
Journal of Artificial Intelligence Research 80 (2024) 931-976 Submitted 01/2024; published 07/2024

Unifying SAT-Based Approaches to
Maximum Satisfiability Solving

Hannes Ihalainen hannes.ihalainen@helsinki.fi

Jeremias Berg jeremias.berg@helsinki.fi

Matti Järvisalo matti.jarvisalo@helsinki.fi

Department of Computer Science,

University of Helsinki,

Finland

Abstract

Maximum satisfiability (MaxSAT), employing propositional logic as the declarative
language of choice, has turned into a viable approach to solving NP-hard optimization
problems arising from artificial intelligence and other real-world settings. A key contribut-
ing factor to the success of MaxSAT is the rise of increasingly effective exact solvers that
are based on iterative calls to a Boolean satisfiability (SAT) solver. The three types of SAT-
based MaxSAT solving approaches, each with its distinguishing features, implemented in
current state-of-the-art MaxSAT solvers are the core-guided, the implicit hitting set (IHS),
and the objective-bounding approaches. The objective-bounding approach is based on di-
rectly searching over the objective function range by iteratively querying a SAT solver if
the MaxSAT instance at hand has a solution under different bounds on the objective. In
contrast, both core-guided and IHS are so-called unsatisfiability-based approaches that em-
ploy a SAT solver as an unsatisfiable core extractor to determine sources of inconsistencies,
but critically differ in how the found unsatisfiable cores are made use of towards finding a
provably optimal solution. Furthermore, a variety of different algorithmic variants of the
core-guided approach in particular have been proposed and implemented in solvers. It is
well-acknowledged that each of the three approaches has its advantages and disadvantages,
which is also witnessed by instance and problem-domain specific runtime performance dif-
ferences (and at times similarities) of MaxSAT solvers implementing variants of the ap-
proaches. However, the questions of to what extent the approaches are fundamentally
different and how the benefits of the individual methods could be combined in a single
algorithmic approach are currently not fully understood. In this work, we approach these
questions by developing UniMaxSAT, a general unifying algorithmic framework. Based
on the recent notion of abstract cores, UniMaxSAT captures in general core-guided, IHS
and objective-bounding computations. The framework offers a unified way of establishing
quite generally the correctness of the current approaches. We illustrate this by formally
showing that UniMaxSAT can simulate the computations of various algorithmic instantia-
tions of the three types of MaxSAT solving approaches. Furthermore, UniMaxSAT can be
instantiated in novel ways giving rise to new algorithmic variants of the approaches. We
illustrate this aspect by developing a prototype implementation of an algorithmic variant
for MaxSAT based on the framework.

1. Introduction

The declarative paradigm of maximum satisfiability (MaxSAT) (Li & Manyà, 2021; Bacchus
et al., 2021) is today a viable approach to solving NP-hard optimization problems arising

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Ihalainen, Berg, & Järvisalo

from AI and other real-world settings. Much of the success of MaxSAT is due to advances
in practical algorithms for MaxSAT and their fine-grained implementations as MaxSAT
solvers.

MaxSAT solvers can be categorized into exact (or “complete”) and inexact (or “incom-
plete”) solvers. Inexact solvers are typically based on stochastic local search (Jiang et al.,
1995; Cai et al., 2014; Lei & Cai, 2018; Chu et al., 2023) and/or combinations of techniques
from exact solvers (Joshi et al., 2019; Berg et al., 2019; Nadel, 2020), and are in general
geared towards finding “good” solutions in relatively short time instead of providing guar-
antees on finding provable optimal solutions. In contrast, exact solvers are guaranteed to
find optimal solutions, given enough runtime resources. A majority of research on devel-
oping increasingly effective MaxSAT solvers has to date focused on exact solvers which are
also the focus of this work.

Exact MaxSAT solvers are based on one or more types of algorithmic approaches. As
the main focus of this work, a great majority of modern exact MaxSAT solvers are “SAT-
based” (Bacchus et al., 2021), implementing Boolean satisfiability (SAT) based MaxSAT al-
gorithms making use of SAT solvers as “real-world NP-oracles” in an iterative fashion (Mor-
gado et al., 2013; Ansótegui et al., 2013). Apart from the mainstream SAT-based MaxSAT
solvers, we note that branch-and-bound based MaxSAT solvers—most recently integrating
specific search techniques from SAT solving, such as clause learning—have also been devel-
oped (Planes, 2003; Li et al., 2005, 2006; Heras et al., 2008; Abramé & Habet, 2014, 2016;
Li et al., 2021, 2022; Li & Manyà, 2021).

The underlying algorithmic approaches implemented in the various SAT-based MaxSAT
solvers today can be categorized into three types: the so-called core-guided approach (Fu
& Malik, 2006; Marques-Silva & Planes, 2007; Heras et al., 2011; Ansótegui et al., 2013;
Morgado et al., 2013, 2014; Narodytska & Bacchus, 2014; Alviano et al., 2015; Ansótegui
et al., 2016; Ansótegui & Gabàs, 2017), the implicit hitting set (IHS) approach (Davies
& Bacchus, 2011, 2013; Saikko et al., 2016), and the objective-bounding approach (Fu
& Malik, 2006; Eén & Sörensson, 2006; Berre & Parrain, 2010; Koshimura et al., 2012;
Heras et al., 2011; Ignatiev et al., 2014). The objective-bounding approach is based on
directly searching over the objective function range by iteratively querying a SAT solver
if the MaxSAT instance at hand has a solution under different bounds on the objective
using different strategies such as model-improving search (Eén & Sörensson, 2006; Berre
& Parrain, 2010; Koshimura et al., 2012), binary search (Fu & Malik, 2006; Heras et al.,
2011; Piotrów, 2020) or progression-based search (Ignatiev et al., 2014). In contrast, both
core-guided and IHS are unsatisfiability-based approaches, relying on iteratively extract-
ing sources of inconsistencies in terms of unsatisfiable cores using a SAT solver (Eén &
Sörensson, 2003) as a core-extracting decision oracle. However, core-guided and IHS solvers
deal with cores extracted during search differently. Core-guided algorithms reformulate the
current working instance—starting with the input MaxSAT instance—to take into account
the so-far extracted cores in subsequent search iterations towards an optimal solution. The
various different core-guided algorithms differ in the way in which the reformulation steps
change the working instance. In contrast, in each iteration of IHS search, the SAT solver is
invoked on a subset of clauses of the input instance, without reformulation-style modifica-
tions to the instance. The choice of the subset of constraints to consider in each iteration is
dictated by computing a (minimum-cost) hitting set of the so-far accumulated set of cores.

932

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

In practice, state-of-the-art core-guided, IHS and objective-bounding (especially model-
improving) MaxSAT solvers are all competitive in terms of runtime performance. However,
the relative performance on distinct problem domains can vary noticeably between solvers
implementing a specific approach (Bacchus et al., 2019). The fundamental reasons behind
this are not well understood, despite recent advances showing that for a specific classic
variant of core-guided search, the cores extracted from the reformulated working formulas
during core-guided search are tightly related to cores extracted in IHS search on the orig-
inal instance (Bacchus & Narodytska, 2014; Narodytska & Bjørner, 2022). Furthermore,
fundamental insights into how to combine the best of each of the three types of algorithmic
approaches are currently lacking.

In this work, we develop a general algorithmic framework that captures core-guided,
IHS, and objective-bounding computations in a unifying way. The framework is based
on the recently-proposed notion of abstract cores originally presented as a performance-
improving variant of IHS for MaxSAT (Berg et al., 2020) that brings a flavor of core-guided
reformulation into the representation of the hitting set problems solved during IHS search.
While the correctness of the objective-bounding approach is relatively straightforward to
establish directly, this is not generally the case for fine-grained variants of the core-guided
approach—which would also translate to non-trivial individual correctness proofs for any
non-trivial combinations of, e.g., the core-guided and IHS approaches. Our framework
provides a unified way of establishing the correctness of variants of core-guided and IHS
approaches. The framework also has the potential of being instantiated in novel ways,
thereby giving rise to new variants of provably-correct MaxSAT algorithms. While the
main focus of this work is evidently on the general formal algorithmic framework, as an
illustration of its potential for obtaining novel types of unsatisfiability-based algorithms we
more shortly outline and provide a prototype implementation of a core-guided variant for
MaxSAT obtained through the framework.

In terms of related work, the motivations underlying the UniMaxSAT framework are in
part similar to generic frameworks developed for capturing reasoning performed by modern
SAT solvers and closely related solver technologies. These include the inprocessing rules
framework (Järvisalo et al., 2012; Fazekas et al., 2019) for capturing the various types
of reasoning steps applied by inprocessing SAT solvers as well as the DPLL(T) frame-
work (Nieuwenhuis et al., 2006) and its extensions which have been developed for fine-
grained formalization of satisfiability modulo theories (SMT) solvers (Cimatti et al., 2010;
Barrett et al., 2021; Bjørner & Fazekas, 2023), specific types of optimization approaches
in SMT (Fazekas et al., 2018), as well as, e.g., reasoning performed by answer set (ASP)
solvers (Baselice et al., 2005; Gebser et al., 2009). Both the inprocessing and the DPLL(T)
framework take the view of formalizing solving steps as transition systems, describing the
possible next-state transitions from a current solver state. The inprocessing framework is
instantiated by specific redundancy notions—which have more recently been generalized to
the realm of MaxSAT (Ihalainen et al., 2022)—which themselves can generally cover the
various reasoning techniques applied in SAT solvers. However, such redundancy notions on
the MaxSAT level do not allow for directly capturing the multitude of SAT-based MaxSAT
algorithms. In contrast, a key motivation behind the UniMaxSAT framework is to cover all
of the three main SAT-based MaxSAT solving approaches, also with the aim of providing

933

Ihalainen, Berg, & Järvisalo

a unifying view towards novel types of MaxSAT algorithms that would combine aspects of
the different approaches in correct ways.

A shorter preliminary version of this work was presented at the IJCAI 2023 confer-
ence (Ihalainen et al., 2023). The present article considerably revises and extends on the
work reported at IJCAI 2023. Most notably, we here thoroughly revise the details of the
UniMaxSAT framework. As a result, the framework now allows for capturing not only
core-guided and implicit hitting set approaches to MaxSAT, but more generally SAT-based
MaxSAT solving, including what we will refer to as objective-bounding MaxSAT algo-
rithms, instantiations of which include the model-improving approach as well as binary and
progression-based search for MaxSAT. The revised framework is also arguably cleaner in
terms of being more directly connected with how the various SAT-based MaxSAT algorithms
perform search. As a result, formal proofs have been thoroughly revised and further de-
tails included, including formal explanations of how the general framework captures several
further algorithmic instantiations of SAT-based MaxSAT approaches.

The rest of this article is organized as follows. We start with a background on maximum
satisfiability (Section 2) and an overview of the objective-bounding, core-guided, and im-
plicit hitting set approaches to MaxSAT solving (Section 3). Then, as the main contribution
of this work, we detail the UniMaxSAT framework (Section 4) and argue that it can simu-
late the behavior of the objective-bounding and implicit hitting set approaches (Section 5)
as well as the various variants of the core-guided approaches proposed in the literature so
far (Section 6). Before conclusions, we further detail a novel variant of the core-guided
approach to illustrate the use of the UniMaxSAT framework to formulate new algorithmic
variants (Section 7).

2. Maximum Satisfiability

For a Boolean variable x there are two literals, x and x̄. A clause C = l1 ∨ . . . ∨ ln is a
disjunction of literals, and a conjunctive normal form (CNF) formula is a set of clauses
F = {C1, . . . , Cm}. For a clause C, the set var(C) consists of variables x for which either
x ∈ C or x̄ ∈ C. An assignment τ maps variables to 1 (true) or 0 (false). Assignments extend
to a literal l, clause C and formula F standardly by τ(l̄) = 1−τ(l), τ(C) = max{τ(l) | l ∈ C}
and τ(F) = min{τ(C) | C ∈ F}. An assignment τ satisfies (or is a solution to) F if
τ(F) = 1. Interchangeably, we may treat τ as the set of literals τ assigns to 1. Then
l ∈ τ denotes τ(l) = 1 and l̄ ∈ τ denotes τ(l) = 0. The set of variables assigned by τ is
var(τ) = {x | x ∈ τ or x̄ ∈ τ}; τ is complete for F if it assigns each variable in F a value,
and otherwise partial. An assignment τ that assigns each literal in a clause C to 0 falsifies
C, denoted by τ ⊇ ¬C.

Pseudo-Boolean constraints are linear inequalities of form
∑

i cixi ≥ k, where each
xi is a Boolean variable, each ci a positive coefficient, and k a positive constant. The
constraint

∑
i cixi ≥ k is satisfied by an assignment τ if

∑
i ciτ(xi) ≥ k. When we do

not make assumptions about how exactly pseudo-Boolean constraints are represented as
CNF formulas1, we abstractly use asCNF(

∑
i cixi ≥ k) to denote a CNF formula that is

satisfied by an assignment τ iff
∑

i ciτ(xi) ≥ k. Taking a name ok to indicate whether a

1. Various CNF encodings of pseudo-Boolean constraint have been proposed (Warners, 1998; Bailleux &
Boufkhad, 2003; Sinz, 2005; Eén & Sörensson, 2006; Bailleux et al., 2009; Codish & Zazon-Ivry, 2010;

934

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

pseudo-Boolean constraint is satisfied, we also use asCNF(
∑

i cixi ≥ k ↔ ok) to denote
a (CNF-representation of) a reified pseudo-Boolean constraint, i.e., a CNF formula that is
satisfied by any assignment τ that sets τ(ok) = 1 iff

∑
i ciτ(xi) ≥ k. An important special

case of pseudo-Boolean constraints is the so-called cardinality constraints
∑

i xi ≥ k, which
are pseudo-Boolean constraints where each coefficient is 1. Notice how the ok variable of
a reified cardinality constraint asCNF(

∑
i xi ≥ k ↔ ok) essentially counts whether the

number of xi variables assigned to 1 is more or less than k.

An instance F = (F,O) of (weighted partial) maximum satisfiability (MaxSAT for
short) consists of a CNF formula F and an objective function O =

∑
iwibi + W lb under

minimization, where wi are positive integers and bi are variables of F . Notice that we here
include for convenience the constant term W lb. This allows for explicitly representing lower
bounds on costs of solutions as computed by core-guided MaxSAT algorithms (as detailed
in Section 3.2).

Remark 1. The definition of MaxSAT in terms of a CNF formula and an objective
we use in this work is equivalent to the arguably more classical (clausal) definition of
MaxSAT in terms of hard and weighted soft clauses in the following sense. Going from
the objective function representation to the clausal representation, the clauses remain hard
clauses, and each term wibi in the objective function O is equivalently represented as a
soft clause ⟨(b̄i), wi⟩, i.e., a unit soft clause (b̄i) with weight wi. To the other direc-
tion, any clausal instance of MaxSAT can be converted to an instance where each soft
clause is a unit clause by the blocking variable transformation (Bacchus et al., 2021) stan-
dardly employed in SAT-based MaxSAT solvers before search: introduce a fresh variable
bi for each non-unit soft clause Ci with weight wi and replace Ci with the hard clause
Ci ∨ bi and the soft clause ⟨(b̄i), wi⟩. After this transformation, the introduced soft unit
clauses are evidently equivalent to the objective function

∑
iwibi. For example, consider

the following (clausal) MaxSAT instance (FH , FS) consisting of the hard clauses FH =
{(x̄∨b1), (y∨z∨b2)} and the soft clauses FS = {⟨(ȳ∨x), 1⟩, ⟨(b̄1), 2⟩, ⟨(b̄2), 5⟩, ⟨(z̄∨x∨b1), 3⟩}.
Applying the blocking variable transformation for each non-unit soft clause results the set
of hard clauses F b

H = {(x̄ ∨ b1), (y ∨ z ∨ b2), (ȳ ∨ x ∨ b3), (z̄ ∨ x ∨ b1 ∨ b4)} and the set of
soft clauses F b

S = {⟨(b̄1), 2⟩, ⟨(b̄2), 5⟩, ⟨(b̄3), 1⟩, ⟨(b̄4), 3⟩}. This instance can be equivalently
represented using the objective function representation as the instance F = (F b

H , O) with
O = 2b1 + 5b2 + b3 + 3b4.

The set var(O) consists of variables that occur in O. A complete satisfying assignment
τ to F is a solution to F and has cost O(τ) =

∑
iwiτ(bi) +W lb. A solution is optimal if

there are no solutions with lower costs. The cost of optimal solutions to a MaxSAT instance
F is denoted by opt(F).

Example 1. Consider the MaxSAT instance F = (F,O) with F = {(b1 ∨ b2 ∨ x), (x̄ ∨
b3), (b3 ∨ b4 ∨ b5)} and O = b1 + b2 + 3b3 + b4 + 2b5. An optimal solution to F is τ =
{b̄1, b2, x̄, b̄3, b4, b̄5} to F , assigning all variables except b2, b4 to 0. The cost of τ is O(τ) =
τ(b1) + τ(b2) + 3τ(b3) + τ(b4) + 2τ(b5) = 2.

Aśın et al., 2011; Hölldobler et al., 2012; Ab́ıo et al., 2013; Ogawa et al., 2013; Manthey et al., 2014;
Joshi et al., 2015; Paxian et al., 2018; Karpinski & Piotrów, 2019).

