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Abstract

In this work, we review research studies that combine Reinforcement Learning (RL) and
Large Language Models (LLMs), two areas that owe their momentum to the development of
Deep Neural Networks (DNNs). We propose a novel taxonomy of three main classes based
on the way that the two model types interact with each other. The first class, RL4LLM,
includes studies where RL is leveraged to improve the performance of LLMs on tasks
related to Natural Language Processing (NLP). RL4LLM is divided into two sub-categories
depending on whether RL is used to directly fine-tune an existing LLM or to improve the
prompt of the LLM. In the second class, LLM4RL, an LLM assists the training of an RL
model that performs a task that is not inherently related to natural language. We further
break down LLM4RL based on the component of the RL training framework that the LLM
assists or replaces, namely reward shaping, goal generation, and policy function. Finally,
in the third class, RL+LLM, an LLM and an RL agent are embedded in a common planning
framework without either of them contributing to training or fine-tuning of the other. We
further branch this class to distinguish between studies with and without natural language
feedback. We use this taxonomy to explore the motivations behind the synergy of LLMs
and RL and explain the reasons for its success, while pinpointing potential shortcomings
and areas where further research is needed, as well as alternative methodologies that serve
the same goal.

1. Introduction

Reinforcement Learning (RL) and Large Language Models (LLMs) are experiencing tremen-
dous progress in recent years, with the common factor behind the growth of both Artificial
Intelligence domains being the development of Deep Neural Networks (DNNs).

The foundations of Markov Decision Processes (MDPs), which are at the core of every
RL model, can practically be traced back to the mid-20th century (Bellman, 1957), when
they originated in the field of stochastic control (Weiss, 1960) with the goal to model
sequential decision-making in uncertain environments. RL proposed a formal framework
for approaching sequential decision-making problems by adapting concepts from behavioral
psychology, where an agent can learn by interacting with their environment and utilizing
their past experience (R. S. Sutton & Barto, 2018; François-Lavet et al., 2018). However,
traditional RL methods operated within a discrete, often small state-action space, therefore
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finding limited applications in more advanced control problems. The field was brought back
to new life with the development of Deep RL (François-Lavet et al., 2018), in particular with
the seminal work of Mnih et al. (2013) where it was shown how these new class of learning
algorithm could learn to play Atari games. Deep learning addressed the key challenges of
traditional value and policy function approximations by tackling the curse of dimensionality
through efficient state representation, better generalization, and sample efficiency. This led
to a rapid proliferation of increasingly sophisticated applications; from continuous control
(Lillicrap et al., 2015), to the ability of playing complex games like chess or go against
human experts (Silver et al., 2017; Mnih, Kavukcuoglu, & Silver, 2015). As a result, Deep
RL algorithms have become increasingly popular over recent years, with applications in
control systems, robotics, autonomous vehicles, healthcare, finance, to name only a few.

Similarly, Natural Language Processing (NLP) problems, like speech recognition, natu-
ral language understanding, machine translation, text summarization, etc., have long been
successfully solved by machine learning algorithms, ranging from Näıve Bayes and Maxi-
mum Entropy Models to Decision Trees and Random Forests. Cambria & White (2014)
attributed the impressive development of NLP methods to three overlapping curves – Syn-
tactics, Semantics, and Pragmatics – and foresaw the eventual evolution of NLP research to
natural language understanding. Deep learning revolutionized NLP tasks with various Neu-
ral Network architectures, such as Recurrent Neural Networks (RNNs), Long Short-Term
Memory (LSTM), Convolutional Neural Networks (CNN) and, more recently, the Trans-
former (Vaswani et al., 2017). Eventually, Deep Neural Networks (DNNs) are opening new
avenues in the field of NLP with the development of LLMs, which are Langauge Models
(LMs) trained on massive amounts of text using specialized hardware, like GPUs and TPUs,
to perform complicated NLP tasks.

Apart from owing their growth to the development of DNNs, LLMs and RL are inter-
twined from a theoretical and practical perspective because they can both be formulated and
approached as sequential modeling problems: LLMs generate text in a sequential decision-
making framework, selecting the most likely next word or phrase. As noted by Ramamurthy
et al. (2023), “if we view text generation as a sequential decision-making problem, RL ap-
pears to be a natural conceptual framework”. On the other side, RL deals inherently with
control problems, where an agent must select the most appropriate action, interact with its
environment, observe the result of its action, and continue in a loop of state-observation-
action-reward for possibly an infinite horizon.

Motivated by the impressive prominence of RL and LLMs, along with the impressive
range of practical applications they both present, we perform a comprehensive literature
review of studies that embed LLMs and RL Agents in a common computational framework
that were published before the end of 2023. More specifically, we are proposing a novel
taxonomy to classify those studies based on the way that the LLM and the RL agent interact
in the framework. The taxonomy, which is presented in detail in section 3, comprises three
main classes, namely the following:

1. RL4LLM, where RL is used to improve the performance of an LLM.

2. LLM4RL, where an LLM assists the training of an RL model, and

3. RL+LLM, where an RL model and an LLM co-operate, without either contributing to
the training or fine-tuning of the other.
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With this taxonomy as the backbone of our review, we break down the state-of-the-art
frameworks into their fundamental components and present details to describe the ways
in which the two model types collaborate in each study. In parallel, we explain the key
motivational factors and the reasons behind the success of this collaboration. We also review
the potential limitations of this synergy and present alternative state-of-the-art methods
that, while not parts of this taxonomy, have been developed with the intent to address the
same issues as the studies that we are focusing on. This thorough categorization will help
researchers obtain a better understanding of the dynamics of this synergy, explain trends
and opportunities at the intersection of RL and LLMs, and serve as a starting point for the
development of novel AI frameworks that combine the best of both these worlds.

The rest of this paper is structured as follows: in section 2, we provide the fundamental
terms and concepts around RL, the Transformer, and LLMs, to facilitate the reader in
understanding the material that follows and outline the scope and contributions of this
study. In section 3, we provide an overview of the proposed taxonomy. Sections 4, 5 and
6 are dedicated to the main classes of our proposed taxonomy, corresponding to RL4LLM,
LLM4RL, and RL+LLM, respectively. In section 7, we discuss the emerging patterns of this
taxonomy and the reasons behind the success of this synergy, as well as shortcomings and
alternative methods to achieve the same goals. Finally, in section 8 we summarize our
findings and conclusions and propose paths for future research.

2. Background, State-of-the-Art, Scope, and Contributions

Before we dive into the details of the proposed taxonomy and present the publications
it encompasses, it is worth providing an overview of RL and LLMs as the key technical
concepts of focus (subsection 2.1). We will also explain the differences between this review
and state-of-the-art publications which also focus on RL and LLMs (subsection 2.2). We will
then clearly define the scope of this study (subsection 2.3) and highlight our contributions
(subsection 2.4).

2.1 Overview of RL and LLMs

RL encompasses a range of algorithms created to tackle problems that require a series of de-
cisions and it differs significantly from both supervised and unsupervised learning methods:
it requires the learning system, also referred to as an agent, to independently determine the
best sequence of actions to achieve its goal through interaction with its environment. RL
methods are primarily divided into three categories: dynamic programming, Monte Carlo
methods, and temporal difference methods. All these methods present the decision-making
issue as an MDP, a mathematical approach to solving sequential decision-making problems
that involves a state set S, an action set A, a transition function T , and a reward function
R. The goal of an MDP (S,A, T,R) is to determine an optimal policy function π, which
outlines the agent’s behavior at any given time. Essentially, a policy maps the set of states
S perceived from the environment to a set of actions A that should be performed in those
states. The objective of the agent is to maximize a cumulative reward r ∈ R by selecting
the actions to perform in each state s. When in state s, the agent performs action a, re-
ceives reward r from its environment, and then moves to the next state s′. Each step can
therefore be represented as a transition tuple (s, a, r, s′). The process to estimate the policy
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π depends on the algorithm in use and the specifics of the problem. In certain instances, es-
pecially when the state and action space are tractable, the policy can be stored as a lookup
table, while in others, a function approximator (such a neural network) is used. As the field
expanded rapidly to handle increasingly complex and high-dimensional problems, various
taxonomies to classify RL algorithms emerged: OpenAI (2024) divided RL algorithms into
Model-Based and Model-Free, according to whether the RL agent has access to a model
of the environment or not, respectively. Model-Based RL is further refined according to
whether the model is already given or learned on the way, while Model-Free RL is divided
into Policy Optimization, where the parameters θ of a policy πθ are optimized, and Q-
Learning, where the RL agent learns an approximator Qθ(s, a) of the optimal action-value
function Q∗(s, a).

Reversing the problem of determining the optimal behavior based on rewards results
in the concept of Inverse RL (Russell, 1998), where the goal is to determine a reward
function by observing measurements of an agent’s optimal behavior over time, possibly
along with measurements of the sensory inputs to the agent and, if available, a model
of the environment. The key idea is that “once we have the right reward function, the
problem is reduced to finding the right policy, and can be solved with standard RL methods”
(Alexander, 2018). Ng & Russell (2000) formulated Inverse RL for finite state-action spaces
as an optimization problem and showed that the best reward function, for which a policy
is optimal, can be efficiently selected using linear programming methods. As will be shown
in sections 4 and 5, Inverse RL is applicable to RL-LLM synergy problems as well.

Within the realm of NLP, LLMs have become a ubiquitous component. The primary role
of an LM is to establish a probability distribution across word sequences, a process achieved
by the application of the chain rule of probability to dissect the joint probability of a word
sequence into conditional probabilities. LMs may be unidirectional, forecasting future words
based on past ones as seen in n-gram models, or bidirectional, making predictions for a word
based on both antecedent and subsequent words as exemplified by the Transformer models.
Owing to advancements in Deep Learning, neural LMs have seen a surge in popularity.
An LLM makes use of a specific kind of neural network known as a Transformer (Vaswani
et al., 2017), which uses a mechanism called Attention to weigh the influence of different
words when producing an output. The term “large” in this context signifies the substantial
number of parameters these models hold. LLMs are capable of responding to queries,
authoring essays, summarizing texts, translating languages, and even generating poetry.
Some of the most popular LLMs include GPT (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), LaMDA (Thoppilan et al., 2022), LLaMA (Touvron et al., 2023), Claude
(Anthropic, 2023), and Gemini (Team et al., 2024).

2.2 State-of-the-Art Review Studies

As rapidly advancing fields, with a wide range of applications, both RL and NLP have been
the focus of numerous studies that aim to synthesize and evaluate state-of-the-art research
in each area.

Since it first emerged, RL has been of particular interest to researchers in computer
science, robotics, and control and, as a result, numerous surveys on RL have been published,
ranging from general overview of RL (Kaelbling et al., 1996; Arulkumaran et al., 2017) to
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comprehensive reviews that focus on a) a particular technique, like Offline RL (Prudencio
et al., 2023), Meta-RL (Beck et al., 2023), RL on graphs (Nie et al., 2023), Evolutionary RL
(H. Bai et al., 2023), Hierarchical RL (Pateria et al., 2021), Multi-Agent Deep RL (Gronauer
& Diepold, 2022; W. Du & Ding, 2021); b) a particular application, like healthcare (C. Yu
et al., 2021), robotics (Garaffa et al., 2023), combinatorial optimization (Mazyavkina et
al., 2021), generative AI (Y. Cao et al., 2023); c) specific learning assumptions, like a
dynamically varying environment (Padakandla, 2021). Owing to the rapid emergence of
LLMs, we are also beginning to witness review papers dedicated to this topic, like the
comprehensive review on Reinforcement Learning from Human Feedback (RLHF) by Sun
(2023b).

A similar trend can be observed in NLP, with numerous examples of survey studies
providing an overall view of the concepts and methods in the field (Torfi et al., 2020),
particularly since the introduction of deep learning for NLP (Otter et al., 2020; Torfi et al.,
2020; Chowdhary & Chowdhary, 2020). Similarly to RL, literature review studies specialize
by application, such as healthcare (H. Wu et al., 2022), fake news detection (Oshikawa et
al., 2018), bioinformatics (Zeng et al., 2015), or focus on particular methods, like pretrained
models (Qiu et al., 2020), graphs (Nastase et al., 2015), and others.

