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Abstract

Unfair predictions of machine learning (ML) models impede their broad acceptance
in real-world settings. Tackling this arduous challenge first necessitates defining what it
means for an ML model to be fair. This has been addressed by the ML community with
various measures of fairness that depend on the prediction outcomes of the ML models,
either at the group-level or the individual-level. These fairness measures are limited in that
they utilize point predictions, neglecting their variances, or uncertainties, making them
susceptible to noise, missingness and shifts in data. In this paper, we first show that a
ML model may appear to be fair with existing point-based fairness measures but biased
against a demographic group in terms of prediction uncertainties. Then, we introduce new
fairness measures based on different types of uncertainties, namely, aleatoric uncertainty
and epistemic uncertainty. We demonstrate on many datasets that (i) our uncertainty-
based measures are complementary to existing measures of fairness, and (ii) they provide
more insights about the underlying issues leading to bias.

1. Introduction

An impedance to the wide-spread use of machine learning (ML) approaches is the bias
present in their predictions against certain demographic groups. The severity and extent
of this matter have been considerably investigated for different applications, such as gender
recognition (Buolamwini & Gebru, 2018), emotion or expression recognition (Domnich &
Anbarjafari, 2021; Xu, White, Kalkan, & Gunes, 2020; Chen & Joo, 2021) and mental
health prediction (Cheong, Kuzucu, Kalkan, & Gunes, 2023) etc.
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Figure 1: Existing fairness measures utilize point predictions for quantifying fairness, which
ignores the uncertainty (variance) of the predictions (a-b). We fill this gap by
using uncertainty instead for measuring fairness (c-d).

It has been identified in the literature that fairness is a multi-faceted concept, which has
led to different notions and definitions of fairness (Garg, Villasenor, & Foggo, 2020; Verma
& Rubin, 2018a; Castelnovo, Crupi, Greco, Regoli, Penco, & Cosentini, 2022; Dwork, Hardt,
Pitassi, Reingold, & Zemel, 2012; Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021).
For example, a model can be considered fair at a group-level (called group fairness) if its
predictions are the same for the different demographic groups (a.k.a., Statistical Parity –
(Dwork et al., 2012; Mehrabi et al., 2021; Garg et al., 2020; Verma & Rubin, 2018a)) or if
its false negative rates are the same (a.k.a., Equal Opportunity – (Hardt, Price, & Srebro,
2016)). Alternatively, a model can be evaluated for fairness at the level of individuals (called
individual fairness) by comparing an individual’s predictions to similar individuals (Dwork
et al., 2012) or to a counterfactual version of the individual (called counterfactual fairness
– (Kusner, Loftus, Russell, & Silva, 2017; Cheong, Kalkan, & Gunes, 2022)).

Despite advances in fairness quantification measures using point predictions (Fig. 1(a,b))
and bias mitigation methods, the utility of such measures or methods are often limited when
exposed to real-world data. This is because (P1) first, they often do not account for real-
world problems such as missing data (Goel, Amayuelas, Deshpande, & Sharma, 2021),
biased labeling (Jiang & Nachum, 2020) and domain or distribution shifts (Chen, Raab,
Wang, & Liu, 2022). (P2) Second, they are susceptible to fairness gerrymandering. For
instance, depending on how a group is defined, a key challenge with existing statistical-parity
point-based fairness measures is that it is implausible to ensure they hold for every subgroup
of the population. Any classifier can be deemed unfair to the subgroup of individuals defined
ex-post as the set of samples it misclassified (Kearns, Neel, Roth, & Wu, 2018). (P3) Third,
recent works have demonstrated how traditional bias mitigation methods do not necessarily
lead to fairer outcomes as measured using traditional parity-based measures nor do they
shed light on the source of bias. For instance, larger or more balanced datasets did not
mitigate the embedded disparities in real-world tabular datasets (Ding, Hardt, Miller, &
Schmidt, 2021) and balancing samples across gender did not produce fairer predictions for
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females (Cheong et al., 2023). We propose addressing these challenges by measuring fairness
using prediction uncertainties (Fig. 1(c,d)).

1.1 Uncertainty-based Fairness for Social Impact.

An uncertainty-based definition of fairness has the potential of addressing the aforemen-
tioned drawbacks (P1-P3):

1. Addressing P1: Point predictions calculated using P (Y |X) are often unreliable
(Guo, Pleiss, Sun, & Weinberger, 2017; Baltaci, Oksuz, Kuzucu, Tezoren, Konar,
Ozkan, Akbas, & Kalkan, 2023; Mukhoti, Kulharia, Sanyal, Golodetz, Torr, & Doka-
nia, 2020) and uninformative in real-world problems (Naik, Kalkan, & Kruger, 2024;
Han, Canli, Shah, Zhang, Dino, & Kalkan, 2024) with missing data, labeling or data
noise and distribution shifts. Uncertainty-based fairness addresses P1 by quantify-
ing the level of unreliability present to provide practitioners with an indication of
the potential source of underlying bias present. As we will show in our paper, (i) ma-
chine learning models have different prediction uncertainties for different demographic
groups and (ii) these differences can provide useful insights, e.g., about a lack of data
or a presence of noise affecting one demographic group more than others, which are
fundamental to fairness.

2. Addressing P2: Prediction uncertainties quantify variance over multiple predictions
for the same input, which make them less susceptible or less vulnerable towards ma-
nipulation. They represent the inherent uncertainty about the model and the data,
which is largely immutable for a given model and a dataset.

3. Addressing P3: Quantification of different types of uncertainty by definition pro-
vides insights about the underlying issues with the data and the model, which can
shed light on e.g. when adding more data does not necessarily lead to fairer outcomes.

1.2 Contributions.

In summary, our main contributions are:

• We introduce uncertainty-based fairness measures at the group and individual-
level. To the best of our knowledge, our paper is the first to use uncertainty as a
fairness measure.

• We prove that an uncertainty-based fairness measure is complementary
to point-based measures, suggesting that both uncertainty and point predictions
should be taken into account when analyzing fairness of models.

• We show on many datasets that (i) uncertainty fairness can vary significantly across
demographic groups and (ii) it provides insight about the sources of bias.
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2. Related Work

2.1 Fair ML

The seminal work of (Buolamwini & Gebru, 2018) and the follow-up studies (Domnich &
Anbarjafari, 2021; Xu et al., 2020; Chen & Joo, 2021; Cheong, Kalkan, & Gunes, 2023)
have exposed significant bias present in many applications of ML models. To address such
biases and obtain fairer ML models, the ML community have proposed a plenitude of
pre-processing, in-processing or post-processing strategies with promising outcomes – see
(Barocas, Hardt, & Narayanan, 2017; Mehrabi et al., 2021; Cheong, Kalkan, & Gunes,
2021) for surveys.

2.2 Fairness Measures

Fairness has multiple facets, which have been recognized by the ML community with dif-
ferent notions and measures of fairness. One prominent notion of fairness is group fairness,
which pertains to comparing a model’s predictions across different demographic groups.
Statistical Parity (Dwork et al., 2012; Mehrabi et al., 2021; Garg et al., 2020), Equal Op-
portunity (Hardt et al., 2016), and Equalized Odds (Hardt et al., 2016) are commonly used
measures of group fairness. Alternatively, ML model predictions can be evaluated for indi-
vidual fairness (Dwork et al., 2012). Such fairness can be measured e.g. by comparing an
individual’s predictions with those of similar individuals (Dwork et al., 2012) or with those
of a counterfactual version of the individual (Kusner et al., 2017).