935

Ihalainen, Berg, & Järvisalo

Algorithm 1 The objective-bounding search approach to MaxSAT

Input: A MaxSAT instance F = (F,O) where O =
∑

iwibi.
Output: An optimal solution τ to F .

1: τ∗ = ∅
2: while true do
3: w = Next-value-to-test()
4: (res, , τ) = Extract-Core(F ∪ asCNF(

∑
iwibi ≤ k ↔ ow), {ow})

5: if res =‘true’ and O(τ) < O(τ∗) then τ∗ = τ
6: if res =‘false’ and w = O(τ∗)− 1 then return τ∗

A clause C is a(n unsatisfiable) core of a MaxSAT instance F = (F,O) if all literals in
C are objective variables (i.e., var(C) ⊆ var(O)) and every solution to F satisfies C (i.e.,
F logically entails C).

Example 2. The clauses (b1∨ b2∨ b3) and (b3∨ b4∨ b5) are two of the cores of the MaxSAT
instance detailed in Example 1.

3. SAT-Based Approaches to MaxSAT

We develop a unifying algorithmic framework for modern SAT-based algorithms, capturing
forms of objective-bounding search, core-guided algorithms, and algorithms based on the
implicit hitting set (IHS) approach. As necessary background, we describe each of these
approaches in general terms; practical solver implementations employ various heuristics and
optimizations that do not affect our main contributions and, as such, are not detailed here.

Common to the three types of modern SAT-based MaxSAT algorithms is the use of
an incremental SAT solver that can determine the satisfiability of CNF formulas under
different sets of assumptions (Eén & Sörensson, 2003). Given a CNF formula F and a
partial assignment γA (constituting a set of assumptions, represented as a set of literals),
we abstract the SAT solver into the subroutine Extract-Core that returns a triplet
(res, C, τ). Here res=‘true’ if there is a solution τ ⊇ γA to F . If there is no such solution,
res=‘false’ and C is a clause over a subset of the variables in γA that is entailed by F .
Invoked on F under a set of assumptions γA for which F ∧γA is unsatisfiable, modern SAT
solvers provide such a clause C at termination without computational overhead. In the
context of SAT-based MaxSAT algorithms, such a C found during MaxSAT search will be
unsatisfiable core of the current working instance.

3.1 Objective-Bounding Search

The so-called objective-bounding search algorithms—captured by Algorithm 1—compute
an optimal solution to a given MaxSAT instance (F,O) by iteratively selecting a value
w (Line 3) and querying Extract-Core for a solution τ to F satisfying O(τ) ≤ w (Line 4).
In practice, the query is formed by encoding a pseudo-Boolean constraint enforcing the
bound w on the objective O. The solution of lowest cost found so far is stored in τ∗ and
updated whenever the Extract-Core returns res=‘true’ and a new solution (Line 5).

936

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

The search terminates when the algorithm establishes that there is no solution τ for which
O(τ) ≤ O(τ∗)− 1 (Line 6).

The different objective-bounding search algorithms differ mainly in the order in which
different value choices for w are selected, which also is reflected in the termination crite-
rion. The main approaches proposed in the literature are the so-called solution-improving
(sometimes called SAT-UNSAT) search (Eén & Sörensson, 2006; Berre & Parrain, 2010;
Koshimura et al., 2012; Paxian et al., 2018), UNSAT-SAT (lower-bounding) search, bi-
nary search (Fu & Malik, 2006; Heras et al., 2011; Piotrów, 2020) and progression-based
search (Ignatiev et al., 2014).

Solution-improving search is an upper-bounding approach that—starting from some up-
per bound such as the sum of all coefficients of the objective—in each iteration sets w to
be one lower than the cost of the best currently known solution τ∗. This strategy guar-
antees that the algorithm terminates when Extract-Core returns res=‘false’. Solution-
improving search is today the most widely employed objective-bounding search algorithm.
In contrast, UNSAT-SAT search is a lower-bounding approach that starts from k = 0 and
increments w each time Extract-Core returns res=‘false’. The search terminates when
Extract-Core returns res=‘true’.2 Binary search algorithms perform binary search over
the range of the objective function, maintaining both an upper and a lower bound on opti-
mal cost. The upper bound is updated whenever Extract-Core returns res=‘true’, and
the lower bound whenever Extract-Core returns res=‘false’.3 Finally, progression-based
search can be seen as a combination of UNSAT-SAT and binary search. Progression-based
search initially tests the values w = (20−1, 21−1, 22−1, . . .) until Extract-Core reports
res=‘true’ and a solution on a particular ith iteration. At this stage, the algorithm has
determined that the optimal cost is between 2i−1 − 1 and 2i − 1 and switches to binary
search using these as the initial lower and upper bounds.

3.2 Core-Guided Search

Turning to core-guided search, we outline as Algorithm 2 a general abstraction of the core-
guided approach to computing an optimal solution to a given MaxSAT instance F = (F,O).
The algorithm first initializes a set Constraints of cardinality constraints as the empty
set and a reformulated objective function OR as the objective function O (Lines 1–2). In
each iteration of the main loop (Lines 3–9) a SAT solver is queried for a solution τ that
(i) satisfies all clauses in F and all of the cardinality constraints in Constraints and
(ii) falsifies all objective variables of the current reformulated objective OR, i.e., OR(τ) =
W lb (Lines 4–5). If there is such a τ , it is returned as an optimal solution to the input
MaxSAT instance (Line 6). Otherwise, a core C of (F ∪ Constraints, OR) is obtained.
The core is then relaxed (Lines 7–9) by transforming the current working instance in a way

2. Today, UNSAT-SAT search is not commonly used. This is mainly because core-guided algorithms can be
seen as refined versions of UNSAT-SAT search and generally outperform UNSAT-SAT search in practice.

3. In theory, binary search has the desirable property of guaranteed termination within a logarithmic
number of calls to Extract-Core in terms of the sum of objective coefficients. In practice, however,
it is commonly acknowledged by MaxSAT solver developers that implementations of binary search are
often outperformed by implementations of solution-improving search. This is due to the fact that the
intermediate calls to Extract-Core that report res=‘false’ can often be challenging when solving real-
world instances.

937

Ihalainen, Berg, & Järvisalo

Algorithm 2 The core-guided approach to MaxSAT

Input: A MaxSAT instance F = (F,O).
Output: An optimal solution τ to F .

1: Constraints = ∅
2: OR = O
3: while true do
4: γA = {x̄ | x ∈ var(OR)}
5: (res, C, τ) = Extract-Core(F ∪Constraints, γA)
6: if res =‘true’ then return τ
7: (D, out) = Generate-Cardinality-Constraints(C)
8: Constraints = Constraints ∪D
9: OR = Refine-Objective(C, out,OR)

that enables (at most) one variable in core C to incur cost in subsequent iterations. This is
achieved by adding a cardinality constraint over the core to Constraints (Lines 7–8) and
updating the current working objective (Line 9).

Conceptually, modern core-guided algorithms differ mainly in the specifics of the core-
relaxation step. We detail the relaxation of the core-guided OLL algorithm (Andres et al.,
2012; Morgado et al., 2014) as arguably one of the most successful core-guided approaches.
In OLL, an invocation of Generate-Cardinality-Constraints(C) returns a set of
cardinality constraints D = {asCNF(

∑
x∈C x ≥ j ↔ oCj) | 2 ≤ j ≤ |C|} and a set

out = {oC2 . . . oC|C|} of output variables. Intuitively, as enforcing oCk to 0 limits the number
of literals in C assigned to 1 to at most k, the new cardinality constraints define output
variables that count the number of literals in C assigned to 1 in subsequent iterations. The
output variable with index 1 is not introduced, since the fact that C is a core implies that
every solution to the instance assigns at least one literal to 1. In the objective reformulation
step (Refine-Objective procedure in Algorithm 2) OLL adds the newly-introduced out-
puts to the objective in a way that preserves the set of optimal solutions. The coefficient of
each x ∈ C is decreased by wC = minx∈Ci{OR(x)}, removing from OR every literal whose
coefficient decreases to 0. The coefficient of each output variable in out is set to wC and
the constant term of OR is increased by wC . During the reformulation step, the coefficient
of at least one variable in C decreases to 0. Thus, at least one more literal may incur cost
in subsequent iterations.

Example 3. Invoke OLL on F = (F,O) from Example 1. The first call to Extract-Core
is under the assumptions γA = {b̄1, b̄2, b̄3, b̄4, b̄5}. Let the first core obtained be C1 = (b1∨b2∨
b3 ∨ b4 ∨ b5). Relaxing C1 introduces the cardinality constraint asCNF(

∑
x∈C1

x ≥ i ↔ o1i)

for i = 2, 3, 4, 5. The new objective OR is formed based on the following observations: (i)
as C1 is a core, any solution to F assigns one literal in C1 to 1 and as such incurs 1 cost
in O, (ii) each additional literal of C1 assigned to 1 should incur precisely 1 more cost. The
new objective is OR = 2b3 + b5 + o12 + o13 + o14 + o15 +1. Notice how observation (i) results in
the addition of a constant term 1 and observation (ii) in the addition of the outputs of the
new cardinality constraint to the objective.

938

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Algorithm 3 The implicit hitting set approach to MaxSAT

Input: A MaxSAT instance F = (F,O).
Output: An optimal solution τ to F .

1: K = ∅
2: while true do
3: γA = {x̄ | x ∈ var(O) \Mincost-HS(K)}
4: (res, C, τ) = Extract-Core(F, γA)
5: if res = ‘true’ then return τ
6: else K = K ∪ C

The next call to Extract-Core is under the assumptions γA = {b̄3, b̄5, ō12, ō13, ō14, ō15}.
Let the next core obtained be C2 = (o12∨b3). Relaxing C2 introduces the cardinality constraint
asCNF(

∑
x∈C2

x ≥ 2 ↔ o22) and the new objective OR = b3+b5+o13+o14+o15+o22+2. The set

of assumptions in the third call to Extract-Core is γA = {b̄3, b̄5, ō13, ō14, ō15, ō22}. One poten-
tially obtained assignment is now τ = {b1, b̄2, x̄, b̄3, b4, b̄5} that also assigns {o12, ō13, ō14, ō15, ō22}.
The assignment is returned as an optimal solution to the input instance F .

3.3 Implicit Hitting Set Approach

A generic abstraction of the implicit hitting set (IHS) approach to MaxSAT is outlined as
Algorithm 3. IHS iteratively extracts cores of a given MaxSAT instance F = (F,O) and
stores them in the set K. In contrast to core-guided algorithms, instead of reformulating
the objective after each core-extraction step, IHS invokes the Mincost-HS(K) procedure
that computes a minimum-cost hitting set (MCHS) over K under O. Here an MCHS is a
minimum-cost (in terms of O) subset hs of the objective variables such that by assigning the
variables in hs to 1 all cores in K are satisfied. In each iteration of the main loop (Lines 2–
6), Extract-Core is queried for a solution that falsifies all objective variables that are
not contained in the hs computed over the current set of cores (Lines 3–4). (Note that
the assumptions γA set up on Line 3 constitute a partial assignment over the objective
variables that can be extended to a solution to K in a unique way.) If there is such a τ , it is
an optimal solution to the input instance (Line 5). Otherwise, a new core is obtained and
added to K (Line 6). The MCHS computed in each iteration represents a way of satisfying
all cores found so far in an optimal way under O, this giving a lower bound on optimal cost
of F . IHS iterates until the most recent MCHS can be extended to a solution to F . At
which point, the solution satisfies (“hits”) all cores—not only those currently accumulated
in K—of the instance, and is thereby an optimal solution to F .

Example 4. Invoke Algorithm 3 on the MaxSAT instance F = (F,O) from Example 1.
In the first iteration there are no cores and hence Mincost-HS(K) = ∅. The first call to
Extract-Core is under the assumptions γA = {b̄1, . . . , b̄5}. There are a number of cores
that could be returned; let the first core obtained be C1 = (b1∨b2∨b3∨b4∨b5). In the second
iteration, there are three different MCHSes over K = {C1}. Assume that Mincost-HS
returns {b1}. The assumptions for the next call to Extract-Core are γA = {b̄2, b̄3, b̄4, b̄5}.
Assume that the next core obtained is C2 = (b3 ∨ b4 ∨ b5). In this third iteration, the only
MCHS over K = {C1, C2} is {b4}. The assumptions for the next call to Extract-Core

939

Ihalainen, Berg, & Järvisalo

are γA = {b̄1, b̄2, b̄3, b̄5}. Assume that the next core is C3 = (b1 ∨ b2 ∨ b3). In this fourth
iteration, there are two possible MCHSs over K = {C1, C2, C3}. Assume that Mincost-HS
returns {b2, b4}. This leads to the assumptions γA = {b̄1, b̄3, b̄5}. Given these assumptions,
Extract-Core returns the solution τ = {b̄1, b2, x̄, b̄3, b4, b̄5} as an optimal solution to F .

4. UniMaxSAT: A General Framework for SAT-Based MaxSAT Algorithms

As the main contribution of this article, we present UniMaxSAT as a general algorithmic
framework unifying SAT-based MaxSAT algorithms. The framework makes use of the
notion of abstract cores originally proposed as a basis for a refinement of IHS (Berg et al.,
2020). Here, going considerably beyond their original intended purpose, we build on abstract
cores to obtain a framework that captures SAT-based MaxSAT algorithms in general terms.

4.1 Abstraction Sets and Abstract Cores

We start by defining abstraction sets and abstract cores. On a high level, abstraction
sets and abstract cores of a MaxSAT instance capture generic properties of the instance
compactly in the sense that a large number of “standard” cores would be needed to express
the same properties (Berg et al., 2020).

Informally speaking, an abstraction set models a relationship between a set of input
literals in and a set out of output literals via a CNF formula D. In typical practical
instantiations, the formula D corresponds to a cardinality constraint that essentially counts
the number of input literals assigned to 1 by satisfying assignments of D, assigning the kth
output literal to 1 if and only if k input literals are assigned to 1. In the following, we give
a more general definition that is sufficient for proving the correctness of UniMaxSAT.

Definition 1. An abstraction set ab = (in,D, out) consists of a set in of input literals,
a set out of output literals, and a satisfiable CNF formula D over a superset of the set of
literals in ∪ out, i.e., it holds that var(in ∪ out) ⊆ var(D). Solutions to D are uniquely
defined by assignments to the inputs: for any assignment τ over in there is exactly one
extension τE ⊇ τ that satisfies D.

For a given abstraction set ab = (in,D, out), we refer to D as the definitions of the out-
puts out. For a collection AB = {(ini, Di, outi) | i = 1, . . . , n} of abstraction sets, the CNF
formula DEF(AB) =

⋃n
i=1Di is the conjunction of the definitions in AB, OUTS(AB) =⋃n

i=1 outi is the set of outputs occurring in AB, and INPUTS(AB) =
⋃n

i=1 ini is the set
of inputs occurring in AB. We say that AB is feasible for a MaxSAT instance F = (F,O)
if DEF(AB) does not change the set of solutions to F , i.e., if every solution τ to F can
be extended to a solution τE ⊇ τ to F ∪ DEF(AB). We will only consider collections of
abstraction sets that are feasible for MaxSAT instances at hand.

An abstract core of a MaxSAT instance F = (F,O) is a clause that is logically entailed
by F and the definitions of some feasible collection of abstraction sets. Importantly, an
abstract core can contain both objective variables and outputs of abstraction sets.

Definition 2. For a MaxSAT instance F = (F,O) and collection AB of feasible abstraction
sets, a clause C is an abstract core of F wrt AB if

(i) var(C) ⊆ (var(O) ∪ var(OUTS(AB)) and

940

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

(ii) τ(C) = 1 for each solution τ to F ∪DEF(AB).

Every (standard) core of a MaxSAT instance F is also an abstract core of F with respect
to any collection of feasible abstraction sets.

Example 5. Consider the MaxSAT instance F = (F,O) from Example 1 and the abstrac-
tion set

ab = ({b1, b2, b3, b4, b5}, {asCNF(
∑

1≤i≤5

bi ≥ j ↔ oj) | j = 2, 3, 4, 5}, {o2, o3, o4, o5}).

We have that C = (o2 ∨ b3) is an abstract core of F as any assignment that satisfies
F ∪DEF(ab) must assign either b3 = 1 or at least two variables of {b1, b2, b3, b4, b5} to 1,
thereby forcing o2 = 1.

Note how the abstract core C in Example 5 corresponds to the core C2 in Example 3.
This demonstrates how cores of the reformulated instance extracted by OLL can be viewed
as abstract cores of the original instance.4

TheUniMaxSAT framework is based on computing minimum-cost solutions to abstract
cores and extending them to a solution to the MaxSAT instance at hand. To differentiate
solutions to an input MaxSAT instance from solutions to cores, we call solutions to a set of
abstract cores candidate solutions (or candidates for short). More precisely, for a MaxSAT
instance F = (F,O), a collection AB of feasible abstraction sets and a set K of abstract
cores, an assignment δ that satisfies K ∪DEF(AB) and assigns each variable in var(O) is
a (K,AB)–candidate of F and has cost O(δ). A (K,AB)–candidate δ is minimum-cost if
O(δ) ≤ O(δ∗) for all (K,AB)–candidates δ∗.

Abstraction sets and abstract cores are employed in the UniMaxSAT framework for
computing lower bounds (which are in turn used to prove the optimality of solutions) based
on the following proposition.

Proposition 1. Let F = (F,O) be a MaxSAT instance, AB a set of feasible abstraction
sets, K a set of abstract cores of F wrt AB, and δ a minimum-cost (K,AB)–candidate.
Then O(δ) ≤ opt(F).

