trees obtained from the heuristics with pruning to
the decision trees obtained by running DT-SLIM before pruning. Pruning without DT-SLIM
is performed by the respective heuristics implementations, and the pruning after DT-SLIM
is performed by our implementations of C4.5 pruning and cost-complexity pruning.

Hyperparameters are required by both pruning methods discussed in Section 9, and we
tune them as as follows: in addition to the test set, we withhold an additional slice, the
validation set8. We induce the decision tree using the remaining slices. Afterwards, we vary
the hyperparameters and pick the values that have the highest accuracy on the validation

8. For the eight instances that provided a test set, the validation set is created by splitting off 25% of the
samples.

905

Schidler & Szeider

CART DT-SLIM(CART) DT-SLIM (CART) + Size
Instance Size Depth Acc. Size Depth Acc. t [h] Size Depth Acc. t [h]

musk1 73.4 15.4 0.70 67.8 7.2 0.65 2.2 58.6 6.8 0.63 2.6
australian 143.4 12.0 0.81 147.4 7.0 0.79 1.2 119.8 7.0 0.81 1.5
hiv 746 137.4 14.6 0.81 172.2 10.2 0.75 0.7 151.4 10.2 0.79 1.0
IndiansDiabetes 217.8 15.0 0.72 221.4 7.6 0.66 1.9 190.6 7.8 0.66 2.2
vehicle 230.2 15.4 0.71 262.2 8.4 0.69 3.0 209.8 8.8 0.69 3.4
anneal 129.0 20.0 0.92 147.0 7.0 0.93 1.0 101.0 7.0 0.83 1.6
hiv impens 170.2 18.2 0.81 208.6 13.6 0.82 1.0 177.8 13.4 0.82 1.2
tic-tac-toe 112.6 10.6 0.79 131.8 7.0 0.81 0.6 115.0 7.0 0.80 0.9
german-credit 333.0 16.4 0.68 335.4 8.6 0.65 3.9 293.4 9.2 0.66 4.5
objectivity 207.4 19.2 0.75 195.8 8.4 0.72 4.2 161.8 8.8 0.73 5.8
biodeg 195.8 14.8 0.80 195.8 8.0 0.78 3.4 153.8 7.4 0.78 3.7
messidor 357.0 20.4 0.62 369.8 10.4 0.59 4.7 292.2 10.4 0.60 5.1
yeast 825.0 25.2 0.50 926.2 11.8 0.46 6.3 820.6 12.2 0.45 8.1
hiv 1625 188.2 14.0 0.86 228.2 10.8 0.84 0.2 181.8 11.0 0.86 0.4
segment 127.4 15.6 0.96 119.0 8.6 0.96 2.2 107.0 8.0 0.96 2.2
seismic bumps 351.4 19.8 0.81 336.6 9.8 0.81 2.9 267.0 9.6 0.80 3.3
splice 245.0 14.2 0.92 297.8 9.8 0.89 3.1 255.0 10.0 0.90 3.9
kr-vs-kp 94.6 14.6 0.98 163.8 9.6 0.94 1.2 133.8 9.6 0.93 1.4
hiv schilling 502.6 20.0 0.77 588.6 16.6 0.77 3.7 507.4 16.6 0.76 4.6
Statlog satellite 618.6 22.2 0.80 607.8 11.6 0.78 10.0 527.0 11.8 0.80 11.3
bank conv 623.8 26.8 0.87 807.4 15.2 0.86 12.0 658.2 16.2 0.86 12.0
spambase 465.8 32.0 0.89 463.0 17.6 0.87 7.1 437.4 19.2 0.87 9.2
musk2 226.6 18.4 0.68 225.8 10.4 0.67 8.6 189.0 11.4 0.67 9.4
heloc dataset 2913.4 32.4 0.61 4586.2 23.0 0.62 12.0 3560.2 23.8 0.62 12.0
pendigits 479.0 17.0 0.91 501.0 10.0 0.90 6.8 373.0 11.0 0.92 6.8
compas-scores 3659.8 32.4 0.76 5075.0 23.0 0.77 12.0 4340.6 22.8 0.77 12.0
HTRU 2 685.4 21.8 0.97 665.0 9.8 0.97 8.1 578.2 10.0 0.96 9.6
magic04 3210.2 34.4 0.82 5351.4 24.0 0.82 12.0 4025.8 25.2 0.82 12.0
letter recognition 3897.0 27.2 0.88 5077.8 22.8 0.87 12.0 4556.2 22.8 0.87 12.0
ccdefault 7505.0 42.4 0.73 10380.2 34.0 0.74 12.0 8954.6 34.4 0.73 12.0
ida 659.0 32.0 0.99 1261.0 23.0 0.99 12.0 1189.0 20.0 0.99 12.0
hand posture 3226.6 43.4 0.70 4041.0 30.8 0.70 12.0 3667.8 31.6 0.70 12.0

Table 4: Size, depth, test accuracy, and DT-SLIM runtime of decision trees induced by CART
and improved by DT-SLIM(CART). The decision trees are unpruned.

set. In case of DT-SLIM, we first perform DT-SLIM and then pruning, and in this section,
we give the results of the pruning method with the hyperparameter settings that performed
best according to the validation set. The accuracy in the results is then again measured on
the test set that was never visible to the heuristic, DT-SLIM, or pruning method during the
whole process.

