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Abstract

We study digraph k-coloring games where strategic agents are vertices of a digraph
and arcs represent agents’ mutual unidirectional conflicts/idiosyncrasies. Each agent can
select, as strategy, one of k different colors, and her payoff in a given state (a k-coloring)
is given by the number of outgoing neighbors with a color different from her one. Such
games model lots of strategic real-world scenarios and are related to several fundamental
classes of anti-coordination games. Unfortunately, the problem of understanding whether
an instance of the game admits a pure Nash equilibrium (NE), i.e., a state where no agent
can improve her payoff by changing strategy, is NP-complete. Thus, in this paper, we focus
on algorithms to compute an approximate NE: informally, a coloring is an approximate
γ-NE, for some γ ≥ 1, if no agent can improve her payoff, by changing strategy, by a
multiplicative factor of γ.

Our contribution is manifold and of both theoretical and experimental nature. First,
we characterize the hardness of finding pure and approximate equilibria in both general and
special classes of digraphs. Second, we design and analyze three approximation algorithms
with different theoretical guarantees on the approximation ratio, under different conditions;
(i) algorithm approx-1 which computes, for any k ≥ 3, a ∆o-NE for any n vertex graph
having a maximum outdegree of ∆o, in polynomial time; (ii) algorithm lll-spe, a ran-
domized algorithm that, for any constant k ≥ 2, determines a γ-NE for some constant γ
but only in digraphs whose minimum outdegree is sufficiently large, in polynomial time in
expectation; (iii) algorithm approx-3 which, for any ε > 0, computes a (1+ε)-NE by using
O( logn

ε ) colors, for any n-vertex digraph. Note that, the latter shows that a (1 + ε)-NE
exists and can be computed in polynomial time for k = O(log n).
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Finally, to assess how proposed algorithms behave in the typical case, we complete
our study with an extensive experimental evaluation showing that, while newly introduced
algorithms achieve bounded worst case behavior, they generally perform poorly in practice.
Motivated by such unsatisfactory performance, we shift our attention to the best-response
paradigm, successfully applied to other classes of games, and design and experimentally
evaluate it a heuristic based on such paradigm. Our experiments provide strong evidences
of such approach outperforming, in terms of approximation and computational time, all
other methods and hence identify it as the most suited candidate for practical usage. More
remarkably, it is also able to compute exact, pure NE in the great majority of cases. This
suggests that, while these games are known to not always possess a pure NE, such an equi-
librium often exists and can be efficiently computed, even by a distributed uncoordinated
interaction of the agents.

1. Introduction

In this paper we study digraph k-coloring games (Kun, Powers, & Reyzin, 2013): we are
given an unweighted directed graph where vertices represent selfish autonomous agents and
arcs represent mutual unidirectional idiosyncrasies or conflicts. Moreover, we have a set
of k ≥ 2 colors denoting agents’ available choices or strategies. A state of the game is a
vertex k–coloring, induced by the choices of the agents. The objective of each agent is to
maximize her own payoff, which is defined as the number of outgoing neighbors that has a
color different from hers.

Digraph k-coloring games form some of the basic payoff structures in algorithmic game
theory, and model many relevant real-world scenarios. A classic example is social networks
where members tend to split in groups such that each member wish to maximize the number
of rivals or opponents they do not end up with. Another example is represented by scenarios
where agents can be miners that have to decide which land to drill for resources: a miner
maximizes her happiness when the number of other competitor miners that choose the same
land is minimized. Another real-world domain that is modeled well through the considered
game is competitive skill-learning, e.g., when employees of a company have to decide which
skill to learn in order to improve their value to the company: if an employee learns a skill
that few other employees also learn, she will have more chance of exploiting it. Finally,
perhaps one of the most intuitive scenario that is effectively modeled by such games is
that related to markets (either digital or physical) and, in general, to marketing. Business
owners, companies, shop keepers, when planning their trading/production strategies tend to
decide to promote/produce some product, rather than another, on the basis of minimizing
the number of neighboring competitors that exist in a given market (where neighboring can
be interpreted in terms of geographical positioning of shops/production sites, or in terms of
closeness in social networks of potential customers).

A standard, well-established solution notion of stable outcome, in scenarios with self-
ish and autonomous agents, is the (pure) Nash equilibrium (NE, for short), that is a state
where no agent can improve her payoff by unilaterally changing her strategy. In our setting
of digraph k-coloring games, a NE is a coloring where no vertex (agent/player) can improve
her payoff by unilaterally changing color. Note that, the NE is widely considered one of the
most important concept in the field of game theory and, as such, its efficient computation
is one of the most important problems in algorithmic game theory and hence artificial in-
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telligence (Fabrikant, Papadimitriou, & Talwar, 2004). Moreover, digraph k-coloring games
can be seen as a particular form of hedonic games (see Section 1.2 for more details), which
have been widely investigated in the artificial intelligence/multi-agent systems community.
In the special setting of graph k-coloring games, when the input graph is undirected, the
game admits a potential function (Monderer & Shapley, 1996), which implies that a NE
always exists. In addition, when the graph is unweighted and undirected, the basic dynam-
ics where at each step one agent performs an improving move always converges to a NE
in a polynomial number of steps (Hoefer, 2007; Kun et al., 2013). However, in the more
general context of directed graphs, for any k ≥ 2, it is known that even the problem of
understanding whether digraph k-coloring games admit a NE is NP-complete (Kun et al.,
2013).

Therefore, in this paper, as done in the literature for other games belonging to the class of
games such that Nash equilibria do not exist or their computation is NP-hard (Anshelevich
& Sekar, 2014), we focus on a milder form of equilibrium that is typically referred to as
approximate (pure) Nash equilibrium. More in detail, a state is called an approximate γ-
Nash equilibrium (γ-NE, for short) when, for some γ ≥ 1, no agent can strictly improve her
payoff, by a multiplicative factor of γ, through a change in her strategy.

1.1 Our Contribution

Our contribution on digraph k-coloring games is manifold and both of theoretical and ex-
perimental nature. From a theoretical viewpoint, we first characterize existence conditions
and hardness of finding pure equilibria. Specifically, we show that: i) a pure NE is not
guaranteed to exist for any number of agents n and number of available colors k < n; ii) for
any k ≥ 2 a pure NE exists and can be found in polynomial time in bipartite digraphs and
directed acyclic graphs (DAGs); iii) even for k = 2, a γ-NE might not exist for any bounded
value of γ, in general digraphs. Then, we design and analyze a collection of approximation
algorithms for the problem, exhibiting different approximation ratios, for either general or
special classes of digraphs. In detail, we introduce a first deterministic algorithm, named
approx-1, that, for any k ≥ 3, returns in polynomial running time a k-coloring that is a
∆o-NE, where ∆o is the maximum outdegree of the given digraph (∆i will instead denote the
maximum indegree of the given digraph). Then, we present a second, randomized algorithm,
called lll-spe, which, by exploiting the constructive version of the well-known Lovász Local
Lemma (Moser & Tardos, 2010), achieves in expected polynomial running time, and for any
given k ≥ 2, a constant approximate NE (a γ-NE for some constant γ > 1) in digraphs
having outdegree of any vertex in Ω(ln ∆o + ln ∆i + ln k). For instance, digraphs where
the minimum outdegree is Ω(log n) belong to this class of digraphs. Finally, we propose
a third deterministic algorithm, named approx-3, that, for general digraphs and for any
ε > 0, computes a (1 + ε)-NE by using O( logn

ε ) colors, in polynomial time. Note that such
a construction shows that a (1 + ε)-NE always exists, and can be computed in polynomial
time, when k = Ω( logn

ε ). The latter contrasts with the fact that, for any k < n, pure Nash
equilibria are not guaranteed to exist and in general cannot be computed in polynomial
time, unless P = NP . We remark that, to the best of our knowledge, the above are the first
polynomial time algorithms to compute approximate Nash equilibria for digraph coloring
games.
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From an experimental viewpoint, instead, in order to assess how newly presented meth-
ods behave in practical contexts, we complete our study by conducting an extensive ex-
perimental evaluation whose main aim is determining the best performing algorithm, in
terms of both approximation and running time, in inputs arising from real-world applica-
tion domains. Specifically we implement and test all approximation algorithms against both
artificial and real-world digraphs, of heterogeneous sizes and topologies, and across several
values of parameters k and ε, respectively. We measure, as main performance indicators,
both approximation (namely obtained γ) and computational time. Plus, we assess other
metrics, namely average payoff and fraction of unhappy vertices, which naturally charac-
terize the practical effectiveness of the considered algorithms in the application domains
where they are intended to be applied (e.g., for breaking ties in case of different equilib-
ria exhibiting a same approximation). Our results highlight that, for all newly introduced
algorithms, the theoretical analysis fails at accurately capturing their true performance in
practical scenarios. More in detail, we observe that:

(a) on the negative side, while algorithms approx-1 and lll-spe are suitably designed
to achieve bounded worst case behavior w.r.t. approximation, they generally exhibit
poor performance in practice; measured approximation factors obtained through the
execution of such algorithms, in fact, are often close to those one can achieve by simply
assigning colors to agents/vertices uniformly at random;

(b) on the positive side, algorithm approx-3 practical performance is by far underesti-
mated by the analysis we present, since our tests show it is always able to compute
a (1 + ε)-NE by using a number of colors k that is much smaller than the worst case
upper bound.

Given the unsatisfactory performance of algorithms approx-1 and lll-spe, under the
motivation of lack of practical approximation algorithms for the problem when k is given, we
hence shift our focus on the classical best-response paradigm (Roughgarden, 2010), where at
each step an agent that is not in a NE is selected at random and performs her best improving
move. Such paradigm, has been widely considered in the literature for other games since,
even thought it typically induces a dynamics that is not known to offer any upper bound
on the provided approximation, and that might not always stabilize, it often provides good
results in practice. In particular, we design and describe myo-best-resp, a heuristic based
on such paradigm, and experimentally evaluate it, to assess its practical effectiveness in the
context of digraph k-coloring games. We compare the behavior of myo-best-resp against
that of all other solutions, again through an extensive experimental evaluation involving
large sets of heterogeneous inputs and values of k.

Our experimental results provide strong empirical evidences of myo-best-resp being
the most effective solution among the tested ones, and hence advised for practical usage. In
fact, in essentially all considered combinations of inputs and values of k, myo-best-resp
results to be the best performing algorithm in terms of approximation. Moreover, quite
surprisingly, in the majority of the cases it converges to a pure NE (i.e., it computes exact,
non-approximate solutions) in a reasonably low running time, and even for large graphs.
This is a remarkable property of such method, given the hardness of computing pure NE in
general. In the (few) remaining cases, myo-best-resp is comparable to other methods, in
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terms of approximation, but achieves better results in terms of average payoff and fraction
of unhappy vertices.