Proof. Consider an arbitrary solution τ to F . By feasibility of AB there is an extension
δτ ⊇ τ which is a solution to F ∪DEF(AB) and for which O(δτ) = O(τ). By the definition
of abstract cores, δτ is a (K,AB)–candidate. Since δ is minimum-cost, we have that O(τ) =
O(δτ) ≥ O(δ). As τ is an arbitrary solution to F , we conclude that opt(F) ≥ O(δ).

A simple corollary to Proposition 1 is that any assignment τ that extends a minimum-
cost (K,AB)–candidate δ and satisfies F is an optimal solution to F . The UniMaxSAT
framework we develop works intuitively by iteratively computing minimum-cost (K,AB)–
candidates for an increasing set AB and K of feasible abstraction sets, and abstract cores,
respectively, and checking whether they can be extended to solutions to the whole instance.
Each check either determines that an optimal solution has been found or provides a new

4. Viewing cores of the reformulated instance during OLL search as abstract cores bears resemblance to
previous work on analyzing core-guided solvers in which cores of the original instance are separated from
cores of the reformulated instance (“metas”) (Narodytska & Bjørner, 2022; Katsirelos, 2023).

941

Ihalainen, Berg, & Järvisalo

abstract core that is falsified by the current (K,AB)–candidate. In the latter case, the new
abstract core is an explanation for why the current (K,AB)–candidate can not be extended
to an optimal solution of the instance at hand. While this is similar to a correctness proof for
basic IHS search (see, e.g., (Davies & Bacchus, 2011)), the generality of UniMaxSAT allows
for capturing also other types of SAT-based MaxSAT algorithms. Intuitively, the ability of
UniMaxSAT to simulate core-guided algorithms follows from (i) the use of abstract cores
and (ii) the fact that UniMaxSAT rules out not only complete (K,AB)–candidates but
also partial assignments that extend solely to minimum-cost (K,AB)–candidates.

The following notion of a (minimum-cost) (K,AB)–abstract candidate is central for
establishing the correctness and generality of UniMaxSAT.

Definition 3. Let F = (F,O) be a MaxSAT instance, AB a collection of feasible abstraction
sets and K a set of abstract cores wrt to AB. A partial assignment γA over a subset of the
variables in var(K) ∪ var(O) is a (K,AB)–abstract candidate if

(i) there is at least one extension τ ⊇ γA which is a solution to DEF(AB) ∪ K, i.e., a
(K,AB)–candidate of F , and

(ii) all such extensions are minimum-cost (K,AB)–candidates.

Example 6. Consider the MaxSAT instance F = (F,O) from Example 1, the empty collec-
tion AB = ∅ of abstraction sets and the set K = {(b1∨b2∨b3), (b3∨b4∨b5)} of abstract cores.
One minimum-cost (K,AB)–candidate is δ = {b̄1, b2, b̄3, b4, b̄5}, and one (K,AB)–abstract
candidate is γA = {b̄1, b̄3, b̄5} since the only extension of γA to a solution to K is δ. The
set {b̄1, b̄3} is not a (K,AB)–abstract candidate since it extends to the (K,AB)–candidate
{b̄1, b2, b̄3, b̄4, b5} to K which is not minimum-cost.

An important insight is that the assumptions enforced during the iterations of a core-
guided algorithm can be seen as (K,AB)–abstract candidates of the set AB of abstraction
sets that corresponds to the cardinality constraints added by the core-guided algorithm and
the set K of cores of the reformulated instance extracted by the algorithm. The following
example illustrates this for the OLL algorithm (we will detail other core-guided algorithms
in Section 5).

Example 7. Recall the MaxSAT instance F = (F,O) from Example 1. Consider the
core C = (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5), and the abstraction set ab = (in,D, out) with in =
{b1, b2, b3, b4, b5}, out = {oC2 , oC3 , oC4 , oC5 } and D = {asCNF(

∑
x∈C x ≥ i ↔ oCi) | i =

2, 3, 4, 5}. Let K = {C} and AB = {ab}. The set γA = {b̄3, b̄5, ōC2 , ōC3 , ōC4 , ōC5 } is a (K,AB)–
abstract candidate since it can be extended to a solution to K∪DEF(AB) by assigning exactly
one literal in {b1, b2, b4} to 1 and the rest to 0. Note that γA is exactly the set of assumptions
that Extract-Core is queried under during the second iteration of the OLL invocation
detailed in Example 3.

4.2 UniMaxSAT in Detail

With the necessary preliminaries in place, we now detail the UniMaxSAT framework. A
high-level view to the framework is shown in Figure 1, and the framework is detailed in

942

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Algorithm 4 UniMaxSAT, a unifying framework for SAT-based MaxSAT algorithms

Input: A MaxSAT instance F = (F,O).
Output: An optimal solution τ∗ to F .

1: AB1 = ∅, K1 = ∅
2: for i = 1 . . . do
3: (γAi , lbi) = Optimize(O,ABi,Ki)
4: (res, Ci, τ) = Extract-AbstractCore(F,DEF(ABi), γAi)
5: if res = ‘true’ and O(τ) = lbi then return τ
6: Ki+1 = {Ci} ∪ Ki

7: ABi+1 = ABi ∪Add-AbstractionSets(Ki+1)

pseudo-code as Algorithm 4. Given a MaxSAT instance F = (F,O) as input, UniMaxSAT
outputs an optimal solution to F .5

UniMaxSAT accumulates two sets, AB and K, of abstraction sets and abstract cores,
respectively. In each iteration, the Optimize subroutine computes an assignment γA over
OUTS(AB) ∪ var(O) and a lower bound lb for the optimal cost of F . The subroutine
Extract-AbstractCore is invoked to check for an extension of γA to a solution to F . If
such an extension τ exists (i.e., if res =‘true’), UniMaxSAT checks if the cost of τ matches
lb. If this is the case, UniMaxSAT terminates and returns τ as an optimal solution.
Otherwise, a new abstract core falsified by γA is obtained and added to K.

To ensure termination, we require that the γA returned by Optimize must correspond
to a (K,AB)–abstract candidate sufficiently often. Furthermore, when γA is a (K,AB)–
abstract candidate, the lower bound lb returned by Optimize must equal to the costs of its

5. We note that the framework as presented here is a significant modification of the framework described in
the preliminary version of this article (Ihalainen et al., 2023). In particular, the correctness of the present
version does not require computing an abstract candidate in every iteration, only that each iteration is
succeeded by another one on which an abstract candidate is computed. Compared to the preliminary
version, this modification allows not only to further capture objective-bounding search algorithms but
also more directly capture core-guided search algorithms that do not compute abstract candidates in
every iteration.

Optimize(O,AB,K)Extract-AbstractCore(F,DEF(AB), γA)

Add-AbstractionSets(F ,K)

return: τ

An assignment: γA

A lower bound: lb

U
N
S
A
T

A
n
abstract

core:
C

S
A
TO
(τ)

>
lb

T
he

se
t
of

co
re
s:
K

T
he

se
t
of

ab
st
ra
ct
io
n
se
ts
:
A
B

S
A
T

O
(τ
)
=

l
b

Figure 1: A schematic overview of UniMaxSAT, invoked on a MaxSAT instance (F,O).

943

Ihalainen, Berg, & Järvisalo

extensions. Since all such extensions are minimum-cost, it follows that, whenever Optimize
computes a (K,AB)–abstract candidate, the lower bound Optimize returns is as high as
possible in terms of the currently accumulated set of cores. Note that Optimize does not
need to identify that the assignment it computes is a (K,AB)–abstract candidate. (The
identification of (K,AB)–abstract candidate could be computationally challenging for many
practical instantiations and is in fact not required for the correctness of UniMaxSAT.)

We formalize the correctness of Algorithm 4 in the following terms. UniMaxSAT ter-
minates on any MaxSAT instance and outputs an optimal solution to the input MaxSAT
instance at hand, subject to the generic properties of its three subroutines. Importantly,
the correctness of the general framework allows for establishing the correctness of any of its
instantiations—including variants of objective-bounding, core-guided and IHS algorithms
for MaxSAT—by showing how each algorithm can be viewed as an instantiation of Uni-
MaxSAT.

First, we establish general conditions that instantiations of Optimize need to meet
in order to guarantee that UniMaxSAT correctly computes an optimal solutions to an
arbitrary input MaxSAT instance.

Definition 4 (Correctness condition). An instantiation of Optimize satisfies the correct-
ness condition if the following conditions hold at every iteration i of UniMaxSAT when
invoked on an arbitrary input MaxSAT instance F = (F,O).

1. γAi assigns a subset of the variables in var(O) ∪OUTS(ABi).

2. lbi is a lower bound on the optimal cost of F , i.e., lbi ≤ opt(F).

3. If γAi is a (Ki,ABi)–abstract candidate, then lbi is equal to the cost of an extension
of γAi to a (Ki,ABi)–candidate of F .

4. There exists an r ≥ 0 such that Optimize returns a (Ki+r,ABi+r)–abstract candidate
in iteration i+ r.

In words, condition 1 ensures that in the iterations in which Extract-AbstractCore
determines the instance to be unsatisfiable, an abstract core of the instance is obtained.
Condition 2 ensures that UniMaxSAT does not terminate before finding an optimal solu-
tion, while conditions 3 and 4 ensure that termination takes place eventually. The following
main theorem formalizes this intuition and establishes generic conditions that the other
subroutines of UniMaxSAT need to satisfy to ensure the correctness of UniMaxSAT.

Theorem 1. Assume that the following three properties hold in every iteration i of Uni-
MaxSAT on an input MaxSAT instance F = (F,O) that has a solution.

1. Optimize satisfies the correctness condition (Definition 4).

2. Extract-AbstractCore(F,DEF(ABi), γAi) computes either a solution τ ⊇ γAi
to F ∪ DEF(ABi) or a(n abstract) core Ci that is satisfied by all solutions to F ∪
DEF(ABi) and falsified by γAi .

3. ABi is feasible for F .

944

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Then UniMaxSAT terminates and returns an optimal solution to F .

The formal proof of Theorem 1 relies on the following lemma stating that, in each
iteration i in which a (Ki,ABi)–abstract candidate of F is computed for the current set
ABi and Ki of abstraction sets and abstract cores, respectively, the set of assignments from
which Optimize will return an assignment shrinks.

Lemma 1. Invoke UniMaxSAT on a MaxSAT instance F = (F,O) and consider an
iteration i. Let Ki and ABi be the set of abstract cores and abstraction sets obtained so far,
respectively, and denote by obj-solsi the restrictions of all solutions to Ki∪DEF(ABi) onto
var(O). Assume UniMaxSAT does not terminate on iteration i and Optimize computes
an (Ki,ABi)–abstract candidate of F . Then obj-solsi+1 ⊊ obj-solsi.

Proof. The fact that every element in obj-solsi+1 is also an element of obj-solsi follows
from the fact that the sets of abstract cores and abstraction sets monotonically increase
during the execution of UniMaxSAT. To show that there is a τ o ∈ obj-solsi\obj-solsi+1,
consider the (Ki,ABi)–abstract candidate γAi and the abstract core Ci computed in iteration
i. By definition, there is a minimum-cost (Ki,ABi)–candidate δ ⊇ γAi ⊇ ¬Ci that falsifies
Ci. Let τ o be the restriction of δ onto the objective variables var(O). The claim of the
lemma is equivalent to the claim that there is no extension of τ o to a solution to DEF(ABi)
that satisfies Ci. As AB is feasible, there is exactly one way of extending τ o to a solution
to DEF(ABi). Since δ is such an extension and ¬Ci ⊆ δ, we conclude that τ o cannot be
extended to a solution to DEF(ABi) that satisfies Ci.

We are now ready to give a proof of Theorem 1.

Proof of Theorem 1. First note that by assumption 1 of the theorem and assumption 1 of
the correctness condition, whenever Extract-AbstractCore reports that the current
assignment γAi is not extendable to a solution on Line 4 of Algorithm 4, the clause Ci

returned by Extract-AbstractCore is an abstract core of the instance at hand with
respect to the current set of abstraction sets. As the sets of abstraction sets monotonically
increase, ABi ⊆ ABi+1 holds for all i during the execution of UniMaxSAT. We conclude
that, in each iteration i of UniMaxSAT, all clauses in Ki are abstract cores of F wrt ABi.

Optimality of returned solutions. Assume that UniMaxSAT terminates in iteration
i and returns a solution τ . As O(τ) = lb ≤ opt(F) ≤ O(τ) it follows that O(τ) = opt(F).

Termination. Given that F has solutions and ABi is feasible, F ∪DEF(ABi) has a so-
lution for each i. By the definition of abstract cores, all solutions to F ∪ DEF(ABi) are
solutions to DEF(ABi) ∪ Ki. Thus termination follows by showing that Optimize will
eventually return a (Ki,ABi)–abstract candidate γAi that can be extended to a solution τ
to F ∪DEF(ABi). This in turn follows from the number of solutions to DEF(ABi)∪Ki, in
particular, from the fact that each new core rules out at least one of the—finitely many—
solutions that Optimize may return. More specifically, whenever Optimize returns a
(Ki,ABi)–abstract candidate and UniMaxSAT does not terminate, the number of assign-
ments to var(O) that can be extended to solutions to the cores decreases by Lemma 1. As
Optimize satisfies the correctness condition, the sequence of iterations in which it returns
(Ki,ABi)–abstract candidates is infinite. This implies that eventually a (Ki,ABi)–abstract
candidate can be extended to a solution to F ∪DEF(ABi).

945

Ihalainen, Berg, & Järvisalo

UniMaxSAT (Algorithm 4, Theorem 1)

IH
S

IH
S
w
ith

ab
stract

cores

Objective-bounding search

S
o
lu
tion

-im
p
rov

in
g
sea

rch

L
in
ea
r
U
N
S
A
T
/
S
A
T

search

B
in
a
ry

search

P
rogression

-b
ased

search

Core-guided instantiations
(Definition 5)

Theorem 2

Cardinality-based CG
(Definition 6)

Theorem 3

O
L
L

P
M
R
E
S

K

M
S
U
3

W
P
M
3

A
b
st

C
G

Figure 2: The structure of results of Sections 5–7. In the figure, an arrow A → B from
algorithm A to B indicates that A can be seen as a special case of B.

5. Capturing SAT-based MaxSAT Algorithms with UniMaxSAT

In this and the following section, we detail how existing SAT-based MaxSAT algorithms
can be viewed as instantiations of UniMaxSAT. Specifically, for the existing objective-
bounding search, IHS, and several variants of core-guided search, we explain how to in-
stantiate the three subroutines of UniMaxSAT under the assumptions of Theorem 1 so
that the resulting instantiation matches the previously proposed algorithm. By Theo-
rem 1, this yields uniform proofs of correctness for IHS (Davies & Bacchus, 2013, 2011)
(including its abstract-cores extension (Berg et al., 2020)), objective-bounding search al-
gorithms (including solution-improving search (Eén & Sörensson, 2006; Berre & Parrain,
2010; Koshimura et al., 2012; Paxian et al., 2018)) and modern core-guided algorithms
such as OLL (Andres et al., 2012; Morgado et al., 2014), MSU3 (Marques-Silva & Planes,
2007), WPM3 (Ansótegui & Gabàs, 2017), PMRES (Narodytska & Bacchus, 2014) and
K (Alviano et al., 2015). In addition to proving the correctness of existing algorithms, we
will furthermore outline in Section 7 a proof-of-concept novel core-guided algorithm and
establish its correctness via UniMaxSAT.

Figure 2 provides a road map for Sections 5–7. We start with general observations on
the extraction of abstract cores and feasibility of abstraction sets in Section 5.1, and then
proceed in Sections 5.2–5.3 by detailing how IHS, IHS with abstract cores, and objective-
bounding search algorithms can be viewed as direct instantiations of UniMaxSAT in a
way that satisfies the assumptions of Theorem 1. Section 6 is dedicated to viewing core-
guided algorithms via UniMaxSAT. For capturing the core-guided algorithms, we will
define a generic core-guided instantiation of UniMaxSAT (Definition 5) that captures
general properties of core-guided algorithms sufficient for obtaining correct instantiations
of UniMaxSAT (as established by Theorem 2). We further introduce the notion of a

946

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

cardinality-based CG instantiation of UniMaxSAT (Definition 6) that intuitively models
core-guided algorithms that add a single cardinality constraint for each extracted core into
the instance. We will show that all cardinality-based CG instantiations are also core-guided
instantiations (Theorem 3), thereby establishing that cardinality-based CG instantiations
are also correct instantiations of UniMaxSAT that satisfy Theorem 1. Turning to indi-
vidual existing core-guided algorithms, we will show in Section 6.3 that the OLL, PMRES,
K, WPM3 and MSU3 algorithms are cardinality-based CG instantiations of UniMaxSAT,
thereby also establishing the correctness of each of the algorithms in terms of Theorem 1.
Finally, to further demonstrate the usefulness of the hierarchy depicted in Figure 2 for defin-
ing new algorithms, we detail the novel AbstCG algorithm in Section 7 and show that it is
a core-guided instantiation of UniMaxSAT but not a cardinality-based CG instantiation.