Not surprisingly, LLMs themselves, which lie at the intersection of NLP and RL, have
attracted the attention of researchers worldwide, resulting already in an impressive wealth
of comprehensive literature review publications, ranging from general reviews (W. X. Zhao
et al., 2023; Xi et al., 2023; Min et al., 2021; Yang et al., 2023; Y. Liu et al., 2023) to surveys
focusing on different aspects of LLMs, like evaluation (Guo et al., 2023; Chang et al., 2023),
alignment with humans (Shen et al., 2023; Y. Wang et al., 2023), explainability (H. Zhao
et al., 2023), Responsible AI considerations (Gallegos et al., 2023), knowledge acquisition
and updating (B. Cao et al., 2023; S. Wang et al., 2023; Pan et al., 2023) as well as using
LLMs for specific applications like information retrieval (Zhu et al., 2023), natural language
understanding (M. Du et al., 2023), instruction tuning (S. Zhang et al., 2023), software
engineering (J. Wang et al., 2023; Fan et al., 2023), recommendation systems (L. Wu et al.,
2023; L. Li et al., 2023; Lin et al., 2023), opinion prediction (Kim & Lee, 2023), and other
applications.

As will be explained in more detail in subsection 2.3, this survey examines RL and
LLMs from a different angle compared to the aforementioned review papers, since it focuses
exclusively on studies where RL and LLMs are both indispensable components of the same
computational framework.

2.3 Scope of this Study

As explained in section 1, we are presenting a survey on studies that combine RL and LLMs
in a common modeling framework and we are proposing a mew taxonomy to classify them.
The taxonomy is visualized as the RL/LLM Taxonomy Tree (Figure 1), which maps each
study to a tree node, according to the details of the synergy between the two models.

Although RL – in its RLHF form – is an essential component of any LLM, our review
is only concerned with studies that involve already trained LLMs, which are then either
improved and fine-tuned with RL - beyond RLHF, that was used to train the original model
- or combined with some RL agent to perform a downstream task. Additionally, state-of-
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the-art studies can be found in the literature that focus on the use of RL for training the
original LLM. Those studies are beyond the scope of our taxonomy.

In addition, literature exhibits state-of-the-art survey papers that focus on the use of
LLMs for tasks that are not related to natural language, including the augmentation of
LLMs with reasoning and other skills (J. Huang & Chang, 2022; Mialon et al., 2023; Wei
et al., 2022), multimodal LLMs (X. Wang et al., 2023), and autonomous agents (L. Wang
et al., 2023; X. Liu et al., 2023). While in this survey we are also reviewing studies where
LLMs are used to perform general tasks (sections 4 and 6), we are exclusively focusing on
those where the RL agent, rather than an LLM, is performing a downstream task, and
the LLM assists the framework either at training (LLM4RL class, section 5) or at inference
(RL+LLM class, section 6). Therefore, contrary to X. Liu et al. (2023) and L. Wang et al.
(2023), we are not concerned with evaluating the performance of the LLMs as autonomous
agents. For the sake of completeness, we still discuss the use of LLMs to tasks that are not
related to Natural Language, along with Multimodal LLMs in section 7.

Finally, the use of pretrained LMs to aid RL agents through reward design (Z. Cao et
al., 2023), policy priors (Choi et al., 2022) or policy transfer (Jiang et al., 2023) preceded
the development of LLMs. While we refer to those studies for the sake of completeness,
our taxonomy and subsequent analysis only captures those studies where the LM used is
an LLM.

2.4 Contributions of this Study

To the best of our knowledge, this is the first study that attempts a thorough review of
the state-of-the-art researches on the intersection of LLMs and RL. To this direction, we
have identified 24 publications that combine LLMs and RL and fall within the scope of this
review as described in subsection 2.3. Those are studies that had been published by the end
of 2023. Our goal is to examine how the two distinct models are embedded in a common
framework to achieve a specific task. A set of common patterns emerged from the review
of those studies, which helped us categorize the studies according to the way that the two
models collaborate, as well as the nature of the end task to be achieved. Therefore, we are
proposing a novel, systematic taxonomy of those studies that helps researchers understand
the scope and applications of the various synergies between RL and LLMs. First, we follow
the proposed taxonomy to individually present the key features, goals, and highlights of each
study that we have reviewed. Then, we shift our focus to obtaining a global perspective
on the collective goals of each study category and explain their strengths and potential
shortcomings.

In summary, the contribution of our work is threefold:

1. We collect, review, and analyze state-of-the-art studies which combine RL and LLMs
in the same framework.

2. We propose a novel taxonomy to explain the synergy between RL and LLMs. In
particular, we visualize the classification of the RL/LLM studies using the RL/LLM
Taxonomy Tree, which includes three main classes which collectively capture any
problem that utilizes both RL and LLMs. The criterion for generating the three
classes is whether RL is utilized to improve the performance of an LLM (class 1 –
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Figure 1: The RL/LLM Taxonomy Tree.

RL4LLM), or whether an LLM is used to train an RL agent to perform a non-NLP task
(class 2 – LLM4RL), or whether the two models are trained independently and then
embedded in a common framework to achieve a planning task (class 3 – RL+LLM).
The order in which we present the individual studies (contribution 1) is based on this
taxonomy.

3. We utilize our findings from the taxonomy to discuss the applications of this synergy,
explain the reasons for its success, identify strengths and potential weaknesses, and
investigative alternative ways towards achieving the same tasks.

3. The RL/LLM Taxonomy Tree

Even though LLMs are an emerging field, there exists a substantial body of literature
dedicated to their intersection with RL. We can readily discern a top-level classification
based on the interplay between the two models - the RL agent and the LLM – as the key
classification criterion. We have therefore identified the following classes of studies, which
constitute the core classes of our taxonomy:

1. RL4LLM. These studies use RL to improve the performance of the LLM in an NLP
task.

2. LLM4RL. These studies use an LLM to supplement the training of an RL model that
performs a general task that is not inherently related to natural language.

3. RL+LLM. These studies combine RL models with LLM models to plan over a set of
skills, without using either model to train or fine-tune the other.

The frameworks belonging to RL4LLM class start from a trained LLM and subsequently
utilize RL to modify it, with the goal to improve its performance on specific tasks or align
it to user intent and ethical AI standards. On the other hand, studies in LLM4RL category

1531



Pternea, Singh, Chakraborty, Oruganti, Milletari, Bapat & Jiang

utilize the LLM as a component of an RL training framework with the goal of helping an
RL agent perform a specific task. Finally, RL+LLM involves the two models as independent
components of a common framework, without either of them directly participating in the
training or tuning of the other in any way.

Interestingly, the way that the RL agent and the LLM types interact in each case is
directly tied to the goal of the synergy, which helps us identify a mapping between the
structure of each framework and its end goal. More specifically, RL4LLM studies aim to
improve the performance of the LLM in a downstream task that is related to NLP, such
as text summarization, question-answering, or conversation. In turn, the goal of LLM4RL

frameworks is to improve the training efficiency or performance of a control task that would
still rely on RL in the absence of the LLM and is therefore generally not related to NLP.
Finally, studies of RL+LLM generally use the LLM to plan over individual skills that have
been learned through RL.

Studies within each top-level class of the RL/LLM Taxonomy Tree exhibit significant
variety in the way that the RL agent and the LLM interact in each framework, thus requiring
further refinement of the taxonomy. Specifically, studies within RL4LLM can be broken down
into the following subcategories:

• RL4LLM-Fine-tuning: Encompasses studies where RL is used to perform model fine-
tuning, which involves tweaking the model parameters, until the model achieves the
desired performance. This subclass can be further refined according to the presence
or absence of human feedback.

• RL4LLM-Prompt: Includes studies where RL is used to iteratively update the prompt
of the LLM, until the model achieves the desired performance.

Similarly, LLM4RL can be further divided according to the component of the RL framework
that is assisted, replaced, or represented by the LLM, namely:

• LLM4RL-Reward: Includes studies where the LLM is used to design the reward function
of the RL agent.

• LLM4RL-Goal: Includes studies where the LLM is utilized for goal setting, which
applies to goal-conditioned RL settings.

• LLM4RL-Policy: Includes studies where the LLM represents the policy function to be
learned, or directly assists its training or pretraining.

Finally, RL+LLM class is branched into two subclasses:

• RL+LLM-Without Language Feedback: Studies where the prompt of the LLM is up-
dated during the planning process.

• RL+LLM-With Language Feedback: Studies where the prompt of the LLM stays fixed
throughout the planning process.

The RL/LLM Taxonomy Tree is visualized in Figure 1, while Table 1 maps the research
studies to the subclasses they belong to, corresponding to the leaf nodes of the Tree.
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RL/LLM Taxonomy Studies

RL4LLM

Fine-tuning

With Human
Ouyang et al. (2022)

Feedback
Y. Bai, Jones, et al. (2022)
J. Hu et al. (2023)

Without Human
Y. Bai, Kadavath, et al. (2022)

Feedback
Ramamurthy et al. (2023)
Ghalandari et al. (2022)

Prompt -

T. Zhang et al. (2022)
Deng et al. (2022)
Sun (2023a)
Perez et al. (2022)

LLM4RL

Reward -

Song et al. (2023)
Ma et al. (2023)
Xie et al. (2023)
Kwon et al. (2023)

Goal - Quartey et al. (2023)

Policy -

Y. Du et al. (2023)
Reid et al. (2022)
H. Hu & Sadigh (2023)
W. Zhang & Lu (2023)
Carta et al. (2023)

RL+LLM

Without Language
- Yuan et al. (2023)

Feedback

With Language
-

Ahn et al. (2022)

Feedback
W. Huang et al. (2022)
Dasgupta et al. (2023)

Table 1: Mapping Studies to RL/LLM Taxonomy Tree Leaves

To the best of our knowledge, the classification proposed by the RL/LLM Taxonomy
Tree is exhaustive and captures all state-of-the-art studies that fall within the scope of our
taxonomy (2.3) as of today. We have so far identified 24 studies that fall under the scope of
this review and can directly be mapped to RL/LLM Taxonomy Tree leaves. Therefore, it
has the potential to serve as a reference and mapping tool for researchers and practitioners
of Artificial Intelligence. In addition, as researchers continue developing novel ways to
combine RL with LLMs, the tree can be potentially expanded with new nodes.

By bridging the gap between RL and LLMs, this taxonomy can be a valuable resource for
researchers who are experienced in one of the two domains and are looking to venture into
the other, and vice versa, as well as for anyone who wishes to explore whether a framework
combining RL and LLMs is a promising solution for the problem they are seeking to address.
More importantly, the taxonomy guides researchers as they are shaping the requirements
of their application, whether those are related to model performance, training efficiency, or
responsible AI considerations.
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4. RL4LLM: Using RL to Enhance LLMs

As explained in section 2, RL with Human Feedback is an integral part for the training of
LLMs. Nevertheless, there is a wealth of studies where the synergy between RL and LLM
extends beyond training of the LLM. Therefore, RL4LLM class includes a significant body of
work where RL is used to further refine an already trained LLM and improve its performance
on NLP-related tasks. This improvement in performance is measured according to the goal
of each research, with the most common goals being the following:

• Improved performance in downstream NLP tasks (Deng et al., 2022; Ramamurthy et
al., 2023; Ghalandari et al., 2022; T. Zhang et al., 2022; Sun, 2023a).

• Alignment with intent, values, and goals of user (Ramamurthy et al., 2023; Ouyang
et al., 2022).

• Alignment with Responsible AI considerations (Perez et al., 2022; Y. Bai, Jones, et
al., 2022; Y. Bai, Kadavath, et al., 2022).

• Reduction of data and resource requirements (T. Zhang et al., 2022; Sun, 2023a).

RL4LLM studies can be further divided into two major sub-categories: a) Studies that use
knowledge from LLMs to build an RL model to fine-tune an LLM, or part of it, to perform
a downstream NLP task and b) studies using RL to design prompts to query LLMs. A
summary of the natural language application of each framework is shown in Table 3.

4.1 RL4LLM-Fine-Tuning

This class includes studies where RL is used for directly fine-tuning an existing LLM to make
it more aligned with specific goals by updating an enormous set of LLM parameters. The
presence of human feedback for fine-tuning serves as the criterion for further branching the
RL4LLM-Fine-tuning node of our taxonomy tree, resulting in two new subclasses: RL4LLM -
Fine-tuning with human feedback (4.1.1) and RL4LLM - Fine-tuning without human feedback
(4.1.2).