Our study thus highlights that, while this class of games is known to not always pos-
sess NE, in almost all cases such equilibria exist and can be efficiently computed, even in
a distributed uncoordinated way by a decentralized interaction of the agents, such as that
underlying myo-best-resp (while approx-1, approx-3 and lll-spe are not naturally
suited for distributed implementations). Hence, this triggers several new theoretical ques-
tions and demand for further investigation on digraph k coloring games. In particular, it
remains unknown whether constant approximation can be achieved in the worst case for
general digraphs or whether a pure NE can be computed in polynomial randomized time for
broader special classes of digraphs, or even deterministically.

1.2 Related Work

k-coloring games in undirected graphs have been first investigated in (Hoefer, 2007; Kun
et al., 2013), where it is shown that a NE always exists and can be computed in polynomial
time if the graph is unweighted. When the graph is weighted, instead, a NE always exists but
the problem of computing it is PLS-complete even for k = 2 (Schäffer & Yannakakis, 1991).
Observe that graph 2-coloring games are exactly equivalent to max cut games. In (Poljak,
1995) it is proven that NE can be computed in polynomial time for graph 2-coloring games
if the maximum degree of the graph is at most 3. A related investigation for the same
class of games is presented in (Bhalgat, Chakraborty, & Khanna, 2010; Caragiannis, Fanelli,
& Gravin, 2017), where the authors give an algorithm that, for any ε > 0, computes a
(3 + ε)-NE in time polynomial in 1

ε and in the instance size. All above results exploit
the potential function method. Unfortunately, digraph k-coloring games (where the graph
is directed) do not admit a potential function and the problem of understanding whether
they admit a NE is NP-complete for any fixed k ≥ 2, even in the unweighted case (Kun
et al., 2013). The performance of NE in general graph k-coloring games has been addressed
in (Feldman & Friedler, 2015), while the authors of (Carosi & Monaco, 2020) consider Nash
equilibria where players also have an extra profit depending on the chosen color. Finally,
the authors of (Gourvès & Monnot, 2010; Carosi, Fioravanti, Gualà, & Monaco, 2019) study
the existence of strong NE, i.e., resistant to coalitional moves, again for graph k-coloring
games.

Digraph k-coloring games are related to many fundamental games that have been widely
studied in recent literature. One example is graphical games, first introduced in (Kearns,
Littman, & Singh, 2001), where the payoff of each agent depends only on the strategies of
her neighbors in a given social knowledge graph defined over the set of the agents, where an
arc (i, j) means that j influences i’s payoff. An interesting class of graphical games, related
to digraph k-coloring games, is that of graphical congestion games (Bilò, Fanelli, Flammini,
& Moscardelli, 2011), where each agent has to choose a set of resources while taking into
account that each resource e has a latency function fe depending on the number of agents
using e. For the case where each agent can choose only one of the available resources,
also called load balancing, and the latency function is linear (i.e., fe(x) = x, where x
the number of agents using e), a Nash equilibrium for the arising digraph k-coloring game
corresponds to a Nash equilibrium for an equivalent instance of the graphical congestion
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game and vice versa. In (Bilò et al., 2011) it is shown that each graphical congestion game
defined over a directed acyclic graph admits a Nash equilibrium that can also be found in
polynomial time. We are not aware of papers providing polynomial time algorithms that
compute approximate Nash equilibria in graphical congestion games for generic directed
graphs. However, approximation algorithms are known for many graphical games (see for
example (Vickrey & Koller, 2002; Kearns et al., 2001)).

Digraph k-coloring games can also be seen as a particular form of hedonic games with
an upper bound (i.e., k) on the number of coalitions (see (Aziz & Savani, 2016) for an
introduction to hedonic games). Specifically, given a k-coloring, agents having a same color
can be seen as members of the same coalition in the corresponding hedonic game. In order
to get the equivalence between the two games, the so–called hedonic utility of an agent v
has to be defined as the overall number of her neighbors minus the number of agents of her
neighborhood that are in the same coalition. Issues related to Nash equilibria in hedonic
games have been largely investigated under several assumptions (see (Aziz, Brandt, & Seedig,
2013; Ballester, 2004; Bilò, Fanelli, Flammini, Monaco, & Moscardelli, 2018; Bogomolnaia
& Jackson, 2002; Feldman, Lewin-Eytan, & Naor, 2015; Gairing & Savani, 2011; Monaco,
Moscardelli, & Velaj, 2020, 2019; Peters & Elkind, 2015) and references therein).

An interesting study on Nash equilibria for graphical hedonic games can be found in (Pe-
ters, 2016). In these games, agents are arranged in an underlying graph and need to be
partitioned into coalitions. Every agent only cares about which of her neighbours are in
the same coalition as her. Every hedonic game can be made graphical by introducing edges
whenever one agent’s utility depends on the other’s presence. To the best of our knowledge,
no known result concerns approximate Nash equilibria.

While coloring games are the paradigmatic class of anti-coordination games, another very
active stream of research has been dedicated to coordination games, where agents instead
are rewarded for choosing common strategies rather than different ones. Results about
coordination games can be found in (Anshelevich & Sekar, 2014; Apt, de Keijzer, Rahn,
Schäfer, & Simon, 2017; Rahn & Schäfer, 2015; Simon & Wojtczak, 2016). Finally, the
authors of (Panagopoulou & Spirakis, 2008) study games where Nash equilibria are proper
vertex colorings in an undirected unweighted graphs setting.

Another prominent class of games, generalizing coloring games and bearing strong con-
nections with coalition, coordination, and anti-coordination games is the one of the so-called
polymatrix coordination games (Yanovskaya, 1968). Here each agent v must select an action
in her strategy set, and the utility is given by the preference she has for her action plus,
for each neighbor w, a payoff which strictly depends on the mutual actions played by v and
w. Polymatrix games have been thoroughly studied both in some classical works (Howson,
1972; Eaves, 1973; Howson & Rosenthal, 1974; Miller & Zucker, 1991) and also, more re-
cently, with a special focus on equilibria (Rahn & Schäfer, 2015; Cai, Candogan, Daskalakis,
& Papadimitriou, 2016; Deligkas, Fearnley, Savani, & Spirakis, 2017; Deligkas, Fearnley, &
Savani, 2020).

1.3 Structure of the Paper

The paper is organized as follows. Section 2 introduces the notation used throughout the
paper and the necessary background while Section 3 presents both negative and constructive
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results on the existence and computability of pure Nash equilibria, along with notions related
to approximate equilibria. In Section 4 we describe approximation algorithms approx-1,
lll-spe and approx-3, with guarantees for computing various kinds of γ-NE in both general
and special digraphs, while in Section 6 we present our experimental work, that includes the
definitions of our heuristic based on best response, i.e., algorithm myo-best-resp. Finally,
Section 7 concludes the paper and highlights possible future research directions.

2. Preliminaries

We assume we are given an unweighted directed graph, or simply digraph, G = (V,A),
without self loops, having |V | = n vertices and |A| = m arcs connecting vertices of G. Any
arc (v, w) ∈ A is directed from vertex v to vertex w. An arc (v, w) ∈ A is said to be an
outgoing arc from vertex v and an incoming arc to vertex w, respectively.

Given a vertex v ∈ V , we denote by δvo (δvi , respectively) the outdegree (the indegree
respectively) of v, that is the number of outgoing arcs from v (the number of incoming
arcs to v, respectively) in G. The set of outgoing neighbors Nout(v) (incoming neighbors
Nin(v), respectively) of a vertex v is the set of vertices induced by the outgoing arcs of
v (the incoming arcs of v, respectively), i.e., Nout(v) = {w : w ∈ V ∧ (v, w) ∈ A} and
Nin(v) = {w : w ∈ V ∧ (w, v) ∈ A}, respectively. Clearly, we have |Nout(v)| = δvo and
|Nin(v)| = δvi for any vertex v ∈ V . Moreover, we denote by do = min

v∈V
δvo and ∆o = max

v∈V
δvo

the minimum and maximum outdegree of G, respectively. Similarly, we call do and do the
average and median outdegree, respectively, and ∆i = max

v∈V
δvi the maximum indegree of G.

Finally, given a subset of vertices V ′ ⊆ V , we denote with G[V ′] the subgraph of G induced
by V ′.

2.1 Digraph k-Coloring Games

In a digraph k-coloring game we are given a digraph G = (V,A), without self loops, in which
each vertex v ∈ V is a selfish agent, and a set C of |C| = k available colors. Each agent has
a same set of actions (i.e., a same strategy set), which is the set of the k available colors. A
state of the game c = {c1, . . . , cn} is a k-coloring for graph G (simply coloring when k is clear
from the context), where cv is the color chosen by agent v ∈ V (i.e., a number from 1 to k).
In what follows, we will use vertex and agent interchangeably. Given a coloring c, the payoff
µc(v) (often also referred to as the utility) of an agent v is the number of outgoing neighbors
of v whose color in c is different from that of v, i.e., µc(v) = |{w ∈ Nout(v) : cv 6= cw}|.
Observe that, for a vertex v we have that either Nout(v) = ∅ or cv = cw ∀w ∈ Nout(v) suffice
to imply that µc(v) = 0.

A coloring c is called a pure Nash equilibrium (sometimes also referred to, in the lit-
erature, as stable equilibrium, and denoted in what follows as pure NE or simply NE, for
short), if no agent v in the graph can improve her payoff by unilaterally changing strategy
(i.e., color). Formally, if we use (c−v, c

′
v) to denote the coloring obtained, from a coloring

c = {c1, . . . , cn}, by changing the strategy of agent v from cv to c′v, then a coloring c is a
pure NE if µc(v) ≥ µ(c−v ,c′v)(v), for any possible color c′v ∈ C and for any vertex v ∈ V .
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Figure 1: An instance for which there is no NE, even with a number of colors linear in the
number of agents. A bold arrow means that there is complete incidence from the source
subgraph to the target subgraph.

3. On the Existence of Nash Equilibria in Digraph k-Coloring Games

In this section, we show that a NE is not guaranteed to exist, for general graphs, and even
for a large number of available colors k. Then, we show that for some special graph classes,
instead, a NE can be computed efficiently, deterministically and in polynomial running time.
In particular, on the one hand it is easy to observe that a NE can always be found with
n colors, by simply assigning to each vertex a different color; on the other hand, for every
k ≤ n − 1 a NE is not guaranteed to exist. In fact, it is possible to prove the following
proposition.

Proposition 3.1. For arbitrarily large values of n ≥ 3, and any fixed k such that 1 < k ≤
n− 1, there exist instances of the digraph k-coloring game with n vertices not admitting any
NE.

Proof. Consider the following instance of digraph k-coloring game: there are two vertices
x, y, where x has an arc directed toward y; moreover, there is a complete, bidirectionally
speaking, directed clique Kk−1 of size k−1, and each vertex in the clique has an arc directed
toward x; finally, y has arcs directed toward all vertices in the clique. Suppose we have k
colors. Assume by contradiction that a stable coloring exists and let c be the color assigned
to x. By the stability constraint, the vertices in the clique must have the remaining k − 1
colors, one per vertex. In fact, if some vertex in the clique is using the same color as x, then
it could switch to some unused color that increases its utility. Moreover, also y should have
a color different from the ones in the clique, that is it must have color c. But then x would
have utility 0 and would improve by switching color: a contradiction to the fact that the
coloring was stable.