5.1 Extraction of Abstract Cores and Feasibility of Abstraction sets

For all specific instantiations of UniMaxSAT we discuss in Sections 5.2, 5.3, 6, and 7 the
Extract-AbstractCore subroutine of UniMaxSAT is assumed to be core-extracting
SAT solver. Given a MaxSAT instance F = (F,O), a feasible collection AB of ab-
straction sets and an assignment γA, Extract-AbstractCore invokes a SAT solver
on F ∪ DEF(AB) under the assumptions γA. The search returns either a solution to
F ∪ DEF(AB) that extends γA, or a clause entailed by F ∪ DEF(AB) that is falsified
by γA. Assumption 2 of Theorem 1 on the Extract-AbstractCore subroutine follows
directly from established properties of incremental SAT solvers (Eén & Sörensson, 2003;
Audemard et al., 2013) instantiating the CDCL SAT solving paradigm (Silva & Sakallah,
1999; Zhang et al., 2001; Marques-Silva et al., 2021).

The feasibility of all abstraction sets computed—i.e., assumption 3 of Theorem 1—
follows from the fact that the definitions of every new abstraction set computed only inter-
sect with the MaxSAT instance and previous abstraction sets on the inputs. More precisely,
the abstraction sets computed in every instantiation of Add-AbstractionSets we con-
sider satisfy the assumptions of the following lemma.

Lemma 2. Consider a MaxSAT instance F = (F,O) and a set of feasible abstraction sets
AB. Let (in,D, out) be an abstraction set and assume var(D) ∩ var(F ∪DEF(AB)) ⊆ in.
Then AB ∪ {(in,D, out)} is feasible for F .

Proof. Let τ be a solution to F . By the feasibility of AB, there is a solution τ e ⊇ τ to
F ∪DEF(AB). Since the only variables of D assigned by τ e are in in, by Definition 1 there
is a solution τE ⊇ τ e to D. Such a τE is a solution to F ∪ DEF(AB ∪ {(in,D, out)}),
establishing the feasibility of AB ∪ {(in,D, out)}.

With these considerations, we will from now on assume all abstraction sets to be feasible
and the Extract-AbstractCore to be instantiated with a SAT solver.

5.2 Capturing IHS with UniMaxSAT

UniMaxSAT gives the (basic) IHS (Algorithm 3) through the following instantiation. In-
stantiate Add-AbstractionSets to never add any abstraction sets, i.e., so that ABi = ∅
for all i. Further, instantiate Optimize as a procedure that, given a set K of cores, re-
turns the tuple (γA, lb) where γA = {x̄ | x ∈ var(O) \Mincost-HS(K)} is an assignment

947

Ihalainen, Berg, & Järvisalo

that sets all literals in the objective to 0 except the ones in the most recent minimum-
cost hitting set Mincost-HS(K) over K. The value of lb is the sum of the coefficients
of the variables in the minimum-cost hitting set. The correctness of Algorithm 3 now fol-
lows by Theorem 1 by observing that the only extension of γA to a (K, ∅)–candidate is
δ = {x̄ | x ∈ var(O) \ Mincost-HS(K)} ∪ {x | x ∈ Mincost-HS(K)}; this candidate is
minimum-cost and has O(δ) = lb. Hence γA is a (K, ∅)–abstract candidate and lb a lower
bound on the optimal cost by Proposition 1.

Example 8. Invoke the instantiation of UniMaxSAT that simulates the basic IHS algo-
rithm on MaxSAT instance F = (F,O) from Example 1. In the first iteration (i = 1), we
have K1 = ∅ and AB1 = ∅. As such the call Optimize(O,AB1,K1) returns γA1 = {b̄1, . . . b̄5}
and lb1 = 0. The subsequent invocation of Extract-AbstractCore(F,DEF(AB1), γA1)
returns res =‘false’ and (for example) C1 = (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5). The first iteration
ends with UniMaxSAT setting K2 = {C1} and AB2 = ∅. In the second iteration, the
call Optimize(O,AB2,K2) may return an (K2,AB2)-abstract candidate corresponding to
any of the three MCHSes over K2. Suppose that it returns γA2 = {b̄2, . . . b̄5} and lb2 = 1.
Then the call Extract-AbstractCore(F,DEF(AB2), γA2) again returns res =‘false’ and,
e.g., C2 = (b3 ∨ b4 ∨ b5). The sets K3 and AB3 are set to {C1, C2} and ∅, respectively.
In the third iteration, Optimize computes {b4} as the (only) MCHS over K3 and re-
turns γA3 = {b̄1, b̄2, b̄3, b̄5} and lb3 = 1. Notice that γA3 is the only (K3,AB3)-abstract
candidate at this stage. The call Extract-AbstractCore(F,DEF(AB3), γA3) returns
res =‘false’ and, e.g. C3 = (b1 ∨ b2 ∨ b3). In the fourth iteration there are two possi-
ble MCHSes over K4 = {C1, C2, C3} that both correspond to (K4,AB4)-abstract candi-
dates. Assume that Optimize(O,AB4,K4) returns γA4 = {b̄2, b̄3, b̄5} and lb4 = 2. Then
the call Extract-AbstractCore(F,DEF(AB4), γA4) returns res =‘true’ and the solution
τ = {b1, b̄2, b̄3, b4, b̄5, x̄}. As O(τ) = 2 = lb4, UniMaxSAT terminates and returns τ as an
optimal solution of F .

Abstract cores. UniMaxSAT gives IHS enhanced with abstract cores by instantiating
Add-AbstractionSets to (heuristically) compute abstraction sets (in,D, out), where the
inputs in = {x1, . . . , xn} are a subset of n objective variables that all have the same coef-
ficient in O, out = {o1, . . . , on} is a set of n new variables, and D = {asCNF(

∑
x∈in x ≥

i ↔ oi) | k = 1 . . . n}. Informally speaking, the outputs of the added abstraction sets
count the number of inputs assigned to 1 in all satisfying assignments. The instantiation
of the Optimize subroutine first computes a minimum-cost solution γ to K ∪ DEF(AB)
that assigns all variables in var(O) ∪ OUTS(AB), and then returns either γA1 as the re-
striction of γ onto the objective variables var(O) assigned to 0, or γA2 as the restriction
of γ onto the outputs of the current abstraction sets and objective variables that are not
inputs to any abstraction sets assigned to 0. More precisely, if INPUTS(AB) is the set
of all variables that are inputs to some abstraction set, then γA2 assigns to 0 all variables
OUTS(AB) ∪ (var(O) \ INPUTS(AB)) that are assigned to 0 by γ and does not assign
any other variables. In both cases, Optimize also returns the cost of γ as lb.

The correctness of IHS enhanced with abstract cores now follows by Theorem 1 by
showing that Optimize satisfies the correctness condition. This in turn follows directly
from showing that both γA1 and γA2 are (K,AB)–abstract candidates since then γ is a

948

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

minimum-cost (K,AB)–candidate, which by Proposition 1 implies that lb = O(γ) is a
lower bound on the optimal cost.

The fact that γA1 is a (K,AB)–abstract candidate follows since the only extension of
γA1 to a solution to K ∪DEF(AB) is γ. Further, γA2 is a (K,AB)–abstract candidate since
(i) γ is an extension of γA2 to a solution to K ∪ DEF(AB) and (ii) every such extension
sets equally many inputs of each abstraction set to 1, thus incurring exactly the same cost
(since the inputs to each abstraction set have the same coefficient in O).

5.3 Capturing Objective-Bounding Search with UniMaxSAT

To capture objective-bounding search by UniMaxSAT, Add-AbstractionSets is instan-
tiated to compute a single abstraction set ab = (var(O), D, out), where all of the variables
in the objective occur as inputs, there is an output ow for every w = 1, . . . ,W , where W is
the sum of coefficients of O =

∑
iwibi, and where definitions are

D = {asCNF(
∑

wibi ≥ w ↔ ow) | w = 1 . . .W}

that—informally speaking—count the sum of coefficients of objective variables set to 1 by
satisfying assignments, i.e., the costs of satisfying assignments.

The instantiations of Optimize for capturing different objective-bounding search algo-
rithms follow by noting that, for any solution τ to F ∪ DEF({ab}), the cost of τ can be
read from the outputs of ab, τ(ok) = 0 if and only if O(τ) < k holds for all solutions τ
to F ∪DEF({ab}). Similarly, abstract cores of this instance map to lower bounds on the
optimal cost, the unit clause (ok) is an abstract core if and only if k < opt(F). Thus
solution-improving, UNSAT-SAT, binary, and progression-based search are all obtained by
an instantiation of Optimize that returns assignments that set a single output variable to
0 and a lower bound equal to the largest index w for which (ow) has been determined to be
an abstract core. Termination occurs once the Extract-AbstractCore subroutine has
determined (oopt(F)) to be an abstract core and {ōopt(F)+1} a (K, {ab})–abstract candidate
for the set K of cores obtained so far.

As a concrete example, to capture solution-improving search, Optimize returns in the
first iteration the assignment (ōW) and lb = 0. In subsequent iterations Optimize re-
turns (ōO(τ)−1) and lb = 0 where O(τ) is the cost of the latest solution computed by
Extract-AbstractCore. When Extract-AbstractCore reports unsatisfiability, an
abstract core (ow) is obtained. Correctness of solution-improving search in terms of Theo-
rem 1 follows from the fact that the assignment γA = (ōw+1) is a ({(ow)}, {ab})–abstract
candidate the extensions of which have cost lb = w = opt(F).

6. Capturing Core-Guided Search with UniMaxSAT

We turn to detailing how various modern core-guided algorithms can be viewed as instanti-
ations of UniMaxSAT. Key to viewing any core-guided algorithm through UniMaxSAT
is to view the cardinality constraints a core-guided algorithm introduces as abstraction sets,
and the reformulation of the objective as an implicit computation of a (K,AB)–abstract
candidate for the instance, where the set K and AB are the abstract cores and abstraction
sets computed so far, respectively.

949

Ihalainen, Berg, & Järvisalo

6.1 Capturing Generic Properties of Core-Guided Algorithms

Compared to the IHS and objective-bounding search algorithms, significantly more variants
of core-guided algorithms have been proposed, differing in the specifics of how the core-
relaxation steps are performed. We will in the following identify properties of core-relaxation
steps shared by all core-guided algorithms we consider. These general properties allow for
a more generic proof of correctness for core-guided algorithms via viewing the algorithms
as instantiations of UniMaxSAT.

Definition 5. Consider the ith iteration of UniMaxSAT when invoked on a MaxSAT
instance F = (F,O). Let AB and K be the accumulated set of abstraction sets and ab-
stract cores, respectively. We say that an instantiation of UniMaxSAT is a core-guided
instantiation if the following properties hold.

• Extract-AbstractCore is a core-extracting SAT-solver and
Add-AbstractionSets introduces feasible abstraction sets.

• Optimize maintains a reformulated objective function OR and in each iteration re-
turns as assumptions the assignment {x̄ | x ∈ var(OR)} that sets all of the variables
in OR to 0. It also returns the constant term of OR as the lower bound on the optimal
cost.

• In each iteration we have OR(τ) = O(τ) for any solution τ to DEF(AB) ∪ K.

• Given a core, Optimize reformulates OR in a way that increases the constant term
of OR.

We will now show that any core-guided instantiation of UniMaxSAT correctly com-
putes optimal solutions to MaxSAT instances.

Theorem 2. For any input MaxSAT instance F that has a solution, any core-guided in-
stantiation of UniMaxSAT terminates and returns an optimal solution to F .

We prove Theorem 2 by showing that a core-guided instantiation of UniMaxSAT sat-
isfies the assumptions of Theorem 1. The non-trivial part of the proof deals with arguing
that Optimize satisfies the correctness condition (Definition 4).

In the following lemmas, we consider the ith iteration of a core-guided instantiation
of UniMaxSAT when invoked on a MaxSAT instance F = (F,O). Let ABi and Ki be
the set of abstraction sets and abstract cores collected, respectively; OR

i the reformulated
objective maintained by Optimize; and W lb

i the constant term of OR
i . The following two

observations follow directly from the definition of core-guided instantiations.

Observation 1. W lb
i is a lower bound on opt(F).

Observation 2. For any solution γ ⊇ {x̄ | x ∈ var(OR
i)} of DEF(ABi) ∪ Ki, we have

O(γ) = W lb
i .

What remains to be shown is that the assignment γAi = {x̄ | x ∈ var(OR
i)} computed

by Optimize will be a (Ki+r,ABi+r)–abstract candidate in iteration i+ r for some r ≥ 0.
We first establish that whenever γAi can be extended to a solution to DEF(ABi) ∪Ki, any
extension of γAi will be minimum-cost.

950

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Lemma 3. Assume that the assignment γAi = {x̄ | x ∈ var(OR
i)} can be extended to a

solution to DEF(ABi) ∪ Ki. Then γAi is a (Ki,ABi)–abstract candidate.

Proof. Consider an extension τ of γAi to a solution to DEF(ABi) ∪ Ki. We show that τ
is minimum-cost. Since τ(x) = 0 for all x ∈ var(OR

i), we have that OR
i (τ) = W lb

i . By
the definition of core-guided instantiations, this implies O(τ) = W lb

i . The fact that τ is
minimum-cost follows from observing that O(δ) = OR

i (δ) ≥ W lb
i holds for all solutions δ to

DEF(ABi) ∪ Ki.

Next we show that the assignment returned by Optimize can be extended to a solution
of the abstract cores and the definitions at some future iteration.

Lemma 4. Assume F has a solution. There is an r ≥ 0 such that the assignment γAi+r =
{x̄ | x ∈ var(OR

i+r)} can be extended to a solution to DEF(ABi+r) ∪ Ki+r.

Proof. Assume for contradiction that γAk cannot be extended to a solution to DEF(ABk)∪
Kk for any k ≥ i. Then in each iteration k ≥ i Extract-AbstractCore will return
a core. Let τ∗ be an optimal solution to F and, for a fixed k, τEk its extension to a
solution of DEF(ABk) ∪ Kk. By the properties of core-guided instantiations, we have
O(τ∗) = OR

k (τ
E
k). Furthermore, the constant term W lb of the reformulated objective

increases in each iteration when a core is obtained. Thus eventually for some iteration k′

we have W lb
k′ = OR

k′(τ
E
k′) = O(τ∗). (W lb

k′ > OR
k′(τ

E
k′) is not possible, since W lb

k is a lower
bound for OR

k (τ) for any solution τ .) Now OR
k′(τ

E
k′) = W lb

k′ implies τEk′ ⊇ {x̄ | x ∈ var(OR
k′)}.

Thus {x̄ | x ∈ var(OR
k′)} can be extended to a solution to DEF(ABk′) ∪ Kk′ , contradicting

the initial assumption.

A simple corollary of the Lemmas 3 and 4 is that Optimize is guaranteed to compute
an abstract candidate in some future iteration.

Corollary 1. If F has a solution, then Optimize returns a (Ki+r,ABi+r)–abstract candi-
date in iteration i+ r for some integer r ≥ 0.

Proof. By Lemma 3 it suffices to show that there is an r ≥ 0 such that the set γAi+r = {x̄ |
x ∈ var(OR

i+r)} can be extended to a solution to DEF(ABi+r) ∪ Ki+r. This is established
by Lemma 4.

Finally, the proof of Theorem 2 follows from the previous statements.

Proof of Theorem 2. Observations 1 and 2 together with Corollary 1 imply that Optimize
satisfies the correctness condition (assumption 1 of Theorem 1). Assumptions 2 and 3 of
Theorem 1 follow directly from the definition of core-guided instantiations.

In summary, Theorem 2 provides an alternative way of establishing the correctness of a
range of core-guided algorithms by arguing that a core-guided algorithm at hand falls is a
core-guided instantiation.

We also establish a similar result for a specific case of core-guided instantiations which
we will refer to as cardinality-based CG instantiations. The notion of cardinality-based
CG instantiations of UniMaxSAT captures in particular core-guided algorithms which
introduce a single cardinality constraint over each extracted core.

951

Ihalainen, Berg, & Järvisalo

Definition 6. We say that an instantiation of UniMaxSAT is cardinality-based CG in-
stantiation if the following conditions hold.

(i) Extract-AbstractCore is a core-extracting SAT solver.

(ii) Given a core C as input, Add-AbstractionSets computes an abstraction set ab =
(in,D, out) for which the following hold.

– The set of variables of D intersects the set of previous variables only on the
inputs, i.e., var(D) ∩ var(F ∪DEF(AB)) ⊆ in.

– The number of outputs is one less than the number of variables in the core, i.e.,
|out| = |C| − 1.

–
∑

b∈C τ(b) = 1+
∑

o∈out τ(o) holds for any solution τ to {C}∪{D}∪K∪DEF(AB).

Here K and AB are the set of cores computed and abstraction sets introduced by the
iteration in which C is obtained.

(iii) Optimize is instantiated as Optimize-CB which maintains a reformulated objective
OR, initialized to be the objective O of the input MaxSAT instance. In each iteration
i, Optimize-CB returns the assignment {x̄ | x ∈ var(OR)} that sets all variables in
OR to 0 and the constant term of OR as the lower bound. Given an abstract core
C and an abstraction set ab = (in,D, out), Optimize-CB updates OR as follows.
(1) The coefficient of each x ∈ C is decreased by the minimum over the coefficients
in O of the variables in the core, i.e., by wC = minx∈C{OR(x)}. (2) Each x ∈ out is
added to OR with the coefficient wC . (3) The variables in OR with coefficients 0 are
removed. (4) The constant term of OR is incremented by wC .

We establish that cardinality-based CG instantiations of UniMaxSAT are a special
case of core-guided instantiations.