4.1.1 With Human Feedback

Human input can be critical when assessing the quality of the LLM output in terms of
harmlessness. Preventing the generation of toxic and harmful content has been the focus
of multiple studies even before LLMs. For example, Stiennon et al. (2020) trained an RL
agent to predict which summary of a given Reddit post is most likely to be preferred by
a human. The authors used a supervised learning model as a reward function that selects
a summary among multiple candidate summaries. The result of the summary selection is
then used to fine-tune the RL agent using Proximal Policy Optimization (PPO). Authors
found that optimizing the reward model resulted in better human-preferred summaries in
comparison to using typical NLP evaluation metrics like Recall-Oriented Understudy for
Gisting Evaluation (ROUGE). In a similar manner, the idea of fine-tuning LMs through
RL agents extended naturally to the realm of LLMs.

Human feedback can generally be embedded in the fine-tuning framework through the
construction of the training dataset for the policy and reward models: For training the
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policy model, humans demonstrate the target behavior of the LLM, while for the reward
model, they rank the alternative outputs of the LLM based on how well they align to the
intent of the framework. For a study to be classified as RL4LLM-Fine-Tuning with human
feedback, it should include human feedback in the training dataset of at least the initial
policy model or the reward model; else, it belongs to RL4LLM-Fine-tuning without human
feedback.

Ouyang et al. (2022) developed Instruct-GPT, an LLM capable of capturing and
following the intent of the user without producing untruthful, toxic, or generally unhelpful
content. Instruct-GPT consists of three steps. The first includes the training of the policy
model as a supervised learning model. The training dataset is generated by collecting
demonstrations of the desired model behavior. To generate each new data point, a prompt
is sampled from a baseline prompt dataset and a human “labeler” demonstrates the desired
behavior of the model. The dataset is then used to fine-tune GPT-3 (Brown et al., 2020)
with supervised learning. The second step is the training of the reward model. Like the
policy model, the reward model is also a supervised learning model, but it is trained on
comparison data. To generate the training dataset of the reward model, a prompt and a set
of model outputs are sampled for each data point, and a human “labeler” assigns rankings to
the outputs. Finally, the third step is GPT-3 fine-tuning, with the reward model embedded
in an RL training framework. Experimental evaluation in public NLP datasets showed that
Instruct-GPT demonstrates improved performance regarding truthfulness and harmlessness
compared to its baseline model, with only minimal performance degradation, while also
showing generalization capabilities to instructions outside the distribution present in the
fine-tuning dataset.

Y. Bai, Jones, et al. (2022) also utilized preference modeling and RLHF to train
helpful, honest, and harmless AI assistants. Like Ouyang et al. (2022), they trained an initial
policy by fine-tuning a pretrained LLM. First, a HHH (Helpful, Honest, and Harmless)
Context-Distilled LM was used to build a base dataset. This dataset was used to train a
preference model to generate, in turn, a new dataset, using rejection sampling. Finally,
the initial policy and the preference model were combined in an RLHF framework for
fine-tuning the AI agent. Extensive data collection was performed by crowd workers, who
were interacting with the models in open-ended conversations. The human feedback data,
along with the preference models and the resulting RL policies, were updated on a weekly
basis in an online manner to improve the quality of both the datasets and the models
themselves. As a result, the authors achieved the desired alignment between the LM and
human preferences in almost all NLP evaluations, with friendly and deployable AI assistants,
that also presented improved AI capabilities in NLP tasks, such as text summarization, even
extending to specialized tasks, like python code generation.

J. Hu et al. (2023) propose an offline RLHF framework to align LLMs to human
intent. Rather than the typical PPO architecture applied in RLHF settings, they fine-tune
the LLM on pre-generated samples in an offline manner, within a framework consisting of
four steps: First, the pretrained LM is fine-tuned on human-labeled instruction data using a
supervised learning method, resulting in a new model called Supervised Fine-Tuning (SFT).
Second, they train a human preference model (RM) to predict rewards, using binary loss
or ranking loss functions. Third, they build a combined dataset consisting of both human-
labeled data (used in training the SFT model in the first step) as well as model-generated
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data (generated by the SFT model using prompts from the user, the SFT dataset, and the
RM dataset). Finally, the SFT model is fine-tuned on this combined dataset using offline
RL. The authors implemented three offline RLHF algorithms, namely Maximum Likelihood
Estimation (MLE) with Filtering (Solaiman & Dennison, 2021), Reward-Weighted Regres-
sion (Peters & Schaal, 2007), and Decision Transformer (L. Chen et al., 2021) (subsection
5.3.3), with specific data pre-processing methods and training loss function for every al-
gorithm choice. The performance of the models was evaluated both by humans and by
GPT-4 (OpenAI, 2023d), with the Decision Transformer architecture outperforming both
MLE with Filtering and Reward-Weighted Regression in terms of evaluation score. The
Decision Transformer-based offline method was also shown to obtain comparable results to
PPO, while also achieving faster convergence.

4.1.2 Without Human Feedback

Interestingly, the presence of a human in the loop is not required for ensuring helpfulness
and harmlessness of robotic assistants. As a result, this subclass includes studies where
human feedback is either completely omitted or provided by a capable AI system. This
class of methods is primarily focused on the development of responsible AI systems.

In a variation of Y. Bai, Jones, et al. (2022), Y. Bai, Kadavath, et al. (2022) proposed
“Constitutional AI”, a framework to train AI assistants capable of handling objectionable
queries without being evasive by using AI Feedback. The AI model is trained through self-
improvement, while human feedback is restricted in providing a list of rules and principles.
Constitutional AI consists of two phases, namely a supervised learning phase and an RL
phase. In the supervised learning phase, an initial helpful-only LLM assistant generates
responses to red teaming prompts that are designed to typically elicit harmful and toxic
responses. This phase is the AI analogue of a human demonstrating the desired behavior
in Ouyang et al. (2022) and J. Hu et al. (2023), or the use of the distilled model (Y. Bai,
Jones, et al., 2022). The model is asked to evaluate the response it provided based on a
constitutional principle and then revise its response based on this critique. Responses are
repeatedly revised at each step of the process by randomly drawing principles from the
constitution. For the RL stage, a preference model is trained to act as the reward function
using a training dataset generated by the trained model from the supervised learning stage:
To generate a data point, the assistant is prompted again with a harmful prompt and
is asked to select the best response from pair of responses, based on the constitutional
principles. This process produces an AI-generated preference dataset from harmlessness,
which is combined with a human feedback-generated dataset for helpfulness. The preference
model is then trained based on this combined dataset and is used to fine-tune the supervised
model from the first stage in an RL framework that follows the general principles of RLHF -
with the difference that the feedback is provided by an AI agent, hence the term “RLAIF”.
The resulting LLM responds to harmful queries by explaining its objections to them. This
study is an example where alignment to human goals can be achieved with minimal human
supervision.

More recently, Ramamurthy et al. (2023) examined whether RL is the best choice
for aligning pretrained LLMs to human preferences, compared to supervised learning tech-
niques, given the challenges of training instability that RL algorithms might suffer from,
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as well as the lack of open-source libraries and benchmarks that are suitable for LLM fine-
tuning. To address those issues, the authors released RL4LM, an open-source library built
on HuggingFace, which enables generative models to be trained with a variety of on-policy
RL methods, such as PPO, Trust Region Policy Optimization (TRPO), and Advantage
Actor-Critic (A2C). The library provides a variety of reward functions and evaluation met-
rics. In addition, the authors composed GRUE (General Reinforced-language Understand-
ing Evaluation), a benchmark set of seven language generation tasks which are supervised
by reward functions that quantify metrics of human preference. Finally, they introduced
NLPO (Natural Language Policy Optimization), an on-policy RL algorithm (also available
in RL4LM) that dynamically learns task-specific constraints over the distribution of lan-
guage to effectively reduce the combinatorial action space in language generation. The
authors provided detailed results on a case-by-case basis to determine when RL is preferred
over supervised learning as well as when NLPO is preferred to PPO. However, NLPO demon-
strated overall greater stability and performance than other policy gradient methods, such
as PPO, while RL techniques were shown to generally outperform their supervised learning
counterparts in terms of aligning LMs to human preferences.

Ghalandari et al. (2022) used RL to fine-tune an LLM for sentence compression
while addressing the issue of inefficiency at inference time. In the specific task of this study,
the goal is to summarize a sentence by extracting a subset of its tokens in their original
order. Given a tokenized input sentence x, the output is a binary vector indicating whether
the corresponding input token is included in the compressed sentence or not. To evaluate
the output of the policy, a reward is calculated as the average of three metrics: fluency
(for grammatically correct and well-written sentences), similarity to source (to preserve
the meaning of the original sentence, measured using bi-encoder similarity, cross-encoder
similarity, and cross-encoder for Natural Language Inference - NLI), and output length or
compression ratio (imposing soft length control using Gaussian reward functions). The
policy was initialized using DistilRoBERTa (Sanh et al., 2020), a six-layer Transformer
encoder model with a linear classification head, and the RL agent was trained through a
Policy Gradient method. The model was shown to outperform unsupervised models (with
no labelled examples) while also enabling fast inference with one-step sequence labeling at
test time and allowing for configurable rewards to adapt to specific use cases.

4.2 RL4LLM-Prompt

Constructing a suitable prompt is the first step towards ensuring that an LLM will gener-
ate the desired output in terms of relevance, format, and ethical considerations. Indeed,
careful prompt engineering is often sufficient for aligning the output of an LLM to human
preferences without fine-tuning the weights of the LLM itself, a computationally intensive
process which usually requires extensive data collection. Prompting concatenates the inputs
with an additional piece of text that directs the LLM to produce the desired outputs. Most
studies focus on tuning soft prompts (e.g., embeddings), which are difficult to interpret and
non-transferable across different LLMs (Deng et al., 2022). On the other hand, discrete
prompts, which consist of concrete tokens from vocabulary, are hard to optimize efficiently,
due to their discrete nature and the difficulty of efficient space exploration. To address this
limitation, this class of studies utilize RL for discrete prompt optimization, with the goal
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to enhance the performance of the LLM on diverse tasks, often requiring just a few training
instances.

Two recent studies in this class are TEMPERA and RLPROMPT, both of which use
Roberta-large as the background LLM. Proposed by T. Zhang et al. (2022), TEMPERA
(TEst-tiMe Prompt Editing using Reinforcement leArning) is a framework for automating
the design of optimal prompts at test time. Prompt optimization is formulated as an RL
problem with the goal to incorporate human knowledge and thus design prompts that are
interpretable and can be adapted to different queries. The RL agent performs different
editing techniques at test time to construct query-dependent prompts efficiently. The ac-
tion space allows the RL agent to edit instructions, in-context examples and verbalizers as
needed, while the score differences between successive prompts before and after editing are
used as reward. Unlike previous methods, TEMPERA makes use of prior human knowledge
and provides interpretability; also, compared to approaches like prompt tweaking, Auto-
Prompt, and RLPrompt, it also significantly improves performance on tasks like sentiment
analysis, subject classification, natural language inference, etc.

On the other hand, RLPROMPT by Deng et al. (2022) is an optimization approach
where a policy network is trained to generate desired prompts. The experimental results
show that the policy is transferable across different LMs, which allows learning cheaply
from smaller models and infer for larger, more powerful models. The authors also noted
that optimized prompts were often grammatical “gibberish”, which indicates that high-
quality LM prompting does not necessarily follow human language patterns. However,
RLPROMPT treats the LLM as a black box model with only access to the generated
output whereas TEMPERA assumes it to have access to the embedding vectors. The
policy models are similar with GPT encoder, but the action space is very different, since
TEMPERA uses only discrete actions, whereas RLPROMPT treats the entire vocabulary
as possible actions. Finally, the performance of TEMPERA was benchmarked for text
classification tasks, whereas RLPROMPT was applied to text generation.

More recently, Sun (2023a) proposed Prompt-OIRL, a framework that uses offline RL
to achieve cost-efficient and context-aware prompt design. The framework utilizes readily
available offline datasets generated through expert evaluation of previously crafted prompts.
First, the authors apply Inverse RL to learn a proxy reward model that can perform query-
dependent offline prompt evaluations. Then, they use this model as an offline evaluator to
perform query-dependent prompt optimization. Contrary to Deng et al. (2022), who per-
form task-agnostic prompt optimization, Prompt-OIRL performs query-dependent prompt
evaluation, similarly to T. Zhang et al. (2022). The dependence of prompt evaluation on
the query allows for context awareness, which helps the prompt evaluator predict what
prompting techniques (e.g., Chain of Thought) are most likely to obtain correct answer
given a specific prompt (e.g., an arithmetic question). The design of the proxy reward func-
tion allows for offline query-dependent evaluation thus achieving both context awareness
and lower costs, and the framework was evaluated across four LLMs and three arithmetic
datasets.