Notice that in the above construction k = n − 1. In order to prove the claim for every
fixed value of k such that 1 < k ≤ n − 1, it suffices to add to the aforementioned graph
of k + 1 vertices n − k − 1 additional dummy vertices with an arc directed toward x. An
example of instance with this structure is shown in Figure 1.

While in general the existence of a NE cannot be guaranteed, the following results hold
for special digraph classes.
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Proposition 3.2. Given an instance of the digraph k-coloring game such that the underlying
digraph is bipartite, a NE with k ≥ 2 colors always exists and can be found in polynomial
time.

Proof. Given a digraph, it is well known that it is possible in polynomial time to test whether
the graph is bipartite or not and, in the affirmative case, it is possible to return a proper
2-coloring of it, i.e., if the set of vertices v is partitioned in to the sets V1 and V2, then all
the vertices in V1 are colored with color 1 and all the vertices in V2 are colored with color 2.
Clearly such a coloring maximizes the utility of all the agents.

Proposition 3.3. Given an instance of the digraph k-coloring game such that the underlying
digraph is without cycles (i.e., it is a DAG), then a NE with k ≥ 2 colors always exists and
can be found in polynomial time.

Proof. Given a digraph, it is well known that it is possible in polynomial time to test whether
the graph is a DAG or not and, in the affirmative case, one can return a topological sorting
of the vertices, i.e., a linear ordering of such vertices such that for every directed arc (v, w)
from vertex v to vertex w, v comes before w in the ordering. Then, it is enough to consider
vertices in the reverse order and to color each vertex with its best response, that is choosing
the color that maximizes her payoff given the choices made by the previous agents.

Unfortunately, for general directed graphs, the problem of determining whether the di-
graph k-coloring game admits a NE is NP-Hard, for all k ≥ 2 (Kun et al., 2013). Therefore,
from here onward we consider the milder notion of approximate Nash equilibrium, defined as
follows: a state or coloring c is a γ-approximate Nash equilibrium (simply γ-NE or γ-stable
equilibrium for short), for some γ ≥ 1, if no agent can strictly improve her payoff by a multi-
plicative factor of γ, by changing color. More formally, a coloring c = {c1, . . . , cn} is a γ-NE
when, for any possible color c′v ∈ C and for any vertex v ∈ V we have γ ·µc(v) ≥ µ(c−v ,c′v)(v).
If such condition holds for vertex v, we say that v is γ-happy. Therefore, a γ-NE is a coloring
in which every vertex is γ-happy. Viceversa, a vertex v is γ-unhappy, for some γ ≥ 1, if
and only if γ · µc(v) < µ(c−v ,c′v)(v) for some color c′v ∈ C. In other words, a γ-unhappy
vertex can strictly improve her payoff by a multiplicative factor of γ, by changing color.
We define the potential payoff πc(v) of vertex v as the maximum payoff v can achieve by
unilaterally changing its color, that is πc(v) = maxc′v∈C µ(c−v ,c′v)(v). Consequently, we call
the potential color of a vertex v to be the color of C inducing the potential payoff, i.e.,
ψc(v) ∈ argmaxc′v∈C µ(c−v ,c′v)(v).

By analogy, we introduce the special notion of (simply) unhappy vertex, which occurs
for a γ-unhappy vertex when γ = 1. Specifically, given a coloring c, we say a vertex v is
unhappy if and only if µc(v) < µ(c−v ,c′v)(v) for some color c′v ∈ C, i.e., when the vertex can
strictly improve her payoff by changing color unilaterally (c is not a pure NE). Clearly, if a
vertex v is unhappy we have that µc(v) < πc(v) and cv 6= ψc(v) while, if πc(v) ≤ γµc(v),
for all vertices v ∈ V for some γ > 0, we have a γ-NE. Whenever such a value of γ can
be found, we refer to it as approximation factor for an instance of the problem while, by
analogy, we call γv = πc(v)

µc(v) the approximation factor of vertex v ∈ V .
Observe that, in what follows, we focus on the case of k ≥ 3. In fact, the following

proposition can be easily proven.
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Proposition 3.4. When k = 2, we have that any 2-coloring of a direct odd cycle (i.e., a
cycle with an odd number of vertices) is not a γ-NE for any γ ≥ 1.

In fact, it is easy to observe that, for any possible coloring, there exists a vertex having
payoff zero and hence no bounded γ can be found.

4. Approximation Algorithms for Digraph k-Coloring Games

In this section we design and analyze algorithms to compute approximate NE for digraph
k-coloring games with bounded γ. Specifically, we first introduce a deterministic algorithm,
named approx-1 that, for general graphs and for k ≥ 3, is able to compute, in worst
case polynomial time, a ∆o-NE. Then, we describe lll-spe, a randomized algorithm that
computes a constant-NE, in expected polynomial running time, for graphs having sufficiently
large minimum outdegree (namely the minimum degree must be Ω(ln ∆o + ln ∆i)). Finally,
we present approximation algorithm approx-3 that, for any digraph G and ε > 0, is able
to determine a (1 + ε)-NE by using O

(
logn
ε

)
colors in polynomial time.

4.1 Computing a ∆o-Nash Equilibrium

In this section, we present a polynomial time algorithm that, given a digraph G returns a
k-coloring, for any k ≥ 3, where every vertex v such that δvo(G) ≥ 1 has payoff at least
1. Clearly this corresponds to a ∆o-NE because ∆o is the maximum payoff that can be
achieved. Notice that, the algorithm works for any digraph and uses at most three colors.

The algorithm is iterative and, at each iteration, it visits the graph induced by the
uncolored vertices and detects either a cycle or a path (when the visit reaches a vertex
without outgoing edge in the induced subgraph). Then it colors the vertices of the cycle or
path by alternating three colors (for instance colors 1, 2 and 3) in a way that every vertex
gets payoff of at least 1. In particular, if the subgraph is a cycle then the algorithm considers
vertices of the cycle in clockwise order and assigns the colors in such order (starting by any
vertex) by alternating the three colors. If the subgraph is a path from vertex v to vertex
w, then it colors the vertex w by a different color with respect to the already colored vertex
u, if the arc (w, u) ∈ E. Otherwise, it means that δwo = 0 and we can assign any color to
w. Then, the algorithm proceeds by alternating colors (in this case two colors are enough)
for the other vertices of the path considered in the reverse order starting from w. Notice
that if the algorithm does not detect any odd cycle then two colors are enough. A formal
description of the procedure is given in Algorithm 1. The correctness of the procedure is
stated in Theorem 4.1, along with a bound on its computational complexity.

Theorem 4.1. Algorithm approx-1 computes a ∆o-NE in O(∆on
2) time.

Proof. Observe that, in any generic iteration of approx-1, either a path or a cycle, emanat-
ing from a non colored vertex v is detected. In both cases, list L contains at most n vertices
and, for each of such vertices, the set of neighbors is evaluated in order to decide the color
to assign. This step requires O(∆o) time per vertex and colors vertices in an alternating
fashion, thus guaranteeing that any vertex that is colored gets a color such that there exists
at least one neighbor being assigned a different one (and hence payoff is at least 1 and γ is
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Algorithm 1: Algorithm approx-1
Input: A digraph G = (V,A), a set C of |C| = k available colors
Output: A k-coloring c of G

1 L← empty list;
2 while ∃ v ∈ V not colored do
3 Append v at the end of L;
4 x = v;
5 while ∃ i ∈ V such that (x, i) ∈ A and i is not colored do
6 if i ∈ L then
7 Let L′ ⊆ L be sublist of vertices in L starting from vertex i to the end;
8 if |L′| is even then
9 Color vertices of L′ by alternating two colors c′, c′′ ∈ C, c′ 6= c′′;

10 Color i with a third color different from c′ and c′′;
11 x = i;
12 break;
13 else
14 Color vertices in L′ \ {i} by alternating two colors c′, c′′ ∈ C, c′ 6= c′′;
15 Color i with a third color different from c′ and c′′;
16 x = i;
17 break;
18 else
19 x = i;
20 Append i to the end of L;
21 if v == x and v is not colored then
22 if δvo > 0 then
23 cv ← ψc(v) = argmaxc′v∈C µ(c−v ,c′v)(v); /* Color maximizing payoff */
24 else cv ← random color in C;
25 if v 6= x and x is not colored then
26 if δxo > 0 then
27 cx ← ψc(x) = argmaxc′x∈C µ(c−x,c′x)(x); /* Color maximizing payoff */
28 Color vertices in L \ {x} from the last vertex down to the first (i.e., v) by

alternating color cx and a color i ∈ C such that i 6= cx;
29 else
30 Color vertices of L by alternating two colors c′, c′′ ∈ C, c′ 6= c′′;

at most ∆o). Finally, that each iteration colors at least one vertex, hence the total number
of required iterations is at most n. The claim follows.

4.2 Computing a Nash Equilibrium with Constant Approximation in Special
Graph Classes

In this section we design and analyze algorithm lll-spe which, for any constant k ≥ 2,
computes an approximate γ-NE for constant γ, for a large class of digraphs, with high
probability. In particular, the idea underlying the algorithm is to exploit the properties of the
well known Lovász Local Lemma (Erdos & Lovász, 1975; Spencer, 1977). To this aim, we first
show that if we color each vertex with one of the k available colors uniformly at random, there
is positive probability (i.e., strictly greater than zero) that such random coloring returns a
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constant approximate NE for digraphs that have sufficiently large minimum outdegree. In
detail, such graph G must satisfy that, for any v ∈ V , δvo(G) = Ω(ln ∆o + ln ∆i + ln k);
for instance, this happens for digraphs where the minimum outdegree is Ω(log n). Observe
that this implies that constant approximate Nash equilibria always exist for any constant
value k ≥ 2 in this class of digraphs. We emphasize that this result is already interesting,
given that the problem of understanding whether the digraph k-coloring game admits a NE
is NP-complete for any k ≥ 2. Then, we combine the above positive probability with the
results of Theorem 1.2 of (Moser & Tardos, 2010), in order to design a randomized algorithm
that computes a constant approximate NE with high probability and has expected running
time that is polynomial in the size of the input. We describe the algorithm we get from
Theorem 1.2 of (Moser & Tardos, 2010) at the end of this section.

To start, we summarize the main features of the Lovász Local Lemma that are useful for
our purposes. Specifically, the Lovász Local Lemma (LLL) is known for being a powerful
tool to be used for demonstrating that, given a large set of events with some dependencies
among them, the probability that none of these events happens is strictly greater than 0 if
some conditions are met. Several versions of the lemma exist, and here onward we use the
following one:

Definition 4.1 (Lovász Local Lemma (LLL) (Erdos & Lovász, 1975)). Let A1, A2, . . . , An
be a set of bad events, with Ā1, . . . , Ān denoting their complements, respectively, and let
Di ⊆ {A1, A2, . . . , An} denote the "dependency set" of each bad event Ai, namely Ai is
mutually independent of all the events that are not in Di. If there exists a set of real
numbers x1, . . . , xn ∈ [0, 1) such that Pr[Ai] ≤ xi

∏
j∈Di(1−xj) for all i, then Pr[

∧n
i=1 Āi] ≥∏n

i=1(1− xi) > 0.