Wang et al. (Wang, He, Gao, & Calmon, 2023) study algorithmic discrimination with
two measures of group fairness that are relevant to our fairness measures: Aleatoric discrim-
ination, for inherent biases in data, and epistemic discrimination, for model or algorithmic
biases. These discrimination measures are based on the gap between the performance of a
model and the fairness Pareto frontier for that model. The fairness Pareto frontier repre-
sents the best achievable performance for a certain fairness constraint. The gap between this
frontier and the 100% performance would characterize irreducible (aleatoric) discrimination
of the model whereas the gap between the frontier and the current model’s performance
would represent reducible (epistemic) discrimination. Although these measures are valuable,
obtaining the fairness Pareto frontier requires solving a sophisticated optimization problem.
Wang et al. address this issue by making simplifications about the decision boundaries or
the machine learning model, which limit the applicability of their approach in practice.
Moreover, their approach is limited to only measuring group-level discrimination.

2.3 Bayesian Neural Networks (BNNs)

Bayesian Neural Networks (MacKay, 1992; Neal, 1995) operate by placing a prior distri-
bution over the weights of a neural network, such that each weight is represented by a
distribution parameterized by a mean and a standard deviation: ωi = (µi, σi). In addition
to being robust against over-fitting (Gal et al., 2016; Blundell, Cornebise, Kavukcuoglu, &
Wierstra, 2015), BNNs are known to work well with small datasets and propagate reliable
uncertainty estimates as they bring a natural framework to estimate the first two moments
of the predictive distribution (Gal et al., 2016).
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Against these desirable properties, one key challenge with BNNs is to perform inference.
Inference arise as a challenge due to the need to find the most probable weights (in the form
of distributions) that have generated the data. Specifically, when we attempt to apply
the Bayes’ Theorem to obtain the true posterior on the weights, we often fail to do so as
marginalizing the prior on the weights does not have an analytical solution for the complex
cases (Gal et al., 2016). Owing to this issue, there is a need for approximating the posterior,
which is often achieved by utilizing variational Bayesian approximation techniques such as
Monte Carlo (MC) sampling. In practice, MC sampling is used not only for optimizing the
BNNs (Section 5.2) but also for uncertainty quantification (Section 4.1).

2.4 BNNs and Uncertainty Quantification

Modern decision making systems should possess an awareness of unknowns and propa-
gate this information to the people at the end of the decision making pipelines. In recent
literature, this goal is aimed to be achieved by producing reliable uncertainty estimates,
commonly referred to as uncertainty quantification (Gal & Ghahramani, 2016; Kendall &
Gal, 2017; Mukhoti, Kirsch, van Amersfoort, Torr, & Gal, 2023; Van Amersfoort, Smith,
Teh, & Gal, 2020b).

In Bayesian modeling, it is possible to disentangle the overall predictive uncertainty into
two unique components: epistemic uncertainty to account for the lack of data and aleatoric
uncertainty to account for any irreducible uncertainty associated with the data (Kendall
& Gal, 2017). Epistemic uncertainty is modeled by capturing how much the weights vary
given a set of data based on a prior placed on the weights whereas aleatoric uncertainty
is modeled by quantifying the variance of the distribution placed over the outputs of the
model (Kendall & Gal, 2017; Kwon, Won, Kim, & Paik, 2020). Due to the aforementioned
intractability issue, both of these uncertainties are commonly captured using MC sampling
(Gal & Ghahramani, 2016; Kendall & Gal, 2017; Kwon et al., 2020). Recently, by improving
the methodology introduced in (Kendall & Gal, 2017), Kwon et al. (Kwon et al., 2020)
proposed a novel method to quantify these two components without the need to optimize
for a separate variance parameter, which we utilize in our work and formally describe in
Section 4.1.

2.5 Uncertainty and Fairness

The relationship between the uncertainty and fairness has been subject to numerous recent
studies, such as (Mehta, Shui, & Arbel, 2023; Tahir, Cheng, & Liu, 2023; Kaiser, Kern, &
Rügamer, 2022). For example, (Mehta et al., 2023) have shown that mitigating bias has
an adverse affect on the (predictive) uncertainty of estimations. Furthermore, (Tahir et al.,
2023) with (Kaiser et al., 2022) utilize aleatoric uncertainty as part of their bias mitigation
strategy. Our work is also distinct from existing work that attempts to quantify the un-
certainty of a fairness measure (Roy & Mohapatra, 2023) or the bias present (Ethayarajh,
2020). In addition, it is well-known that ML models are generally under- or over-confident
(Guo et al., 2017; Mukhoti et al., 2020) or unreliable under noise (Kendall & Gal, 2017).
To illustrate that this may also be the case in datasets which are commonly used in fairness
analysis, we plot the prediction confidence of the BNN classifier on the COMPAS dataset
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in Fig. 2. The plot shows that the model is under or over-confident about its predictions
and that there is a so-called calibration gap.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Gap
Accuracy

Figure 2: Illustration of Under- or Over-Confidence: An example illustrating under-
or over-confidence of an ML model’s predictions. The diagram is calculated for
a Bayesian NN classifier on the COMPAS Dataset, a dataset frequently used in
ML fairness research.

2.6 Comparative Summary

As discussed, existing fairness measures have only considered point predictions, which pro-
vide an incomplete view about the quality of a model’s predictions. To the best of our
knowledge, we are the first to address this gap by proposing uncertainty as a fairness mea-
sure. We prove that the introduced uncertainty measure is complementary to the point-
based fairness measures. We showcase that (i) point-based fairness and uncertainty-based
fairness can be complementary, and (ii) uncertainty fairness can provide insight about the
sources of bias on several datasets.

3. Preliminaries and Background

In this section, we introduce some preliminary notation and background knowledge to aid
subsequent understanding of the paper.

3.1 Notation

Following the setting and notation in the literature (Verma & Rubin, 2018b; Castelnovo
et al., 2022), we assume a binary classification problem with a dataset D of X, Y and G
where X denotes features describing an individual, Y ∈ {0, 1} is the classification target,
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and G ∈ {0, 1} is the majority group indicator, with G = 0 denoting the minority. Solving
the classification problem involves finding a mapping Ŷ = f(X; θ) ∈ {0, 1} with parameters
θ. We use P (Y = yi|X = xi) to denote the predicted probability for the correct class yi for
sample X = xi, and Ŷ = ŷi ← argmaxc P (Y = c|X = xi) to denote the predicted class.