Table 6 shows the results for C4.5. We can see that the DT-SLIM’s depth reductions are
maintained even after pruning. In terms of size, the results are more mixed. Interestingly,
using size minimization does not automatically achieve a smaller size after pruning, hinting
that balancing the subtrees may actually help pruning. Overall, DT-SLIM improved decision
trees are overall smaller and less deep than C4.5 decision trees, as C4.5 achieved the smallest

906

SAT-based Decision Tree Learning for Large Data Sets

Leaf Select Leaf Reduce Mid Reduce
Instance Count Depth Nodes Count Depth Nodes Count Depth Nodes

musk1 3.6 -0.6 -14.8 1.4 -3.4 12.6 1.0 -5.6 19.6
australian 2.6 -1.8 -28.8 0.6 -1.7 6.0 1.8 -1.9 42.9
hiv 746 3.8 -4.8 -13.4 0.4 -1.5 -24.0 1.2 -3.3 53.7
IndiansDiabetes 3.6 -1.8 -35.3 0.4 -0.5 -33.0 2.4 -1.7 59.2
vehicle 7.2 -0.4 -38.4 1.4 -0.9 -39.7 10.4 -2.0 35.2
anneal 1.0 0.0 -24.0 2.0 -2.5 0.0 2.0 -5.5 5.0
hiv impens 7.0 -0.5 -2.5 1.0 -1.6 17.2 0.6 -1.0 30.0
tic-tac-toe 2.2 -0.7 -5.1 1.0 -3.0 25.2 0.0 0.0 0.0
german-credit 7.6 -1.1 -19.8 1.8 -0.6 -9.1 2.0 -1.6 81.0
objectivity 9.2 -0.3 -22.9 2.4 -1.0 -3.5 3.2 -1.6 69.0
biodeg 4.6 -0.8 -35.1 2.0 -1.8 -21.4 2.2 -2.0 89.5
messidor 10.2 -0.8 -39.4 1.6 -1.1 -56.2 6.0 -2.0 83.0
yeast 9.0 -0.6 -17.2 1.6 -0.4 -50.5 5.0 -1.6 65.9
hiv 1625 6.6 -1.4 0.1 0.6 -1.0 18.0 0.2 -1.0 4.0
segment 3.0 -0.3 -18.7 1.4 -2.4 -18.9 1.4 -1.1 56.0
seismic bumps 7.0 -0.4 -26.1 1.8 -2.3 3.8 3.6 -1.7 43.0
splice 11.0 -0.2 -2.2 3.8 -0.5 14.2 0.4 -1.0 63.0
kr-vs-kp 1.4 -1.3 9.1 1.2 -2.8 32.7 0.0 0.0 0.0
hiv schilling 17.2 -0.1 0.4 4.6 -2.3 12.0 0.0 0.0 0.0
Statlog satellite 14.4 -0.2 -25.4 3.8 -0.7 -9.2 9.0 -1.6 51.8
bank conv 18.8 -0.2 -18.9 3.4 -0.5 -37.1 7.2 -0.9 63.4
spambase 16.0 -0.1 -8.5 4.6 -1.0 11.8 1.4 -1.4 38.0
musk2 17.4 -0.1 -7.7 5.8 -0.6 -13.2 4.0 -1.0 52.5
heloc dataset 0.0 0.0 0.0 0.0 0.0 0.0 12.4 -0.7 185.4
pendigits 13.0 -0.2 -22.0 4.0 0.0 12.5 4.0 -1.0 46.5
compas-scores 0.0 0.0 0.0 0.2 0.0 56.0 24.4 -1.0 66.8
HTRU 2 22.8 -0.2 -19.5 3.6 -0.3 -15.2 8.4 -0.8 54.8
magic04 1.0 0.0 3.2 0.4 0.0 4.0 13.2 -0.8 220.1
letter recognition 2.2 -0.4 42.9 1.0 -0.2 61.6 9.8 -0.4 120.5
ccdefault 0.0 0.0 0.0 0.0 0.0 0.0 13.0 -1.0 325.8
ida 22.0 -0.2 -10.3 5.0 0.0 11.2 5.0 -1.4 -26.4
hand posture 2.2 -0.1 -9.3 1.4 -2.0 14.3 3.8 -0.6 145.1

Table 5: DT-SLIM(C4.5) (without size reduction) operations performed per instance (Count),
the average change in depth per operation (Depth), and the average change in the number of
nodes (Nodes) per operation. Negative numbers indicate reductions.

size on 13 and the smallest depth on 3 of the 32 instances. In terms of accuracy, C4.5
decision trees do a little better. While the difference is mostly small, for instances with
many unknown values, like anneal, the combination of DT-SLIM and pruning is less accurate.
Here, DT-SLIM with size minimization achieves higher accuracy than DT-SLIM without size
minimization.

Comparing CART and C4.5 after pruning, C4.5 decision trees are smaller and more
accurate, while CART decision trees remain less deep. The results are shown in Table 7.
Here, the size varies: sometimes CART does better without DT-SLIM, while the depth is
almost always better using DT-SLIM. Overall, CART without DT-SLIM achieves the best

907

Schidler & Szeider

C4.5 DT-SLIM(C4.5) DT-SLIM(C4.5) + Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.