We now show how the LLL can be used for proving that, under certain conditions on the
structure of the digraph, there is positive probability that a randomly obtained k-coloring
corresponds to a constant approximate NE for any k ≥ 2. In other terms, we show the
existence of constant approximate NE for a broad subclass of digraphs. In detail, to apply
Definition 4.1 to our scenario, we define, for each v ∈ V , what a "bad event" Iv is for us in
the context of a digraph k-coloring game. Intuitively, we would like to associate Iv to the
case in which, in a given coloring c, the vertex v is not γ-happy for some constant γ ≥ 1.
However, this can happen only if the coloring c is not balanced for the outgoing neighbors
of v, that is at least one color c′ occurs much more frequently with respect to the average
number δ

v
o
k of vertices w with (v, w) ∈ A having the same color. Hence, we prove the stronger

statement with respect to the existence of an approximate γ-NE. Namely, that there exists

a balanced coloring c, i.e., such that at every vertex v there are at most (1 + β)
δvo
k

outgoing
neighbors with the same color, for some constant β > 0. As we are going to show below, if
every vertex has enough outgoing neighbors, the value of β can be taken sufficiently small,
so as to induce an approximate γ-NE with constant γ.

Consequently, we define:

Definition 4.2 (Bad event). A bad event Iv is associated to a vertex v when v has at least

(1 + β)
δvo
k

outgoing neighbors with the same color, for some constant β > 0.
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Once defined such a bad event, we now show that the LLL holds, under the aforemen-
tioned conditions, for all bad events of an instance of the digraph k-coloring game (i.e., there
is positive probability none of these events occurs, given a random assignment of colors).

First of all we bound the maximum size of the dependency set of each bad event when
each vertex is assigned a color uniformly at random, independently from the other vertices,
to incorporate it in Definition 4.1. To this aim, we observe that a generic bad event Iv can be
dependent from another event Iw only if v and w have some common outgoing neighbor z,
that is if Nout(v)∩Nout(w) 6= ∅. Therefore, if we denote by depv the dependency set of Iv, we
can upper bound the number of events in such a set as |depv| ≤

∑
z∈Nout(v)

δzi ≤ δvo∆i ≤ ∆o∆i.

Observe that, since both ∆o and ∆i do not depend on v, the above inequality holds for
every dependency set of every bad event. Hence, we can define ud = ∆o∆i to be an upper
bound on the number of dependencies of any vertex, that is |depv| ≤ ud for any vertex
v ∈ V .

In the following, for the sake of simplicity, and without loss of generality, we assume
that |depv| ≥ 2. Indeed, if |depv| = 1, the only possibility is that the digraph is a collection
of disjoint directed paths and cycles. In this case, if there are not cycles of odd length, by
alternating colors along the directed paths and cycles, a pure Nash equilibrium can be easily
determined for any fixed number k ≥ 2 colors. If instead at least one cycle has odd length,
for k = 2 no γ-NE exists for any bounded value of γ, while if k ≥ 3 a pure NE can be found
alternating 3 colors in odd length cycles.

We can then prove the following theorem.

Theorem 4.2. Given an instance of the digraph k-coloring game with n vertices and a
constant number of colors k, there exist values xv ∈ [0, 1), for any vertex v ∈ {1, . . . , n},
such that, if δvo = Ω(ln ∆o + ln ∆i), we have Pr[Iv] ≤ xv

∏
w∈depv(1−xw) for all v ∈ V , that

is the LLL holds.

Proof. In order to show that the claim holds, let us define xv = 1
ud
∀v ∈ V . To prove the

statement, it suffices to show that the following inequality is true:

Pr[Iv] ≤
1

ud

(
1− 1

ud

)ud
∀v ∈ V (1)

Since ud ≥ |depv| for any v ∈ V , and since
(

1− 1
ud

)
< 1, we obtain the following implication:

Pr[Iv] ≤
1

ud

(
1− 1

ud

)ud
≤ 1

ud

(
1− 1

ud

)|depv |
∀v ∈ V (2)

which implies that the LLL holds. In order to prove the validity of Equation (1) we use the
Chernoff bound (Chernoff, 2011) that gives a bound on the deviation of the sum of random
variables from their expected value.

Definition 4.3 (Chernoff bound). Let X1, X2, . . . , Xn be independent random variables, and
let X be their sum and µ = E[X] the expected value. Then, for any β > 0:

Pr[X ≥ (1 + β)µ] ≤ e−β
2µ
3 (3)
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Notice that in any coloring computed by assigning colors uniformly at random, we have
that δvo

k is the expected number of vertices w having a given color c′ and such that there
exists a directed edge (v, w). This is true since, with k colors, the probability that a vertex
has color c′ is 1

k and every vertex v has outdegree δvo . We remark that we assume k is

a constant value. By the Chernoff bound, the probability of having at least (1 + β)
δvo
k

outgoing neighbors of v with color c′ is at most e−
β2δvo
3k , and by applying the union bound on

the set of all the colors, we derive that the probability that v has at least (1 + β)
δvo
k

outgoing

neighbors with the same color is at most ke−
β2δvo
3k . Therefore, having in mind Equation (1),

we want to find suitable values of β, δvo and k such that

Pr[Iv] ≤ ke−
β2δvo
3k ≤ 1

ud

(
1− 1

ud

)ud
(4)

Since the function (1− 1
ud

)ud is increasing for any value ud > 1 and moreover we suppose

that ud ≥ 2, we obtain that (1− 1
ud

)ud ≥ 1
4 . So we get from Equation (4) that, if ke−

β2δvo
3k ≤

1
4ud

, then Equation (4) is satisfied, and thus LLL holds. Therefore we obtain that for each
vertex v ∈ V :

β2δvo
3k
− ln k ≥ ln (ud4) = ln [(∆o∆i)4] = ln ∆o∆i + ln 4

which implies that:

δvo ≥
3k

β2
(ln ∆o∆i + ln 4 + ln k) (5)

Thus, since β and k are constant values, it follows that when δvo = Ω(ln ∆o + ln ∆i), i.e.
when the outdegree of each vertex v is sufficiently large, the LLL holds. For instance we get
that the LLL holds for general unweighted digraphs where do = Ω(lnn). Moreover, with a
very similar analysis it is possible to show that if the digraph is such that δvo = δo for any
v ∈ V , i.e, the outdegree of all the vertices is the same (this is a broader class of digraphs
with respect to regular graphs) then LLL holds when δo = Ω(ln ∆i). Finally, we notice that
the greater do, the smaller β is required to be.

We now show what is the smallest value of γ such that γ-NE exists. To this purpose, we
consider the minimum possible value β such that the LLL still holds, that is, according to
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Equation (5), equal to
√

3k√
δvo

√
(ln(∆o∆i) + ln 4 + ln k). Thus, if we write:

γ = maxv∈V
maximum possible payoff of v
minimum expected payoff of v

=
δvo

δvo − (1 + β)
δvo
k

=
k

k − (1 + β)

=
k

k − 1−
√

3k (ln (∆o∆i) + ln 4 + ln k)√
δvo

=

√
δvo√

δvo −
√
δvo
k
−
√

3 (ln (∆o∆i) + ln 4 + ln k)√
k

=

√
δvo −

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k
+

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

k − 1

k

√
δvo −

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

=

√
δvo −

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k
+

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

k − 1

k

(√
δvo −

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

)

=
k

k − 1
+

k

k − 1

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

k − 1

k

√
δvo −

√
3 (ln (∆o∆i) + ln 4 + ln k)√

k

≈ k

k − 1
+

(
k

k − 1

)2

O

 1

r − k

k − 1



(6)

where r =

√
δvo√

ln(∆o∆i)
, it is easy to see that when δvo = Ω(ln ∆o∆i) the above value of γ is

constant.

In summary, we have proved that, when δvo = Ω(ln ∆o + ln ∆i) for all v ∈ V , according
to the LLL, a random assignment of colors produces with probability larger than zero a
balanced coloring, which in turn yields a constant approximate NE.

By the above, and by Theorem 1.2 of (Moser & Tardos, 2010), it is hence possible to
derive a simple randomized algorithm, which we name lll-spe in what follows, that returns
a coloring that is a constant γ-NE with high probability, for γ as in Equation 6. The
algorithm starts from a random coloring, which clearly is not necessarily a pure NE nor a
γ-NE, and picks, if any, a bad event Iv associated to vertex v.

Then, the algorithm randomly assigns a new color to all the vertices that determine the
bad event Iv, that is it randomly determines a new color for each vertex w such that there
is an outgoing arc (v, w) from v to w. Such operation is called a resampling. The algorithm
continues resampling bad events until it reaches a coloring that is a γ-NE for the value of γ
we have highlighted in the analysis of Theorem 4.2. If the conditions of the LLL are satisfied
for the graph under processing, the result in (Moser & Tardos, 2010) suffices to claim that
algorithm lll-spe terminates in a γ-NE and the expected number of resampling operations
of bad events is polynomial.

It is worth observing that the question of whether the algorithm can be derandomized
is an interesting issue at this point. Unfortunately, the results of (Moser & Tardos, 2010),
Theorem 1.4 specifically, allow to obtain a deterministic algorithm with a running time that
depends exponentially on the maximum number of dependencies per random variable. As a
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Algorithm 2: Algorithm lll-spe.
Input: A digraph G = (V,A), a set C of |C| = k available colors
Output: A k-coloring c of G

1 Let c be an empty coloring;
2 foreach v ∈ V do
3 cv ← a color in C randomly selected with uniform probability 1

k ;
4 Compute threshold on γ as in Equation 6;
5 while ∃ a γ-unhappy vertex do
6 Let S be the set of γ unhappy vertices; /* c is not a γ-NE here, hence S 6= ∅ */
7 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
8 Randomly recolor vertices in the dependency set depv of v with uniform probability 1

k ;
9 return c;

consequence, if the input graph is such that both the in- and out-degree of each vertex are
bounded by a constant (i.e., ∆o and ∆i are constant), then the conditions of Theorem 1.4
are satisfied and we directly obtain a deterministic polynomial time algorithm. However, for
such a case, the polynomial time, deterministic construction of Algorithm 1 would already
return a constant NE with k = 3 colors. Thus, for general graphs, understanding whether
the algorithm can be derandomized remains an open question, since it is directly connected
to the more general question of improving the existing construction results of LLL.

As a last observation, we remark that a simple application of the Chernoff’s bound at
each vertex and then of the union bound to include all the vertices, would have given a pos-
itive existential result for constant approximated NE for digraphs with minimum outdegree
Ω(lnn). However, as already observed, the finer analysis obtained by applying the Lovász
Local Lemma allowed to include much more general classes of digraphs, which properly
include regular digraphs with costant degree.