Theorem 3. Any cardinality-based CG instantiation (Definition 6) is a core-guided instan-
tiation of UniMaxSAT (Definition 5).

Note that this implies that ny cardinality-based CG instantiation will return an optimal
solution to any MaxSAT instance by Theorem 2.

Proof. The non-trivial part of the proof is to argue that in each iteration i, we have OR
i (τ) =

O(τ) for any solution τ to DEF(ABi)∪Ki, i.e., the definitions of the abstraction sets added
and cores computed by iteration i. The proof is by induction on the iteration i. The
base case = 1 directly follows from OR = O. Now assume that the statement holds in
iteration i − 1. Let OR

i be the reformulated objective in the beginning of iteration i and
assume without loss of generality that an abstract core Ci is extracted in iteration i. Let
abi+1 = (ini+1, Di+1, outi+1) be the abstraction set computed by Add-AbstractionSets
on input Ci. Then

OR
i+1(τ)

∗
= OR

i+1(τ) +
∑
x∈Ci

wCiτ(x)− (
∑

x∈outi+1

wCiτ(x) + wCi) = OR
i (τ).

952

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Here ∗ follows by the fact that Add-AbstractionSets fits the definition of a cardinality-
based CG instantiation stating that

∑
x∈Ci

τ(x) = 1 +
∑

x∈outi+1
τ(x), which implies

∑
x∈Ci

wCiτ(x) = wCi +
∑

x∈outi+1

wCiτ(x).

6.2 Contrasting Core-Guided and IHS Algorithms through UniMaxSAT

Before moving on to concretely capturing the core-relaxation steps of individual core-guided
algorithms, we note that the definition of core-guided instantiations of UniMaxSAT allows
for observing an interesting contrast between core-guided and IHS. In particular, in contrast
to IHS, the cores extracted by core-guided instantiations of UniMaxSAT always refute all
possible minimum-cost solutions to the cores accumulated by that iteration.

Proposition 2. Consider the ith iteration of a core-guided instantiation of UniMaxSAT
invoked on a MaxSAT instance F = (F,O). Let Ki and ABi be the set of abstract cores
and abstraction sets accumulated by the beginning of iteration i, respectively. Assume that
Optimize returns a (Ki,ABi)–abstract candidate and Extract-AbstractCore a core
Ci. Let then γA be any (Ki,ABi)–abstract candidate and τE ⊇ γA an extension of γA to
a solution to DEF(ABi) ∪ Ki Then τE(Ci) = 0.

Proof. We show that τE ⊇ {x̄ | x ∈ var(OR
i)}; since Ci ⊆ var(OR

i), this implies τE(Ci) =
0. Since Optimize returns a (Ki,ABi)–abstract candidate at the ith iteration, we have
OR

i (τ
E) = O(τE) = Wi. As O

R
i (τ

E) = Wi holds if and only if τ(x) = 0 for all x ∈ var(OR
i),

we conclude that τE ⊇ {x̄ | x ∈ var(OR
i)}.

Less formally, Proposition 2 states that whenever a core-guided instantiation of Uni-
MaxSAT extracts a core falsified by a (K,AB)–abstract candidate γ of F where K and AB
are a set of cores and abstraction sets, respectively, the core refutes not only γ but all pos-
sible (K,AB)–abstract candidates, and thereby all minimum-cost (K,AB)–candidates. In
contrast, the following example demonstrates that cores extracted by IHS over an abstract
candidate do not necessarily refute all possible abstract candidates.

Example 9. Consider the following execution of IHS (simulated in UniMaxSAT) on the
MaxSAT instance F = (F,O) with F = {(b1 ∨ b2 ∨ b3), (b2 ∨ b4)} and O = b1 + b2 + b3 + b4.
Assume that Extract-AbstractCore first extracts the core C1 = (b1∨b2∨b3). Further,
assume that Optimize then returns γ = {b̄1, b̄2, b̄4} as the ({C1}, ∅)–abstract candidate6.
Finally, assume that Extract-AbstractCore next returns the core C2 = (b2 ∨ b4).
Although γ(C2) = 0, C2 does not refute all ({C1}, ∅)–abstract candidates. This is because
{b̄1, b̄3, b̄4} is a ({C1}, ∅)–abstract candidate and τE = {b̄1, b2, b̄3, b̄4} an extension of it to a
solution to {C1} that satisfies C2.

6. Recall that IHS simulated in UniMaxSAT does not add abstractions sets.

953

Ihalainen, Berg, & Järvisalo

6.3 Capturing Algorithm-Specific Core Relaxations of Core-Guided
Algorithms

Having established general conditions for the correctness of core-guided algorithms, we
move on to detailing how the algorithm-specific core relaxations of modern core-guided
algorithms can be viewed as cardinality-based CG instantiations of UniMaxSAT. Specif-
ically, we detail this individually for OLL (Andres et al., 2012; Morgado et al., 2014),
WPM3 (Ansótegui & Gabàs, 2017), MSU3 (Marques-Silva & Planes, 2007), PMRES (Nar-
odytska & Bacchus, 2014) and K (Alviano et al., 2015) as key representatives of modern
core-guided algorithms. More precisely, as the definition of cardinality-based CG instantia-
tions prescribes how Extract-AbstractCore and Optimize are instantiated in each of
these algorithms, we now detail how to instantiate Add-AbstractionSets in ways that
fit Lemma 2 and Definition 6, and at the same time match the core-relaxation step of the
individual algorithms.

6.3.1 OLL

The OLL algorithm (recall Section 3.2) is viewed as a cardinality-based CG instantiation
of UniMaxSAT by instantiating Add-AbstractionSets to introduce, given a core C as
input, the abstraction set

abC = (C, {asCNF(
∑
x∈C

x ≥ i ↔ oi) | 2 ≤ i ≤ |C|}, {o2, . . . , o|C|}),

matching the OLL core relaxation. For any reasonable encoding of the cardinality con-
straint, abC clearly satisfies condition (ii) of Definition 6. Hence OLL is a cardinality-based
CG instantiation of UniMaxSAT.

Example 10. Invoke the cardinality-based CG instantiation of UniMaxSAT that corre-
sponds to OLL on the MaxSAT instance F = (F,O) from Example 1. Before the main
search loop, the reformulated objective OR of Optimize is set to O, and the sets K1

and AB1 both to ∅. In the first iteration, Optimize(O,AB1,K1) returns the assignment
γA1 = {b̄1, . . . , b̄5} containing the negation of all variables in OR, and lb1 = 0 corresponding
to the constant term of OR. The call Extract-AbstractCore(F,DEF(AB1), γA1) then
returns res =‘false’ and, e.g., the core C1 = (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5). The set of cores is then
updated by letting K2 = {C1}, after which Add-AbstractionSets(K2) forms the new
abstraction set

ab1 = ({b1, b2, b3, b4, b5}, {asCNF(

5∑
i=1

bi ≥ k ↔ o1k) | 2 ≤ k ≤ 5}, {o12, . . . , o15})

and UniMaxSAT sets AB2 = {ab1}.
In the second iteration Optimize(O,AB2,K2) uses the core C1 and abstraction set ab1

to update OR following Definition 6. The new reformulated objective is OR = 2b3 + b5 +
o12 + o13 + o14 + o15 + 1 and so Optimize returns γA2 = {b̄3, b̄5, ō12, ō13, ō14, ō15} and lb2 = 1.
The call Extract-AbstractCore(F,DEF(AB2), γA2) then returns res =‘false’ and, e.g.,
the (abstract) core C2 = (o12 ∨ b3). Adding C2 to K, i.e., letting K3 = {C1, C2}, results in

954

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Add-AbstractionSets introducing the abstraction set

ab2 = ({o12, b3}, {asCNF(o12 + b3 ≥ 2 ↔ o22)}, {o22})

.

In the third iteration Optimize again updates OR based on ab2 and C2 to be OR =
b3 + b5 + o13 + o14 + o15 + o22 + 2, and returns γA3 = {b̄3, b̄5, ō13, ō14, ō15, ō22} and lb3 = 2. This
time the call Extract-AbstractCore(F,DEF(AB3), γA3) returns res =‘true’ and, e.g.,
the solution τ = {b1, b̄2, x̄, b̄3, b4, b̄5}∪{o12, ō13, ō14, ō15, ō22} which is then returned as an optimal
solution to F .

6.3.2 PMRES

The PMRES algorithm is viewed as a cardinality-based CG instantiation of UniMaxSAT
by instantiating Add-AbstractionSets to introduce for every core C = (b1 ∨ · · · ∨ bn)
the abstraction set

abC = (C,D = {bi ∧ (bi+1 ∨ · · · ∨ bn) ↔ oi | 1 ≤ i ≤ n− 1}, {o1, . . . , on−1}).

In practice, the definition of each oi is represented in CNF in the style of the standard
Tseitin encoding (Tseitin, 1983; Prestwich, 2021) by taking the name di for the disjunction
(bi+1 ∨ · · · ∨ bn), i.e., adding clauses equivalent to di ↔ (bi+1 ∨ · · · ∨ bn).

7 To establish the
correctness of PMRES in terms of UniMaxSAT through Theorem 3, we argue that this
instantiation of Add-AbstractionSets satisfies condition (ii) of Definition 6. Consider a
solution τ to D∧{C}. Let in = {bi1 , . . . , bim} be the set of variables occurring in C assigned
to 1 by τ . We show that the set of outputs that τ assigns to 1 is out = {oi1 , . . . oim−1}.
As τ is a solution to D, it assigns all o ∈ out to 1. In the opposite direction, any other
output ok /∈ out assigned to 1 by τ would result in a variable of the core bk /∈ in also being
assigned to 1 by τ , which is a contradiction.

6.3.3 K

The core relaxation of the K algorithm is intuitively a combination of the PMRES and
OLL relaxations. K partitions the found cores into subsets of bounded size, relaxes each
partition similarly to OLL and then merges the relaxed partitions similarly to PMRES.
More precisely, given a core C = (b1 ∨ . . .∨ bmk), K partitions C into m subsets Pi, each of
size k such that C = P1∨ . . .∨Pm. Each partition P is relaxed with a cardinality constraint
{asCNF(

∑
b∈P b ≥ l ↔ oPl) | l = 1, . . . , k} similarly as in OLL. Finally, the cardinality

constraints of each partition are “merged” by adding a PMRES-style constraint of the form
{oPi

1 ∧(o
Pi+1

1 ∨· · ·∨oPm
1) ↔ oRi | 1 ≤ i ≤ m−1} where oP1 is the first output of the cardinality

constraint introduced for the partition P .

For formalizing K as a cardinality-based instantiation of UniMaxSAT, consider an
instantiation of Add-AbstractionSets that returns a single abstraction set that combines
both of these relaxations. More precisely, consider a core C of size mk partitioned into
C = P1 ∨ . . . ∨ Pm by m subsets P1, . . . , Pm with Pi = (bPi

1 ∨ . . . ∨ bPi
k). We define three

7. The auxiliary di variables do not obstruct the main observations made here.

955

Ihalainen, Berg, & Järvisalo

different types of abstraction sets:

abPi = (Pi, {asCNF(
∑
b∈Pi

b ≥ l ↔ oPi
l) | l = 1, . . . , k}, {oPi

1 , . . . , oPi
k })

for each i = 1 . . .m,

abR = ({oPi
1 , | i = 1 . . .m}, {oPi

1 ∧(o
Pi+1

1 ∨· · ·∨oPm
1) ↔ oRi | 1 ≤ i ≤ m−1}, {oR1 , . . . , oRm−1}),

and

ab = {C,DEF({abR}) ∪
m⋃
j=1

DEF(abPj), out},

where out = {oR1 , . . . , oRm−1} ∪ {oPj

i | j = 1, . . . ,m and i = 2, . . . , k}. The intuition under-
lying these sets is that each abPi corresponds to the OLL-style relaxation of the partition
Pi and the set abR to the PMRES-style relaxation that combines all of them. In other
words, the set ab collects all of the relaxations into a single abstraction set that satisfies
the condition of Definition 6.

The fact that an instantiation of Add-AbstractionSets which on input C returns
the abstraction set ab satisfies condition (ii) of Definition 6 follows straightforwardly—
albeit being somewhat tedious to formally prove—as a consequence of the arguments we
already made for PMRES and OLL. For some intuition, note that the set out contains
n(k−1)+(m−1) = mk−1 output variables, which is one less than the number of variables
in C. Furthermore, any solution τ to the definitions of C and definitions of ab assigns in
each abPi exactly the same number of inputs and outputs to 1. The output with index 1
from each Pi is then further relaxed by the PMRES-style abstraction set abR. This ensures
that exactly one less output in out will be assigned to 1.

6.3.4 MSU3

The MSU3 algorithm is specific to unweighted MaxSAT instances, i.e., instances in which
objective coefficients are all equal. On an unweighted MaxSAT instance (F,O) MSU3
maintains a single cardinality constraint

asCNF

(∑
b∈active

b ≥ bound ↔ obound

)
,

where the set active contains the objective variables that have occurred in the so-far
extracted cores. The bound bound counts the number of cores that have been extracted so
far. When a new core is extracted, the objective variables in the core are added to active
and the bound is incremented by one. Informally speaking, in each iteration, the SAT solver
is queried for a solution that sets exactly bound objective variables to 1. The increment is
due to the fact that each new core obtained implies that the optimal cost of the instance is
at least one higher than bound.

To see that MSU3 is a cardinality-based CG instantiation of UniMaxSAT, we define an
instantiation of Add-AbstractionSets that corresponds to the core relaxation performed

956

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

by MSU3 as just-described. When the first core C1 is extracted, Add-AbstractionSets
initializes a bound bound to 1 and introduces the abstraction set

ab1 = (in1, {asCNF

∑
b∈in1

b ≥ bound+ j ↔ oj

 | 1 ≤ j ≤ |C| − 1}, out1),

where in1 = C1 and out1 = {o1, . . . o|C|−1}.
In iteration i > 1 the obtained core Ci is first extended with all outputs in outi−1 of

the previous abstraction set abi−1. The resulting C ′
i = Ci ∪ outi−1 is clearly a core as well.

Then the bound is incremented by one and a new abstraction set

abi = (ini, {asCNF

∑
b∈ini

b ≥ bound+ j ↔ oj

 | 1 ≤ j ≤ |C ′
i| − 1}, {oi1, . . . oi|C′

i|−1}),

introduced. Here ini = ini−1 ∪ (C ∩ var(O)) contains the objective variables that are
in Ci and the inputs ini−1 of the previous abstraction set. Notice that due to the core-
extension step and the instance being unweighted, all outputs of abi−1 are removed from
the reformulated objective, and as such ignored in subsequent iterations.

The core extension step is a minor technical detail required to fit the formalization of
MSU3 into the definition of a cardinality-based CG instantiation of UniMaxSAT. It does
not affect the algorithm in any meaningful way. In the formalization Optimize-CB returns
γA1 = {ōit | t = 1, . . . , |C ′

i| − 1} in iteration i. An exact correspondence to the description
of MSU3 given at the beginning of the section would instead return γA2 = {ōi1}. These
two are, however, essentially equal since ōit → ōit+1 holds for all t. Specifically, there is no
(K,AB)–candidate of the instance for current set K and AB of cores and abstraction sets,
respectively, that would extend γA2 but not γA1 .

MSU3 can be seen as a special case of the WPM3 algorithm discussed next. As such a
formal proof of the fact that the abstraction set abi satisfies condition (ii) of Definition 6
follows from the corresponding proof for WPM3, provided in Appendix A. Informally, the
proofs make use of the fact that if k inputs are assigned to 1 by a solution τ , then k ≥ bound
and k − bound outputs are assigned to 1 by τ .

6.3.5 WPM3

The WPM3 algorithm combines elements of OLL and MSU3 in that it maintains a set of
several cardinality constraints, but only over objective variables. More precisely, assume
that WPM3 on a MaxSAT instance (F,O) extracts the core C = (oC1

t1
∨. . .∨oCn

tn ∨b1∨. . .∨bm).

Each oCi
ti

is an output of a cardinality constraint introduced in the relaxation of a previous
core Ci and each bi an objective variable. WPM3 relaxes C by introducing a new cardinality
constraint

asCNF

 ∑
b∈inC

b ≥ boundC ↔ oboundC

 ,

957

Ihalainen, Berg, & Järvisalo

where inC contains the objective variables of C and the inputs of all cardinality constraints
whose outputs appear in C. The bound boundC is defined recursively as

boundC =

{
1 if C only contains objective variables,

1 +
∑n

i=1 bound
i else.

Here boundi is the bound of the abstraction set introduced when relaxing a previously
found core Ci. All of the cardinality constraints the outputs of which appear in C are
removed from the working instance. Conceptually, the new cardinality constraint merges
the inputs of the constraints whose outputs appear in C, and the bound is the number of
inputs that can be inferred to 1 by the cores extracted so far8.