3.2 Measuring Group Fairness

A ML model can be considered fair if a chosen performance measure for a specific task is
the same across different groups (Garg et al., 2020; Verma & Rubin, 2018a). More formally,
for a predictor Ŷ = f( · ; θ) to be considered fair with respect to a demographic group
attribute G, the following equality should be met for a given performance measureM, e.g.,
true positive rate:

Fair(f ;M, D) ≡M(D, f,G = 0) =M(D, f,G = 1). (1)

Existing work exploring different performance measures forM has shown that each entails
a different notion of fairness. For example:

Statistical Parity, or Demographic Parity (Dwork et al., 2012; Mehrabi et al., 2021;
Garg et al., 2020; Verma & Rubin, 2018a): Compares model’s prediction probabilities for
the positive class (Ŷ = 1) across different groups (withM(D, f,G) ≡ P (Ŷ = 1|G)):

P (Ŷ = 1|G = 0) = P (Ŷ = 1|G = 1). (2)

Equal Opportunity (Hardt et al., 2016): Compares model’s false negative rates, i.e.,
prediction probabilities for the negative class (Ŷ = 0) for the known positive class (Y = 1):

P (Ŷ = 0|Y = 1, G = 0) = P (Ŷ = 0|Y = 1, G = 1), (3)

whereM(D, f,G) ≡ P (Ŷ = 0|Y = 1, G).

Equalised Odds (Hardt et al., 2016): Compares model’s prediction probabilities for the
positive class (Ŷ = 1) for different ground truth classes (Y = 1 and Y = 0):

P (Ŷ = 1|Y = y,G = 0) = P (Ŷ = 1|Y = y,G = 1), (4)

where y ∈ {0, 1}, and we’ve takenM(D, f,G) ≡ P (Ŷ = 1|Y = y,G).

3.3 Measuring Individual Fairness

Dwork et al. (Dwork et al., 2012) defined individual fairness based on a “similar individuals
should have similar predictions” principle:

dy(f(x1), f(x2)) ≤ Ldx(x1,x2), ∀x1,x2 ∈ X . (5)

The above notion assumes suitable distance metrics dy(·, ·) and dx(·, ·) to be available for
the predictions and the inputs respectively. The literature has used point predictions to
quantify this notion of fairness e.g. by using a consistency measure (Zemel, Wu, Swersky,
Pitassi, & Dwork, 2013; Mukherjee, Yurochkin, Banerjee, & Sun, 2020):

F indv
ŷ (X = xi) = 1−

∣∣∣∣∣∣ŷi − 1

k

∑
xj∈kNN(xi)

ŷj

∣∣∣∣∣∣ , (6)

where kNN(xi) denotes the k-nearest neighbours of xi.
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4. Methodology

We first describe how we quantify uncertainty and then introduce the fairness measures.

4.1 Quantifying Uncertainty

MLmodels tend to be under- or over-confident about their predictions and unaware of distri-
bution shift, adversarial attacks or noise in data (Abdar, Pourpanah, Hussain, Rezazadegan,
Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya, et al., 2021; Gawlikowski, Tassi, Ali,
Lee, Humt, Feng, Kruspe, Triebel, Jung, Roscher, et al., 2021; Cetinkaya, Kalkan, & Ak-
bas, 2024). Quantifying the variance of a model’s predictions, i.e., predictive uncertainty,
facilitates awareness of such hindrances with respect to the data. Predictive uncertainty
has two components, reflecting the two different ways to define a variance over predictions:

• Epistemic or model uncertainty is measured over different models. Epistemic
uncertainty reflects the lack of knowledge about the current input and can be reduced
by providing more training data, i.e., more knowledge.

• Aleatoric or data uncertainty is measured over classes. Aleatoric uncertainty
reflects the irreducible noise in the data.

We use Bayesian Neural Networks (BNNs) to obtain uncertainty estimates as described
in (Blundell et al., 2015) since BNNs provide reliable uncertainty estimations. A BNN
defines a distribution over each weight in the model: ωi = (µi, σi), which enables sampling
different weights and making multiple predictions for the same input. With such a model,
predictive uncertainty for a sample x with label y can be quantified as follows (Kwon et al.,
2020; Shridhar, Laumann, & Liwicki, 2019):

1

M

M∑
m=1

(Pm − P̄ )T (Pm − P̄ )︸ ︷︷ ︸
Epistemic unc. (Ue)

+
1

M

M∑
m=1

diag(Pm)− P T
m · Pm︸ ︷︷ ︸

Aleatoric unc. (Ua)︸ ︷︷ ︸
Predictive uncertainty (Up)

, (7)

where P̄ = 1
M

∑M
m=1 Pm and Pm = P (Y |X = x) of the mth Monte Carlo sample with M

being the number of Monte Carlo samples. To obtain group-wise uncertainty estimations,
we aggregate the quantified uncertainty values for the samples of that group by averaging.

4.2 Uncertainty-based Group Fairness Measures

We now introduce our novel fairness notion based on averaged predictive uncertainty over
groups where each group is defined by a set of sensitive attributes. For this, we use the un-
certainty types and their quantification as outlined in Section 4.1 and extend the definition
of fairness in Section 3.2.

Definition 4.1 (Uncertainty-Fairness Measure). A model is fair if its uncertainties
are the same across different groups. More formally, extending the definition in Section 3.2

Fair(f ;U , D) ≡ U(D, f,G = 0) = U(D, f,G = 1), (8)
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where U is an uncertainty measure, e.g., predictive uncertainty (Up), epistemic uncertainty
(Ue), or aleatoric uncertainty (Ua) as introduced in Section 4.1.

Proposition 4.1 (Independence of Uncertainty Fairness). Consider a predictor
f(·; θ) with point-predictions {ŷi}i (and associated probabilities {P (ŷi|xi)}i) and uncer-
tainties {Ui}i (namely, predictive, epistemic and aleatoric). Then, uncertainty fairness
Fair(f ;U , D) is independent to the conventional point-measure based fairness Fair(f ;M, D).
More formally:

• Fair(f ;M, D) ≠⇒ Fair(f ;U , D).

• Fair(f ;U , D) ≠⇒ Fair(f ;M, D).

Fair(f ;U , D) does not imply Fair(f ;M, D) or vice versa.

Proof. We will prove the two non-implications in the proposition using contradictions:

Proof of Fair(f ;M, D) ≠⇒ Fair(f ;U , D): we assume that the implication is true,
i.e., Fair(f ;M, D) =⇒ Fair(f ;U , D). That means there may not be a predictor f which
is M-wise fair but U-wise unfair. As contradiction, we select as examples the Synthetic
Dataset 1 & 2 in Section 5.1(A,B) – see also Fig. 3. In this contradictory example, we see
a predictor (namely, a BNN – see Section 5.2 for architecture and training details) which
isM-wise fair but U-wise unfair (Table 1). Therefore, Fair(f ;M, D) =⇒ Fair(f ;U , D) is
not necessarily true, and therefore, Fair(f ;M, D) ≠⇒ Fair(f ;U , D).

Proof of Fair(f ;U , D) ≠⇒ Fair(f ;M, D). We will follow the same reasoning for
this non-implication: we assume that the implication is true, i.e., Fair(f ;U , D) =⇒
Fair(f ;M, D). That means there may not be a predictor f which is U-wise fair butM-wise
unfair. As contradiction, we select the example in Sect. 5.1(C) – see also Fig. 3(c). In this
example, we see a predictor (again, a BNN – see Sect. 5.2 for architecture and training
details) which is U-wise fair but M-wise unfair (Table 1). Therefore, Fair(f ;U , D) =⇒
Fair(f ;M, D) is not necessarily true, and therefore, Fair(f ;U , D) ≠⇒ Fair(f ;M, D).