musk1 30.2 9.4 0.65 39.8 5.2 0.69 36.2 5.6 0.58
australian 16.6 6.2 0.84 16.2 4.0 0.84 14.2 4.6 0.86
hiv 746 36.2 16.0 0.82 30.2 9.0 0.75 32.6 6.8 0.76
IndiansDiabetes 13.0 4.4 0.75 16.6 4.4 0.73 27.0 5.0 0.73
vehicle 61.4 9.2 0.71 92.6 7.0 0.67 100.2 7.8 0.66
anneal 53.0 12.0 0.98 59.0 6.0 0.86 59.0 6.0 0.77
hiv impens 44.2 10.4 0.85 64.2 9.4 0.85 50.2 9.2 0.85
tic-tac-toe 43.4 6.0 0.80 41.0 5.2 0.76 41.0 5.0 0.72
german-credit 49.0 12.0 0.73 50.6 7.8 0.70 48.2 5.8 0.71
objectivity 47.0 7.6 0.79 16.2 4.2 0.76 23.0 3.4 0.78
biodeg 29.8 8.0 0.82 44.6 5.0 0.75 60.2 6.8 0.79
messidor 31.0 7.8 0.64 37.4 5.4 0.62 66.6 7.8 0.64
yeast 55.0 8.6 0.56 33.4 6.0 0.53 63.0 7.4 0.53
hiv 1625 53.4 12.0 0.84 39.8 6.8 0.83 41.0 7.8 0.84
segment 69.8 11.6 0.96 92.6 7.2 0.95 81.0 7.2 0.96
seismic bumps 33.8 6.6 0.91 39.4 4.8 0.93 55.8 6.2 0.93
splice 56.6 10.4 0.94 33.0 6.8 0.93 40.6 7.0 0.93
kr-vs-kp 41.4 10.4 0.97 54.2 7.8 0.94 52.2 8.4 0.93
hiv schilling 57.0 8.6 0.87 21.0 4.2 0.87 27.0 5.2 0.87
Statlog satellite 123.8 12.8 0.82 186.6 10.2 0.79 115.4 9.8 0.81
bank conv 35.0 7.8 0.90 76.2 7.0 0.90 45.4 7.6 0.90
spambase 64.2 12.8 0.89 91.4 10.6 0.89 83.0 10.6 0.89
musk2 38.2 9.2 0.81 40.6 5.0 0.77 28.2 3.6 0.83
heloc dataset 92.2 13.2 0.74 66.2 9.8 0.73 33.0 6.6 0.73
pendigits 325.0 15.0 0.92 317.0 11.0 0.91 281.0 11.0 0.92
compas-scores 101.8 11.8 0.81 445.0 16.4 0.81 119.0 12.6 0.81
HTRU 2 20.6 6.0 0.98 25.0 5.4 0.98 30.2 6.2 0.98
magic04 325.8 15.6 0.85 659.8 20.6 0.84 484.2 20.0 0.85
letter recognition 2721.8 24.8 0.86 4185.8 21.6 0.85 3557.8 21.0 0.85
ccdefault 78.2 9.8 0.82 17.8 5.0 0.82 25.0 7.0 0.82
ida 179.0 21.0 0.99 249.0 16.0 0.99 189.0 20.0 0.99
hand posture 713.0 21.8 0.68 788.2 19.2 0.67 605.4 17.0 0.67

Table 6: Size, depth, and test accuracy of decision trees induced by C4.5 and processed by
DT-SLIM(C4.5). All decision trees have been pruned.

size on 11 and the best depth on 6 of the 32 instances. DT-SLIM(CART)-improved decision
trees are comparatively accurate. The two DT-SLIM configurations found the most accurate
decision tree for all but 8 instances, and on these 8 instances, the accuracy was only slightly
lower than that of the CART-induced decision tree.

Pruning is important, as can be seen by comparing the result with and without pruning.
Independent of DT-SLIM, the decision trees become much smaller, less deep, and most of
the time, much more accurate. Particularly the largest unpruned decision tree for instance
ccdefault with around 7000 nodes, can achieve better generalization with only 22 nodes
after pruning. Therefore, we should always compare our methods with and without pruning.

908

SAT-based Decision Tree Learning for Large Data Sets

CART DT-SLIM Depth DT-SLIM Depth + Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.

musk1 43.4 8.6 0.62 45.0 5.0 0.67 25.8 4.2 0.63
australian 35.0 5.4 0.82 10.2 3.0 0.83 4.2 1.4 0.86
hiv 746 41.0 7.2 0.77 55.4 6.8 0.77 16.6 6.0 0.78
IndiansDiabetes 53.4 9.6 0.74 15.0 4.0 0.70 9.4 2.8 0.73
vehicle 101.4 12.0 0.68 104.6 6.6 0.69 61.4 6.0 0.68
anneal 123.0 19.0 0.91 95.0 7.0 0.93 69.0 7.0 0.91
hiv impens 75.0 10.0 0.85 57.8 7.6 0.85 65.8 7.4 0.85
tic-tac-toe 53.4 6.6 0.76 65.4 5.4 0.76 52.6 6.4 0.80
german-credit 59.4 9.4 0.72 31.4 5.0 0.73 15.0 4.0 0.71
objectivity 43.4 8.2 0.80 59.4 6.2 0.78 41.0 5.0 0.79
biodeg 87.8 11.2 0.80 62.6 5.8 0.78 38.2 5.4 0.80
messidor 34.2 8.6 0.65 160.2 8.2 0.63 117.4 6.8 0.63
yeast 45.8 8.4 0.55 31.8 5.8 0.54 62.6 7.2 0.53
hiv 1625 58.2 8.4 0.81 37.0 6.0 0.84 44.2 6.6 0.83
segment 102.2 15.4 0.95 97.0 7.8 0.95 72.6 7.8 0.95
seismic bumps 31.4 7.2 0.93 8.2 1.8 0.93 33.8 2.6 0.93
splice 45.8 8.0 0.95 42.6 7.4 0.94 38.2 7.2 0.94
kr-vs-kp 48.6 10.0 0.97 49.8 7.6 0.94 54.6 8.4 0.95
hiv schilling 88.6 6.2 0.87 99.0 4.4 0.87 47.4 3.6 0.87
Statlog satellite 88.2 9.0 0.79 148.6 8.8 0.79 145.0 9.6 0.81
bank conv 35.8 7.8 0.90 45.8 7.8 0.89 58.6 7.8 0.90
spambase 173.8 17.4 0.88 104.6 9.0 0.89 90.2 9.6 0.88
musk2 36.2 8.0 0.77 39.8 4.4 0.72 35.4 5.6 0.69
heloc dataset 50.2 7.8 0.73 130.6 8.2 0.72 75.4 8.8 0.72
pendigits 393.0 14.0 0.90 469.0 10.0 0.91 359.0 11.0 0.92
compas-scores 137.5 10.5 0.81 248.0 11.8 0.80 85.0 9.0 0.81
HTRU 2 17.4 3.8 0.98 205.4 9.0 0.97 100.6 8.2 0.98
magic04 249.4 13.2 0.85 315.0 14.2 0.84 449.4 15.4 0.84
letter recognition 3128.2 28.8 0.86 4243.8 21.8 0.86 3637.4 23.2 0.86
ccdefault 22.2 5.2 0.82 13.0 4.6 0.82 15.0 4.6 0.82
ida 67.0 9.0 0.99 871.0 20.0 0.99 547.0 19.0 0.99
hand posture 535.0 15.2 0.67 1679.0 20.2 0.66 1909.4 22.2 0.65