A side-by-side comparison of the three methods is shown in Table 2.

Another study where RL with AI feedback is used to ensure harmlessness of AI assistants
– this time by using RL for prompt design - is the study of Perez et al. (2022), who used
an LM to generate test questions (“red teaming”) that aim to elicit harmful responses from
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the target LM. Then, a classifier that is trained to detect offensive content is used to evaluate
the target LM’s replies to those questions. Contrary to studies in previous sections, this
study uses RL to train the red teaming LM, instead of fine-tuning or prompting the target
LM. More precisely, starting from a pretrained LM for red teaming, the authors perform
a first pass of fine-tuning using supervised learning. Then, they use RL to train the red
teaming LM in a synchronous advantage actor-critic (A2C) framework with the objective of
maximizing the expected harmfulness. The reward function is a linear combination of the
A2C loss and the K-L divergence penalty between the target policy and the distribution of
the initialization over the next tokens. The authors performed red teaming for a variety of
harmful behaviors, including offensive language, data leakage, personal contact information
generation, and distributional bias of the output text. LM-based red teaming was shown
to be a promising tool for the timely identification of potentially harmful behavior, with
RL-based red teaming being the most effective at eliciting offensive replies compared to the
other methods, which included zero-shot and stochastic few-shot generation, and supervised
learning.

5. LLM4RL: Enhancing RL Agents through LLMs

The LLM4RL class covers studies where an LLM acts as a component of an RL training
pipeline. Contrary to RL4LLM studies (section 4), where the end goal is an NLP task, the
RL agent in this category is trained for tasks which are generally not related to natural
language. Overall, the motivation behind studies in the LLM4RL category is twofold, as
shown in Table 4.

1. Improved performance of the RL Agent: In LLM4RL frameworks, improving the per-
formance of the agent requires alignment with human intent or feedback (H. Hu &
Sadigh, 2023; Song et al., 2023; Ma et al., 2023; Kwon et al., 2023; Xie et al., 2023),
grounding of the agent to its environment (Xie et al., 2023; Carta et al., 2023) or
learning complex tasks (Dasgupta et al., 2023; Ma et al., 2023)

2. Efficient training of the RL Agent: Training an RL agent can be computationally in-
tensive, requiring not only significant computational resources, but also large amounts
of data. Even with those prerequisites available, RL training might still suffer due
to inefficient sampling, especially for complex, long-term tasks. Therefore, LLM4RL
frameworks also focus on improving training efficiency – and therefore ensuring satis-
fying execution of the target tasks at test time – by facilitating exploration (Quartey
et al., 2023; Y. Du et al., 2023), policy transfer of trained models (Reid et al., 2022)
and effective planning for reduced data requirements (Dasgupta et al., 2023).

The LLM replaces or assists one of the fundamental components of the RL agent -
namely, the reward function, the training goal, or the policy function. Using the corre-
sponding component in each case as a criterion, we further break down the LLM4RL class
in three sub-categories, where the LLM is used for a) determining the reward function
(LLM4RL-Reward), b) expressing internal goals (LLM4RL-Goal), and c) pretraining, repre-
senting, or updating the policy function (LLM4RL-Policy). The environments in the various
studies are described in Table 5. Table 6 notes the LLM models and the RL architectures
used in those studies.
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Dimensions TEMPERA
(T. Zhang et
al., 2022)

RLPROMPT
(Deng et al.,
2022)

Prompt-
OIRL (Sun,
2023a)

LM Model Roberta-large Roberta-large GPT-3.5,
TigerBot-13B-
chat, Llama2-
7B-chat

Assumptions
on LLM

Not a black-
box model, ac-
cess to the hid-
den states

Black box
model with
no access to
gradient

Black box
model with
no access to
gradient

Policy Model GPT encoder
with attention
over all possible
actions

Frozen
distilGPT-2
(82M) with one
MLP layer on
top (tunable)

Choose one of
the K prompts,
(CoT, ToT,
etc.)

Action Space Discrete ac-
tions, e.g.,
swap, add or
delete tokens

Tokens from
the policy mod-
els vocabulary

Apply a
prompt to
an input query

RL Algorithm PPO Soft Q-learning Offline Inverse
RL

Applications Only Text Clas-
sification

Text Classifica-
tion and Text
generation

Arithmetic rea-
soning

Table 2: RL4LLM-Prompt Studies

5.1 LLM4RL-Reward

As noted by R. S. Sutton & Barto (2018), “the use of a reward signal to formalize the
idea of a goal is one of the most distinctive features of reinforcement learning”. The reward
signal received through the interaction with the environment is critical for training an agent
to achieve the desired behavior. Until recently, the bulk of RL research treated the reward
function as given and focused on the training algorithms themselves (Eschmann, 2021).
Designing the reward function of an RL training framework is straightforward when direct
knowledge of the problem is available, as when solving a well-defined problem or earning a
high score in a well-defined game. Common examples in this category are Atari games, which
are frequently utilized as sandbox environments for testing various aspects of RL training, or
games where the agent receives a positive reward if they win, and negative reward otherwise.
However, there exists a significant number of applications where it is difficult to directly
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RL4LLM Study Application

Ouyang et al. (2022) Generation, Open and Closed Question-Answering,
Brainstorming, Chat, Rewrite, Summarization, Clas-
sification, Extraction

Y. Bai, Jones, et al. (2022) Dialogue (AI Assistant)

J. Hu et al. (2023) Question-Answering

Y. Bai, Kadavath, et al. (2022) AI assistant

Ramamurthy et al. (2023) GRUE Benchmark tasks: Text Continuation, Genera-
tive Commonsense, Summarization, Data to Text, Ma-
chine Translation, Question-Answering, Chitchat Dia-
logue

Ghalandari et al. (2022) Sentence Compression (Sentence summarization, Text
simplification, Headline generation)

T. Zhang et al. (2022) Sentiment Analysis, Topic Classification, Natural Lan-
guage Inference, Reading Comprehension

Deng et al. (2022) Few-Shot Text Classification, Unsupervised Text Style
Transfer

Sun (2023a) Arithmetic reasoning (MultiArith, Roy & Roth (2016),
GSM8K Cobbe et al. (2021), SVAM Patel et al. (2021))

Perez et al. (2022) Question-Answering

Table 3: RL4LLM Natural Language Processing Application

translate the desired behavior into rewards signals, especially for long and complex tasks or
when the agent can discover unexpected ways, and potentially dangerous, ways to generate
reward from the environment.

When the agent must learn to perform a long and possibly complex task, where designing
a proper reward function is not straightforward, and where human feedback is critical, it is
common to rely on expert demonstrations or interactive modification of the reward signal.
Expert demonstrations generally utilize Inverse RL to infer the reward function by observing
the desired behavior (Abbeel & Ng, 2004), with a reward designer observing the agent’s
performance and tweaking the reward signal during a trial-and-error process to adjust the
agent’s behavior accordingly.
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Motivated by the direct involvement of humans in this interactive loop, combined with
the ability of LLMs to learn in-context from few or even zero examples (Brown et al., 2020),
researchers are exploring ways to bridge the gap between human preference and agent
behavior in cases where the explicit quantification of rewards is difficult or time-consuming.
In this context, the LLM is used either for reward shaping, i.e., guiding the learning agent
with additional rewards to preserve policy optimality, or as a proxy reward function. Prior
to the LLM era, Goyal et al. (2019) used language for reward shaping: They trained a
model to predict if the actions in a trajectory match some specific language description
and used the output to generate intermediate RL rewards. Similarly, Z. Cao et al. (2023)
extended the underlying MDP by including a natural language instruction; the authors
first generated instructions and obtained the corresponding word embeddings using BERT
(Devlin et al., 2019), and then trained an alignment model that maps action trajectories
to their corresponding instructions. They found that augmenting the default reward of an
Atari environment with the language-based reward significantly improves the performance
of the agent.

The first study utilizing LLMs for RL agent reward design is the one by Kwon et
al. (2023), who evaluated whether LLMs can produce reward signals that are consistent
with the user behavior using GPT-3 (OpenAI, 2023b) as a proxy reward function in an
RL framework. At the beginning of training, the user specifies the desired behavior using
a prompt with explanation and an example of the desired behavior, while during training,
the LLM evaluates the agent’s behavior against the behavior described in the prompt and
generates a reward signal accordingly, which the RL agent uses to update its behavior.
In more detail, the proposed framework is as follows: The LLM is provided with a task
description, a user’s description of the objective, a string-formatted episode outcome, and a
question asking if the outcome satisfies the objective. The LLM’s response to the question
is used as a reward signal for the agent. Based on this reward signal, the agent updates their
weights and generates a new episode, the outcome of which is parsed back into a string,
and the episode continues. To evaluate their framework, the authors compared it to three
baseline cases: a) a few-shot baseline, where a supervised learning model is trained to predict
reward signals using the same examples given to the LLM, b) a zero-shot baseline, where the
LLM is prompted without the user’s description of the objective, and c) a baseline where
the agents are trained with ground truth reward functions. Experimental results showed
that the proposed RL training framework - which is agnostic to the RL algorithm used -
can achieve user objective-aligned behavior, as measured both with automated metrics and
with human users. In addition, the performance of the agents is shown to outperform agents
trained with reward functions learned via supervised learning, even when no examples were
provided - as long as the objective was well-defined - or when the tasks were complicated.

Grounding a robotic agent to the environment and achieving the desirable behavior as
directed through human feedback is the focus of TEXT2REWARD framework by Xie et
al. (2023). TEXT2REWARD allows for the generation and continuous improvement of
Python code that expresses dense rewards functions for robotic agents performing manip-
ulation tasks. The framework is composed of three stages: Abstraction, Instruction, and
Feedback. In the Abstraction stage, an expert provides an abstract representation of the
robot’s environment using Python classes. In the Instruction stage, a user provides a natu-
ral language description of the goal to be achieved by the robot (e.g., “push the chair to the
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marked position”). Finally, in the Feedback phase, the user summarizes their preferences
or the failure mode of the robot’s action. This summary is then used to update the reward
function and retrain the RL agent. The authors evaluated their framework on two robotic
manipulation benchmarks - MANISKILL2 (Gu et al., 2023) and METAWORLD (T. Yu
et al., 2021) - and two MUJOCO locomotion environments (Brockman et al., 2016). For
manipulation tasks, the experiments demonstrated comparable results to human oracle-
designed rewards in terms of performance and convergence speed, with the performance
improvement verified through few-shot examples. For locomotion tasks, the agent was able
to successfully learn six new behaviors (move forward, front flip, back flip, etc.) with a rate
of success ranging from 94% to 100% for each task. Finally, error analysis revealed that
the generated code was correct at 90% of the time, with most common errors originating
from wrong use of class attributed (wrong use or hallucination of non-existent attributes),
syntax errors or shape mismatch, or wrong imports. The success of TEXT2REWARD was
largely owed to the use of human feedback to resolve ambiguity through providing clear,
language-based instructions to correct the behavior of the robot. Aside from grounding and
alignment to human preferences, TEXT2REWARD has the advantage of generating highly
interpretable functions, while not requiring any data for reward training.