4.3 Uncertainty-based Individual Fairness

We extend the definition in Eq. 5 to account for “similar individuals should have similar
prediction uncertainties”:

F indv
U (X = xi) = 1−

∣∣∣∣∣∣Ui − 1

k

∑
xj∈kNN(xi)

Uj

∣∣∣∣∣∣ , (9)

which we aggregate over a group by averaging.

5. Experiments

In this section, we introduce the datasets used, the implementation and training details as
well as the evaluation measures used within the experiments.
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5.1 Datasets

We introduce three synthetic datasets and utilize three real datasets to evaluate the mea-
sures. We adopt the approach of (Zafar, Valera, Gomez Rodriguez, & Gummadi, 2017) for
all synthetic dataset curation. Each synthetic dataset has 320 samples with 20% reserved
for testing.
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Figure 3: Two datasets that appear to be fair with point-based measures but unfair in terms
of (a) aleatoric uncertainty and (b) epistemic uncertainty. In (c), we see a set
where the classifier is fair in terms of uncertainties (both epistemic and aleatoric)
but unfair in terms of point-based measures.

5.1.1 (A) Synthetic Dataset 1 (SD1) - Case of Aleatoric Uncertainty

This dataset highlights how a classifier may appear to be fair in terms of point-based
performance metrics yet unfair in terms of aleatoric uncertainties. We obtain 100 samples
from each of the following four multivariate distributions, one for each of the respective
attribute-label pair that we consider:

P (X|G = 0, Y = 0) = Beta(α = [0.5, 0.5], β = [0.5, 0.5]), (10)

P (X|G = 0, Y = 1) = −Beta(α = [0.5, 0.5], β = [0.5, 0.5]), (11)

P (X|G = 1, Y = 0) = N ([−7,−7], [15, 10; 10, 15]), (12)

P (X|G = 1, Y = 1) = N ([7, 7], [15, 10; 10, 15]). (13)

5.1.2 (B) Synthetic Dataset 2 (SD2) - Case of Epistemic Uncertainty

This dataset highlights how a classifier may be fair with point-based fairness measures but
unfair in terms of epistemic uncertainties. We obtain 100 samples from each of the following
four multivariate distributions, one for each of the respective attribute-label pair that we
consider:

P (X|G = 0, Y = 0) = N ([−10,−10], [100, 30; 30, 100]), (14)

P (X|G = 0, Y = 1) = N ([10, 10], [100, 30; 30, 100]), (15)

P (X|G = 1, Y = 0) = N ([−7,−7], [5, 1; 5, 1]), (16)

P (X|G = 1, Y = 1) = N ([7, 7], [5, 1; 1, 5]). (17)
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5.1.3 (C) Synthetic Dataset 3 (SD3) - Fair in Uncertainty, Unfair in
Predictions

This dataset aims to highlight how a classifier may be fair according to the proposed
uncertainty-based fairness measures but unfair in terms of point-based fairness measures.
We obtain 100 samples from each of the following four multivariate distributions, one for
each of the respective attribute-label pair that we consider:

P (X|G = 0, Y = 0) = N ([−2,−2], [7, 3; 3, 7]), (18)

P (X|G = 0, Y = 1) = N ([2, 2], [7, 3; 3, 7]), (19)

P (X|G = 1, Y = 0) = N ([−3,−3], [5, 3; 5, 3]), (20)

P (X|G = 1, Y = 1) = N ([3, 3], [5, 3; 3, 5]). (21)

5.1.4 (D) COMPAS Recidivism Dataset

The COMPAS Recidivism Dataset is a dataset with criminal offenders’ records generally
used to predict recidivism (binary classification) (Angwin, Larson, Mattu, & Kirchner,
2022). The data contains 6172 samples with 14 features. We follow (Zafar et al., 2017) in
terms of the considered attributes and dataset splits. We assume that the positive label
(Y = 1) stands for the cases where the subject has recidivated and vice versa.

5.1.5 (E) Adult Income Dataset

The Adult Income Dataset contains a 48K+ samples with 14 features (Becker & Kohavi,
1996). The task is to predict if a person’s annual income is greater than $50K (Y = 1)
or not. We do not consider the samples with missing entries, resulting in a total of 45K+
samples. We adhere to the training-testing split provided by the authors.

5.1.6 (F) D-Vlog Depression Detection Dataset

The D-Vlog Depression Detection Dataset contains visual and acoustic features from Youtube
videos of 555 depressed and 406 non-depressed samples belonging to 639 females and 322
males (Yoon, Kang, Kim, & Han, 2022). The authors truncated the videos with longer
than t = 596s and zero-pad shorter ones. D-Vlog only provides the gender attribute for its
samples. We follow the training and testing splits as provided by the authors. We assume
that the positive label (Y = 1) stands for the depressed class and vice versa.

5.2 Implementation and Training Details

For all of our experiments, except for D-Vlog, we utilize Bayesian Neural Networks (BNNs)
for both classification and uncertainty estimation. To address the intractability of P (Y |X),
we utilize the well-known Bayes by Backprop method (Blundell et al., 2015) which minimizes
the following objective consisting of a KL divergence (Kullback & Leibler, 1951) term and
a numerically-stable negative log-likelihood term as proposed in (Kendall & Gal, 2017):

L(θ) =
M∑

m=1

[log qθ(ωm)− logP (ωm)︸ ︷︷ ︸
KL divergence

+λ LNLL(Ŷ , Y )︸ ︷︷ ︸
classification loss

], (22)

with λ being a constant.
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For all experiments, we use the Adam optimizer (Kingma & Ba, 2017). Following
(Kwon et al., 2020), we set T = 10 (the number of Monte Carlo samples for uncertainty
quantification as defined in Section 4.1). Furthermore, following one of the settings provided
in (Blundell et al., 2015), we use 10 Monte Carlo samples to approximate the variational
posterior, qθ(ω), and sample the initial mean of the posterior from a Gaussian with µ = 0
and σ = 1. The π value, weighting factor for the prior, is set to 0.5 and the two σ1 and
σ2 values for the scaled mixture of Gaussians is set to 0 and 6 respectively. We consider
λ from the BNN training objective to be 2000. We utilize early stopping to determine
the number of training iterations for all experiments. In the following, we describe dataset
specific details. In all cases, the hyper-parameters are tuned to avoid over-fitting:

Synthetic Datasets: As the datasets are relatively simple, we observe that BNNs with
no hidden layers suffice for all three synthetic datasets. We train all of them for 5 epochs
with a batch size of 8.

COMPAS Recidivism Dataset: We employ a BNN with a single hidden layer of size
100. We train the model for 10 epochs with a batch size of 256. Similar to (Chouldechova,
2017), we consider fairness with respect to race, gender and age. For the race attribute, we
follow (Zafar et al., 2017) and focus on the fairness gap between black and white subgroups,
considering African-Americans as the minority group, G0. For the gender attribute, we
designate females as the minority group (G0) due to the class imbalance in favor of the male
group. For the age attribute, we consider individuals younger than 25 to be the minority
group and individuals older than 45 as the majority group since our classifier provided the
worst result for those younger than 25 and overall best results for those older than 45. To
keep the coverage to a binary setting, we do not consider individuals aged between 25 and
45. Extending the measures to such a multi-valued setting is straightforward (Xu et al.,
2020) and left as future work.