The formalization of WPM3 as a cardinality-based CG instantiation of UniMaxSAT
is similar to the formalization of MSU3. In terms of UniMaxSAT, a core extracted by
WPM3 is of the form C = (oab1t1

∨ . . . ∨ oabntn ∨ b1 ∨ . . . ∨ bm). Here oabiti
is an output of the

abstraction set abi introduced earlier. The instantiation of Add-AbstractionSets that
corresponds to WPM3 first extends C to C ′ ⊇ C by adding, for each output oabiti

∈ C, all
of the outputs of abi that are in the reformulated objective maintained by Optimize-CB.
The resulting C ′ remains a core since all outputs of a fixed abstraction set have the same
coefficient when introduced to the reformulated objective. Thus C ′ either contains all of
the outputs of a previously introduced abstraction set or none of them. A new abstraction
set

abC
′
= (inC′

, DC′
= {asCNF

∑
b∈ini

b ≥ boundC′
+ j ↔ o

C′
i

j

 | 1 ≤ j ≤ |C ′
i| − 1}, outC′

)

is then introduced. The inputs inC′
= {b1, . . . , bm} ∪

⋃n
i=1 ini consist of the objective

variables in C and the inputs ini of all previous abstraction sets abi whose outputs appear

in C ′. The outputs outC
′
= {oC

′
i

2 , o
C′

i
3 , . . . , o

C′
i

|C′
i|
} are new variables. The bound boundC′

of

the abstraction set abC
′
is defined analogously to the bounds on cardinality constraints as

boundC′
=

{
1 if C only contains objective variables,

1 +
∑n

i=1 bound
i else.

Here boundi is the bound of the abstraction set abi. The definitions DC′
ensure that the

outputs count the number of new inputs in addition to boundC′
assigned to 1.

A formal proof of the fact that the abstraction set abC
′
satisfies condition (ii) of Defi-

nition 6 is provided in Appendix A. Informally, the result follows from three observations:
(i) The definitions DC′

ensure that any solution assigning k ≥ boundC′
inputs to 1 will

assign k−boundC′
outputs to 1; (ii) the definitions of previous abstraction sets ensure that

such a solution will assign k−boundC′
variables of C ′ to 1; and (iii) the set of accumulated

cores ensures that at least boundC′
inputs will be assigned to 1 in any solution.

8. As a minor technical remark, if objective variables with different coefficients appear in cores together,
they may end up as inputs in different cardinality constraints. Whenever the inputs of cardinality
constraints merged contain the same variable, the union operator should be understood as additive
union ⊎ for which, e.g., {x, y} ⊎ {x} = {x, x, y}.

958

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

6.4 On the Frequency of Abstract Candidates

We end this section with observations on how frequently core-guided algorithms compute
abstract candidates. Recall that whenever an instantiation of UniMaxSAT computes
a (K,AB)–abstract candidate of the instance with the current set K and AB of cores and
abstraction sets, respectively, a lower bound as high as possible given the cores extracted so-
far is obtained. Intuitively, the more frequently (K,AB)–abstract candidates are computed
during the search, the faster in terms of iterations new lower bounds are obtained.

First, we will show that in the general case, cardinality-based CG instantiations of Uni-
MaxSAT will not (necessarily) compute a (K,AB)–abstract candidate in every iteration.

Example 11. Consider the MaxSAT instance F = (F,O) with F = {(b1), (b2)} and O =
b1 +2b2. Invoke a cardinality-based CG instantiation of UniMaxSAT on F . Assume that
the first core extracted is C1 = (b1 ∨ b2). Then Add-AbstractionSets introduces an
abstraction set ab1 with one output o1. Further, Optimize-CB updates its reformulated
objective to OR

1 = b2 + o1 and returns the set of assumptions γA = {b̄2, ō1}. Since Add-
AbstractionSets fulfills condition (ii) of Definition 6 and any solution to F assigns two
of the variables in C1 to 1, any solution assigns the variable o1 to 1. Thus C2 = (o1) is an
abstract core that can be extracted in the next iteration, which results in an abstraction
set ab2 without any outputs. In the next call to Optimize-CB its objective is updated to
OR

2 = b2 and the set γA = {b̄2} is returned. Now γA is not a ({C1, C2}, {ab1,ab2})–abstract
candidate since all solutions to DEF({ab1}) ∪ {C1, C2} assign b2 to 1.

Example 11 is stated in terms of a generic instantiation of UniMaxSAT and hence
applies to all cardinality-based CG instantiations, including OLL, PMRES, K, WPM3,
and MSU3. In other words, each of these algorithms may compute intermediate lower
bounds that are weaker than what could be inferred based on the cores extracted so far.
In contrast, it turns out that these algorithms differ in this respect when restricting to
unweighted MaxSAT instances in which all objective coefficients are equal. Specifically,
PMRES and WPM3 are guaranteed to always compute abstract candidates when invoked
on an unweighted instance, thereby obtaining as strong lower bounds as possible, while this
is not the case for OLL. To establish this, we first show that there are unweighted instances
on which UniMaxSAT instantiated as OLL may not always compute abstract candidates.
For some intuition on the reasons for this, in contrast to PMRES, the outputs of abstraction
sets introduced by OLL can lead to situations where already-extracted cores imply other
cores—irrespectively of the input instance. In contrast to WPM3, at the same time the
outputs introduced by OLL need not be removed from the reformulated objective.

Example 12. Consider an invocation of UniMaxSAT instantiated as OLL on an un-
weighted MaxSAT instance F . Assume two cores C and D are extracted, both containing
three variables. This results in the introduction of the abstraction sets

abC = (C, {asCNF(
∑
x∈C

x ≥ i ↔ oCi) | i = 2, 3}, {oC2 , oC3 }) and

abD = (D, {asCNF(
∑
x∈D

x ≥ i ↔ oDi) | i = 2, 3}, {oD2 , oD3 }).

959

Ihalainen, Berg, & Järvisalo

C

{oC2 , oC3 }

D

{oD2 , oD3 }

C1 = (oC2 ∨ oD2)

{oC1
2 }

C2 = (oC3)

{}

C3 = (oD3)

{}

abC abD

ab1ab2 ab3

Figure 3: Structure of cores and abstraction sets of Example 12. Each pair of connected
ellipse and rectangle nodes corresponds to an abstraction set, with the inputs (the extracted
core) of that set appearing in the ellipse and the outputs in the rectangle. The dashed edges
visualize how outputs of abC and abD appear as inputs to new abstraction sets.

Assume that C1 = (oC2 ∨oD2) is the next core extracted with the corresponding abstraction set
ab1 = (C1,asCNF(

∑
x∈C1

x ≥ 2 ↔ oC1
2), {oC1

2 }). Finally, let the next two cores extracted

be C2 = (oC3) and C3 = (oD3), resulting in the two abstraction sets ab2 = ({(oC3 }, ∅, ∅)
and ab3 = ({oD3 }, ∅, ∅). Figure 3 illustrates the abstraction sets added after extract-
ing these cores. In the subsequent iteration, the partial assignment δE computed by
Optimize-CB will include ōC1

2 . However, then δE is not a (K,AB)–abstract candidate,
where K = {C,D,C1, C2, C3} and AB = {abC ,abD,ab1,ab2,ab3}. This is because there
is no extension of δE to a solution to K ∪DEF(AB). To see this, note that any solution τ
to K ∪DEF(AB) has to assign τ(oC3) = τ(oD3) = 1 and therefore also τ(oC2) = τ(oD2) = 1.
By the definitions in ab1 this implies τ(oC1

2) = 1.

In contrast to OLL, when invoked on an unweighted MaxSAT instance, both PMRES
and WPM3 are guaranteed to compute abstract candidates in each iteration, and thus both
algorithms are guaranteed to obtain as strong lower bounds as possible. This is formalized
in the following proposition, the proof of which is provided in Appendix A.

Proposition 3. Invoke UniMaxSAT instantiated as PMRES or WPM3 on an unweighted
MaxSAT instance F = (F,O). In the ith iteration of search, let OR

i be the reformulated
objective maintained by Optimize-CB. Let also Ki be the set of cores, and ABi the
collection of abstraction sets collected so far. The partial assignment γAi = {x̄ | x ∈
var(OR

i)} returned by Optimize-CB is a (Ki,ABi)–abstract candidate.

The results of Proposition 3 and Example 12 demonstrate the potential of UniMaxSAT
for analyzing existing SAT-based MaxSAT solving algorithms.

7. UniMaxSAT as Basis for New Algorithmic Variants

We emphasize that the main contributions of this work are the formal UniMaxSAT
framework and the unifying proofs of correctness for established SAT-based MaxSAT solv-
ing approaches the framework yields. However, beyond the already-presented main con-
tributions, we more shortly point out that the framework can also be used for obtaining
new algorithmic variants of the SAT-based MaxSAT solving approaches and thereby to

960

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

provide proofs of correctness for such variants. To illustrate this further potential of the
UniMaxSAT framework, we describe a novel variant AbstCG of core-guided search as an
instantiation of UniMaxSAT. While AbstCG could be designed on its own, viewing it
as an instantiation of UniMaxSAT immediately implies that this new algorithmic variant
is correct, highlighting the usefulness of UniMaxSAT in developing new correct MaxSAT
algorithms.

For AbstCG, similarly as for other core-guided algorithms, Extract-AbstractCore
is a core-extracting SAT solver, Add-AbstractionSets introduces abstraction sets for
each core and Optimize maintains a reformulated objective OR and always returns {x̄ |
x ∈ var(OR)} as assumptions. Given a core C consisting of variables that have m different
coefficients in OR, the instantiation of Add-AbstractionSets in AbstCG first partitions
C into m disjoint sets C = G1 ∨ . . . ∨ Gm so that all variables in the same set Gi have
the same coefficients, with the sets Gi indexed by decreasing coefficients. Starting from
G1 (corresponding to the largest coefficient in OR), AbstCG introduces for each Gi an
abstraction set

abi = (ini, {asCNF(
∑
x∈ini

x ≥ j ↔ oi,j) | 1 ≤ j ≤ |ini|}, outi).

The inputs ini = Gi ∪ outi−1 consist of the variables in Gi and the outputs of abi−1. Since
C is an abstract core, at least one of its variables is assigned to 1 in any solution. Hence
the first output om,1 of the last abstraction set is not included in outm.

The Optimize instantiation in AbstCG updates the reformulated objective OR by
processing each abstraction set abi = (ini, Di, outi) in order, starting from i = 1. The
coefficient of each x ∈ ini is decreased by wi = min({OR(x) | x ∈ ini}) and each output
x ∈ outi is included in OR with coefficient wi. After processing each abi, a constant wm is
added to OR.

Example 13. Invoke AbstCG on the MaxSAT instance F = (F,O) with

F = {(b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5)} ∪ asCNF(
∑

2≤i≤5

bi ≥ 3)}

and O = b1 + 5b2 + 5b3 + 5b4 + 5b5. Assume that the first core is C = (b1 ∨ b2 ∨ b3 ∨ b4 ∨
b5). Core relaxation divides the variables of C into G1 = {b2, b3, b4, b5} and G2 = {b1}.
The abstraction set over G1 has four output variables o1,j with 1 ≤ j ≤ 4, defined by
asCNF(

∑
x∈G1

x ≥ j ↔ o1,j). The abstraction set over G2 has five output variables o2,j
with 1 ≤ j ≤ 5, defined by asCNF(

∑
x∈G2∪out1 x ≥ j ↔ o2,j). After reformulation, the

objective OR is OR = 4o1,1+4o1,2+4o1,3+4o1,4+ o2,2+ o2,3+ o2,4+ o2,5. The assumptions
γA for the next call to Extract-AbstractCore consist of the negations of variables in
OR, γA = {ō1,1, ō1,2, ō1,3, ō1,4, ō2,2, ō2,3, ō2,4, ō2,5}. Assume that next, the unit cores (o1,1),
(o1,2), (o1,3), (o2,2), (o2,3) are extracted. After this, the assumptions γA for the next call
to Extract-AbstractCore are γA = {ō1,4, ō2,4, ō2,5}. Then Extract-AbstractCore
returns, for example, the solution τ = {b̄1, b2, b3, b4, b̄5} as an optimal solution to F .

For an informal connection between AbstCG and OLL, note that when the variables C
all have the same coefficient in OR, the reformulation performed by AbstCG is the same

961

Ihalainen, Berg, & Järvisalo

b1, b2b2b2, b3b3b3, b4b4b4, b5b5b5

o1, o2o2o2, o3o3o3, o4o4o4, o5o5o5

b2, b3, b4, b5

o1,1o1,1o1,1, o1,2o1,2o1,2, o1,3o1,3o1,3, o1,4o1,4o1,4b1

o2,1, o2,2o2,2o2,2, o2,3o2,3o2,3, o2,4o2,4o2,4 , o2,5o2,5o2,5

Figure 4: Left: An abstraction set introduced by OLL (left) and AbstCG (right) when
relaxing core C1 = {b1, b2, b3, b4, b5} from Example 13. Connected ellipse and rectangle
nodes correspond to an abstraction set, with the inputs of a set mentioned within the
ellipse and the outputs within the rectangle. Variables with a positive coefficient in the
reformulated objective OR after the reformulation are highlighted in boldface.

as the one performed by OLL. The two algorithms differ in how cores with more than one
distinct coefficient are processed. To illustrate this difference, consider the abstraction sets
introduced by AbstCG and OLL when relaxing the core C1 = (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5) from
Example 13. Figure 4 illustrates the abstraction sets introduced by OLL (left) andAbstCG
(right). In the figure, each pair of connected ellipse and rectangle nodes corresponds to
an abstraction set. The inputs of each abstraction set are represented by an ellipse and
the outputs by a rectangle. Additionally, the variables with a positive coefficient in the
reformulated objectives—OR = 4b2 + 4b3 + 4b4 + 4b5 + o2 + o3 + o4 + o5 for OLL and
OR = 4o1,1 + 4o1,2 + 4o1,3 + 4o1,4 + o2,2 + o2,3 + o2,4 + o2,5 for AbstCG—are highlighted
in boldface. We observe that OLL keeps most of the variables in C1 in the reformulated
objective. In contrast, AbstCG removes all of the variables in the core from the objective,
and instead introduces new variables that keep track of how many of the variables in the
set {b2, b3, b4, b5} are assigned to 1 in subsequent iterations.

We establish the correctness of AbstCG as a core-guided instantiation of UniMaxSAT
via Theorem 2. The non-trivial part is to argue that the reformulated objective OR main-
tained by AbstCG preserves the costs of all solutions.

Proposition 4. Assume that the AbstCG instantiation of UniMaxSAT is invoked on a
MaxSAT instance. Let OR

i (τ) be the reformulated objective in iteration i and ABi and Ki

the set of abstraction sets introduced and cores obtained by iteration i, respectively. Let τ
be a solution to DEF(ABi) ∪ Ki. Then OR

i (τ) = O(τ).

Proof. By induction on the iteration i. The base case i = 1 follows from OR = O. Assume
then that the statement holds in iteration i − 1. Let OR

i be the reformulated objective in
iteration i (i.e., the reformulated objective in the beginning of iteration i). Assume without
loss of generality that an abstract core Ci is extracted in iteration i and partitioned into
m subsets G1, . . . , Gm. Let abij = (ini

j , D
i
j , out

i
j) for j = 1, 2, . . . ,m be the abstraction sets

computed by Add-AbstractionSets on input Ci and let wi
j be the minimum weights of

962

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

each Gj for j = 1, 2, . . . ,m. Then

OR
i+1(τ)

∗
= OR

i+1(τ) +

m∑
j=1

(
∑
b∈ini

j

wi
jτ(b)−

∑
o∈outij

wi
jτ(o))− wi

m = OR
i (τ).

Step ∗ follows from the observation that
∑

b∈ini
j
τ(b) =

∑
o∈outij

τ(o) for all j < m, which

implies
∑

b∈ini
j
wi
jτ(b) −

∑
o∈outij

wi
jτ(o) = 0. Furthermore, since Ci is a core, we have∑

b∈ini
m
τ(b) ≥ 1. Recalling that oim,1 /∈ outim we have

∑
b∈ini

m
wi
mτ(b)−

∑
o∈outim wi

mτ(o)−
wi
m = 0, and can conclude that

∑
b∈ini

m
τ(b) =

∑
o∈outim τ(o) + 1.

While the main focus of this work is on the UniMaxSAT framework, we developed
a prototype implementation of AbstCG on top of CGSS2, a state-of-the-art C++ imple-
mentation of OLL (Ihalainen, 2022). This implementation of AbstCG is available online
at https://bitbucket.org/coreo-group/cgss2/ as a command line option of CGSS2.
When a new core is extracted, the prototype implementation dynamically selects between
relaxing it in the style of OLL and relaxing it in the style of AbstCG, always choos-
ing the relaxation that results in fewer clauses added. Intuitively, this choice aims to
balance the benefits of relaxing cores in the style of AbstCG (such as removing all lit-
erals in the core from the reformulated objective) with the potentially smaller size of
the core-relaxation constraint of OLL. We empirically compare the runtimes of CGSS2-
AbstCG (our prototype implementation of AbstCG) to those of CGSS2-OLL, i.e., the base
CGSS2 implementation. We emphasize that the goal of these experiments is to demon-
strate that UniMaxSAT allows for novel algorithmic instantiations that can be used to
obtain practical solvers competitive with the state-of-the-art. As benchmarks, we used
the 558 instances weighted instances9 from the exact track of MaxSAT Evaluation 2023
(https://maxsat-evaluations.github.io/2023/). The experiments were run using 2.6-
GHz AMD EPYC 7H12 processors under a per-instance 3600-second time and 16-GB mem-
ory limit.