The EUREKA framework by Ma et al. (2023) is another example of reward design
through direct Python code generation. EUREKA consists of three fundamental compo-
nents: the use of environment as context, evolutionary search, and reward reflection. The
environment code, excluding the part of it that defines the reward, is directly provided to
the LLM, which in turn extracts its semantics to compose a suitable reward function for the
target task. The LLM outputs the reward code, following some general formatting instruc-
tions. Evolutionary computation is used to overcome sub-optimal or non-executable code by
sequentially generating improved reward functions using the concepts of reward mutation,
which modifies previous solutions based on textual feedback, and random restarts, to escape
local optima. Finally, reward reflection acts as a supplement to the numeric value of the re-
ward expressed through the fitness function by explaining why a candidate reward function
works or does not work and assigning credit accordingly. The framework follows a PPO
architecture and is tested on a variety of benchmarking environments (e.g., Cartpole and
BallBalance), where it achieves a higher success rate compared to human-specified rewards.
The use of evolutionary computation is shown to be necessary for continuous increase in
the success rate of the framework over time, while also allowing for the generation of more
diverse and often counter-intuitive rewards that outperform human-designed rewards, par-
ticularly for difficult tasks. The authors also implemented a curriculum learning (Bengio et
al., 2009) approach to teach a Shadow Hand to rotate a pen according to a set of pre-defined
spinning patterns, thus demonstrating the capability of the framework to execute complex,
low-level tasks. By successfully handling task complexity and allowing for the discovery
of unexpected high-performing policies, EUREKA successfully deals with two key reasons
that inhibit the translation of the desired agent behavior to rewards that were identified
in subsection 5.1. Finally, similarly to the LLM4RL-Reward studies discussed in 5.1, a key
benefit of EUREKA is the alignment of rewards to human preferences by incorporating
human knowledge about the state through appropriate initialization of the reward.

Similarly, Song et al. (2023) proposed a three-step, self-refined LLM framework for
generating reward functions to help robotic agents achieve specific goals. The first step is
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the initial design of the reward function based on the natural language input provided by
the user. The input includes a description of the environment, a description of the task
in hand, broken down into goals, a description of the observable state (such as position
and velocity of a robot), and a list of rules that should be followed when designing the
reward function (for example, restricting the dependence of the reward exclusively on known
quantities). In the second step, the initial reward function is applied, the robot acts, and its
behavior is evaluated. In the evaluation step, the user collects their observations around the
training process and convergence, the objective metrics, the success rate of the tasks, and
makes an overall assessment (“good” or “bad”) of the robotic agent’s performance. Finally,
in the self-refinement step, the feedback of the user is embedded in a feedback prompt,
which is then used by the LLM to generate the next reward signal. The authors evaluated
the performance of the framework for nine different continuous control tasks across three
different robotic system systems and achieved a success rate between 93% and 100% for all
tasks, outperforming the corresponding manual reward setting in almost all of them.

5.2 LLM4RL-Goal

Goal setting is a key element in intrinsically motivated RL (Chentanez et al., 2004), which
addresses key challenges of the traditional Deep RL setting, including the difficulty to
abstract actions and to explore the environment (Aubret et al., 2019). Contrary to tra-
ditional RL, where the training of the agent relies exclusively on external rewards from
the environment, intrinsic RL builds on the psychology concept of intrinsic motivation and
developmental learning, which is inspired by babies developing their skills by exploring the
environment (Aubret et al., 2019). In a similar manner, Intrinsic Motivation in RL allows
agents to learn reusable, general skills that are applicable to various tasks over their lifetime.
With the right internal goals, agents can autonomously explore open-ended environments
and build useful skills at a pretraining phase. Intrinsic RL is therefore particularly useful
when the design of a reward function is not straightforward. However, the benefits of intrin-
sic RL are limited when the environment complexity and size increase significantly, since
there is no guarantee that the skills the agent builds throughout its lifetime will be useful
to perform any downstream tasks at all.

To address this shortcoming, Y. Du et al. (2023) proposed a new, intrinsically mo-
tivated RL method called ELLM (Exploring with LLMs). The authors build on the obser-
vation that, when faced with new tasks, humans do not uniformly (and therefore, blindly)
explore the outcome spaces of their actions, but rely on their physical and social common
sense to prioritize the exploration of plausibly useful behaviors that have the reasonably
highest likelihood to succeed, such as using a key to open a door. ELLM leverages knowl-
edge from text corpora to capture useful semantic information and thus enable structured
exploration of task-agnostic (i.e., pretraining) environments by allowing the agent to use
this knowledge to reason about the usefulness of new behaviors. In particular, the authors
used a pretrained LLM, GPT-2 (Radford et al., 2019) to suggest goals during exploration.
In each step, the LLM is prompted with a list of the agent’s available actions, along with
a text description of the current observation, and suggests a goal, which should be diverse,
common-sense sensitive, and context sensitive. After the agent takes an action and transi-
tions in the environment, the goal-conditioned rewards are computed based on the semantic
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similarity between the LLM-generated goal and the description of the agent’s transition.
The exploration of RL training is therefore controlled and enhanced without the need for
explicit human intervention. ELLM was shown capable of producing context-sensitive,
commonsensical and diverse goals, boosting pretraining exploration performance, as well as
performance on downstream tasks.

TaskExplore by Quartey et al. (2023) is another framework that uses LLMs to facili-
tate RL training by generating intermediate tasks. The goal of TaskExplore is to maximize
the use of previous experiences collected by a robotic agent during their training in a sim-
ulated home environment by generating and learning useful auxiliary tasks while solving a
larger target task. The process starts by converting a task specification to a graph using
Linear Temporal Logic. Then, the graph is traversed to create an abstract task template
where object propositions are replaced with their context-aware embedding representations,
which have been generated by an LLM. The abstract task template is subsequently used
to generate auxiliary tasks for each proposition node by swapping relevant objects from
the environment and selecting objects with the most similar embeddings with the tem-
plate embedding node under consideration. The training process consists of both online
RL (where a policy for the given task is learned by following an epsilon-greedy behavioral
policy) and offline RL (where all Q-value functions, including those of subtasks, are up-
dated). Interestingly, the authors found that learning the auxiliary tasks does not adversely
affect the performance of learning the main task. In addition, the auxiliary tasks learned
through TaskExplore performed better compared to the same tasks learned through a ran-
dom behavior policy. Finally, the curriculum built on auxiliary tasks developed through
TaskExplore outperformed the corresponding curriculum developed by randomly sampled
tasks.

5.3 LLM4RL-Policy

In this subclass, an LLM directly assists the policy of an RL agent by generating trajec-
tories for pretraining (Reid et al., 2022), creating a policy prior (H. Hu & Sadigh, 2023),
acting as a planner in a Planner-Actor-Reporter scheme (Dasgupta et al., 2023), by directly
representing the policy (Carta et al., 2023), or by combining an adapter model to fine-tune
the prompt of another LLM that generates instructions (W. Zhang & Lu, 2023).

5.3.1 Trajectory Generation for Pretraining

The power of RL largely lies in the ability of the agent to learn through interacting with its
environment. However, sometimes the interaction with the environment is impractical, ei-
ther because it is expensive (e.g., in robotics), or dangerous (as in healthcare or autonomous
vehicles) (Levine et al., 2020). However, as explained in the LLM4RL-Reward subsection (5.1),
even when such interaction is possible and assuming available training data and computa-
tional resources, training a model from scratch might still face slow convergence. Therefore,
pretraining with previously collected data can benefit the agent, particularly in complex
domains where large datasets are needed for scalable generalization. In such cases, Offline
RL is commonly used. Offline RL handles the control problem as a sequence modeling
problem (T. Chen et al., 2019; Janner et al., 2021; Furuta et al., 2022) and uses supervised
learning to fit a dataset consisting of state-action-reward trajectories.
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By framing offline RL as a sequence modeling problem, Reid et al. (2022) investigated
whether LLMs can be successfully transferred to other domains when fine-tuned on offline
RL tasks that have no relation to language. The authors modeled trajectories autoregres-
sively, representing each trajectory t as a sequence of the form t = (R̂1, s1, α1, R̂2, s2, α2,
..., R̂N , sN , αN ), with R̂i, si, and ai representing the cumulative reward, state and action,
respectively, at time step t. The final objective of the supervised learning was a weighted
sum of three loss functions: The primary loss function is a classic Mean Squared Error loss.
The second loss function is a cosine similarity loss that quantifies the similarity between
language representations and offline RL input representations, with the goal to make the in-
put language embeddings as similar as possible to their language counterparts. Finally, the
third loss function represents the negative log-likelihood-based language modeling objective
to allow for joint training of language modeling and trajectory modeling. The authors used
pretrained models GPT2-small and ChibiT, a model that was pretrained on Wikitext-103
dataset (Merity et al., 2016). As shown by experiments in four Atari tasks and three Ope-
nAI Gym tasks, pretraining with language datasets can successfully fine-tune offline RL
tasks while also achieving significant gains in terms of both convergence speed and total
reward received, compared to baseline offline RL - including Decision Transformer (L. Chen
et al., 2021), CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021), BRAC (Y. Wu
et al., 2019), and AWR baselines (Peng et al., 2019).

5.3.2 Creating a Policy Prior

In subsection 5.1, we reviewed studies where human-agent alignment is achieved through
reward design. An alternative way to train RL agents that behave according to human
preferences is the creation of a policy prior that is aligned with human preferences and
reasoning. H. Hu & Sadigh (2023) propose Instruct-RL, a framework for human-AI
coordination where humans use high-level natural language instructions to specify to the
AI agent the type of behavior they expect. The human natural language instruction is then
passed to pretrained LLMs, which produce a prior policy. To construct the prior, the LLM
is supplied with the initial human instruction as well as a language prompt, which provides
a language description of the observations of the environment while the policy is being fol-
lowed. In practice, the LLM uses a softmax function to predict the probability of possible
actions given the observed state and the human instruction. Finally, the policy prior is
used as a reference policy during the training of the RL agent to regularize the training
objective, with the regularization technique varying according to the RL training algorithm,
by augmenting the epsilon-greedy method in Q-learning and adding a KL penalty to the
training objective in PPO. The experimental results based on both the performance of the
algorithms in benchmarking tasks (Hanabi and a negotiating game) and the human evalua-
tion demonstrated that InstructRL successfully incorporated human preference to produce
high-performance policies, even when the prior policies were imperfect and generated with
simple prompts. However, the authors highlighted the need for fine-tuning to improve test-
time performance, since adding the LLM priors to trained agents was shown to add no
meaningful improvement to the policy.
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5.3.3 LLM as the Policy

While LLMs possess general reasoning capabilities, they are not trained to solve environment
specific problems during their training, and thus cannot influence or explore the specific
environment where a task needs to be accomplished. Carta et al. (2023) proposed a
framework to overcome the lack of alignment between the general statistical knowledge of
the LLM and the environment by functionally grounding LLMs and using them directly as
the policy to be updated. Using a simple grid-world based text environment (Baby AI), the
authors formulated a goal-augmented, partially observable MDP where, given a prompt, the
LLM outputs a probability distribution over the possible actions and one action is sampled
according to this distribution. The authors used Proximal Policy Optimization to train the
agent and Flan-T5 780 M as the policy LLM. They observed 80% success rate after 250
thousand training steps, which is a significant improvement compared to previous models.
The authors also considered generalization over new objects, where a drop in performance
was observed, with the model still outperforming the benchmark. The biggest drop was
observed when testing against generalization to new tasks or a different language.

5.3.4 Planner

Dasgupta et al. (2023) combined the reasoning capabilities of the LLM with the special-
ization and the knowledge of the environment of an RL agent in a Planner-Actor-Reporter
scheme. This study belongs to the RL+LLM category and will therefore be analyzed in section
6. However, the authors also designed a variation of the main framework where the Planner
is embedded in the training loop of the Reporter with the goal to increase its truthfulness, so
that it reports accurate information to the planner. The Reporter uses the reward received
at the end of the episode to update their reporting policy such that it eventually learns to
only report helpful, i.e. truthful and relevant, information back to the planner. The reader
shall refer to section 6 for more details on this publication.

5.3.5 Using an Adapter Model

W. Zhang & Lu (2023) developed the RLAdapter Framework, a complex system that,
apart from the RL agent and the LLM, includes additionally an Adapter model to improve
the connection between the RL agent and the LLM without requiring the costly and often
impossible fine-tuning of the base LLM. The Adapter itself is also an LLM - in particular,
a 4-bit quantized version of the LLaMA2-7B model, which is fine-tuned with feedback from
the RL agent and the LLM. Embedding the adapter model in the RL training loop is shown
to result in more meaningful guidance overall, by enhancing both the LLM’s comprehension
of downstream tasks as well as the agent’s understanding capability and effective learning of
difficult tasks. The key metric that aids this closed-loop feedback is the understanding score,
which quantifies the semantic similarity between the agent’s recent actions and the sub-goals
suggested by the LLM as measured by the cosine similarity between the embeddings of the
LLM-provided sub-goals and the episode trajectory. The prompt of the Adapter includes a
description of the player’s observations, past actions, past sub-goals, and the understanding
score. The Adapter generates a prompt for the base LLM, containing a natural language
summary of the player’s past observations, actions, and understanding. In turn, the base
LLM generates updated instructions for the RL agent, which, as usual, takes an action,
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receives the response from the environment, and updates its policy. The understanding
score is then calculated and is used to fine-tune the adapter model, which then goes on to
generate a new prompt. The performance of RLAdapter with GPT-3.5 (OpenAI, 2023c)
was compared to baseline models, including ELLM by Y. Du et al. (2023). RLAdapter was
shown to outperform all baselines for 1 million steps, apart from ELLM; however, for 5
million steps, the performance of RLAdapter with GPT-4 (OpenAI, 2023d) exceeded that
of ELLM as well, and RLAdapter with GPT-3.5 (OpenAI, 2023c) matched SPRING by
Y. Wu et al. (2023) in terms of performance.