Adult Income Dataset: We employ a BNN with no hidden layers where the intermediate
size is 25. We train the model for 5 epochs with a batch size of 256. Although a deeper
analysis could be conducted through considering other variables such as marriage status,
highest education level, occupation and nationality, for the sake of consistency with the
analysis of the other datasets, we limit the experiments to race, gender and age.

D-Vlog Depression Detection Dataset: D-Vlog samples have significantly larger di-
mensionality (596s of 136-dim visual and 25-dim acoustic features) compared to COM-
PAS and Adult, which turned out to be challenging for BNNs. Therefore, we utilize the
transformer-based Depression Detector architecture proposed by (Yoon et al., 2022). For
uncertainty estimation, we follow (Lakshminarayanan, Pritzel, & Blundell, 2017) to obtain
T predictions with an ensemble of T models and use the same method (Eq. 4.1) as with
uncertainty estimation with BNNS. Specifically, instead of performing MC forward passes,
we train T different models on the same training set and consider their predictions in the
same testing set during the uncertainty quantification process. We choose T = 5 as existing
work indicates that performance tends to peak at that number (Havasi, Jenatton, Fort, Liu,
Snoek, Lakshminarayanan, Dai, & Tran, 2020).

For all of training configurations, we directly use the setting of (Yoon et al., 2022) with
a learning rate of 0.0002 and a batch size of 32, optimized for 50 epochs through the Adam
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optimizer (Kingma & Ba, 2017). For the dropout rate, we empirically choose 0.1 though
it was not explicitly provided by the authors in the original work. For more details on the
architecture and the relevant training details, we refer the reader to (Yoon et al., 2022).

5.3 Evaluation Measures

We evaluate classification performance in terms of accuracy (MAcc), Positive Predictive
Value (MPPV = TP/(TP + FN)), Negative Predictive Value (MNPV = TN/(TN +
FN)), False Positive Rate (MFPR) and False Negative Rate (MNPR). Fairness measures
(F) are defined as follows (similar to e.g. (Feldman, Friedler, Moeller, Scheidegger, &
Venkatasubramanian, 2015; Xu et al., 2020; Cheong, Kalkan, & Gunes, 2024)):

Statistical Parity: FSP = P (Ŷ=1|G=0)

P (Ŷ=1|G=1)
, (23)

Equal Opportunity: FEOpp =
P (Ŷ=0|Y=1,G=0)

P (Ŷ=0|Y=1,G=1)
, (24)

Equalized Odds: FEOdd = P (Ŷ=1|Y=y,G=0)

P (Ŷ=1|Y=y,G=1)
, (25)

Equal Accuracy: FEAcc =
MAcc(D,f,G=0)
MAcc(D,f,G=1) , (26)

Uncertainty Fairness: Fu = Uu(D,f,G=0)
Uu(D,f,G=1) , (27)

where u can be Alea (Aleatoric), Epis (Epistemic) or Pred (Predictive).

6. Results

In this section, we discuss the results obtained across both the synthetic and real-world
datasets.

6.1 Experiment 1: Synthetic Datasets

Here, we analyze the point-based and uncertainty-based fairness measures with SD1, SD2
and SD3.

Analysing Fair(f ;U , D) ≠⇒ Fair(f ;M, D). With reference to SD 1 & 2 as introduced
in Section 5.1 and in Fig. 3(a) and 3(b), we select the group with higher uncertainty
estimations as the minority group, i.e., G0. From Table 1, we see that the classifier (BNN)
can solve the classification task with a good level of performance (with high accuracy and low
mis-classification). Moreover, the classifier is fair in terms of the widely-used point-based
measures (FSP ,FOpp,FOdd and FEAcc) with |F−1| ≤ 0.2 – following (Feldman et al., 2015).
However, our uncertainty-based measures suggest that the classifier is significantly unfair
in terms of aleatoric uncertainty (for SD1 with FAlea = 4.68) and epistemic uncertainty (for
SD2 with FEpis = 275).

Analysing Fair(f ;M, D) ≠⇒ Fair(f ;U , D) With reference to SD 3 as introduced in
Section 5.1 and and Fig. 3(c), we select the group with the lower classification performance
as the minority group, G0. Results in Table 1 suggest that the classifier provides a good level
of performance for the majority group (G1) and that the classifier is unfair in terms of some
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Table 1: Experiment 1: The analysis with SD1, SD2 and SD3 datasets. We see that,
for both SD1 and SD2, the classifier is fair in terms of point-based measures
(|F − 1| ≤ 0.2 – following (Feldman et al., 2015)) whereas it is unfair in terms of
aleatoric uncertainty for SD1 and epistemic uncertainty unfair for SD2. We see
the inverse for the SD3 dataset. Unfair values are highlighted.

SD1 SD2 SD3

Measure G0 G1 G0 G1 G0 G1

Performance Measures

↑ MAcc 0.95 0.95 0.95 0.95 0.74 0.93
↑ MPPV 0.95 0.90 0.95 0.95 0.62 0.96
↑ MNPV 0.94 0.95 0.94 0.94 0.93 0.91
↓ MFPR 0.06 0.05 0.05 0.06 0.38 0.04
↓ MFNR 0.05 0.05 0.05 0.05 0.07 0.08
↓ Ue 0.0001 0.0001 0.0011 0.0004 0.0002 0.0002
↓ Ua 0.4926 0.1053 0.1915 0.2193 0.3349 0.3229
↓ Up 0.4927 0.1054 0.1926 0.2197 0.3351 0.3231

Point-based Fairness Measures

FSP 1.07 1.00 1.17
FOpp 1.00 1.00 1.01
FOdd 1.05 0.95 7.90
FEAcc 1.00 1.00 0.79

Uncertainty-based Fairness Measures (Ours)

FEpis 1.01 2.75 1.05
FAlea 4.68 0.87 1.04
FPred 4.67 0.88 1.04

of the point-based fairness measures (namely, FOdd = 7.9 and FEAcc = 0.79). However, the
classifier appears to be fair across the uncertainty-based fairness measures.

6.2 Experiment 2: Real-world Datasets

In this section, we analyze the fairness measures across the real-world datasets, i.e., COM-
PAS, Adult and D-Vlog.

6.2.1 The COMPAS Dataset.

With reference to Table 2, across race, results suggest that there is strong bias against
African-Americans in terms of recidivism even though there are more samples for African-
Americans: The classifier has a clear tendency to suggest a black person to recidivate
(MFPR = 0.34 African-Americans vs. 0.10) and vice versa for Whites (MFNR = 0.66 for
Whites vs. 0.25). The point-based fairness measures (except forMEacc) capture this bias
strongly, so do the uncertainty-based measures. Despite having more samples, African-
Americans have higher Ue and Ua, leading to significant unfairness in terms of uncertainty
(FEpis and FAlea).
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Table 2: Experiment 2: The analysis with COMPAS. Unfair values (|F −1| > 0.2, following
(Feldman et al., 2015)) are highlighted. B/W: Black/White. F/M: Female/Male.