Figure 5 (left) provides a runtime comparison for the two solvers with all additional
heuristics implemented in CGSS2 enabled. We observe that CGSS2-AbstCG is competitive
with base CGSS2 (referred to as CGSS2-OLL in the following). CGSS2-AbstCG exhibits
somewhat faster runtimes on instances that take around 2000 seconds to solve, CGSS2-
AbstCG solving 415 instances within 2100 seconds compared to CGSS2-OLL solving 412.
Both solvers solve 419 instances within the per-instance time limit. For a more fine-grained
view, we also ran both solvers with the weight-aware core extraction (WCE) (Berg &
Järvisalo, 2017) and structure sharing (SS) (Ihalainen et al., 2021) techniques disabled.
We note that with these two techniques CGSS2 delays the core-relaxation steps and heuris-
tically attempts to order the literals in the individual core relaxations in a way that allows
reusing constraints between multiple core relaxations. Figure 5 (right) provides a runtime
comparison for the two solvers with WCE and SS disabled. Interestingly, disabling these
heuristics seems to degrade the performance of CGSS2-OLL more than of CGSS2-AbstCG,

9. Note that when all literals in a core to be relaxed have the same coefficients, the reformulation used by
AbstCG is exactly the same as the one used by OLL. We hence excluded the unweighted benchmarks
from the experiments.

963

Ihalainen, Berg, & Järvisalo

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 380 385 390 395 400 405 410 415 420 425

Ti
m

e
 (

s)

Number of solved instances

CGSS2-OLL
CGSS2-AbstCG

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 380 385 390 395 400 405 410 415 420 425

Ti
m

e
 (

s)

Number of solved instances

CGSS2-OLL (WCE+SS disabled)
CGSS2-AbstCG (WCE+SS disabled)

Figure 5: Left: runtime comparison of OLL and AbstCG with WCE and SS enabled.
Right: Runtime comparison of OLL and AbstCG with WCE and SS disabled.

with the former solving 406 instances and the latter 412 within the time limit. The results
suggest that a solver using purely OLL benefits more from WCE and SS than a solver using
the AbstCGcore relaxation. Overall, as a proof of concept, AbstCG appears an interest-
ing example of a new instantiation of the general framework. Beyond the main focus of
this work, we note that a more fine-grained integration of the AbstCG relaxation within
CGSS2 could lead to further improvements in solver runtimes.

8. Conclusions

Building on the recently-proposed notion of abstract cores, we developed a general algorith-
mic framework that captures in a unifying way the computations performed by SAT-based
MaxSAT solvers. The framework covers the three most popular modern practical algo-
rithmic variants to MaxSAT, namely, the core-guided, the implicit hitting set (IHS), and
the objective-bounding approaches, variants of which are today implemented in various
publicly-available MaxSAT solvers. The framework provides a uniform way of proving the
correctness of the current and potential forthcoming algorithms of the three approaches,
as well as algorithms combining techniques of the different approaches. To illustrate this,
we formally detailed how the framework captures various existing instantiations of the
approaches. The framework also suggests novel algorithmic variants through different in-
stantiations; we detailed one such instantiation and showed as a proof of concept that it
resulted in a potentially interesting solver variant for MaxSAT from a practical perspective.

While the framework developed in this work captures quite generally the current main-
stream approaches to SAT-based MaxSAT solving, as a potential direction for further study
it would be interesting to develop further understanding on the distinguishing features of
branch-and-bound based MaxSAT solvers and their connnections to our framework. Fur-
thermore, while our discussion was grounded in MaxSAT, we note that the framework
could be extended to cover related constraint optimization paradigms—such as pseudo-
Boolean optimization (Devriendt et al., 2021; Smirnov et al., 2021, 2022), finite-domain
constraint optimization (Delisle & Bacchus, 2013; Gange et al., 2020), and answer set pro-
gramming (Andres et al., 2012; Saikko et al., 2018; Alviano & Dodaro, 2020)—for which

964

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

core-guided and IHS-style solvers have been developed. Such extensions would seem reason-
able, since—as implemented in the already-proposed solvers for PBO, COP and ASP—the
core-guided and IHS approaches are essentially agnostic to the constraint language at hand,
assuming that a suitable decision oracle for core extraction exists. In particular, the Uni-
MaxSAT framework could analogously be presented on the level of these more high-level
constraint languages instead of the propositional representation focused on in this article.
Studying new ways of instantiating the framework towards developing novel practical SAT-
based algorithms for MaxSAT and related constraint optimization paradigms is also an
interesting direction for further work.

Acknowledgments

This work was financially supported by University of Helsinki Doctoral Programme in Com-
puter Science DoCS and Research Council of Finland (grants 342145 and 356046). The au-
thors thank the Finnish Computing Competence Infrastructure (FCCI) for computational
and data storage resources.

Appendix A. Proofs

A.1 Correctness of WPM3 via UniMaxSAT

The following proposition establishes that the instantiation of Add-AbstractionSets
that simulates core-relaxation steps performed byWPM3 (as detailed in Section 6.3) satisfies
condition (ii) of a cardinality-based CG instantiation (Definition 6).

In the following, assume that WPM3 instantiated in UniMaxSAT is invoked on a
MaxSAT instance. Fix an iteration and let AB and K be the set of abstraction sets in-
troduced and cores accumulated at the beginning of the iteration. Assume that a core
C = (b1∨, . . . ,∨bm ∨ oab1t1

∨ oabntn), where each bi is an objective variable and oabktk
is an out-

put of a previously-introduced abstraction set abk, is extracted. As described in Section 6.3,
the core C is extended to

C ′ = (b1 ∨ . . . ∨ bm) ∨
n∨

i=1

(oabi1 ∨ . . . ∨ oabi|outi|−1)

by adding all outputs of the abstractions sets appearing in C. The new abstraction set

abC
′
= (inC′

= {b1, . . . , bm} ∪
n⋃

i=1

ini, D
C′
, outC

′
= {oC′

1 , . . . , oC
′

|C′|−1})

is introduced. Here ini is the input of the abstraction set abi introduced previously,

DC′
= {asCNF

∑
b∈ini

b ≥ boundC′
+ j ↔ o

C′
i

j

 | 1 ≤ j ≤ |C ′
i| − 1}

and

boundC′
=

{
1 if C only contains objective variables,

1 +
∑n

i=1 bound
i else.

965

Ihalainen, Berg, & Järvisalo

We show that C ′ fulfills condition (ii) of Definition 6. The non-trivial part to show is
that the number of variables in C ′ assigned to 1 by any satisfying assignment to the cores
and definitions found so far is one more than the number of outputs of the abstraction set
introduced in its relaxation. This is formalized in the following proposition.

Proposition 5. Let τ be an assignment satisfying to DEF(AB)∪K∪{DC′}∪C ′. We have
that ∑

b∈C′

τ(b) =
∑

o∈outC′

τ(o) + 1.

The proof of Proposition 5 employes the following lemma.

Lemma 5. Let τ be an assignment satisfying to DEF(AB)∪K∪{DC′}∪C ′. We have that∑
b∈inC′

τ(b) ≥ boundC′
.

Proof. By induction on the added abstraction sets.

Base Case. C ′ only contains objective variables. Now boundC′
= 1 and the statement

follows by noting that C ′ = C = inC′
and that τ satisfies C ′.

Induction step. Assume that C ′ contains outputs of previous abstraction sets (for which
the statement holds by the induction). Then

∑
b∈inC′

τ(b) =

m∑
i=1

τ(b) +

n∑
j=1

∑
b∈inj

τ(b)
∗
≥

m∑
i=1

τ(b) +

n∑
j=1

boundj =

m∑
i=1

τ(b) + boundC′ − 1.

The induction step is marked with ∗. If
∑m

i=1 τ(b) ≥ 1, we are done. Otherwise, assume
that

∑m
i=1 τ(b) = 0. We establish that there exists an abstraction set abk with more than

boundk inputs set to true by τ . Since τ(C ′) = 1, we can fix k to be an index for which
τ(oabk1) = 1. Now, if the core Ck that prompted the addition of abk does not contain
any outputs of previous abstraction sets, we are done, since then boundk = 1 and by the
definitions of abstraction sets (satisfied by τ) τ(oabk1) = 1 implies at least two inputs are
assigned to 1. Otherwise, we recurse. Since τ(Ck) = 1, there is another abstraction set for
which τ assigns at least two inputs to true. At some point, the core corresponding to the
found abstraction set will not contain any output literals, at which point the recursion is
guaranteed to end.

Corollary 2. ∑
b∈inC′

τ(b)− boundC′
=

∑
o∈outC′

τ(o).

Proof. Follows by Lemma 5 and the fact that τ satisfies DC′
.

966

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Proof of Proposition 5. If C includes no outputs from previous abstraction sets, the state-
ment follows by noting that C = C ′ = inC′

. Otherwise we have

∑
b∈C′

τ(b) =

m∑
i=1

τ(bi) +

n∑
i=1

∑
o∈outi

τ(o)
∗
=

m∑
i=1

τ(bi) +

n∑
i=1

∑
b∈ini

τ(b)− boundi

=
∑

b∈inC′

τ(b)−
n∑

i=1

boundi =
∑

b∈inC′

τ(b)− (boundC′ − 1)
∗
=

∑
o∈outC′

τ(o) + 1,

where the * steps follow by Corollary 2.

A.2 PMRES and WPM3 Compute Abstract Candidates on Unweighted
Instances

We prove Proposition 3 separately for PMRES and WPM3. For the following, let ABi and
Ki be the set of abstraction sets and abstract cores extracted so far, respectively. Both
proofs make use of the fact that, by Lemma 3, it suffices to show that there exists a solution
τi ⊇ γAi = {x̄ | x ∈ var(OR

i)} to DEF(ABi) ∪ Ki that extends γAi .

Proof of Proposition 3 for PMRES. We prove the existence of such a τi by induction on i.
More precisely, for every i we construct an assignment τ oi to the objective variables that
extends to such a τi. As a tool for the induction, we use a function βi that maps each
variable x ∈ var(γAi) to a unique objective variable βi(x) = y ∈ var(O). The mapping has
the following properties: (1) τ oi (y) = 0 and (2) for every x ∈ var(γAi), any solution δ to
DEF(ABi) ∪ Ki that agrees with τi on every variable in var(O) except βi(x) also agrees
with τi on every variable in var(OR

i) except for x.

Base case (i = 1): We have K1 ∪DEF(AB1) = ∅ so τ o1 = γA1 = {x̄ | x ∈ var(O)} and
β1(x) = x for each x ∈ var(O).

Induction Step: Let the core obtained in iteration i be Ci = (x1 ∨ · · · ∨ xn) and
the abstraction set introduced be abi = (Ci, {xj ∧ (xj+1 ∨ · · · ∨ xn) ↔ oij | 1 ≤ j ≤
n− 1}, {oi1, . . . , oin−1}). By the induction assumption, there exists an assignment τ oi to the
objective variables that extends to a solution τi ⊇ γAi that satisfies DEF(ABi) ∪ Ki and a
function βi that satisfies properties (1) and (2) outlined in the beginning of this proof.

Let then b = βi(xn) and τ oi+1 = τ oi ∪ {b} \ {b̄} and consider the (unique) extension of
τi+1 ⊃ τ oi+1 to a solution of DEF(ABi+1) = DEF(ABi ∪ {abi}). By property (2) of βi,
τi+1 agrees with τi on all variables in var(OR

i) except for xn that τi assigns to 0 and τi+1

to 1. As τi is a solution to Ki, and τi+1 assigns τi+1(xn) = 1, it follows that τi+1 is a
solution to Ki+1 = Ki ∪ {Ci}. Finally, let βi+1(x) = βi(x) for all x except for every xi ∈ Ci

(as these variables will no longer be part of the assumptions in subsequent iterations) and
βi+1(o

i
j) = βi(xj) for oij ∈ {oi1, . . . , oin−1}. Then the mapping βi+1 has the properties (1)

and (2) outlined in the beginning of the proof.

Proof of Proposition 3 for WPM3. We show the existence of a solution τi ⊃ γAi = {x̄ | x ∈
var(OR

i)} to Ki ∪DEF(ABi). The proof is by induction on the iteration i.

Base case (i = 1): Immediate by K1 ∪DEF(AB1) = ∅ and O = OR.

967

Ihalainen, Berg, & Järvisalo

Induction step: Assume that the (extended) core

Ci = (b1 ∨ . . . ∨ bm) ∨
n∨

i=1

(oabi1 ∨ . . . ∨ oabi|outi|−1)

is extracted on iteration i, and the new abstraction set abi = (ini, Di, outi) introduced as
detailed in Section 6.3.5. By the induction assumption, there exists a solution τi ⊃ γAi =
{x̄ | x ∈ var(OR

i)} to Ki ∪DEF(ABi).
By the properties of the Extract-AbstractCore subroutine, τi falsifies Ci. Let

τ oi be the restriction of τi onto the objective variables and select any b ∈ ini for which
τ oi (b) = 0, at least one such b exists as τi(Ci) = 0. Finally, let τ oi+1 be the assignment to the
objective variables that agrees with τ oi on all variables except b and consider the (unique)
extension τi+1 ⊃ τ oi+1 of τ oi+1 to a solution of DEF(ABi+1) = DEF(ABi ∪ {abi}). The
proposition follows from showing two things: (a) τi+1 satisfies Ki+1 = Ki−1 ∪ {Ci}, and (b)
τi ⊃ γAi+1 = {x̄ | x ∈ var(OR

i+1)}.
(a) For the non-trivial case, assume b /∈ Ci. Then b is an input to some abstraction set

abj for which o
abj
1 ∈ C. Then τi+1 assigns boundj +1 inputs of abj to 1. This follows by a

recursive argument similar to the one made in the proof of Lemma 5. By the construction
of the abstraction sets–and by recursing if needed–we can assume that the core Cj that
prompted the addition of abj only contains objective variables. As τi(Cj) = 1 we have
that τi assigns τi(bo) = 1 for at least one variable bo ∈ Cj to 1. As b ∈ Cj , τi(b) = 0 and
τi+1 agrees with τi on all objective variables except b, we have that τi+1 assigns at least
2 variables in Cj to 1. As boundj = 1 τi+1 also assigns τi(o

abj
1) = 1 and satisfies Ci.

Furthermore, by the definitions of abstraction sets, τi+1 assigns at least the same variables
to 1 as τi, thus it clearly also satisfies all other cores. We conclude that τi+1 is a solution
to Ki+1.

(b) Follows from the properties of core-guided instantiations. As τi+1 assigns exactly
one more objective variable to 1 than τ , we have that O(τi+1) = O(τi) + 1 which implies
OR

i+1(τi+1) = OR
i (τi+1) = OR

i (τi) + 1. By the induction assumption O(τi) is equal to the
constant term W lb

i of Oi as τi assigns every variable in var(OR
i) to 0. Since W lb

i +1 = W lb
i+1

it follows that OR
i+1(τi+1) = W lb

i+1 so it assigns every variable in τi+1 to 0.

References

Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., & Rodŕıguez-Carbonell, E. (2013). A parametric
approach for smaller and better encodings of cardinality constraints. In Schulte,
C. (Ed.), Principles and Practice of Constraint Programming - 19th International
Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, Vol.
8124 of Lecture Notes in Computer Science, pp. 80–96. Springer.

Abramé, A., & Habet, D. (2014). Ahmaxsat: Description and evaluation of a branch and
bound Max-SAT solver. J. Satisf. Boolean Model. Comput., 9 (1), 89–128.

Abramé, A., & Habet, D. (2016). Learning nobetter clauses in Max-SAT branch and bound
solvers. In 28th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2016, San Jose, CA, USA, November 6-8, 2016, pp. 452–459. IEEE Computer
Society.

968

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Alviano, M., & Dodaro, C. (2020). Unsatisfiable core analysis and aggregates for optimum
stable model search. Fundamenta Informaticae, 176 (3-4), 271–297.

Alviano, M., Dodaro, C., & Ricca, F. (2015). A MaxSAT algorithm using cardinality
constraints of bounded size. In Yang, Q., & Wooldridge, M. J. (Eds.), Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 2677–2683. AAAI Press.

Andres, B., Kaufmann, B., Matheis, O., & Schaub, T. (2012). Unsatisfiability-based opti-
mization in clasp. In Dovier, A., & Costa, V. S. (Eds.), Technical Communications
of the 28th International Conference on Logic Programming, ICLP 2012, September
4-8, 2012, Budapest, Hungary, Vol. 17 of LIPIcs, pp. 211–221. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Ansótegui, C., Bonet, M. L., & Levy, J. (2013). SAT-based MaxSAT algorithms. Artificial
Intelligence, 196, 77–105.

Ansótegui, C., & Gabàs, J. (2017). WPM3: An (in)complete algorithm for weighted partial
MaxSAT. Artificial Intelligence, 250, 37–57.

Ansótegui, C., Gabàs, J., & Levy, J. (2016). Exploiting subproblem optimization in SAT-
based MaxSAT algorithms. Journal of Heuristics, 22 (1), 1–53.

Aśın, R., Nieuwenhuis, R., Oliveras, A., & Rodŕıguez-Carbonell, E. (2011). Cardinality
networks: A theoretical and empirical study. Constraints An International Journal,
16 (2), 195–221.

Audemard, G., Lagniez, J., & Simon, L. (2013). Improving glucose for incremental SAT
solving with assumptions: Application to MUS extraction. In Järvisalo, M., & Gelder,
A. V. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2013 - 16th
International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Vol. 7962
of Lecture Notes in Computer Science, pp. 309–317. Springer.

Bacchus, F., Järvisalo, M., & Martins, R. (2019). MaxSAT Evaluation 2018: New develop-
ments and detailed results. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 11 (1), 99–131.

Bacchus, F., Järvisalo, M., & Martins, R. (2021). Maximum satisfiability. In Biere, A.,
Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second
Edition, Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp. 929–991.
IOS Press.