The main novelty of RLAdapter lies in fine-tuning the lightweight, cheaper-to-update
adapter model, while only updating the prompt of the base LLM. Despite the LLM prompt
being updated through this feedback loop, we do not classify this study as RL4LLM, since
RL is not used to improve the performance of a downstream language task.

6. RL+LLM: Combining Independently Trained Models for Planning

The last major class of studies includes those where the RL agent and the LLM are fun-
damental components of the same framework and where, contrary to the two previous
categories, they are independent from each other. In this class, an RL agent is trained to
learn specific skills, and the LLM leverages its knowledge of the real world to determine
ways to plan over those skills in order to accomplish a task. This combination results in an
agent that knows how to perform long-horizon tasks in a specific environment.

This category can be further refined based on whether planning relies on conversa-
tional feedback or not. In the first subcategory, RL+LLM-Without Language Feedback, the
LLM generates a static skill graph but does not participate in the planning process after
that. In the second subcategory, RL+LLM-With Language Feedback, the user query or the
LLM prompt is updated according to the results of the interaction between the agent and
the environment in each step. However, we should highlight that RL+LLM-With Language

Feedback studies where the prompt is modified during planning are completely different
from the RL4LLM-Prompt studies that were analyzed in section 4.2: The goal of frame-
works of the RL4LLM-Prompt category is the improvement of the LLM itself, while the goal
of frameworks in the RL+LLM category is planning towards a downstream task that is not
directly related to the LLM - or natural language in general.

6.1 RL+LLM-Without Language Feedback

Aside from grounding robotic agents to their environment, RL+LLM combinations have been
shown to be beneficial for learning multiple, long-horizon tasks in an open-ended environ-
ment, as in the case of Yuan et al. (2023), who developed Plan4MC, a framework for
executing Minecraft tasks. As the authors explain, exploration under long-horizon tasks
owes its difficulty to the size, complexity, and partial observability of open-ended environ-
ments. The most common strategy so far in RL literature and practice has been imitation
learning, which relies on expert demonstrations or video datasets, which are frequently dif-
ficult to obtain. However, even setting aside this obstacle, training an RL agent in a large
state space is inevitably hard due to sample inefficiency, while skipping demonstrations is
not a viable choice, since it might allow the agent to learn only a very restricted set of skills.
As such, the main idea of Yuan et al. (2023), it to break down tasks into basic, short-horizon
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Study Test-Time Performance Training Efficiency

Alignment
with human
intent

Grounding Learning
complex
tasks

Improving
exploration

Policy
Reuse

Kwon et al.
(2023)

Xie et al.
(2023)

Ma et al.
(2023)

Song et al.
(2023)

Y. Du et al.
(2023)

Quartey et
al. (2023)

Reid et al.
(2022)

H. Hu &
Sadigh
(2023)

Carta et al.
(2023)

W. Zhang &
Lu (2023)

Table 4: Breakdown of LLM4RL Synergy Goals per Subclass

skills, learn those separately, and plan over skills – in other words, find the proper sequence
of skills to be executed. In this context, RL is used to train the fundamental skills, which
are classified as “Find”, “Manipulate”, and “Craft”, independently in advance. It is worth
nothing that each type of skill is trained with a different algorithm. The authors prompt
ChatGPT (OpenAI, 2023a) by providing the context, along with an example of the output
in the desired format, and ChatGPT produces the skill graph in the desired format, where
nodes represent skills and arcs represent “require” and “consume” relationships. During
online planning, the agent alternates between skill planning (i.e., identifying a feasible plan
to achieve the goal by performing depth-first search on the skill graph) and skill execu-
tion (i.e., selecting policies to solve the complicated skills, and reverting to skill planning if
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LLM4RL Study Environment and Application

Kwon et al. (2023) Ultimatum Game, 2-Player Matrix Games, DEALORN-
ODEAL negotiation task (Lewis et al., 2017)

Xie et al. (2023) 17 manipulation tasks: Two robotic manipulation bench-
marks - MANISKILL2 (Gu et al., 2023) and METAWORLD
(T. Yu et al., 2021) and two locomotion environments of MU-
JOCO (Brockman et al., 2016). 1) METAWORLD: Benchmark
for Multi-task Robotics Learning and Preference-based Rein-
forcement Learning. Robot arm for tabletop tasks: Drawer
Open/Close, Window Open/Close, Button Press, Sweep, Door
Unlock/Close, Handle Press/Press Slide . 2) MANISKILL2:
object manipulation tasks in environments with realistic phys-
ical simulations. Tasks: Lift/Pick/Stack Cube, Turn Faucet,
Open Cabinet Door/Drawer, Push Chair 3) Gym MuJoCo:
Hopper (Move Forward, Front Flip, Back Flip), Ant (Move
Forward, Wave Leg, Lie Down). 4) Real Robot. Manipulation
tasks - Pick-and-place, assembly, articulated object manipula-
tion with revolute or sliding joint, and mobile manipulation,

Ma et al. (2023) For Isaac Gym Environments: Cartpole, Quadcopter, Franka-
Cabinet, Anymal, BallBalance, Ant, AllegroHand, Humanoid,
ShadowHand, Over, DoorCloseInward, DoorCloseOutward,
DoorOpenInward, DoorOpenOutward, Scissors, SwingCup,
Switch, Kettle, LiftUnderarm, Pen, BottleCap, CatchAbreast,
CatchOver2Underarm, CatchUnderarm, ReOrientation, Gras-
pAndPlace, BlockStack, PushBlock, TwoCatchUnderarm. Pen
spinning as a complicated dexterous task.

Song et al. (2023) Three robotic systems: 1) Robotic Manipulator for ball catch-
ing, ball balancing, and ball pushing (Franka Emika Panda
Emika by Haddadin et al. (2022)), 2) Quadruped robot for ve-
locity tracking, running, and walking to target (Anymal Any-
Robotics by AnyRobotics (2023), 3) Quadcopter for hovering,
flying through a wind field, and velocity tracking (Crazyflie
BitCraze by BitCraze (2023)).

Y. Du et al. (2023) 1) Crafter game environment (2-D version of Minecraft), modi-
fied to a) replace the general “Do” command with more specific
commands and b) increase damage against enemies and reduce
the amount of wood needed to craft a table. 2) Housekeep
robotic simulator by Kant et al. (2022), where an agent cleans
up a house by rearranging objects.

Quartey et al. (2023) HomeGrid. Used a food preparation task (maps to visiting the
right squares in the right order).

Reid et al. (2022) Two multi-agent coordination games: Say-Select (a cooperative
game where two players are collecting rewards by selecting from
a set of balls, each of which is mapped to a reward value that
is only known to one of the players) and Hanabi (Bard et al.,
2020), a cooperative card game.

H. Hu & Sadigh (2023) Multi-agent coordination games: Say-Select and Hanabi. (Bard
et al., 2020)

Carta et al. (2023) New environment introduced: BabyAI-Text (Adaptation of
BabyAI (Chevalier-Boisvert et al., 2019) to be text-only). Min-
igrid environment where an agent navigates and interacts with
objects through 6 commands: turn left, turn right, go forward,
pick up, drop, toggle.

W. Zhang & Lu (2023) Crafter Game with 22 different tasks (e.g., collecting resources,
crafting items, defeating monsters)

Table 5: LLM4RL Environment and Applications
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LLM4RL Study Base LLM RL Architecture

Kwon et al. (2023) GPT-3 (OpenAI, 2023b) DQN (Mnih et al., 2013)

Xie et al. (2023) GPT-4 (OpenAI, 2023d) PPO (Schulman et al., 2017)
(Schulman et al., 2017), SAC
(Haarnoja et al., 2018)

Ma et al. (2023) GPT-4 (OpenAI, 2023d) (also
experiments with GPT-3.5)

PPO (Schulman et al., 2017)

Song et al. (2023) GPT-4 (OpenAI, 2023d) PPO (Schulman et al., 2017)

Y. Du et al. (2023) Codex (M. Chen et al., 2021) DQN (Mnih et al., 2013), with
double Q-learning Van Hasselt
et al. (2015), dueling networks
(Z. Wang et al., 2016) and
multi-step learning (R. Sutton
& Barto, 1998)

Quartey et al. (2023) InstructGPT text-davinci-003
(for generating instruc-
tions) (Ouyang et al., 2022),
Sentence-T5 (Ni et al., 2021)
(for encoding object descrip-
tions to vectors)

LPOPL (LTL Progression
for Off-Policy Learning)
(Toro Icarte et al., 2018)

Reid et al. (2022) GPT-2 Radford et al. (2019),
CLIP (Radford et al., 2021),
iGPT (M. Chen et al., 2020);

Decision Transformer
(L. Chen et al., 2021),
CQL (Kumar et al., 2020),
TD3+BC (Fujimoto & Gu,
2021), BRAC (Y. Wu et al.,
2019), AWR (Peng et al.,
2019).

H. Hu & Sadigh (2023) GPT-3.5 (OpenAI, 2023c)
(text-davinci-003)

Q-learning (Mnih,
Kavukcuoglu, Silver, Rusu, et
al., 2015) and PPO (Schul-
man et al., 2017)

Carta et al. (2023) Flan-T5 780M (Rae et al.,
2022)

PPO (Schulman et al., 2017)

W. Zhang & Lu (2023) GPT-3.5 (OpenAI, 2023c) and
GPT-4 (OpenAI, 2023d)

PPO (Schulman et al., 2017)

Table 6: LLM4RL Base Algorithms and RL Architecture
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the execution of a task fails). The experimental results showed that Plan4MC achieved a
higher success rate compared to other variations of the algorithm, including those without
task decomposition or without separate learning of the “Find” skills. In a separate set of
experiments, ChatGPT was also used to generate the plan, but this model variation was
outperformed by the original Plan4MC version.

6.2 RL+LLM-With Language Feedback

In a common planning scheme under this category, the LLMs generate instructions for tasks
that the agent has already learned through RL, while the feedback from the environment
is used to update the instructions. The feedback from the environment includes natural
language, although it is not necessarily limited to it - see, for example W. Huang et al. (2022)
- and is used to update the user query or prompt based on the results of the interaction
between the agent and the environment in each step.

“SayCan” by Ahn et al. (2022) involves a robotic assistant that performs household
tasks in a kitchen environment. The authors build on the observation that, the knowledge
of LLMs about the world, while vast, is not physically grounded to the environment that
the robotic agent is operating in. As a result, a fully trained robotic agent might not be
able to select the appropriate skills to accomplish a task. The role of RL in this case is
to achieve grounding by helping the agent obtain awareness of the scene. In this case,
grounding is measured by calculating the probability of successfully executing a task using
a particular skill in a given state. Both the LLM and RL directly participate in computing
this probability: the LLM is used to calculate the probability that each skill contributes
to completing the instruction, while the affordance function of the RL agent provides the
probability that each skill will be executed successfully. The product of those two quantities
is the probability that a skill will successfully perform the instruction. Then, the most
probable skill is selected, its policy is executed, and the LLM query is amended to include
the language description of the skill. The plan is formulated as a dialogue between the robot
and the user, where the user provides a high-level instruction and the robot responds by
listing the skill sequence that is it going to execute. SayCan was evaluated on 101 different
tasks in a real kitchen environment.