Table 7: Size, depth, and test accuracy of decision trees induced by CART and processed by
DT-SLIM(CART). All decision trees have been pruned.

DT-SLIM still reduces the complexity and increases the accuracy of many of the instances,
making it a valuable addition before pruning.

10.5 Accuracy-Optimal Decision Trees

Accuracy-optimal methods aim for a similar goal as DT-SLIM: small and accurate decision
trees, but try to directly compute them instead of applying pruning. Hence, we wanted to
compare DT-SLIM induced decision trees—including pruned decision trees—to accuracy-
optimal decision trees. We used STreeD (van der Linden et al., 2023), as it is among the
fastest methods, which is important for the large instances. Indeed, STreeD is faster than

909

Schidler & Szeider

DL8.5 (Aglin et al., 2020b), GOSDT (Lin et al., 2020) and only by a factor of 1.25 slower
than MurTree (Demirovic et al., 2022). Since we use much larger timeouts (van der Linden
et al. (2023) used a timeout of 600 seconds), the slightly slower performance of STreeD
compared to MurTree should not impact the results.

We leave the binarization to STreeD, which uses quintiles as a default. Although this
ignores some feature values and can cause a small decrease in (training) accuracy, the number
of binary features severely impacts STreeD’s performance, and ignoring some feature values
is important for scalability. We used the cost-complexity-accuracy mode of STreeD with a
sparsity coefficient of 10−10, as STreeD does not accept 0. This induces for a given depth
the smallest decision tree with (almost) maximum accuracy. We ran STreeD for 12 hours on
each instance, starting with a depth of 2 and increasing the depth, whenever STreeD induced
an accuracy-optimal decision tree.

The maximum depth of the induced decision trees varies. For two instances (ida and
musk2), STreeD could only find a decision tree of depth 3 within the time limit, as the
number of features was too high. For two other instances (ccdfault, hand posture), STreeD
timed out after inducing a depth 4 decision tree. STreeD found an accuracy-optimal decision
tree of at least depth 5—where it was needed to correctly classify the instance—for all other
instances, with the overall deepest decision tree having depth 12. While the deepest decision
tree had depth 12, STreeD could handle depth limits up to 20, where the accuracy-optimal
decision tree had a depth lower than the depth limit.

Table 8 shows a comparison between DT-SLIM-improved decision trees and STreeD-
induced decision trees. We have several decision trees induced by both methods: for DT-SLIM
we have pruned decision trees based on C4.5 and CART, both improved with and without
size optimization; for STreeD we have decision trees of different depths. We use two different
methods for choosing one of them for the comparison. The virtual best decision tree is the
one with the highest testing accuracy. This is the best decision tree the method could find,
if we knew the testing accuracy. Since in practice, we cannot pick the decision tree based on
the testing accuracy, we also give the validation best : we measure the validation accuracy of
each decision tree on a validation set and use the decision tree with the highest validation
accuracy.

The results show that, in general, DT-SLIM achieves better testing accuracy but the
decision trees are usually more complex. Particularly looking at the virtual best results,
DT-SLIM finds the more accurate decision tree for almost all instances. Whenever the
DT-SLIM induced decision tree has worse testing accuracy, it is at most two percentage
points worse, while the STreeD induced decision tree can be to 32 percentage points worse.
The underlying idea behind accuracy-optimal decision trees is the correlation between testing
and training accuracy. This correlation does not necessarily hold for larger decision trees.
Hence, for the instances that require large decision trees, it is not surprising that DT-SLIM
performs better, as it can preserve larger decision trees when needed.

The results are more mixed when looking at the validation best results. The low complexity
of the accuracy-optimal decision trees seems to introduce less variance in the testing accuracy,
compared to the more complex DT-SLIM decision trees.