4.3 Computing a (1 + ε)-Nash Equilibrium with a Logarithmic Number of
Colors

In this section we present a polynomial time algorithm that, for any digraph G and ε > 0,
computes a (1+ε)-NE by using O

(
logn
ε

)
colors. The algorithm is iterative: at the beginning

all the vertices are not colored. Then, during an iteration the algorithm colors a subset of
vertices as described in what follows.

Let V ′ be the current set of uncolored vertices (initially V ′ = V ). In a given iteration i,
we consider the subdigraph G′ = (V ′, A′) of G induced by V ′ (i.e., any arc of A is in A′ only
if both endpoints are in V ′), and k′ = d3(1+ε)

ε e new colors cik′−k′+1, . . . , cik′ not used in the
previous iterations (we use a set C to trace used colors during iterations). We then define an
undirected graph Gu = (V ′, E) having the same vertex set as G′ and such that an undirected
edge {v, w} is in E if at least one arc between (v, w) and (w, v) is in A′. Call δv the number
of neighbors of v in Gu. Next, we use as sub-routine the algorithm described in (Kun et al.,
2013) that computes a stable coloring for the unweighted undirected graph k′-coloring game
(from now on we call this algorithm und-color, pseudocode given in Algorithm 3). The
underlying idea of such sub-routine is the following: it starts from any arbitrary coloring
and the color of a vertex is changed only if, by doing so, it strictly improves her payoff (i.e.,

178



Digraph k-Coloring Games: New Algorithms and Experiments

the number of neighbors with different color increases). The algorithm stops when it is no
more possible to perform such moves. The solution is computed in polynomial time and it
is a NE. Let V1, V2, . . . , Vk′ be the coloring of V ′ induced by the execution of und-color
on Gu with the k′ colors, namely v ∈ Vj means that v is colored cik′−k′+j .

For each vertex v ∈ V ′, if its outdegree in G′ is at least d δv3 e then v is colored as in the
equilibrium computed by und-color, namely v is colored cik′−k′+j if v ∈ Vj . The algorithm
updates the set of the uncolored vertices and iterates until all vertices are colored. A formal
description of the procedure is given in Algorithm 4. Note that we use δvo(T ) and δvi (T ) to
denote outdegree and indegree, respectively, of a vertex v of a generic graph T . We now

Algorithm 3: Algorithm und-color
Input: A undirected graph G = (V,E), a set C of |C| = k available colors.
Output: A k-coloring of G.

1 c← random k–coloring of G with uniform probability 1
k ;

2 while ∃ unhappy vertex v do
3 cv ← ψc(v) = argmaxc′v∈C µ(c−v ,c′v)(v); /* Color maximizing payoff of v */
4 return c;

Algorithm 4: Algorithm approx-3
Input: A digraph G = (V,A), parameter ε > 0.
Output: A k-coloring of G where k ≤ 6(1+ε)

ε .
1 i = 1;
2 V ′ ← V ;
3 C ← ∅;
4 while V ′ 6= ∅ do
5 k′ = d3(1+ε)

ε e;
6 Let cik′−k′+1, . . . , cik′ be k′ colors that are not in C;
7 Let G′ = (V ′, A′) be a digraph such that A′ := {(v, w) : v, w ∈ V ′};
8 Let Gu = (V ′, E) be an undirected graph such that

E := {{v, w} : (v, w) ∈ A′ ∨ (w, v) ∈ A′};
9 Let δv ← |{y ∈ V ′ : (v, y) ∈ E}| of vertex v ∈ V ′;

10 Execute und-color on Gu and the selected k′ colors;
11 Let V1, V2, . . . Vk′ be the partition of V induced by the k′ colors;
12 foreach v ∈ V ′ do
13 if δvo(G′) ≥ dδv/3e then
14 Let Vj be the subset vertex v belongs to, in the partition V1, V2, . . . Vk′ ;
15 cv ← cik′−k′+j ;
16 V ′ = V ′ \ {v};
17 C ← C ∪ {cv};
18 i = i+ 1;

show the performance and correctness of Algorithm approx-3.
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Theorem 4.3. Given any digraph G = (V,A) and ε > 0, algorithm approx-3 returns in
polynomial time a (1 + ε)-NE by using at most 6(1+ε)

ε log n = O
(

logn
ε

)
colors.

Proof. Consider an iteration i and let the coloring returned by und-color induce a partition
V1, V2, . . . Vk′ of V ′ in such iteration. Then, for each v ∈ V ′, let δvVj be the number of
neighbors that v has in the undirected graph induced by vertices in Vj . If we focus on a
given Vj for j = 1 to k′, we have δvVj ≤ δvVc for all v ∈ Vj , and for all Vc such that c 6= j
as otherwise v could improve its payoff by changing its color, thus violating the fact that
the returned solution is stable, i.e., a NE. Now, consider any vertex v ∈ Vj . According to
the coloring returned by und-color, its payoff is given by

∑
Vc:j 6=c

δvVc which clearly is larger

than or equal to (k′ − 1) δvVj , i.e., we have:∑
Vc:j 6=c

δvVc ≥
(
k′ − 1

)
δvVj .

It follows that, since the degree of v in Gu is δv, the number of neighbors in the same subset
of vertices as v is at most

δvVj ≤
δv

k′
=

δv

d3(1+ε)
ε e

≤ δvε

3 (1 + ε)
.

Let us assume that v is colored in a given coloring c obtained at the end of iteration i.
Then, by the construction of approx-3, the outdegree of v in G′ is δvo(G′) ≥ d δv3 e, hence
the approximation factor γv for vertex v is:

γv ≤
πc(v)

µc(v)
≤ δvo(G′)

δvo(G′)− δvε

3 (1 + ε)

≤
δv

3
δv

3
− δvε

3 (1 + ε)

=
1

1− ε

(1 + ε)

= 1 + ε.

Thus, v finds itself to be in a (1 + ε)-NE, since her payoff cannot be improved by more
of a multiplicative factor of γv = (1 + ε). Therefore, as every vertex is colored during some
iteration, approx-3 returns a (1 + ε)-NE coloring. We now show that approx-3 terminates
in a polynomial number of iterations by proving that we reduce the number of edges in Gu
by a constant multiplicative factor during each iteration, until the algorithm ends. Consider
again a generic iteration i. Let W be the set of vertices v ∈ V ′ such that δvo(G′) ≥ d δv3 e,
namely those vertices in W that are colored. Call Z be the set of remaining vertices. If Ai
is the set of arcs in G′ when iteration i starts and Ai+1 is the set of edges remaining after
iteration i, then we can bound such value as follows:

|Ai+1| ≤
∑
v∈Z

δvo(G′) ≤

∑
v∈Z

δvi (G′)

2
≤ |Ai|

2

The first inequality holds by definition, since we keep only arcs between uncolored vertices.
Concerning the second inequality, if by contradiction we assume it is not true, then we would
obtain that there is some vertex in Z that has been colored at the end of iteration i, namely
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it should be in set W , which contradicts the hypothesis. Thus, the maximum number of
iterations is log|A| ≤ 2 log n. Since we use k′ new colors in each iteration, the overall number
of used colors is at most:

2k′ log n ≤ 6 (1 + ε)

ε
log n = O

(
log n

ε

)

We remark that the coloring returned by the algorithm remains stable even if we increase
the number of colors, so that a (1 + ε)-approximate NE exist for any k = Ω

(
logn
ε

)
.

5. Heuristic Algorithms for Digraph k-Coloring Games

In this section, we introduce heuristic algorithms that compute approximate NE without
guarantees on the achieved γ.

The first approach we present is named myo-best-resp and is inspired to classical
best-response dynamics, which have been shown to be effective in practice to handle games
similar to that considered in this work (Swenson, 2017; Swenson, Murray, & Kar, 2018; Cary,
Das, Edelman, Giotis, Heimerl, Karlin, Kominers, Mathieu, & Schwarz, 2014). More specif-
ically, we consider what, in the literature, is sometimes referred to as myopic best-response
paradigm (Swenson, 2017; Cary et al., 2014), where agents decide their strategy greedily
and based on knowledge of their neighbors only. Such method is universally considered one
of the most appealing approaches in this domain, since its update rules depend only on
local knowledge and hence they are very easy to be translated into distributed algorithms
for decentralized systems of agents (Blume, 1995; Swenson et al., 2018). We remark that
this is a very relevant domain for digraph k-coloring games, and no distributed solution to
compute approximate NE is currently known.

In more details, the idea underlying algorithm myo-best-resp is to start from a ran-
dom coloring c. Then, if c is not a pure NE, the algorithm tries to iteratively improve it by
applying best response strategies to unhappy vertices. More specifically, during a generic
iteration the algorithm performs the following steps: (i) an unhappy vertex, say v, is se-
lected uniformly at random; (ii) the color cv of the unhappy vertex is set to the color in
the strategy set C that maximizes her payoff (ties are broken arbitrarily), i.e., to ψc(v), and
therefore the vertex achieves a payoff equal to πc(v). The process stops if a NE is reached,
i.e., if no unhappy vertex exists in the graph, or when a maximum number of iterations
I, given as part of the input, is performed. The pseudocode of procedure myo-best-resp
is summarized in Algorithm 5. Note that we always assume I to be upper bounded by a
polynomial with respect to input size. Given the above, the following result easily follows.

Lemma 5.1. Algorithm myo-best-resp runs in O(n∆oI) time.

Proof. Observe that executing line 1 takes Θ(n) time. Moreover, the block of Lines 3–7 is
executed at most I times, and strictly less than I times only if a pure NE is found. To
this regard, testing the existence of an unhappy vertex in each iteration requires computing
the payoff of all vertices in the worst case, which takes O(∆on) time since, for each vertex,
we need to evaluate the colors of her outgoing neighbors. Selecting at random an unhappy
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Algorithm 5: Algorithm myo-best-resp.
Input: A digraph G = (V,A), a set C of |C| = k available colors, a maximum

number I of iterations
Output: A k-coloring c of G

1 c← random k–coloring of G with uniform probability 1
k ;

2 i← 0;
3 while ∃ an unhappy vertex and i < I do
4 Let S be the set of unhappy vertices; /* c is not a NE, hence S 6= ∅ */
5 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
6 cv ← ψc(v) = argmaxc′v∈C µ(c−v ,c′v)(v); /* Color maximizing payoff of v */
7 i← i+ 1;
8 return c;

vertex costs |S| henceO(n) time, and for said unhappy vertex an additional δvo = O(∆o) time
in necessary to determine the color that maximizes her payoff. Thus, the claim follows.