Measure B (G0) W (G1) F (G0) M (G1)

↑ Sample Size 3175 2103 1175 4997
Performance Measures

↑ MAcc 0.70 0.68 0.77 0.68
↑ MPPV 0.69 0.68 0.70 0.68
↑ MNPV 0.72 0.68 0.78 0.68
↓ MFPR 0.34 0.10 0.05 0.25
↓ MFNR 0.25 0.66 0.67 0.39
↓ Ue 0.0006 0.0004 0.0003 0.0006
↓ Ua 0.2299 0.1578 0.1599 0.2053
↓ Up 0.2305 0.1583 0.1602 0.2059

Point-based Fairness Measures

FSP 2.84 0.31
FEOpp 2.19 0.54
FEOdd 1.57 0.40
FEAcc 1.03 1.13

Uncertainty-based Fairness Measures (Ours)

FEpis 1.55 0.50
FAlea 1.46 0.78
FPred 1.46 0.78

Across gender, females have significantly better prediction performance compared to
Males, with the exception ofMFNR (MFNR = 0.67 for Females vs. 0.39 for Males). This
suggests that the classifier is biased to predict Y = 0 (“no recidivism”) for Females. Both
point-based and uncertainty-based fairness measures capture this bias against Males. Across
epistemic uncertainty, we hypothesize that the classifier is less certain for Males. However,
fairness gaps in terms of aleatoric uncertainty (0.78) and predictive uncertainty (0.78) are
close to the acceptable fairness boundary (0.8), suggesting that the main issue across gender
may be the sample imbalance problem across groups (see also Table 4).

In Table 3, we see the complete table for COMPAS, including the age attribute. Across
age, we observe that almost all of the performance metrics are better for those age greater
than 45 compared to the others, with the exception of MPPV and MFNR. For MPPV ,
samples with ages between 25− 45 is the best withMPPV = 0.72 and forMFNR, samples
with ages less than 25 is the best with MFNR = 0.32. As explained within Section 6.2,
we compute both the point-based and proposed uncertainty-based measures by considering
the subgroup age greater than 45 as the majority subgroup (G1) and the subgroup age less
than 25 as the minority subgroup (G0).

Across the point-based fairness measures, we observe that all but one of the measures
point to unfair predictions, with FSP = 2.44, FOpp = 1.48 and FOdd = 2.37. Similar to
the race attribute, FEAcc = 0.85 claims fair predictions, with all of the other point-based
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Table 3: Experiment 2: The analysis with the COMPAS Recidivism Dataset for race (Black
vs. White), age (younger than 25 vs. older than 45) and gender (male vs. female)
attributes. Severe values of fairness values (|F − 1| > 0.2, following (Zanna et al.,
2022)) are highlighted.

Race Age Gender
Measure Black White <25 25-45 >45 Female Male

(G0) (G1) (G0) (G1) (G0) (G1)

↑ Sample Size 3175 2103 1347 3532 1293 1175 4997
Performance Measures

↑ MAcc 0.70 0.68 0.64 0.71 0.75 0.77 0.68
↑ MPPV 0.69 0.68 0.64 0.72 0.64 0.70 0.68
↑ MNPV 0.72 0.68 0.63 0.70 0.78 0.78 0.68
↓ MFPR 0.34 0.10 0.41 0.18 0.12 0.05 0.25
↓ MFNR 0.25 0.66 0.32 0.44 0.54 0.67 0.39
↓ Ue 0.0006 0.0004 0.0010 0.0005 0.0002 0.0003 0.0006
↓ Ua 0.2299 0.1578 0.3459 0.1712 0.1027 0.1599 0.2053
↓ Up 0.2305 0.1583 0.3469 0.1717 0.1029 0.1602 0.2059

Point-based Fairness Measures

FSP 2.84 2.44 0.31
FEOpp 2.19 1.48 0.54
FEOdd 1.57 2.37 0.40
FEAcc 1.03 0.85 1.13

Uncertainty-based Fairness Measures (Ours)

FEpis 1.55 4.35 0.50
FAlea 1.46 3.36 0.78
FPred 1.46 3.37 0.78

measures directly implying that the model in question is inclined to unfairly predict the
subgroup age less than 25 as y = 1, i.e recidivating an offense.

Furthermore, the proposed uncertainty-based fairness measures also show similar results
with FEpis = 4.35, FAlea = 3.36 and FPred = 3.37. A similar conclusion with the race
attribute could be arrived here with the FEpis = 4.35, i.e the lack of data according to the
model behavior is higher for the subgroup age less than 25 compared to the the subgroup
age greater than 45 even though the dataset actually contains less samples for the latter.
Even though we also observe a similar pattern with the race attribute with FAlea = 3.36
and FPred = 3.37, the fairness gap in this case is significantly higher. These measures also
show that the classification hardness, the noise faced by the model according to its own
behavior, is drastically higher for the subgroup of individuals with an age of less than 25.

Social Impact: From the results above, we see how existing point-based measures merely
highlight the prediction bias present. Our proposed uncertainty-based measures go a step
beyond by serving as a fairness evaluation tool which points towards the potential source of
bias: The persistent social inequity across race (Ding et al., 2021), and towards a potential
solution: balancing samples across gender. In addition, data collected from a real-world
setting is bound to be implicated or corrupted by group-dependent labelling or annotation

322



Uncertainty as a Fairness Measure

noise (Wang, Liu, & Levy, 2021). For instance, it has been demonstrated that labels for
criminal activity generated via crowdsourcing are systematically biased against certain sub-
groups (Dressel & Farid, 2018). This label class and subgroup dependent heterogeneous
systematic bias cannot be quantified by point-based fairness measures. However, we hy-
pothesize that this bias can be captured by our measure which illustrates how the model
produced higher FEpis, FAlea and FPred for African-Americans and Males despite having
more samples for both demographic groups within the training set. Hence, our measure is a
useful diagnostic tool in a real-world setting when clean and accurate labels are not readily
available. Future experiments may focus on verifying how unbiased labels may impact the
point-based and uncertainty-based fairness measures.

Table 4: Label and sensitive attribute distributions of COMPAS and Adult. B/W:
Black/White. F/M: Female/Male.

COMPAS Adult

Group Y = 0 Y = 1 Y = 0 Y = 1

B 1514 (48%) 1661 (52%) 2451 (87%) 366 (13%)
W 1281 (61%) 822 (39%) 19094 (74%) 6839 (26%)

F 762 (65%) 413 (35%) 8670 (89%) 1112 (11%)
M 2601 (52%) 2396 (48%) 13984 (69%) 6396 (31%)

6.2.2 The Adult Dataset

As with COMPAS, Black and Female are the minority groups (G0) across race and gender
respectively. As listed in Table 4, Adult has severe imbalance across labels and groups.
Across race, Table 5 shows we only have 2817 samples for African-Americans vs. 25933
for Whites. However, according to the performance and point-based fairness measures,
the fairness gap between the African-Americans and Whites is lower compared to that
in COMPAS. The uncertainty-based fairness measures provide some interesting insights.
Particularly, we observe a surprisingly large fairness gap in terms of epistemic uncertainty,
FEpis = 151. This is not surprising since Whites have 10× more samples, yielding very
small Ue value. Aleatoric uncertainty Ua values for both groups are very small (compared
to all other datasets), which suggest that the classifier has more certainty with respect to
data noise, yielding FAlea ∼ 1.00.