910

SAT-based Decision Tree Learning for Large Data Sets

Virtual Best Validation Best

DT-SLIM STreeD DT-SLIM STreeD
Instance Size Dep. Acc. Size Dep. Acc. Size Dep. Acc. Size Dep. Acc.

musk1 40.6 5.0 0.73 18.2 3.0 0.72 34.6 4.8 0.67 27.8 3.4 0.59
australian 11.0 4.2 0.87 10.2 2.4 0.86 11.4 3.6 0.85 10.2 2.4 0.85
hiv 746 17.8 6.0 0.80 44.2 4.4 0.78 24.2 8.0 0.76 49.4 4.6 0.75
IndiansDiabetes 18.2 3.0 0.74 21.0 3.0 0.74 26.2 5.0 0.73 8.6 2.2 0.72
vehicle 103.8 7.4 0.71 56.2 4.6 0.69 109.4 7.6 0.69 34.2 4.0 0.68
anneal 95.0 7.0 0.93 57.0 5.0 0.87 69.0 7.0 0.91 31.0 4.0 0.84
hiv impens 63.0 7.0 0.87 35.4 4.0 0.86 30.2 7.6 0.85 29.4 3.8 0.85
tic-tac-toe 44.6 6.2 0.83 76.2 5.8 0.77 45.0 6.2 0.75 69.8 5.2 0.75
german-credit 42.6 6.8 0.75 8.6 2.2 0.75 32.6 5.2 0.71 19.8 2.8 0.72
objectivity 20.2 3.8 0.81 10.2 2.4 0.80 34.2 5.4 0.79 15.0 2.8 0.79
biodeg 65.8 6.6 0.82 32.2 3.8 0.83 55.4 5.8 0.78 34.2 4.0 0.81
messidor 89.4 7.2 0.66 24.6 3.6 0.66 96.6 7.2 0.64 23.0 3.4 0.65
yeast 58.6 7.6 0.56 18.2 3.2 0.56 38.6 6.8 0.54 40.6 3.8 0.54
hiv 1625 45.4 6.6 0.85 28.6 3.6 0.83 36.6 6.4 0.84 39.8 4.4 0.82
segment 76.6 7.4 0.96 100.6 5.6 0.96 74.2 7.0 0.96 75.8 5.2 0.95
seismic bumps 15.0 3.0 0.93 28.2 2.8 0.91 5.8 1.6 0.93 13.4 2.6 0.90
splice 37.0 7.2 0.94 30.2 4.2 0.92 42.6 7.4 0.94 30.2 4.2 0.92
kr-vs-kp 38.2 7.4 0.95 53.0 5.2 0.94 49.8 7.8 0.94 43.8 4.6 0.92
hiv schilling 20.6 5.0 0.88 21.0 3.2 0.88 19.8 4.4 0.87 9.0 2.4 0.87
Statlog satellite 91.8 8.6 0.82 27.8 3.6 0.82 114.6 9.4 0.80 34.2 3.8 0.80
bank conv 15.8 4.0 0.90 6.2 2.0 0.89 30.6 6.0 0.90 6.2 2.0 0.89
spambase 42.2 6.4 0.90 34.2 3.8 0.90 72.2 8.4 0.88 37.4 4.0 0.90
musk2 37.8 4.2 0.85 11.4 2.6 0.84 51.0 5.8 0.74 13.0 2.8 0.75
heloc dataset 16.2 6.0 0.74 10.2 2.4 0.73 30.6 7.2 0.73 10.2 2.4 0.73
pendigits 259.0 11.0 0.92 63.0 5.0 0.85 259.0 11.0 0.92 63.0 5.0 0.85
compas-scores 67.0 8.8 0.81 40.2 4.2 0.77 62.2 10.4 0.80 40.2 4.2 0.77
HTRU 2 9.0 3.6 0.98 5.0 2.0 0.97 7.8 3.2 0.98 5.0 2.0 0.97
magic04 311.8 15.4 0.85 35.0 4.2 0.84 192.2 12.8 0.84 34.2 4.2 0.84
letter recognition 3598.6 22.2 0.86 63.0 5.0 0.54 3616.2 22.2 0.86 63.0 5.0 0.54
ccdefault 8.2 2.6 0.82 8.2 2.2 0.82 20.6 5.6 0.82 8.2 2.2 0.82
ida 139.0 12.0 0.99 13.0 3.0 0.99 139.0 12.0 0.99 5.0 2.0 0.98
hand posture 760.2 18.0 0.70 21.4 3.4 0.57 548.6 16.0 0.68 24.6 3.6 0.57

Table 8: Comparison between STreeD and DT-SLIM. The left side shows the virtual best in
regards to the testing accuracy and the right hand side the best according to the accuracy on
the validation set. Acc. is always the testing accuracy. Virtual Best picks for each method
the decision tree that has the highest testing accuracy and Validation Best picks for each
method the decision tree that has the highest accuracy on a validation set.

11. Concluding Remarks

We introduced DT-SLIM, an anytime method that reduces the complexity of decision trees
and scales to very large decision trees and classification instances. Our approach includes
the novel SAT encoding DT_pb and novel data reductions.

911

Schidler & Szeider

The experimental results show how effectively DT-SLIM can reduce the size and depth of
decision trees induced by a standard heuristic. For very large decision trees, the effectiveness
is limited by the speed of DT-SLIM. Hence, improving the efficiency of DT-SLIM could
improve the results on these instances. Unsurprisingly, the reduction in size is generally
more significant if we minimize not only the depth but also the size. In terms of accuracy,
DT-SLIM might slightly reduce the accuracy. Hence, in applications where a smaller or less
deep decision tree is essential, DT-SLIM is very applicable.

Pruning is of utmost practical relevance, and the results look very different after applying
pruning. Generally, the decision tree’s size decreases drastically, independent of whether
it is DT-SLIM improved or not. Here, the initial decision tree after pruning can become
smaller without DT-SLIM than with DT-SLIM. In terms of accuracy, the results vary greatly,
depending on the heuristic used for the initial decision tree. For CART-induced decision
trees, DT-SLIM improves the depth consistently, achieves overall good size reduction, and
provides comparatively very good accuracy. For C4.5-induced decision trees, DT-SLIM is
also able to provide low-depth, small, and accurate decision trees. While DT-SLIM can
overall improve CART decision trees very well, it is more instance-dependent for C4.5, where
it can nonetheless very often improve the decision tree, not only regarding the complexity
but also the accuracy.