To improve the performance of the system, the LLM undergoes prompt engineering to
ensure that it produces skill recommendations that are consistent with the user query. In
fact, the authors found that the performance of the LLM improved when a) the sequential
steps were explicitly numbered, b) the objects mentioned presented variation across the
prompt examples, c) careful and error-free phrasing of the names of skills and objects. In
a separate set of experiments, SayCan was integrated with Chain of Thought (Wei et al.,
2023), which was shown to improve its performance at negotiation tasks. In addition, it
was able to successfully execute instructions provided in languages other than English.

Similarly to “SayCan”, W. Huang et al. (2022) proposed Inner Monologue, a frame-
work for planning and interaction with robotic agents that have been trained to execute a
variety of skills. Like the previous study of Ahn et al. (2022), LLMs help the agent under-
stand what the available skills are, how they affect the environment when executed, and how
the changes in the environment translate to feedback in natural language. However, contrary
to SayCan, Inner Monologue also provides closed-loop feedback to the LLM predictions. In-
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ner Monologue chains together three components: a) the pretrained, language-conditioned
robotic manipulation skills, b) a set of perception models, like scene descriptors and suc-
cess detectors, and c) human feedback provided by a user that generates natural language
instructions towards the robot. The pretrained manipulation skills are short-horizon skills
accompanied by short language descriptions and may be trained through RL. The LLM
plays the role of the Planner, whose goal is to find a sequence of skills that achieve the goal
expressed by the user. First, the Planner receives the human instruction and breaks it down
into a sequence of steps. As it executes the generated plan, the Planner receives three types
of textual feedback from the environment: a) Success Detection, which answers whether
the low-level skill was successful, b) Passive Scene Description, which is provided without
explicitly querying the Planner and includes object recognition feedback and task-progress
scene descriptions, and c) Active Scene Description, which is provided by a person or a
pretrained model (for instance a Visual Question Answering model) in response to explicit
questions asked by the LLM. As the robot interacts with its environment, the collected
feedback is continuously appended to the LLM prompt, thus forming an “inner monologue”
that closes the loop from the environment to the agent and therefore enhancing the plan-
ning capabilities of the LLM. Inner Monologue was tested on simulated and real table-top
manipulation environments, as well as a real kitchen mobile manipulation environment. In
the latter, pretrained affordance functions are used for action grounding and the results are
compared to SayCan by Ahn et al. (2022) under standard conditions and under adversarial
conditions, with added disturbances during control policy executions that cause the plan to
fail. In all cases, the embodied feedback provided in the Inner Monologue framework was
shown to improve the success rate of the tasks compared to its predecessor, while under
adversarial conditions it was only Inner Monologue that was able to consistently complete
the instructions successfully. In addition, Inner Monologue was shown to possess significant
reasoning capabilities, including continuous adaptation to new instructions, self-proposing
goals in cases of infeasibility, multi-lingual understanding, interactive scene understanding,
and robustness to disturbances in human instructions, like swapping the order of feedback
or typos. Three failure modes were also observed: False positive and negative success
detections, LLM Planning errors due to ignoring the environment feedback, and control
errors.

Dasgupta et al. (2023) proposed a Planner-Actor-Reporter scheme to take advan-
tage of the reasoning capabilities of the LLM and the specialized control skills of a trained
RL agent: The LLM acts as the Planner that receives a task description, performs logical
reasoning, and decomposes the task into a sequence of instructions that it passes to the
Actor, who executes the instructions, while the reporter provides feedback on the action
effects back to the Planner. The framework is implemented in a partially observable 2-D
grid-world (Stepleton, 2017), with each object possessing a unique combination of color,
shape, and texture. Both the Actor and the Reporter are RL agents, trained with VTrace
loss. The Actor follows a pretrained policy that has been trained on simple tasks in the
same environment. To allow the agent to receive feedback both from environment obser-
vations and through natural language, the policy uses two encoders: a convolutional visual
encoder for visual observations and an LSTM-based language encoder for natural language
instructions (e.g., “Pick up X”), and its action space includes movement within the grid,
picking up objects, and examining objects. The Reporter possesses a similar architecture
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to the Planner, since it also includes encoders for vision and language, but it additionally
possesses a memory module and a policy head, which is a binary classifier head that chooses
one of two possible reports. The Reporter observes the results of the Actor’s interaction
with the environment and communicates with the Planner to inform it of its next command.
In every step, the information generated by the Reporter is appended to the dialogue tran-
script, which is then used as the updated prompt of the Planner, that generates a new
instruction for the next step. The authors argue that training the Reporter to ignore noise
and produce useful feedback for the planner is more efficient compared to utilizing a large
– and therefore expensive – planner. From a robustness perspective, they showed that the
framework exhibited robustness for challenging tasks where the Planner needs to explicitly
request specific information to incorporate into its next set of instructions, as well as for
tasks performed in environments for which the LLM lacks previous semantic experience and
therefore needs to perform abstract logical reasoning. They also showed that the Planner-
Actor-Reporter scheme is better at learning tasks that are difficult to learn using pure RL
Baselines. Table 7 summarizes the tasks and applications of RL+LLM studies.

7. Discussion

So far, we have built our taxonomy based on the structural breakdown of the methods
analyzed in the studies that combine RL and LLMs. We have identified the way that
each of the two models is embedded in the integrated framework where they coexist and
potentially interact and have pinpointed specific components within this framework where
the two model types are interlocked. Building on our analysis, we will now discuss the
goals that those frameworks are trying to achieve, along with the components that make
them successful (subsection 7.1). We will also review and discuss potential shortcomings
and areas with potential for improvement (subsection 7.2), along with alternative methods
that attempt to solve similar problems without utilizing an RL/LLM synergy (subsection
7.3).

7.1 Goals of Synergy and Reasons for Success

In this section, we provide a broader view of the studies by examining the goal of this syn-
ergy, in line with the inherent features of the two models that make the synergy successful.

7.1.1 RL4LLM: Responsible AI, Alignment with Human Preference,
Performance Improvement

In the RL4LLM case, particular emphasis is placed on improving the quality of the output of
the NLP application that the LLM aims to complete, the performance of the LLM at task
execution, or both. Overall, the primary quality considerations in the RL4LLM category are
Responsible AI and alignment with human preferences and intent.

Not surprisingly, given the generative nature of LLMs, Responsible AI is a primary
concern of researchers, who wish to ensure the design of models that are not only helpful,
but also harmless. Research on mitigating potentially harmful output precedes the era
of LLMs, with “harmfulness” manifesting itself in a variety of ways: offensive responses
(Perez et al., 2022) (e.g., unkind, with offensive jokes, or references to morally questionable
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RL+LLM Study Environment and Long-
Term Task

Low-Level Skills

Yuan et al. (2023) Minecraft Tasks (e.g., “Har-
vest cooked beef with sword in
plains”

3 types of skills: Finding, Ma-
nipulation, Crafting

Ahn et al. (2022) 101 real-world robotic in a
kitchen.

551 skills of seven skill families
and 17 objects. Skill include
include picking, placing and
rearranging objects, opening
and closing drawers, navigat-
ing to various locations, and
placing objects in specific con-
figurations.

W. Huang et al. (2022) 3 Families of tasks: Ma-
nipulation, Mobile Manipu-
lation, Drawer Manipulation.
Mock office kitchen environ-
ment with 5 locations and 15
objects.

Navigation and manipulation
skills with policies trained
from RGB observation.

Dasgupta et al. (2023) 2D partially observable grid-
world Stepleton (2017) with
4 objects, each of which has
a “secret” property. Three
types of tasks: 1) Secret prop-
erty conditional task (“If [ob-
ject 1] is good, pick up [object
1], otherwise pick up [object
2]”. 2) Secret property search
task (“The objects are [], [], [],
and []. Pick up the object with
the good secret property”

Primitive skills like “Pick up
object X” or “Examine object
X”

Table 7: RL+LLM Environment and Applications

or sexual desires), data leakage (Perez et al., 2022; Y. Bai, Kadavath, et al., 2022) (i.e., the
use of confidential data, such as Social Security Numbers, for training the model, which can
then be inferred by an adversary), generated contact information (such as phone numbers,
home addresses, and e-mail addresses) (Perez et al., 2022), distributional bias - i.e., text that
is negative more often for specific groups (Perez et al., 2022; Y. Bai, Jones, et al., 2022),
engagement to sensitive questions (Y. Bai, Jones, et al., 2022; Y. Bai, Kadavath, et al.,
2022). Notably, all studies which emphasize LLM harmlessness fall under the “fine-tuning”
umbrella, either with or without human feedback, a fact that indicates that careful prompt
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design is not always sufficient to guarantee the adherence of the output to responsible AI
principles. In fact, the variety of ways in which harmful content can be generated can only
be covered through extensive examples, in which few-shot learning is not enough. Naturally,
the construction of fine-tuning datasets – which embed the preference and ethical standards
of humans – and the subsequent tuning of the model parameters through RL is a natural
choice. Helpfulness, i.e., the alignment between the goals and preferences of the user and
the LLM output is another aspect of output quality: For example, an LLM assistant that
is tasked to generate Python code is expected to produce clean, executable, and correct
results.

7.1.2 LLM4RL: Efficiency, Grounding, and Human Preferences

Studies in this class depart from the field of NLP and extend to applications where the
use of an LM would seem irrelevant in the pre-LLM era. A detailed review of the studies
presented in section 5 reveals that LLMs possess three particular features which make the
collaboration between them and RL agents successful:

1. Ability for zero-shot or few-shot learning: The ability of LLMs to learn through
no examples or few examples of desired behavior allows them to align their output
to human feedback. This alignment is primarily utilized for RL agent reward design
(5.1) with the goal of generating appropriate reward signals that successfully represent
human preferences.

2. Real-world knowledge: LLMs possess vast “knowledge” of the real world, which allows
them to explore new behaviors and generate training data. Both capabilities result in
time and cost-efficient RL training by a) helping the agent avoid expensive exploration,
particularly in open-ended environments, b) eliminating the need for expensive data
collection and c) reducing the need for from-scratch training, since they allow policies
to be transferred between agents.

3. Reasoning capabilities: For applications involving robotic manipulation, the robotic
agent is the one possessing real-world knowledge about its environment, while the
LLM is used for grounding the actions of the agent to the environment by ensuring
those actions achieve the desired task.

7.1.3 RL+LLM: Planning

The goal of all studies in the RL+LLM category is successful planning and execution of
relatively complex tasks. In all cases, the agent is equipped with a set of skills that they
have already learned through RL. The LLM then helps the agent combine those tasks in
order to execute longer-horizon, complex tasks that generally require the execution of more
than one of those simple skills in the correct order. Without the LLM, the agent would have
to learn the long-term skills from scratch. However, as we discussed in section 6, training for
long-term tasks, especially in complex and partially observable environments, can be data
intensive, suffer from sample inefficiency, and eventually unsuccessful. Therefore, instead
of explicitly learning complex tasks, planning determines the appropriate sequence of basic
skills that must be executed. LLMs are suitable for planners because they can reason about
possible skills execution sequences based on their knowledge of the real world.
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7.2 Shortcomings

We are now focusing on aspects of the proposed frameworks that have been identified
as areas of improvement. In particular, shortcomings of LLM4RL and RL+LLM approaches
present observable patterns that are common across multiple studies.

7.2.1 LLM4RL

While the available results of the LLM4RL and RL+LLM synergy are impressive and more than
promising with regards to the potential for future development, we can identify a set of
shortcomings of this class of problems, which refer to two key metrics: the applicability of
each framework, and the scalability of the process.

Applicability. Despite the applicability of RL agents in major domains like healthcare
and robotics (see subsection 2.3 for more details), our review of the state-of-the-art research
falling within the LLM4RL and RL+LLM classes of the Taxonomy Tree reveals that practically
all applications of the relevant studies are limited to either benchmarking environments,
games, or robotic environments (Table 5 and Table 7), a trend that might initially raise
questions about the applicability of the synergy to real-world scenarios beyond household
tasks or games. We can attribute this apparent limitation to three reasons: First, the
majority of studies presented in sections 4 and 6 focus on introducing novel concepts in-
volving the use of LLMs for tasks that have traditionally been performed otherwise. As
proofs-of-concept, they are therefore well-suited to benchmarking environments, like Atari
games. Second, before a combined modeling framework is deployed in the real-world, its
behavior must be extensively tested for safety, security, and responsible AI considerations.
Therefore, it will likely not be long until the LLM4RL classes encompass practical real-world
applications of control systems in areas like healthcare and finance. Third, the key strength
of LLMs that enables this synergy, i.e., the ability to convey human sense and preferences,
at the same time restricts the range of applications that can be accommodated by LLM4RL

frameworks. This limitation applies to both the specification of goals or desired behavior
through human language, as well as the representation of the state using natural language
(Y. Du et al., 2023).