The second heuristic approach we discuss is a modification of algorithm lll-spe that is
able to produce a k–coloring, regardless of the structure of the input digraph, by including
a termination criterion. Note in fact that algorithm lll-spe is guaranteed to converge to a
constant γ-NE, in a polynomial number of steps (i.e., resampling operations), only in graphs
where δvo is Ω(log ∆o + log ∆i) for any vertex v ∈ V . Since in this work we are interested
in evaluating the behavior of such algorithm also in graphs not satisfying this constraint on
the degrees, for the sake of completeness, in order to apply it and evaluate its performance
on general digraphs, we incorporate in the algorithm a stopping criterion that serves the
purpose of bounding the maximum number of resampling operations that the algorithm is
allowed to perform. In more details, besides the input digraph and the number of available
colors k, the modified method lll-gen, summarized in Algorithm 6, takes as input also an
integer value I and stops when either a γ-NE is found (for γ as in Equation 6) or a maximum
number of iterations I is performed. Note that, throughout the reminder of the paper we
assume I to be a polynomial with respect to input size. By such modification, it is easy to
see that the following lemma holds.

Lemma 5.2. Algorithm lll-gen runs in O(I(n+ ∆o∆i)) time.

Proof. In each iteration, lines 5 to 8 are executed, with the former requiring O(|S|) time
while the latter performing a number of operations that is bounded by the maximum size of
the dependency set of any vertex, i.e., O(∆o∆i). Note that, through all iterations, a vertex
may become unhappy several times, hence the sum of the sizes |S| for all iterations is not
upper bounded by n. Thus, the claim follows.

6. Experimentation

In this section, we first present the results of a preliminary experimentation, whose main
focus is to establish how approx-1 and lll-spe, i.e. the only known algorithm with worst-
case guarantees on the achieved γ, perform in practice in terms of approximation and running
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Algorithm 6: Algorithm lll-gen.
Input: A digraph G = (V,A), a set C of |C| = k available colors, a maximum

number of iterations I
Output: A k-coloring c of G

1 c← random k–coloring of G with uniform probability 1
k ;

2 Compute threshold on γ as in the proof of Theorem 4.2;
3 i← 0;
4 while ∃ a γ-unhappy vertex and i < I do
5 Let S be the set of γ unhappy vertices; /* c is not a γ-NE, hence S 6= ∅ */
6 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
7 Randomly, uniformly, color vertices in dependency set depv of v;
8 i← i+ 1;
9 return c;

time, since no characterization of the average case of such solutions is known with respect to
these terms. Since our preliminary experiments highlight the poor practical performance of
algorithms approx-1 and lll-spe, we then present the results of a second, more thorough
experimental study, whose aim is to assess the performance of all algorithms considered in
this paper for computing approximate NE for digraph k-coloring games, including those
without guarantees on the achieved γ, when the number of colors is given as parameter.
This part of our study provides strong evidences of the very good performance of the newly
introduced heuristic algorithm myo-best-resp in terms of achieved approximation and
running time. For the sake of completeness, we conclude the section by showing the results
of an experimental study focused on algorithm approx-3, which is treated separately due to
its different nature, as it takes as input a parameter ε > 0 encoding a target approximation.

Given the above generalization, we implement and test both approx-1 and lll-gen
against both artificial and real-world graphs of various sizes and classes, and different values
of k. We measured the quality of approximation of the obtained colorings and noticed
that in the great majority of the considered inputs such approximation is unsatisfactory for
both algorithms. To show this, computed colorings are compared to randomly generated
colorings, obtained by randomly, uniformly assigning a color of the strategy set C to each
agent with probability 1

|C| (we denote this method by random in what follows). In all
conducted tests, as a measure of quality of the computed colorings, we focus primarily on
the obtained approximation. Specifically, for each graph G and value of k, and for each
execution of each algorithm yielding a coloring c, we measure the approximation ratio with
respect to a pure, exact NE, denoted as γ(G, c), as follows:

γ(G, c) =

∞ if ∃v ∈ V : cv == cu ∀ u ∈ Nout(v)

max
v∈V :δvo>0

πc(v)
µc(v) otherwise. (7)

In other words, if an algorithm computes a coloring c exhibiting γ(G, c) > 1 (a sufficient
condition for the latter to happen is all vertices having strictly positive payoff, cf. Section 6),
it follows that the found coloring is a γ(G, c)-NE. Moreover, γ(G, c) = 1 implies c is a pure
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NE. Used inputs, parameters and structure of the experimental settings are described in the
following section. In what follows, we use llg, rnd and ap1 to refer to algorithms lll-gen,
random and approx-1, respectively, for the sake of brevity.

6.1 Test Environment and Implementation Details

Our entire test environment is based on NetworKit (Staudt, Sazonovs, & Meyerhenke, 2016),
a widely adopted open-source toolkit for implementing graph algorithms and performing
network analysis tasks at scale. All our code is written in Python, with some sub-routines
in C++/Cython. All tests have been executed, through the Python 3.8 interpreter, under
Linux (Kernel 5.3.0-53), on a workstation equipped with an Intel© Xeon© CPU E5-2643
3.40GHz and 128 GB of RAM, and three levels of cache (384KiB L1 cache, 1536KiB L2
cache, 20MiB L3 cache).

As input to our experiments, inspired by other empirical studies on graph algorithms (An-
griman, van der Grinten, von Looz, Meyerhenke, Nöllenburg, Predari, & Tzovas, 2019;
D’Emidio, 2020; D’Angelo, D’Emidio, & Frigioni, 2019, 2016; D’Andrea, D’Emidio, Fri-
gioni, Leucci, & Proietti, 2014; Borassi & Natale, 2019), we employed a large dataset
of digraphs, including: (i) real-world instances, taken from publicly available repositories
(Leskovec & Krevl, 2014; Rossi & Ahmed, 2015; Peixoto, 2020); (ii) artificial digraphs,
built via well-established random generators, such as, e.g., Erdős-Rényi and Paley models
(Bollobás, 2011). More details on used inputs, including sizes and main characteristics are
reported in Table 1. Regarding artificial graphs, generation details are as follows: graphs
era, erb, erc, erd, and ere are random graphs generated by the Erdős-Rényi model
G(n, p), with n vertices and probabilty p for an edge between any two vertices being present
in the graph (in our dataset we have selected n = 1 000 and five increasing probabilities
p ∈ {0.0125, 0.025, 0.05, 0.1, 0.2}, respectively); instances rr3, rr4, and rr5 are random
regular graphs where neighbors of each vertex are sampled uniformly at random (in our
dataset se have selected degrees 3, 4, and 5, respectively); finally, graphs pl1 and pl2 are
random regular (expander) graphs generated by the Paley model: given a parameter p ∈ Z
such that p is a prime power and p mod 4 = 1, the generator generates a graph having
vertices in Z \ pZ and having an edge between vertices x, y if and only if x− y is a non-zero
square in Z \ pZ (in our dataset, we select p ∈ {601, 1181}, respectively, since these are the
smallest values satisfying the conditions that yielded graphs of reasonable size).

Concerning parameter k, since no direct, analytical relationship has been established
between k itself and the approximation the algorithms under study are able to provide, our
experimental trials consider carefully selected values of said parameter to investigate how the
algorithms’ behavior changes as k increases. Specifically, in our experimentation we try to
explore such dependency by considering both the reference case of k = 3, which is conjectured
to represent a threshold on the computational hardness of the problem, and, as suggested
by consolidated guidelines for experimental algorithmics to magnify the dependency on
parameters in a reasonable number of tests (McGeoch, 2012), values of k spanning the
interval [max{4, do},∆o], evenly spaced as multiples of ∆o−do

5 , rounded to the closest integer.
For iterative algorithms, we fix I = n log n, since for higher values lll-gen yields impractical
running times in the largest instances, incompatible with those required for an experimental
study (see Figure 9).
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Dataset Short Type |V| |A| do do ∆o S
Twitter twi digital social 23370 33101 1.42 0 238
facebook fac digital social 309717 472792 1.53 0 358
amazon ama ratings 80679 135336 1.68 2 9
Flight flt infrastructure 1226 2613 2.13 1 24
Peer2Peer p2p internet 62586 147892 2.36 0 78
Luxembourg lux road 30647 75546 2.47 3 9
rand3 rr3 random 10000 30000 3 3 3
chicago chi road 12978 39017 3.01 3 7
dblp dbl citation 240 901 3.75 3 68
rand4 rr4 random 10000 40000 4 4 4
Oregon-AS ore autonomous system 10670 44004 4.12 2 2312
rand5 rr5 random 10000 50000 5 5 5
Health hea human social 2539 12969 5.11 5 10
relativity rel collaboration 5242 28968 5.53 3 81
Linux lin community 30834 213424 6.92 5 243
Peer2PeerSm spp internet 10876 79988 7.35 5 103
Google goo hyperlinks (local) 15763 170335 10.81 8 852
arxiv arx digital social 12711 139965 11.01 7 322
Erdős-Rényi A era random 1000 12460 12.46 12 27
Blog blg interaction 1224 19022 15.54 7 256
politics pol voting 793 15781 19.9 12 217
Erdős-Rényi B erb random 1000 24943 24.94 25 45
wiki-Vote wvt voting 7115 201524 28.32 4 1065
Email ema interaction 1005 32128 31.97 21 345
usair uat traffic 2058 93823 45.59 10 525
Erdős-Rényi C erc random 1000 49924 49.92 50 74
Erdős-Rényi D erd random 1000 100025 100.03 100 134
Erdős-Rényi E ere random 1000 199443 199.44 199 238
paley601 pl1 random 601 180300 300 300 300
paley1181 pl2 random 1181 696790 590 590 590

Table 1: Overview of used input digraphs. The first three columns contain dataset name,
acronym, and type; the 4th and 5th columns show number of vertices and arcs of the
digraph, respectively; columns from the 6th to the 8th report average, median and maximum
outdegree, respectively. Finally, the 9th column highlights whether the graph is synthetic
or real-world ( = true, = false). Inputs are sorted by do, non-decreasing.

6.2 Preliminary Experimental Evaluation of Algorithms approx-1 and
lll-gen

A first excerpt of the results of our experiments is shown in Figure 2 where we compare
executions of lll-gen and approx-1 in terms of achieved γ(G, c) for various graphs and
values of k. Note that, for all algorithms that resort to randomization we execute five trials,
for each combination of input and parameters, and computed average values of the observed
measures, in order to reduce noise biases.