Accuracy-optimal methods are more complimentary. While they perform very well on
instances that can be captured by small decision trees, for decision trees that are large enough
that DT-SLIM becomes interesting, the accuracy-optimal performance decreases.

In short, the results show that DT-SLIM is indeed able to reduce the complexity of
decision trees, often drastically. Further, we have shown that when considering pruning, the
benefits carry over for many instances. DT-SLIM is, therefore, a viable method for reducing
decision tree complexity in a variety of use cases. Particularly if the depth of the decision
tree is of importance, as DT-SLIM provides significant reductions in depth.

11.1 Future Work

We see two parts of DT-SLIM that can be improved in future work. The running time, as
our method still requires a significant time investment and different ways of pruning that are
more interleaved into the improvement iterations.

Running Time DT-SLIM, in the current implementation, still offers room for improvement.
One avenue of improvement is parallelization, as DT-SLIM can run in parallel on independent
subtrees. Particularly on large decision trees, this could significantly improve runtime.
Additionally, the current implementation is written in Python, but the supporting code
around the SAT solver has become relatively complex. A significant part of the runtime
is spent selecting the local instances and there, particularly on instance size reduction.
Therefore, re-implementing the supporting code in a native language, e.g., C++, could bring
considerable improvement in efficiency.

Pruning While post-pruning works well, there are other options. As discussed in Section 9,
pruning can be included in the SAT encoding. In the context of DT-SLIM, it would be
possible to apply this method instead of finding classifying decision trees. While this can
be applied and tuned in many ways, it could improve the overall accuracy of the decision

912

SAT-based Decision Tree Learning for Large Data Sets

tree. Furthermore, the pruning results hint at the possibility that DT-SLIM might help
post-pruning remove larger parts of the decision tree. The results could be improved when
DT-SLIM could be tuned more towards providing a good input for the pruning method.

Acknowledgments

We acknowledge the support from the Austrian Science Fund (FWF), project 10.55776/P36420.
This paper is based on and extends our AAAI paper (Schidler & Szeider, 2021), where we
proposed an earlier version of our approach.

References

Aghaei, S., Gómez, A., & Vayanos, P. (2021). Strong optimal classification trees. CoRR,
abs/2103.15965.

Aglin, G., Nijssen, S., & Schaus, P. (2020a). Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of AAAI 2020, pp. 3146–3153. AAAI Press.

Aglin, G., Nijssen, S., & Schaus, P. (2020b). PyDL8.5: a library for learning optimal decision
trees. In Bessiere, C. (Ed.), Proceedings of IJCAI 2020, pp. 5222–5224. ijcai.org.

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers.
In Boutilier, C. (Ed.), Proceedings of IJCAI 2009, pp. 399–404.

Avellaneda, F. (2020). Efficient inference of optimal decision trees. In Proceedings of AAAI
2020. AAAI Press.

Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of boolean cardinality constraints.
In Rossi, F. (Ed.), Conference on Principles and Practice of Constraint Programming
(CP) 2003, Vol. 2833 of Lecture Notes in Computer Science, pp. 108–122. Springer.

Bertsimas, D., & Dunn, J. (2017). Optimal Classification Trees. Machine Learning, 106 (7),
1039–1082.

Bertsimas, D., & Shioda, R. (2007). Classification and regression via integer optimization.
Oper. Res., 55 (2), 252–271.

Bessiere, C., Hebrard, E., & O’Sullivan, B. (2009). Minimising decision tree size as combinato-
rial optimisation. In Conference on Principles and Practice of Constraint Programming
(CP) 2009, pp. 173–187, Berlin, Heidelberg. Springer Berlin Heidelberg.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth.

Costa, V. G., & Pedreira, C. E. (2023). Recent advances in decision trees: an updated survey.
Artif. Intell. Rev., 56 (5), 4765–4800.

Cutler, A., & Zhao, G. (2001). PERT—perfect random tree ensembles. In Computing Science
and Statistics, Vol. 33, pp. 490–497.

Dabrowski, K. K., Eiben, E., Ordyniak, S., Paesani, G., & Szeider, S. (2024). Learning small
decision trees for data of low rank-width. In Wooldridge, M. J., Dy, J. G., & Natarajan,
S. (Eds.), Proceedings of AAAI 2024, pp. 10476–10483. AAAI Press.

913

Schidler & Szeider

Darwiche, A., & Hirth, A. (2020). On the reasons behind decisions. In ECAI 2020, Vol. 325
of Frontiers in Artificial Intelligence and Applications, pp. 712–720. IOS Press.

Demirovic, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K.,
& Stuckey, P. J. (2022). Murtree: Optimal decision trees via dynamic programming
and search. J. Mach. Learn. Res., 23, 26:1–26:47.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 71–80. ACM.

Doshi-Velez, F., & Kim, B. (2017). A roadmap for a rigorous science of interpretability.
CoRR, abs/1702.08608.

Eiben, E., Ordyniak, S., Paesani, G., & Szeider, S. (2023). Learning small decision trees
with large domain. In Elkind, E. (Ed.), Proceedings of IJCAI 2023, pp. 3184–3192.
International Joint Conferences on Artificial Intelligence Organization. Main Track.

Fichte, J. K., Lodha, N., & Szeider, S. (2017). SAT-based local improvement for finding
tree decompositions of small width. In Conference on Theory and Applications of
Satisfiability Testing (SAT) 2017, Vol. 10491 of Lecture Notes in Computer Science, pp.
401–411. Springer Verlag.