The fairness gap also seems lower across gender in Adult compared to COMPAS. There
is also class imbalance across gender, with only 9872 samples for females vs. 20380 for males.
We observe conflicting outcomes across the point-based fairness measures: FOpp = 1.04 and
FEAcc = 1.18 point to fair classification whereas FSP = 0.62 and FOdd = 0.79 suggest
otherwise. Similar to the race attribute, FSP = 0.62 implies higher salary classification bias
in favour of Males. As for epistemic and aleatoric uncertainties, we observe gaps similar to
the race attribute: There is significant bias in terms of FEpis (against Males), despite the
dataset containing more Male samples. Moreover, the model appears to have the same level
of aleatoric certainty across gender (FAlea ∼ 1.00).
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Table 5: Experiment 2: The analysis with Adult. Unfair values (|F − 1| > 0.2, following
(Zanna et al., 2022)) are highlighted. B/W: Black/White. F/M: Female/Male.

Measure B (G0) W (G1) F (G0) M (G1)

↑ Sample Size 2,817 25,933 9,872 20,380
Performance Measures

↑ MAcc 0.86 0.77 0.87 0.73
↑ MPPV 0.40 0.60 0.39 0.64
↑ MNPV 0.91 0.79 0.91 0.75
↓ MFPR 0.07 0.07 0.06 0.08
↓ MFNR 0.67 0.69 0.68 0.69
↓ Ue 0.0001 6e-7* 0.0001 6e-8*
↓ Ua 0.01 0.01 0.01 0.01
↓ Up 0.0007 0.0004 0.0008 0.0003

Point-based Fairness Measures

FSP 0.75 0.62
FOpp 1.08 1.04
FOdd 0.87 0.79
FEAcc 1.12 1.18

Uncertainty-based Fairness Measures (Ours)

FEpis 151* 521*
FAlea 1.00 1.00
FPred 1.49 2.65

Social Impact: The point-based measures seem to indicate that the outcome is accept-
ably fair which is non-indicative of the underlying problem, i.e., the model is still unsure of
its prediction of the majority class despite having more samples on them. Hypothetically,
this could lead to prediction bias when encountering real-world issues such as missing data
(Goel et al., 2021) and distributional shifts (Chen et al., 2022). Future experiments can
be conducted to verify how such real-world challenges, e.g., missing data and distributional
shifts, may impact the uncertainty-based fairness measures. Our uncertainty-based fairness
measures managed to highlight this discrepancy across both race and gender which could
encourage pre-emptive efforts to further investigate the underlying source of bias in the
model before deploying them in real-world settings.

6.2.3 D-Vlog Dataset

D-Vlog Truncation Statistics Table 6 shows that Female videos are truncated signif-
icantly, which leads to loss of information and an increase of uncertainty in predictions
(Cheong et al., 2023).

As the dataset owners have explored both multi-modal and uni-modal architectures,
we analyze D-Vlog both in a multi-modal and in a uni-modal manner. Table 7 provides
the experimental results. Both point-based and uncertainty-based fairness measures deem
the classifier to be fair (except for FOdd). Uncertainty-based fairness results are especially
surprising since the Female group size is twice the size of the Male group. However, we
observe that the classifier has high aleatoric uncertainty for both groups.
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Table 6: Label, duration and sensitive attribute distributions of D-Vlog. Both average
duration and average truncated amount are given in seconds. Absolute value of
the entries with negative value in the last row shows the amount of zero padding
whereas the positive values directly state the amount of truncation.

Male Female

Y = 0 Y = 1 Y = 0 Y = 1

# Samples 140 (0%) 182 (0%) 2666 (0%) 373 (0%)
Avg. Duration(s) 483 583 587 667
Avg. Truncation(s) -158 -13 -9 +71

Table 7: Experiment 2: The analysis with D-Vlog. Unfair values are highlighted. F/M:
Females/Males. G0: Females.

Multi-Modal Audio Only Visual Only

Measure F M F M F M

↑ Sample Size 639 322 639 322 639 322
Performance Measures

↑ MAcc 0.59 0.73 0.63 0.75 0.63 0.66
↑ MPPV 0.62 0.78 0.72 0.82 0.65 0.69
↑ MNPV 0.54 0.66 0.56 0.66 0.61 0.57
↓ MFPR 0.57 0.38 0.29 0.28 0.54 0.61
↓ MFNR 0.28 0.20 0.43 0.22 0.23 0.18
↓ Ue 0.006 0.006 0.022 0.016 0.034 0.035
↓ Ua 0.45 0.45 0.28 0.22 0.10 0.09
↓ Up 0.46 0.46 0.31 0.24 0.14 0.13

Point-based Fairness Measures

FSP 1.01 0.75 0.91
FOpp 0.89 0.73 0.94
FOdd 1.68 1.40 0.94
FEAcc 0.81 0.84 0.96

Uncertainty-based Fairness Measures (Ours)

FEpis 1.00 1.38 0.96
FAlea 1.00 1.32 1.11
FPred 1.00 1.32 1.07

The results per modality suggest that the audio modality has strong bias against Fe-
males since the performance measures are generally lower for Females. This, however, is
not coherently captured by point-based measures whereas our uncertainty-based measures
consistently highlight the bias. The cause of this bias appears to be the truncation of the
videos by the dataset owners: Recordings of Females are significantly longer and therefore,
truncated more. This naturally results in more reduction in information useful for the clas-
sification task for females, thus increasing the uncertainty for females. However, this effect
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is not observed across the visual modality as the classifier performs poorly across both males
and females.

6.3 Experiment 3: Individual Fairness

We now analyze individual fairness with point-based and uncertainty measures for COM-
PAS. The results in Fig. 4 suggest that F indv

ŷ values differ across different groups of race
and gender as well as outcomes. This is also evident with the uncertainty-based individ-
ual fairness measures (F indv

U ). However, although “W(-)” and “B(-)” have similar point-
based consistencies, they are very different across both aleatoric and epistemic consistencies.
Aleatoric consistencies align with F indv

ŷ that the classifier is having difficulty with “B(+)”

samples. F indv
Ue

values highlight that “M(+)” and “B(+)” might especially benefit from
additional data.

6.3.1 Experiment 3: Individual Fairness Analysis on Adult

With reference to Figure 5, we see that F indv
ŷ for both race and gender are largely similar.

This is also true for the the Uncertainty-based individual fairness measures F indv
Ua

and F indv
Ue

.
A noteworthy point is that all measures indicate an interesting insight about the positive
classes, (“B+”, “W+”, “F+” and “M+”). All of them point towards a perfect consistency
score of ≈ 1. We hypothesize that this might be due to the severe class imbalance within the
Adult dataset where there is a very small subgroup that belongs to the positive class Y = 1
thus causing the classifier to memorize and be highly confident about the Ŷ = 1 predictions.
This is also supported by the small ( 0.07) FPR reported in Table 4 (the main manuscript)
for all groups. We see slightly lower consistency for negative classes in point predictions
and aleatoric uncertainty. The high FNR rate for both groups (Table 4 in the main text)
suggests that there are more errors with Ŷ = 0 predictions, causing higher inconsistencies for
those predictions. Lower consistencies for “F-” and “B-” for epistemic uncertainty suggest
more data can be helpful for Female and Black groups, which is supported by the dataset
distribution highlighted in Table 3.