On the one hand, we can observe for instance that, while algorithm approx-1 always
finds a ∆o-NE coloring, it is not rare that random assignments yield better approximations,
regardless of the chosen k, in the form of γ-NE colorings with γ � ∆o (see, e.g., Figure 2a
or 2f). On the other hand, for several other inputs algorithm approx-1 is better than
random assignments and yields colorings that are γ-NE for γ � ∆o (see, e.g., Figure 2b)
while colorings produced by random are not even approximate NE, since there exist vertices
having unbounded approximation factor (shown in the figure by empty columns). Similarly,
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Figure 2: Empirical observations on the approximation on pure NE provided by colorings
computed via algorithms approx-1 and lll-gen, when applied to a selection of eight
inputs graphs, compared to colorings obtained by random uniform assignment (denoted by
rnd). The x-axis shows the considered algorithms while the y-axis whether the computed
coloring is a γ-NE for some finite γ > 0. We report zero in each column whenever the
computed coloring is not a γ-NE for any γ > 0, i.e., when there exists at least one agent
with zero payoff. Considered inputs are: Erdős-Rényi C (a), Oregon-AS (b), Linux
(c), Peer2Peer (d), Erdős-Rényi E (e), Twitter (f), paley601 (g), and Email (h).

algorithm lll-gen, which is guaranteed to converge to a γ-NE for constant γ, in polynomial
time w.h.p. and for digraphs with sufficiently large minimum degree, computes a γ-NE that
is of worse approximation quality with respect to random selection on such graphs (see, e.g.,
Figure 2g). Viceversa, algorithm lll-gen surprisingly produces approximate NE colorings
with a finite value of γ that, for some inputs, is comparable or better to that of colorings
obtained via approx-1, despite the graph at hand does not belong to the special class for
which lll-gen is known to provide constant γ (see, e.g., Figure 2a or 2h).

For all the above reasons, it somehow remains unclear which, among available solutions,
is the one that can be considered most suited for practical applications of the considered
problem. Thus, motivated by the lack of thorough empirical studies on the subject and by
the poor performance of approx-1 and lll-gen, in what follows we focus on the best-
response paradigm, and experimentally evaluate it, against approx-1 and lll-gen, with
the aim of establishing its performance in the considered context.
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6.3 Experimental Evaluation of Algorithm myo-best-resp against Algorithms
approx-1 and lll-gen

In this section we discuss the experimental work that has been conducted in order to es-
tablish the practical effectiveness of algorithm myo-best-resp, given in Section 5. To this
purpose, we execute and compare obtained results to those achieved by approx-1 and lll-
gen for the same inputs and values of k. Note that this part of the study measures also
further performance indicators to better characterize the behavior of the considered algo-
rithms, specifically to discriminate different equilibria exhibiting a same approximation, if

any. More in detail, we measure: average payoff denoted as P (G, c) =

∑
v∈V

µc(v)

|V | and fraction

of unhappy vertices, denoted as U(G, c) = |{v∈V : v is unhappy}|
|V | . Finally, for all algorithms,

we measure the running time T (G, c) spent to compute c for the given digraph G. Our ex-
perimental framework is written in Python, with some sub-routines in C++/Cython, with
a fairly optimized code.1 We leave the problem open of achieving a faster version of all
implementations through careful code tuning and/or porting to more high-performance pro-
gramming languages, e.g., pure C++. Again, note that, for all algorithms that resort to
randomization (including mbr in the initial random coloring step) we execute five trials, for
each combination of input and parameters, and computed average values of the observed
measures, in order to reduce noise biases.

In Table 2 we present a summary of the results of our experimentation, for all input
graphs and values of k. In detail, for each considered metric, starting from the most relevant
for our study (i.e., approximation factor), we report the number of trials in which each
algorithm resulted to be the best (2nd best, 3rd best, worst, respectively) performing one
with respect to said metric. Our data highlight that algorithm mbr is the best performing
one, globally, in terms of approximation. In fact, out of 210 combinations of input instances
and values of k, mbr computes a γ(G, c)-NE with the smallest value of γ(G, c) in 175 of
them (83.3% of the combinations). Algorithms rnd, llg and ap1, instead, behave rather
badly, being rnd the only one providing the best γ(G, c) in the remaining 16.7% of the
combinations. Moreover, values of γ(G, c) obtained by llg and ap1 are often close to those
of rnd, as shown in Figures 3–4 (for k = 3) and Figures 6–8 (for larger k), which represents
a solid evidence of the practical ineffectiveness of the two. Notice that, in such figures we
report detailed measures of γ(G, c), and of other indicators introduced in this section, for all
algorithms and for a meaningful selection of input graphs and values of k. Results for other
inputs lead to similar considerations and hence are omitted. Notice also that, in all panels
reporting measures of approximation factors, again we use an empty column to show that
γ(G, c) equals infinity for the computed coloring(s), according to the definition of Equation 7.
This condition occurs when in a computed coloring there exists at least one vertex having
zero payoff. On the other hand, γ(G, c) = 1 and U(G, c) = 0 correspond to a pure NE
being found. On top of the above observations, besides mbr being the best solution with
respect to approximation, the most surprising outcome of our experimentation is that mbr
is able to compute, in almost all cases, colorings that are pure, exact Nash equilibria (see
e.g., Figure 3, Figure 4.middle-top or Figure 5). This is remarkable, considering the known
hardness of determining this kind of colorings in general digraphs. More specifically, mbr

1. Code is publicly available at https://tinyurl.com/bdfsafcp

187

https://tinyurl.com/bdfsafcp


D’Ascenzo, D’Emidio, Flammini & Monaco

metric algorithm best 2nd 3rd worst

γ(G, c)

rnd 35 (16.7 %) 84 (40.0 %) 0 (0.0 %) 91 (43.3 %)
ap1 0 (0.0 %) 91 (43.3 %) 63 (30.0 %) 56 (26.7 %)
llg 0 (0.0 %) 0 (0.0 %) 147 (70.0 %) 63 (30.0 %)
mbr 175 (83.3 %) 35 (16.7 %) 0 (0.0 %) 0 (0.0 %)

U(G, c)

rnd 0 (0.0 %) 161 (76.7 %) 49 (23.3 %) 0 (0.0 %)
ap1 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 210 (100.0 %
llg 0 (0.0 %) 49 (23.3 %) 161 (76.7 %) 0 (0.0 %)
mbr 210 (100.0 %) 0 (0.0 %) 0 (0.0 %) 0 (0.0 %)

P (G, c)

rnd 0 (0.0 %) 0 (0.0 %) 91 (43.3 %) 119 (56.7 %)
ap1 0 (0.0 %) 0 (0.0 %) 119 (56.7 %) 91 (43.3 %)
llg 7 (3.3 %) 203 (96.7 %) 0 (0.0 %) 0 (0.0 %)
mbr 203 (96.7 %) 7 (3.3 %) 0 (0.0 %) 0 (0.0 %)

T (G, c)

rnd 210 (100.0 %) 0 (0.0 %) 0 (0.0 %) 0 (0.0 %)
ap1 0 (0.0 %) 203 (96.7 %) 7 (3.3 %) 0 (0.0 %)
llg 0 (0.0 %) 0 (0.0 %) 42 (20.0 %) 168 (80.0 %)
mbr 0 (0.0 %) 7 (3.3 %) 161 (76.7 %) 42 (20.0 %)

Table 2: Aggregate statistics for all tested algorithms with respect to the four performance
indicators of interest, for all 210 considered combinations of inputs and values of k. The
first column shows the indicator, the second column shows the considered algorithm while
columns from the 3rd to the 6th report the number of trials (and the percentage of trials)
in which the algorithm has been the best (2nd best, 3rd best, worst) performing one with
respect to the corresponding indicator.

is able to find, often, pure Nash equilibria in less than n iterations, for the large majority
of the considered graphs and for all values of k. An example of this behavior is shown
in Figures 7a–7b, respectively, where we can observe how the value of γ(G, c) induced by
algorithm myo-best-resp, at some point quickly converges to a pure NE, by approaching
and then stabilizing at 1, in much less than n log n and n iterations, respectively.

The only exceptions to this very effective optimization by myo-best-resp are Erdős-
Rényi instances (where however, in some case, myo-best-resp still achieves the best ap-
proximation). In these latter inputs, as shown in Figures 7c–7d, n log n iterations do not
suffice to achieve convergence at pure NE and colorings computed by myo-best-resp ex-
hibit a γ(G, c) that appears to (i) become periodic at some point of the optimization process
and (ii) to stabilize around some value slightly above 1 (around 2 and 1.5, in the specific
cases). Nonetheless, for larger values of k (see Figure 6.bottom), we notice that mbr man-
ages to find pure NE even in instances for which neither myo-best-resp nor other methods
were able to compute a pure equilibrium for low values of k (e.g., Erdős-Rényi graphs).
This is another peculiar element supporting the good performance of myo-best-resp in
practice. Moreover, it might be an hint of the problem being "computationally easier" to
be attacked when k is above some threshold, function of the structure/size of the graph.
This aspect certainly deserves additional investigation and we leave the problem open of
characterizing this relationship, if any.

Observe that, when mbr ranks 2nd best in terms of γ(G, c), algorithm rnd results to
be the best performing one (see, e.g., Figures 4.top or 4.bottom). At the same time, mbr
exhibits higher average payoff and lower fraction of unhappy vertices, which suggests that
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Figure 3: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in graphs twi
(top), lin (middle-top), hea (middle-bottom), and lux (bottom) with k = 3. Running
time T (G, c) is expressed in seconds.

random assignment might be "lucky" in picking and making happy high-degree vertices,
while algorithm mbr is able to achieve maximum payoff for a large fraction of the vertex
set. By the above, we conjecture that there might exist an analysis for algorithm mbr to
prove a bounded approximation ratio for a broad class of graphs.

In this direction, it is worth noticing that, unexpectedly, llg fails at achieving the best
approximation even in graphs where the LLL is satisfied (i.e., where llg finds constant
approximation in expected polynomial time). This might be due the fact that the threshold
value of γ, for which llg stops, is rather high, often larger than ∆o (e.g., 2690.36 for instance
erc, see Equation 6 with k = 3). In this respect, to achieve better results in practice, a
possibility (without any guarantee) could be removing such stopping criterion from lll-gen
to let the coloring being updated, via resampling, for a maximum number of iterations, as
done by myo-best-resp. For the sake of fairness and completeness, we considered also such
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Figure 4: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in graphs erd
(top), pl1 (middle-top), erb (middle-bottom) and ere (bottom), with k = 3. Running
time T (G, c) is expressed in seconds.

possibility and modified and tested our implementation of lll-gen without the stopping
criterion based on the achieved γ.

Nonetheless, further experimentation, omitted for the sake of brevity, shows that this
does not lead to meaningful improvements, in terms of both approximation and other in-
dicators, and the observed behavior is very close to the one shown in this experimental
section. We can hence conclude that repeated operations of resampling of the dependency
set are indeed enough to obtain constant approximation w.h.p. but result to be empirically
ineffective. Thus, another outcome of our study is that the use of llg is discouraged for
practical purposes, unless more effective ways of exploiting the LLL can be determined.

Regarding the impact of varying k on the performance of the considered algorithms, we
observe that, while mbr remains the best performing in essentially all cases, approximation
ratio and fraction of unhappy vertices (running time and average payoff, respectively) tend
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Figure 5: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in graphs dbl
(top), chi (middle-top), rel (middle-bottom) and goo (bottom), with k = 3. Running
time T (G, c) is expressed in seconds.

to decrease (increase, respectively) with k, for all algorithms. This might suggest that larger
values of k could reduce the possibility of being unhappy, by increasing the choices of the
agents in the strategy set. Further investigation is however necessary also here to find out
whether there exists some analytical relationship between k, ∆o, and the quality of the
equilibrium that can be achieved, or some computational barrier on the computability of
good NE depending on k.