Even within the realm of the commonly used benchmarking environments, the applica-
bility of LLM4RL methods is often constrained by the limitations of the frameworks them-
selves. For example, some frameworks, such as the GLAM method by Carta et al. (2023)
are exclusively limited to textual environments, while the ELLM method by Y. Du et al.
(2023) assumes a natural language textual representation of the agent’s state. Other meth-
ods, such as TEXT2REWARD (Xie et al., 2023) are capable of handling relatively simple
tasks, but are yet to be tested for more complex tasks.

Performance. Aside from applicability, performance is another parameter that requires
further evaluation in LLM4RL studies, with the specific requirements varying among studies.
For example, H. Hu & Sadigh (2023) identify the need to fine-tune InstructRL to improve its
performance at test-time. In other cases, the performance of the underlying LLM is shown
to be sensitive to prompt choice or even prone to errors despite well-formulated prompts,
as in Y. Du et al. (2023). Certain LM shortcomings had already been identified prior to
the rapid expansion of LLMs - for example, the policy transfer framework of Jiang et al.
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(2023) was shown to occasionally suffer from “catastrophic forgetting”, which significantly
reduced the benefits of the agent policy initialization.

Scalability. Finally, the scalability of the solution as the state and action space of the
RL agents grows is a potential challenge. As pointed out by Carta et al. (2023), scaling
up can be computationally inefficient and therefore constrain the application to a single
environment and relatively small LLMs.

7.2.2 RL+LLM

The combination of RL and LLM for planning long and complex tasks is showing promising
results in both studies included in the RL+LLM class. However, an inevitable outcome of
such a synergy is that the final model can eventually only be as good as the individual
skills for which the agent has been already trained for, irrespective of the robustness of the
skill plan generated by the LLM. As pointed in Ahn et al. (2022), there is a chance that
the system cannot react in case the execution of the intermediate skills fails. Similarly, low
success rate of specific individual skills (“Find-Skills”) are the key limitations highlighted
by Yuan et al. (2023), therefore hindering the end-to-end execution of the plan generated
by the Plan4MC method.

7.3 Alternatives

Having reviewed the ways that RL and LLM collaborate, along with the strengths and weak-
nesses of each framework, we are now exploring the existence of LLM-based approaches de-
signed to achieve the same goals without involving RL agents. We investigate the following
questions:

1. Is RL required for fine-tuning an LLM?

2. Is RL required for prompt optimization?

3. Is RL required for an LLM to achieve a non-NLP-related task?

Interestingly, the answer to all the above questions is “no”. In the discussion that follows,
we offer a brief review of state-of-the-art frameworks that serve as counterexamples. These
frameworks are out of the scope of this taxonomy, since they do not rely on the synergy
between an RL agent and a LLM - aside, of course, from the use of RLHF for the initial
training of the LLM.

7.3.1 Fine-tuning an LLM Without RL: Syndicom, Rain, LIMA

In section 4.1, we presented how RL is used to fine-tune a trained LLM to improve its
output for specific tasks. In this section, we present recent studies that achieve fine-tuning
without using RL – instead, they use either supervised training methods (C. Zhou et al.,
2023; Richardson et al., 2023) or self-evaluation (Y. Li et al., 2023) using specially crafted
datasets.

The LIMA (Less Is More for Alignment) model (C. Zhou et al., 2023) was fine-tuned us-
ing supervised learning. The authors posited the Superficial Alignment Hypothesis, which
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states that “a model’s knowledge and capabilities are learnt almost entirely during pre-
training, while alignment teaches it which subdistribution of formats should be used when
interacting with users”. LIMA creators fine-tune a LLaMa (Large Language Model Meta
AI) LM with 65 billion parameters using standard supervised loss and a small dataset of
1000 prompt-response pairs. The responses of LIMA outperform GPT-4 (OpenAI, 2023d),
Bard, and davinci-003 models, based on human evaluation, and demonstrate ability to
handle complex queries and generalize well to previously unseen tasks.

In the SYNDICOM framework by Richardson et al. (2023), the creators fine-tuned a
conversational agent to enhance its commonsense reasoning. SYNDICOM consists of two
components: First, a dataset containing valid and invalid responses in dialogue contexts,
with the invalid ones accompanied by natural language feedback. The authors build a
template by randomly sampling from ATOMIC and use GPT-3 to convert the template to
natural-sounding dialogue and mark the invalid responses, while human feedback is provided
by crowd workers. The second key component of SYNDICOM is a training procedure of a
feedback model and a response generation model: First, the feedback model is trained to
predict the natural language feedback for invalid responses. Then, the response generation
model is trained based on the invalid response, the predicted feedback, and the dialogue.
The quality of SYNDICOM responses was shown to outperform ChatGPT based on both
ROUGE-1 score and human evaluation.

In a different study, Y. Li et al. (2023) proposed RAIN (Rewindable Auto-regressive
Inference) to produce LLM responses aligned to human intent by fine-tuning through self-
evaluation and rewind mechanisms. RAIN is a self-alignment model, i.e., does not receive
external supervision, and rather allows LLMs to evaluate their output and use the evaluation
results to improve it. In a nutshell, RAIN searchers over token sets, with each token set
mapping to the node of a search tree. The search consists of an inner and an outer loop.
The inner loop, which updates token attributes, consists of a forward search step from root
to leaf through heuristic simulation and a backward rewind step to the root. The outer loop
adjusts the token set probabilities and determines the next token set. RAIN was shown to
outperform LLaMA30B in terms of harmlessness and performed equally well in terms of
helpfulness and was also shown to outperform LLaMA-2-chat 13B in terms of truthfulness.

7.3.2 Prompt Optimization Without RL: Learning-Based Prompt
Optimization

In subsection 4.2, we reviewed studies where RL is used for LLM prompt engineering.
Nonetheless, RL is not the sole method for conducting prompt engineering: Sun (2023a)
summarized state-of-the-art methods on learning-based prompt optimization, with exam-
ples where prompt optimization is achieved through methods like Beam Search (Pryzant
et al., 2023) or Evolution Strategy (Y. Zhou et al., 2023). However, every single of the
RL4LLM-Prompt frameworks presented in this study was able to overcome traditional chal-
lenges that were primarily related to training efficiency of supervised learning methods.
RLPrompt (Deng et al., 2022) combined multiple desirable properties which previously
had not been collectively present in any framework: it is automated, gradient-free (there-
fore eliminating the need to access or compute gradients, which can be computationally
expensive), uses frozen LMs (thus not updating any LM parameters), efficient (since it
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guides optimization through the RL reward information), transferable between different
LMs (due to the use of discrete prompts rather than embeddings), and capable of few-shot
and zero-shot learning (since the reward function eliminates the necessity for supervised
data). TEMPERA (T. Zhang et al., 2022) outperformed RLPrompt in multiple tasks like
fine-tuning, prompt tuning and discrete prompt search. Finally, Prompt-OIRL was the
first model to address the challenge of inference time evaluation (through offline prompt
evaluation) and expensive online prompt optimization (through offline prompt optimization
without access to the target LLM).

7.3.3 LLMs for Non-NLP Tasks

As established in section 5, integrating an LLM in an RL framework allows us to utilize
the vast knowledge and grounding capabilities of LLMs and achieve a variety of control
tasks that are not inherently related to natural language, ranging from playing games to
robotic manipulation. We also reviewed studies where the output of LLMs together with
learned robotic policies can be used for planning or sequential decision-making tasks in
the LLM+RL category. Particularly in the realm of robotics, we showed (sections 5 and 6)
that grounding the agent to the natural environment is a key challenge that LLMs have
successfully addressed.

KOSMOS (S. Huang et al., 2023) is a multimodal LLM that has been trained on web-
scale multimodal corpora, including text, image-caption pairs and documents with both
images and text. The goal of KOSMOS is to align perception with LLMs, practically
allowing models to see and talk. The key idea behind KOSMOS is directly analogous
to that of LLMs, since it is trained to predict the most likely next token. However, it
extends this principle beyond language, showing successful performance on vision tasks as
well. More specifically, the model is capable of successfully executing dialogue tasks, visual
explanation and Question-Answering, number recognition, and image captioning.

Similarly, PaLM-E (Driess et al., 2023) is a general-purpose multimodal LM for embod-
ied reasoning, visual-language, and language tasks. Inputs such as images and neural 3D
representations are embedded alongside text tokens and passed as input to the Transformer.
Incorporating continuous inputs from various sensor modalities of the embodied agent can
enable the multimodal LM itself to make grounded inferences for sequential decision mak-
ing in the real world. PaLM-E transfers knowledge from visual-language domains into
embodied reasoning, such as sequential robotic planning and answering questions about the
observable world. This knowledge transfer leads to high data efficiency for robotics tasks.
PaLM-E operates on multimodal sequences of tokens with inputs such as images and neu-
ral 3D representations alongside text tokens. The authors demonstrate that a generalist
multi-embodiment agent can be trained leveraging transfer learning across modalities, by
incorporating embodied data into the training of a multimodal LLM. Similar to KOSMOS-1,
PaLM-E can perform tasks such as zero shot multimodal chain of thought, visually condi-
tioned jokes, zero-shot multi-image relationships, spatial grounding, robot visual perception,
dialogue and planning etc.

GPT-4V by OpenAI (GPT-4 Technical Report , 2023) is a multimodal LLM that was
trained to analyze and understand text and image input and generate text outputs. It has
demonstrated impressive performance on various tasks, such as exams, logic puzzles, as
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well as vision and language tasks. GPT-4V was trained on a large-scale corpus of web data,
including both positive and negative examples (right and wrong solutions to problems, weak
and strong reasoning, self-contradictory and consistent statements) and of various ideologies
and ideas. Note that the model’s capabilities seem to come primarily from the pretraining
process.

It is interesting to note that multimodality is not necessary for an LLM to successfully
execute non-NLP tasks. A typical example is the SPRING framework (Y. Wu et al., 2023),
where an LLM learns to play complex, open-world games like Crafter or Minecraft by read-
ing the Latex source code of the related academic papers. A directed acyclic graph is con-
structed, with gameplay specific questions as nodes and dependencies between questions as
edges. The experiments demonstrated that when using chain-of-thought prompting, LLMs
can successfully execute complex tasks, while SPRING’s zero-shot performance exceeded
that of state-of-the-art RL algorithms for 1 million training steps.

8. Conclusions and Future Work

In this work, we have proposed the RL/LLM Taxonomy Tree, a comprehensive classification
of state-of-the-art computational frameworks that combine RL Agents and LLMs to achieve
a target task. We have therefore identified three core classes, namely RL4LLM, which use RL
to improve the performance of an LLM; LLM4RL, where an LLM assists the training of an
RL agent; and RL+LLM, where an RL agent and an LLM participate in a common framework
for planning downstream tasks. We have further divided each class into subcategories based
on observations that differentiate the studies that belong in each one. Since each category
corresponds to a distinct type of synergy between RL and LLMs, we have explored the key
motivations behind the development of the frameworks included in each category and have
explained which key strengths of RL and LLMs are utilized each time. The adaptability
of RL to NLP tasks, due to their sequential decision-making nature, along with the rea-
soning capabilities and vast knowledge about the real world that LLMs possess, serves as
a testament to the success of this synergy. This results in models that are aligned with
human intent and Responsible AI principles. In addition, by reviewing the continuously
growing literature on alternative methods, we acknowledge that, for most applications, this
synergy is not the only choice. Finally, since LLMs are a relatively new area of Artificial
Intelligence, there still exist potential shortcomings; those primarily concern the applica-
bility of LLM4RL and RL+LLM frameworks, along with aspects like computational efficiency
and scalability. Nevertheless, the pace of research is so rapid that we can only anticipate
substantial improvements in those areas as well.

This review is intended to help researchers understand synergies between RL and LLMs
and develop their own AI frameworks. In the future, we will keep classifying new studies
based on the RL/LLM Taxonomy Tree and, if appropriate, expand it to capture novel
categories that, given the pace of ongoing research, will almost certainly arise. Undoubtedly,
the future holds boundless possibilities for RL-LLM synergies in this regard.
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