Social Impact: Considering uncertainty in individual fairness can be crucial in many
applications. For instance, cancer-free prognosis of a patient should take into account
uncertainty-based consistency for similar individuals.

6.4 Experiment 4: Ablation Analysis

We analyze the effect of model capacity on performance and uncertainty estimations. The
results in Fig. 6 show that the uncertainty estimations are affected by the change in the
number of neurons per layer. However, the relative ordering between the different demo-
graphic groups do not appear to be affected. Since accuracy appears to saturate after 100
neurons and to lower the computational cost, we have chosen the hidden layer sizes as 100
in all experiments. Adding more layers led to significant over-fitting problems for SD1, SD2,
SD3, COMPAS, and Adult datasets. Therefore, we performed the rest of the experiments
with a single hidden-layer for COMPAS and no hidden-layer for SD1, SD2, SD3 and Adult.
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Figure 4: Experiment 3: Point-based (a,b) and uncertainty-based individual fairness (c-f)
scores for COMPAS.

7. Discussion

In this paper, we have argued that existing point-based fairness measures may not be reliable
as they depend on point predictions of the ML models and ignore their uncertainties. To
address this limitation, we introduce the use of different types of uncertainty as fairness
measures. We prove that the proposed fairness measures are independent of point-based
fairness measures and empirically show that uncertainty-based fairness measures provide
more insights about the presence and the source of bias in predictions.

7.1 Main Insights

In the following, we summarize the main insights:

Insights through the Epistemic Fairness Measure (FEpis) Measuring the fairness
gap in terms of epistemic uncertainty, by definition, highlights the lack of data for one
group. What is beneficial is that this is not affected by the mere number of samples, which
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Figure 5: Experiment 3: Point-based (a,b) and uncertainty-based individual fairness (c-f)
scores for Adult.
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(c) Epistemic Uncertainty

Figure 6: Experiment 4: Ablation analysis on the effect of model capacity on COMPAS.
(a) Accuracy. (b) Aleatoric uncertainty. (c) epistemic uncertainty. B/W:
Black/White. F/M: Female/Male. As model performance starts saturating at
100 neurons, we have used 100 neurons in BNNs.

can be misleading. For example, in COMPAS, Black and Male groups have significantly
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more samples. However, both groups still witness higher Ue values. This suggests that
the dataset may contain data-level bias. The dataset distribution confirms that there is a
class-imbalance problem for these groups, which can be remedied with more data.

Insights through the Aleatoric Fairness Measure (FAlea) Aleatoric uncertainty
reflects the hardness of a problem owing to label or data noise (e.g., occlusion) (Kendall &
Gal, 2017). The use of this informative measure has shown that the classification task is
harder for some groups. For example, in D-Vlog, we see that truncating videos has increased
aleatoric uncertainty for females.

Another prominent example is that of COMPAS. For instance, despite being a frequently
used benchmark for fairness evaluation, an oft-cited key limitation of COMPAS is that errors
in typography is a major flaw in this dataset (Rudin, 2019). Uncertainty can, by definition,
capture some of the typography and data issues, which would be missed by point-based
measures. As evidenced in Table 3, uncertainty-based fairness measures provided some
insights about the roots of bias and can be used in conjunction with point-based measures.

7.2 Social Impact

There is a rapid increase in bias mitigation methods for the past years (Hort, Chen, Zhang,
Harman, & Sarro, 2023). However, it is unclear which source of bias each method is in-
tended to address. In fact, recent work has demonstrated that if bias is due to missing
values, existing bias mitigation methods often reduce (point-based) performance disparities
at the cost of accuracy (Wang et al., 2023). Our contribution lies in leveraging existing un-
certainty measures to quantify an alternative aspect of fairness. That said, probing a model
by adding noise or perturbations to its inputs is useful in analyzing model robustness or
increasing model robustness if noise or perturbations are added during training. Epistemic
and aleatoric uncertainties, on the other hand, pertain to how well the model captures
the lack of data and the absence of noise (ambiguity) respectively. Given a dataset and
a model, both types of uncertainties are supposed to be irreducible. In such an instance,
using point-based measures will likely be sub-optimal. Our proposed uncertainty-based
measure highlights this underlying problem and cautions against foisting a “fair” outcome
using point-based fairness measures.

Moreover, many of the existing bias mitigation solutions rest on strict machine learning
assumptions such as having access to clean or noise-free labels and requiring the model to
be deployed in a fair environment that does not deviate from the training setting (Kang,
Li, Weber, Liu, Zhang, & Li, 2022). This is optimistic at best and harmful at worst. This
incongruence between theoretical formulation and real-world settings is one of the handicaps
that the machiner learning fairness research community needs to overcome. Our work also
highlights the need to develop methods which are able to address epistemic and aleaoteric
sources of discrimination. We hope that the proposed uncertainty-based fairness measures
present a step towards that direction.

7.3 Limitations

Despite its merits, uncertainty-based fairness measures require working with models which
provide or can be modified to provide uncertainties. Moreover, quantifying uncertainty is
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an active research area, and in this work we have not been able to undertake a thorough
evaluation of different uncertainty quantification methods. The above provides opportuni-
ties for future work. A key point to note is that the uncertainty-fairness measures in our
paper are differentiable and can be converted to a loss function. However, forcing epistemic
and aleatoric uncertainties to be similar across groups or individuals will not necessarily
change the “real uncertainties” as these measures simply reflect issues inherent in the data
and noise (or ambiguity).

Although prediction uncertainty can be helpful in analyzing fairness, this approach has
certain limitations which we view as opportunities for future work. For example, uncertainty
estimation requires either using models that directly provide multiple predictions (e.g.,
BNNs, Deep Ensembles) or modifying models (and their training procedure) to do so (e.g.,
Monte Carlo Dropout (Gal & Ghahramani, 2016)). This hinders the use of state-of-the-art
architectures (or their trained versions) in fairness analysis. Moreover, there is also the
overhead involved with obtaining multiple predictions to quantify uncertainty. This can
be alleviated with one-pass uncertainty estimation approaches, though they tend to be less
reliable than the approaches considered in this paper (Abdar et al., 2021).

Quantifying uncertainty in a reliable manner is a challenging and an active research
topic (Mukhoti et al., 2023; Liu, Lin, Padhy, Tran, Bedrax-Weiss, & Lakshminarayanan,
2020; van Amersfoort, Smith, Teh, & Gal, 2020a). Although we have obtained similar
outcomes with two different methods (BNNs and Deep Ensembles), we have encountered
difficulties with the ranges of estimated uncertainties. It would be beneficial to perform
our analyses with newer approaches. Another promising research direction is to consider
alternative metrics for measuring the dispersion of uncertainty values in a group as taking
the average across a group can miss important characteristics of the distribution. Despite
the aforementioned limitations, we sincerely hope that our work can provide a stepping
stone towards investigating and addressing these challenges.
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