Frank, E., Hall, M. A., Holmes, G., Kirkby, R., & Pfahringer, B. (2005). WEKA - A machine
learning workbench for data mining. In Maimon, O., & Rokach, L. (Eds.), The Data
Mining and Knowledge Discovery Handbook, pp. 1305–1314. Springer.

Gahlawat, H., & Zehavi, M. (2024). Learning small decision trees with few outliers: A
parameterized perspective. In Wooldridge, M. J., Dy, J. G., & Natarajan, S. (Eds.),
Proceedings of AAAI 2024, pp. 12100–12108. AAAI Press.

Ganian, R., Lodha, N., Ordyniak, S., & Szeider, S. (2019). SAT-encodings for treecut width
and treedepth. In Kobourov, S. G., & Meyerhenke, H. (Eds.), Proceedings of ALENEX
2019, pp. 117–129. SIAM.

Golia, P., Roy, S., & Meel, K. S. (2020). Manthan: A data-driven approach for boolean
function synthesis. In Lahiri, S. K., & Wang, C. (Eds.), Proceedings of CAV 2020, Part
II, Vol. 12225 of Lecture Notes in Computer Science, pp. 611–633. Springer.

Golia, P., Slivovsky, F., Roy, S., & Meel, K. S. (2021). Engineering an efficient boolean
functional synthesis engine. In Proceedings of ICCAD 2021, pp. 1–9. IEEE.

Goodman, B., & Flaxman, S. R. (2017). European union regulations on algorithmic decision-
making and a "right to explanation". AI Magazine, 38 (3), 50–57.

Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., & Scheinberg, K. (2021). Optimal
decision trees for categorical data via integer programming. J. Glob. Optim., 81 (1),
233–260.

Heule, M., & Szeider, S. (2015). A SAT approach to clique-width. ACM Trans. Comput.
Log., 16 (3), 24.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, 15 (3), 651–674.

914

SAT-based Decision Tree Learning for Large Data Sets

Hu, H., Siala, M., Hebrard, E., & Huguet, M.-J. (2020). Learning optimal decision trees with
maxsat and its integration in adaboost. In Proceedings of IJCAI 2020, pp. 1170–1176.
ijcai.org. Main track.

Hu, X., Rudin, C., & Seltzer, M. (2019). Optimal sparse decision trees. In Wallach, H. M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., & Garnett, R. (Eds.),
Conference on Neural Information Processing Systems (NeurIPS) 2019, pp. 7265–7273.

Hua, K., Ren, J., & Cao, Y. (2022). A scalable deterministic global optimization algorithm
for training optimal decision tree. In Conference on Neural Information Processing
Systems (NeurIPS) 2022.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5 (1), 15–17.

Ibaraki, T., Crama, Y., & Hammer, P. L. (2011). Partially defined Boolean functions, p.
511–563. Encyclopedia of Mathematics and its Applications. Cambridge University
Press.

Ignatiev, A., Marques-Silva, J., Narodytska, N., & Stuckey, P. J. (2021). Reasoning-based
learning of interpretable ML models. In Proceedings of IJCAI 2021, pp. 4458–4465.
ijcai.org.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2018). PySAT: A Python toolkit for
prototyping with SAT oracles. In Conference on Theory and Applications of Satisfiability
Testing (SAT) 2018, pp. 428–437.

Izza, Y., Ignatiev, A., & Marques-Silva, J. (2022). On tackling explanation redundancy in
decision trees. J. Artif. Intell. Res., 75, 261–321.

Janota, M., & Morgado, A. (2020). SAT-based encodings for optimal decision trees with
explicit paths. In Conference on Theory and Applications of Satisfiability Testing (SAT)
2020, Vol. 12178 of Lecture Notes in Computer Science, pp. 501–518. Springer Verlag.

Kobourov, S. G., Löffler, M., Montecchiani, F., Pilipczuk, M., Rutter, I., Seidel, R., Sorge,
M., & Wulms, J. (2023). The influence of dimensions on the complexity of computing
decision trees. In Williams, B., Chen, Y., & Neville, J. (Eds.), Proceedings of AAAI
2023, pp. 8343–8350. AAAI Press.

Kuhn, M., & Johnson, K. (2013). Classification Trees and Rule-Based Models, pp. 369–413.
Springer New York, New York, NY.

Kulikov, A. S., Pechenev, D., & Slezkin, N. (2022). SAT-based circuit local improvement.
In Szeider, S., Ganian, R., & Silva, A. (Eds.), Proceedings of MFCS 2022, Vol. 241 of
LIPIcs, pp. 67:1–67:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Larose, D. T. (2005). Discovering knowledge in data. Wiley-Interscience [John Wiley & Sons],
Hoboken, NJ. An introduction to data mining.

Lin, J., Zhong, C., Hu, D., Rudin, C., & Seltzer, M. I. (2020). Generalized and scalable
optimal sparse decision trees. In Proceedings of ICML 2020, pp. 6150–6160. PMLR.

Lipton, Z. C. (2018). The mythos of model interpretability. Communications of the ACM,
61 (10), 36–43.

915

Schidler & Szeider

Lodha, N., Ordyniak, S., & Szeider, S. (2017a). A SAT approach to branchwidth. In
Proceedings of IJCAI 2017, pp. 4894–4898.

Lodha, N., Ordyniak, S., & Szeider, S. (2017b). SAT-encodings for special treewidth and
pathwidth. In Conference on Theory and Applications of Satisfiability Testing (SAT)
2017, Vol. 10491 of Lecture Notes in Computer Science, pp. 429–445. Springer Verlag.

McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C., & Seltzer, M. I.
(2022). Fast sparse decision tree optimization via reference ensembles. In Proceedings
of AAAI 2022, pp. 9604–9613. AAAI Press.

Monroe, D. (2018). AI, explain yourself. AI Communications, 61 (11), 11–13.

Murthy, S. K. (1998). Automatic construction of decision trees from data: A multi-disciplinary
survey. Data Mining and Knowledge Discovery, 2 (4), 345–389.

Narodytska, N., Ignatiev, A., Pereira, F., & Marques-Silva, J. (2018). Learning optimal
decision trees with SAT. In Proceedings of IJCAI 2018, pp. 1362–1368. ijcai.org.

Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J., & Moore, J. H. (2017). PMLB:
a large benchmark suite for machine learning evaluation and comparison. BioData
Mining, 10 (1), 36.

Ordyniak, S., Paesani, G., Rychlicki, M., & Szeider, S. (2024). A general theoretical framework
for learning smallest interpretable models. In Wooldridge, M. J., Dy, J. G., & Natarajan,
S. (Eds.), Proceedings of AAAI 2024, pp. 10662–10669. AAAI Press.

Ordyniak, S., & Szeider, S. (2021). Parameterized complexity of small decision tree learning.
In Proceedings of AAAI 2021, pp. 6454–6462. AAAI Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12, 2825–2830.

Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In Handbook of metaheuristics,
pp. 399–419. Springer.

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: An overview and
their use in medicine. Journal of Medical Systems, 26 (5), 445–463.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Ramaswamy, V. P., & Szeider, S. (2021a). Learning fast-inference Bayesian networks. In
Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., & Vaughan, J. W. (Eds.),
Conference on Neural Information Processing Systems (NeurIPS) 2021, virtual, pp.
17852–17863.

Ramaswamy, V. P., & Szeider, S. (2021b). Turbocharging treewidth-bounded Bayesian
network structure learning. In Proceedings of AAAI 2021, pp. 3895–3903. AAAI Press.

Ramaswamy, V. P., & Szeider, S. (2022). Learning large Bayesian networks with expert
constraints. In Cussens, J., & Zhang, K. (Eds.), Proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, Vol. 180 of Proceedings of Machine
Learning Research, pp. 1592–1601. PMLR.

916

SAT-based Decision Tree Learning for Large Data Sets

Reichl, F., Slivovsky, F., & Szeider, S. (2023). Circuit minimization with QBF-based exact
synthesis. In Williams, B., Chen, Y., & Neville, J. (Eds.), Proceedings of AAAI 2023,
pp. 4087–4094. AAAI Press.

Reichl, F.-X., Slivovsky, F., & Szeider, S. (2024). eSLIM: Circuit minimization with SAT
based local improvement. In Conference on Theory and Applications of Satisfiability
Testing (SAT) 2024, August 21-24, 2024, Pune, India. To appear.

Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier
ensemble method. IEEE transactions on pattern analysis and machine intelligence,
28 (10), 1619–1630.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nat. Mach. Intell., 1 (5), 206–215.

Schidler, A. (2022). SAT-based local search for plane subgraph partitions (CG challenge). In
Goaoc, X., & Kerber, M. (Eds.), Proceedings of SoCG 2022, Vol. 224 of LIPIcs, pp.
74:1–74:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Schidler, A., & Szeider, S. (2021). SAT-based decision tree learning for large data sets. In
Proceedings of AAAI 2021, pp. 3904–3912. AAAI Press.

Schidler, A., & Szeider, S. (2024). Structure-guided local improvement for maximum satis-
fiability. In Conference on Principles and Practice of Constraint Programming (CP)
2024, September 2-6, 2024, Girona, Catalonia. To appear.

Shati, P., Cohen, E., & McIlraith, S. A. (2021). SAT-based approach for learning optimal
decision trees with non-binary features. In Conference on Principles and Practice
of Constraint Programming (CP) 2021, Vol. 210 of LIPIcs, pp. 50:1–50:16. Schloss
Dagstuhl.

Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to Data Mining,
2nd Edition. Pearson.

van der Linden, J. G. M., de Weerdt, M., & Demirovic, E. (2023). Necessary and sufficient
conditions for optimal decision trees using dynamic programming. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., & Levine, S. (Eds.), Conference on Neural
Information Processing Systems (NeurIPS) 2023.

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., & Schaus, P. (2020). Learning optimal
decision trees using constraint programming. Constraints An Int. J., 25 (3-4), 226–250.

Verwer, S., & Zhang, Y. (2017). Learning decision trees with flexible constraints and objectives
using integer optimization. In Salvagnin, D., & Lombardi, M. (Eds.), Proceedings of
Integration of AI and OR Techniques in Constraint Programming (CPAIOR) 2017, Vol.
10335 of Lecture Notes in Computer Science, pp. 94–103. Springer.

Verwer, S., & Zhang, Y. (2019). Learning optimal classification trees using a binary linear
program formulation. In Proceedings of AAAI 2019, pp. 1625–1632. AAAI Press.

Yu, J., Ignatiev, A., Stuckey, P. J., & Bodic, P. L. (2021). Learning optimal decision sets
and lists with SAT. J. Artif. Intell. Res., 72, 1251–1279.

Zhu, H., Murali, P., Phan, D. T., Nguyen, L. M., & Kalagnanam, J. (2020). A scalable
mip-based method for learning optimal multivariate decision trees. In Larochelle,

917

Schidler & Szeider

H., Ranzato, M., Hadsell, R., Balcan, M., & Lin, H. (Eds.), Conference on Neural
Information Processing Systems (NeurIPS) 2020, December 6-12, 2020, virtual.

918