Bacchus, F., & Narodytska, N. (2014). Cores in Core Based MaxSat Algorithms: An Anal-
ysis. In Sinz, C., & Egly, U. (Eds.), Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, Vol. 8561 of Lecture
Notes in Computer Science, pp. 7–15. Springer.

Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of boolean cardinality con-
straints. In Rossi, F. (Ed.), Principles and Practice of Constraint Programming -
CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 -
October 3, 2003, Proceedings, Vol. 2833 of Lecture Notes in Computer Science, pp.
108–122. Springer.

969

Ihalainen, Berg, & Järvisalo

Bailleux, O., Boufkhad, Y., & Roussel, O. (2009). New encodings of pseudo-boolean con-
straints into CNF. In Kullmann, O. (Ed.), Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June
30 - July 3, 2009. Proceedings, Vol. 5584 of Lecture Notes in Computer Science, pp.
181–194. Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2021). Satisfiability modulo
theories. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of
Satisfiability (2 edition)., Vol. 336 of Frontiers in Artificial Intelligence and Applica-
tions, pp. 1267–1329. IOS Press.

Baselice, S., Bonatti, P. A., & Gelfond, M. (2005). Towards an integration of answer set and
constraint solving. In Gabbrielli, M., & Gupta, G. (Eds.), Logic Programming, 21st
International Conference, ICLP 2005, Sitges, Spain, October 2-5, 2005, Proceedings,
Vol. 3668 of Lecture Notes in Computer Science, pp. 52–66. Springer.

Berg, J., Bacchus, F., & Poole, A. (2020). Abstract cores in implicit hitting set MaxSat
solving. In Pulina, L., & Seidl, M. (Eds.), Theory and Applications of Satisfiability
Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020,
Proceedings, Vol. 12178 of Lecture Notes in Computer Science, pp. 277–294. Springer.

Berg, J., Demirovic, E., & Stuckey, P. J. (2019). Core-boosted linear search for incom-
plete MaxSAT. In Rousseau, L., & Stergiou, K. (Eds.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 16th International
Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, Vol.
11494 of Lecture Notes in Computer Science, pp. 39–56. Springer.

Berg, J., & Järvisalo, M. (2017). Weight-aware core extraction in SAT-based MaxSAT
solving. In Beck, J. C. (Ed.), Principles and Practice of Constraint Programming
- 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings, Vol. 10416 of Lecture Notes in Computer Science, pp.
652–670. Springer.

Berre, D. L., & Parrain, A. (2010). The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7 (2-3), 59–6.

Bjørner, N. S., & Fazekas, K. (2023). On incremental pre-processing for SMT. In Pientka, B.,
& Tinelli, C. (Eds.), Automated Deduction - CADE 29 - 29th International Conference
on Automated Deduction, Rome, Italy, July 1-4, 2023, Proceedings, Vol. 14132 of
Lecture Notes in Computer Science, pp. 41–60. Springer.

Cai, S., Luo, C., Thornton, J., & Su, K. (2014). Tailoring local search for partial MaxSAT. In
Brodley, C. E., & Stone, P. (Eds.), Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pp. 2623–
2629. AAAI Press.

Chu, Y., Cai, S., & Luo, C. (2023). NuWLS: Improving local search for (weighted) partial
MaxSAT by new weighting techniques. In Williams, B., Chen, Y., & Neville, J. (Eds.),
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thir-
teenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023,
Washington, DC, USA, February 7-14, 2023, pp. 3915–3923. AAAI Press.

970

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., & Stenico, C. (2010). Satisfiability
modulo the theory of costs: Foundations and applications. In Esparza, J., & Majum-
dar, R. (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings, Vol. 6015 of Lecture Notes in Computer Science, pp. 99–113.
Springer.

Codish, M., & Zazon-Ivry, M. (2010). Pairwise cardinality networks. In Clarke, E. M., &
Voronkov, A. (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers, Vol. 6355 of Lecture Notes in Computer Science, pp. 154–
172. Springer.

Davies, J., & Bacchus, F. (2011). Solving MAXSAT by solving a sequence of simpler SAT
instances. In Lee, J. H. (Ed.), Principles and Practice of Constraint Programming
- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-
16, 2011. Proceedings, Vol. 6876 of Lecture Notes in Computer Science, pp. 225–239.
Springer.

Davies, J., & Bacchus, F. (2013). Postponing optimization to speed up MAXSAT solving.
In Schulte, C. (Ed.), Principles and Practice of Constraint Programming - 19th Inter-
national Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
Vol. 8124 of Lecture Notes in Computer Science, pp. 247–262. Springer.

Delisle, E., & Bacchus, F. (2013). Solving weighted CSPs by successive relaxations. In
Schulte, C. (Ed.), Principles and Practice of Constraint Programming - 19th Interna-
tional Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
Vol. 8124 of Lecture Notes in Computer Science, pp. 273–281. Springer.

Devriendt, J., Gocht, S., Demirovic, E., Nordström, J., & Stuckey, P. J. (2021). Cutting
to the core of pseudo-boolean optimization: Combining core-guided search with cut-
ting planes reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 3750–3758. AAAI
Press.

Eén, N., & Sörensson, N. (2003). Temporal induction by incremental SAT solving. In
Strichman, O., & Biere, A. (Eds.), First International Workshop on Bounded Model
Checking, BMC@CAV 2003, Boulder, Colorado, USA, July 13, 2003, Vol. 89 of Elec-
tronic Notes in Theoretical Computer Science, pp. 543–560. Elsevier.

Eén, N., & Sörensson, N. (2006). Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2 (1-4), 1–26.

Fazekas, K., Bacchus, F., & Biere, A. (2018). Implicit hitting set algorithms for maximum
satisfiability modulo theories. In Galmiche, D., Schulz, S., & Sebastiani, R. (Eds.),
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Vol. 10900 of Lecture Notes in Computer Science, pp. 134–151. Springer.

971

Ihalainen, Berg, & Järvisalo

Fazekas, K., Biere, A., & Scholl, C. (2019). Incremental inprocessing in SAT solving. In
Janota, M., & Lynce, I. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings, Vol. 11628 of Lecture Notes in Computer Science, pp. 136–154. Springer.

Fu, Z., & Malik, S. (2006). On solving the partial MAX-SAT problem. In Biere, A., &
Gomes, C. P. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
Vol. 4121 of Lecture Notes in Computer Science, pp. 252–265. Springer.

Gange, G., Berg, J., Demirovic, E., & Stuckey, P. J. (2020). Core-guided and core-boosted
search for CP. In Hebrard, E., & Musliu, N. (Eds.), Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research - 17th International Conference,
CPAIOR 2020, Vienna, Austria, September 21-24, 2020, Proceedings, Vol. 12296 of
Lecture Notes in Computer Science, pp. 205–221. Springer.

Gebser, M., Ostrowski, M., & Schaub, T. (2009). Constraint answer set solving. In Hill,
P. M., & Warren, D. S. (Eds.), Logic Programming, 25th International Conference,
ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, Vol. 5649 of Lecture
Notes in Computer Science, pp. 235–249. Springer.

Heras, F., Larrosa, J., & Oliveras, A. (2008). MiniMaxSAT: An efficient weighted Max-SAT
solver. J. Artif. Intell. Res., 31, 1–32.

Heras, F., Morgado, A., & Marques-Silva, J. (2011). Core-guided binary search algorithms
for maximum satisfiability. In Burgard, W., & Roth, D. (Eds.), Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. AAAI Press.

Hölldobler, S., Manthey, N., & Steinke, P. (2012). A compact encoding of pseudo-boolean
constraints into SAT. In Glimm, B., & Krüger, A. (Eds.), KI 2012: Advances in Arti-
ficial Intelligence - 35th Annual German Conference on AI, Saarbrücken, Germany,
September 24-27, 2012. Proceedings, Vol. 7526 of Lecture Notes in Computer Science,
pp. 107–118. Springer.

Ignatiev, A., Morgado, A., Manquinho, V. M., Lynce, I., & Marques-Silva, J. (2014). Pro-
gression in maximum satisfiability. In Schaub, T., Friedrich, G., & O’Sullivan, B.
(Eds.), ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 Au-
gust 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), Vol. 263 of Frontiers in Artificial Intelligence and Applications,
pp. 453–458. IOS Press.

Ihalainen, H. (2022). Refined core relaxations for core-guided maximum satisfiability algo-
rithms. Master’s thesis, University of Helsinki. http://hdl.handle.net/10138/351207.

Ihalainen, H., Berg, J., & Järvisalo, M. (2021). Refined core relaxation for core-guided
MaxSAT solving. In Michel, L. D. (Ed.), 27th International Conference on Principles
and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Con-
ference), October 25-29, 2021, Vol. 210 of LIPIcs, pp. 28:1–28:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

972

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Ihalainen, H., Berg, J., & Järvisalo, M. (2022). Clause redundancy and preprocessing in
maximum satisfiability. In Blanchette, J., Kovács, L., & Pattinson, D. (Eds.), Auto-
mated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa, Israel,
August 8-10, 2022, Proceedings, Vol. 13385 of Lecture Notes in Computer Science, pp.
75–94. Springer.

Ihalainen, H., Berg, J., & Järvisalo, M. (2023). Unifying core-guided and implicit hitting
set based optimization. In Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pp. 1935–1943. ijcai.org.

Järvisalo, M., Heule, M., & Biere, A. (2012). Inprocessing rules. In Gramlich, B., Miller,
D., & Sattler, U. (Eds.), Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, Vol. 7364 of Lecture
Notes in Computer Science, pp. 355–370. Springer.

Jiang, Y., Kautz, H., & Selman, B. (1995). Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In Proceedings of the 1st International
Joint Workshop on Artificial Intelligence and Operations Research.

Joshi, S., Kumar, P., Rao, S., & Martins, R. (2019). Open-WBO-Inc: Approximation strate-
gies for incomplete weighted MaxSAT. J. Satisf. Boolean Model. Comput., 11 (1),
73–97.

Joshi, S., Martins, R., & Manquinho, V. M. (2015). Generalized totalizer encoding for
pseudo-boolean constraints. In Pesant, G. (Ed.), Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -
September 4, 2015, Proceedings, Vol. 9255 of Lecture Notes in Computer Science, pp.
200–209. Springer.

Karpinski, M., & Piotrów, M. (2019). Encoding cardinality constraints using multiway
merge selection networks. Constraints An International Journal, 24 (3-4), 234–251.

Katsirelos, G. (2023). An analysis of core-guided maximum satisfiability solvers using linear
programming. In Mahajan, M., & Slivovsky, F. (Eds.), 26th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Al-
ghero, Italy, Vol. 271 of LIPIcs, pp. 12:1–12:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Koshimura, M., Zhang, T., Fujita, H., & Hasegawa, R. (2012). QMaxSAT: A partial Max-
SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 8 (1/2),
95–100.

Lei, Z., & Cai, S. (2018). Solving (weighted) partial MaxSAT by dynamic local search for
SAT. In Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pp. 1346–1352. ijcai.org.

Li, C. M., & Manyà, F. (2021). MaxSAT, hard and soft constraints. In Biere, A., Heule, M.,
van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second Edition, Vol.
336 of Frontiers in Artificial Intelligence and Applications, pp. 903–927. IOS Press.

973

Ihalainen, Berg, & Järvisalo

Li, C. M., Manyà, F., & Planes, J. (2005). Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In van Beek, P. (Ed.), Principles
and Practice of Constraint Programming - CP 2005, 11th International Conference,
CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, Vol. 3709 of Lecture Notes in
Computer Science, pp. 403–414. Springer.

Li, C. M., Manyà, F., & Planes, J. (2006). Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proceedings, The Twenty-First National
Conference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pp.
86–91. AAAI Press.

Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., & He, K. (2021). Combining clause learning
and branch and bound for MaxSAT. In Michel, L. D. (Ed.), 27th International Con-
ference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France (Virtual Conference), October 25-29, 2021, Vol. 210 of LIPIcs, pp. 38:1–38:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., & He, K. (2022). Boosting branch-and-bound
MaxSAT solvers with clause learning. AI Commun., 35 (2), 131–151.

Manthey, N., Philipp, T., & Steinke, P. (2014). A more compact translation of pseudo-
boolean constraints into CNF such that generalized arc consistency is maintained.
In Lutz, C., & Thielscher, M. (Eds.), KI 2014: Advances in Artificial Intelligence -
37th Annual German Conference on AI, Stuttgart, Germany, September 22-26, 2014.
Proceedings, Vol. 8736 of Lecture Notes in Computer Science, pp. 123–134. Springer.

Marques-Silva, J., Lynce, I., & Malik, S. (2021). Conflict-driven clause learning SAT solvers.
In Handbook of Satisfiability (2 edition)., Vol. 336 of Frontiers in Artificial Intelligence
and Applications, pp. 133–182. IOS Press.

Marques-Silva, J., & Planes, J. (2007). On using unsatisfiability for solving maximum
satisfiability. CoRR, abs/0712.1097.

Morgado, A., Dodaro, C., & Marques-Silva, J. (2014). Core-guided MaxSAT with soft
cardinality constraints. In O’Sullivan, B. (Ed.), Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-
12, 2014. Proceedings, Vol. 8656 of Lecture Notes in Computer Science, pp. 564–573.
Springer.

Morgado, A., Heras, F., Liffiton, M. H., Planes, J., & Marques-Silva, J. (2013). Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints An International
Journal, 18 (4), 478–534.

Nadel, A. (2020). Anytime algorithms for MaxSAT and beyond. In 2020 Formal Methods
in Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, p. 1.
IEEE.

Narodytska, N., & Bacchus, F. (2014). Maximum satisfiability using core-guided MaxSAT
resolution. In Brodley, C. E., & Stone, P. (Eds.), Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pp. 2717–2723. AAAI Press.

974

Unifying SAT-Based Approaches to Maximum Satisfiability Solving

Narodytska, N., & Bjørner, N. S. (2022). Analysis of core-guided MaxSat using cores and
correction sets. In Meel, K. S., & Strichman, O. (Eds.), 25th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022,
Haifa, Israel, Vol. 236 of LIPIcs, pp. 26:1–26:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT modulo the-
ories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(t).
Journal of the ACM, 53 (6), 937–977.

Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., & Fujita, H. (2013). Modulo based
CNF encoding of cardinality constraints and its application to MaxSAT solvers. In
25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013,
Herndon, VA, USA, November 4-6, 2013, pp. 9–17. IEEE Computer Society.

Paxian, T., Reimer, S., & Becker, B. (2018). Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In Beyersdorff, O., & Wintersteiger, C. M. (Eds.), Theory
and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings, Vol. 10929 of Lecture Notes in Computer Science, pp.
37–53. Springer.

Piotrów, M. (2020). UWrMaxSat: Efficient solver for MaxSAT and pseudo-boolean prob-
lems. In 32nd IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020, pp. 132–136. IEEE.

Planes, J. (2003). Improved branch and bound algorithms for Max-2-SAT and weighted
Max-2-SAT. In Rossi, F. (Ed.), Principles and Practice of Constraint Programming
- CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 -
October 3, 2003, Proceedings, Vol. 2833 of Lecture Notes in Computer Science, p. 991.
Springer.

Prestwich, S. D. (2021). CNF encodings. In Biere, A., Heule, M., van Maaren, H., & Walsh,
T. (Eds.), Handbook of Satisfiability (2 edition)., Vol. 336 of Frontiers in Artificial
Intelligence and Applications, pp. 75–100. IOS Press.

Saikko, P., Berg, J., & Järvisalo, M. (2016). LMHS: A SAT-IP hybrid MaxSAT solver. In
Creignou, N., & Berre, D. L. (Eds.), Theory and Applications of Satisfiability Test-
ing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, Vol. 9710 of Lecture Notes in Computer Science, pp. 539–546. Springer.

Saikko, P., Dodaro, C., Alviano, M., & Järvisalo, M. (2018). A hybrid approach to opti-
mization in answer set programming. In Thielscher, M., Toni, F., & Wolter, F. (Eds.),
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018,
pp. 32–41. AAAI Press.

Silva, J. P. M., & Sakallah, K. A. (1999). GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48 (5), 506–521.

Sinz, C. (2005). Towards an optimal CNF encoding of boolean cardinality constraints. In van
Beek, P. (Ed.), Principles and Practice of Constraint Programming - CP 2005, 11th

975

Ihalainen, Berg, & Järvisalo

International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings,
Vol. 3709 of Lecture Notes in Computer Science, pp. 827–831. Springer.

Smirnov, P., Berg, J., & Järvisalo, M. (2021). Pseudo-boolean optimization by implicit
hitting sets. In Michel, L. D. (Ed.), 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Confer-
ence), October 25-29, 2021, Vol. 210 of LIPIcs, pp. 51:1–51:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Smirnov, P., Berg, J., & Järvisalo, M. (2022). Improvements to the implicit hitting set
approach to pseudo-boolean optimization. In Meel, K. S., & Strichman, O. (Eds.),
25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, Vol. 236 of LIPIcs, pp. 13:1–13:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Tseitin, G. (1983). On the complexity of derivation in propositional calculus. In Siek-
mann, J. H., & Wrightson, G. (Eds.), Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970, pp. 466–483. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Warners, J. P. (1998). A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters, 68 (2), 63–69.

Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2001). Efficient conflict driven
learning in boolean satisfiability solver. In Ernst, R. (Ed.), Proceedings of the 2001
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2001, San
Jose, CA, USA, November 4-8, 2001, pp. 279–285. IEEE Computer Society.

976