As an additional remark, concerning running time, our data mostly confirm what it is
expected, i.e., that: (i) rnd is trivially the fastest method; (ii) in some cases mbr is the
most time consuming solution (yet achieving the best approximation or values of gamma very
close to the best approximation); (iii) in the remaining cases, llg yield the largest T (G, c)
and does not achieve the best approximation (see Figure 9 for the largest input instance
considered in this study). These latter observations represent further evidence of mbr being

191



D’Ascenzo, D’Emidio, Flammini & Monaco

rnd llg ap1 mbr
0

1

2

3

4
γ(G, c)

4 16 28 40 52 64

rnd llg ap1 mbr
0.0

0.1

0.2

0.3

0.4
U(G, c)

4 16 28 40 52 64

rnd llg ap1 mbr
0

1

2

3

P (G, c)
4 16 28 40 52 64

rnd llg ap1 mbr
0.0

0.5

1.0

T (G, c)
4 16 28 40 52 64

rnd llg ap1 mbr
0

2

4

6

8
γ(G, c)

4 54 104 154 204 254

rnd llg ap1 mbr
0.0

0.2

0.4

U(G, c)
4 54 104 154 204 254

rnd llg ap1 mbr
0

5

10

15

P (G, c)
4 54 104 154 204 254

rnd llg ap1 mbr
0

500

1000

T (G, c)
4 54 104 154 204 254

rnd llg ap1 mbr
0

2

4

6

γ(G, c)
5 9 13 17 21 25

rnd llg ap1 mbr
0.0

0.2

0.4

0.6

0.8

U(G, c)
5 9 13 17 21 25

rnd llg ap1 mbr
0

5

10

P (G, c)
5 9 13 17 21 25

rnd llg ap1 mbr
0

20

40

60

80
T (G, c)

5 9 13 17 21 25

Figure 6: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in graphs dbl
(top) and blg (middle) and era (bottom), with increasing values of k. Running time
T (G, c) is expressed in seconds.
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Figure 7: Results achieved by the execution of algorithm mbr, in terms of γ(G, c), on graphs
rel (a), ema (b), erc (c) and ere (d) with k = 3. The y–axis shows the measured value
of γ(G, c) as a function of the number of iterations performed by the algorithm, reported on
the x-axis. Initial iterations where γ(G, c) is unbounded, due, e.g., to some vertex having
zero payoff are omitted for the sake of readability.

effective at converging to a pure NE, when it exists. Finally, in all cases we observe the
average payoff tends to the average degree of the input graph and, in the few cases when
a pure NE is not determined, the fraction of unhappy vertices is always very close to zero,
showing that myo-best-resp is able to compute a coloring c that assigns ψc(v) to the payoff
of most vertices v of the instance. Note that, in this paper, all algorithms do not take into
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Figure 8: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in graphs flt
(top) and pl1 (bottom), with increasing values of k. Running time T (G, c) is expressed in
seconds.

account the maximization of the achieved payoff as optimization objective, and agents only
aim at finding themselves in a NE, while several equilibria, exhibiting a same γ but with
different payoffs for agents, might exist (as our experimentation highlights). We leave the
problem of considering optimization of payoffs in the process of achieving good equilibria
open for further investigation. This could of both practical and theoretical interest, as it
might lead to finding bounds on other metrics that are often considered in game theoretical
contexts (e.g., price of stability).
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Figure 9: Performance of algorithms rnd, llg, ap1 and mbr, respectively, in the largest
input graph, fac, with k = 3. Running time T (G, c) is expressed in seconds. llg performs
all the n log n iterations without reaching any equilibrium, and results to be the most time
consuming algorithm at scale. Algorithm myo-best-resp finds a pure NE and is faster
than approx-1, while random does not yield any bounded approximation equilibrium.

To summarize, our experimental study identifies algorithm mbr as the best performing
one for digraph k-coloring games. This observation, combined with the fact that (myopic)
best-response approaches are easy to implement, even in a distributed uncoordinated envi-
ronment, suggests that mbr is strongly advised to find good Nash equilibria in application
domains where the considered game arises, even if it does not provide theoretical guaran-
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tees on the approximation ratio. On the contrary, the usage of algorithms with guarantees,
considered in this work, is discouraged in practice, given their limited performance.
To this regard, it is challenging to provide unquestionable motivations of why ap1 and lll-
spe/lll-gen perform poorly, also when compared to algorithm mbr, given the substantial
differences among the three approaches. Concerning ap1, we remark that the algorithm
is deterministic and explicitly designed only to guarantee that each vertex has an outgo-
ing neighbor with a different color. While this yields a ∆o approximation for the resulting
equilibrium in the worst case, in practice on the one hand this strategy might correspond
to a good performance for graphs with very low ∆o; on the other hand, we might have a
worse performance in dense graphs or graphs that tend to be regular w.r.t. their degree
(the coloring phase of vertices in L′ does not take into account the vertices’ degrees and
does not apply any optimization to payoffs). Regarding lll-spe, similarly, the algorithm is
designed to guarantee a given constant approximation γ, within expected polynomial time,
without minding the expected ratio and without incorporating any mechanism oriented to
minimizing such ratio with local improvements. In fact, the resampling step is completely
random and does not aim at optimizing the number of vertices with different colors.

The above two arguments represent tentative explanations on why both ap1 and lll-
spe/lll-gen achieve low average approximation, especially if compared to the best-response-
based mbr algorithm, which instead at each iteration includes a step focused on maximizing
the local improvement for a vertex. However, we remark that, while mbr reveals to be a
valid and practically effective heuristic, it has lower theoretical guarantees with respect to
both ap1 and llg.

Notice that, even if the above observations shed some light on the possible causes of
the bad average performance of the two approaches with guarantees on the approximation,
there are no data or strong evidence, however, supporting these hypotheses. It would be
interesting, therefore, to provide further characterizations of the practical performance of
the two algorithms, also on the basis of more extensive experimental evidences or theoretical
results.

6.4 Experimental Evaluation of Algorithm approx-3

In this section, we complete our study by experimentally evaluating algorithm approx-3.
Since the algorithm takes as input a parameter ε > 0 and returns a (1 + ε)-NE by using at
most 6(1+ε)

ε log n = O( logn
ε ) colors, in what follows we show the results of a set of tests per-

formed on the same graphs of Table 1 with values of ε ∈ {0.2, 0.4, 0.8, 1.6}. We implemented
and tested the algorithm against the same inputs used for the evaluation of algorithms ap1,
mbr, llg, described above, and considered the same performance indicators.

A summary of our experiments is shown in Figures 10–11. Other results are omitted
as they lead to the very same empirical conclusions. In particular, our data show that al-
gorithm approx-3 performs well in practice and that the theoretical analysis provides a
pessimistic characterization of the practical performance of the algorithm itself. In fact, we
can observe that, in several cases, the algorithm ends up in finding, quite quickly, pure NE
by using much less than 6(1+ε)

ε log n colors (e.g., see Figures 10.bottom and 11.top and cor-
responding running times). Moreover, in those cases where a pure NE is not determined, the
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approximation found is far smaller than the 1+ ε imposed by parameter (see Figure 10.top).
This suggests that either it might be possible to tighten the analysis of the approximation
factor (in general or for special graph classes) or there might exists an algorithm that finds
a better equilibrium, with respect to the one computed by approx-3, in polynomial time,
for k = O(log n). Finally, in all cases the average payoff tends to the average degree of
the input graph and, in the few cases when a pure NE is not determined, the fraction of
unhappy vertices is always very close to zero, showing that approx-3 is able to compute a
coloring c that induces πc(v) to be the payoff of most vertices v of the instance.
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Figure 10: Performance of algorithm approx-3 when applied to graphs p2p (top), flt
(middle), lux (bottom), with increasing (doubling) values of ε ∈ {0.2, 0.4, 0.8, 1.6}.

7. Conclusion and Future Work

In this paper we advanced the state of the art on digraph k-coloring games, where selfish
agents, i.e., vertices of an n-vertex input graph, aim at anti-coordination by selecting one
of k possible strategies, i.e., colors, in order to maximize their payoff, given by the number
of outgoing neighbors selecting a different strategy. Such games model several prominent
real-world scenarios and are related to some of the most fundamental classes of games that
have been investigated in the literature.

We focused on the most important notion of stability in this field, i.e., the Nash equilib-
rium, and, motivated by the fact that equilibria of this kind might not exist for every k < n
and that, in general, their determination is an NP-hard problem, we considered the milder
notion of approximate Nash equilibrium. In this context, we designed and analyzed both
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Figure 11: Performance of algorithm approx-3 when applied to graphs rr3 (top), goo
(middle), ore (bottom), with increasing (doubling) values of ε ∈ {0.2, 0.4, 0.8, 1.6}.

deterministic and randomized approximation algorithms (namely approx-1 and lll-spe)
that, in polynomial time and given a number k of colors, return NE with worst-case guar-
antees on the approximation either in general graphs or in those having sufficiently large
minimum outdegree. Furthermore, we introduced a third deterministic algorithm, named
approx-3, that, for general digraphs and for any ε > 0, computes a (1 + ε)-Nash equilib-
rium by using O( logn

ε ) colors, in polynomial time. Note that such a construction shows that
(1 + ε)-Nash equilibria exist and can be computed in polynomial time for k = Ω( logn

ε ) and
this contrasts to the fact that, for any k < n, pure Nash equilibria are not guaranteed to
exist and in general cannot be computed in polynomial time, unless P = NP . Clearly these
results are stronger than mere existential ones, since they imply directly the existence and
the fact that such equilibria can be reached in practical scenarios.

Unfortunately, through careful experimentation conducted on both real-world and syn-
thetic inputs, we observed that while solutions approx-1 and lll-spe are suitably designed
to achieve bounded worst case behavior, they generally exhibit a poor performance in prac-
tice. Hence, we shifted our attention on best-response dynamics and introduced heuristic
myo-best-resp, based on this principle. We show that, while such algorithm does not pro-
vide any upper bound on the approximation of the achieved equilibrium, it results to be very
effective in practice by computing pure, non-approximate equilibria in the large majority of
the considered inputs, and by widely outperforming algorithms with guarantees. Hence, it
can be considered the natural candidate to be used in practice for addressing this class of
games.
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7.1 Future Work

Our study certainly motivates further research effort on this relevant class of games, since
several interesting questions, both of theoretical and empirical type, remain open. First, our
experiments suggest that, in general, it might be possible to design an algorithm computing
Nash equilibria with a better guarantee on the worst case approximation factor. In fact,
also for the very few cases in which a pure Nash equilibrium is not identified by myo-
best-resp, the returned solution is always an equilibrium with a very low approximation
ratio. Secondly, myo-best-resp being able to find pure NE, in most of the cases, suggests
that the existence of a NE might be proved for special, broad classes of graphs, especially
those typically arising from social phenomena. Moreover, it would be also worthwhile to
prove that good approximate Nash equilibria always exist and, specifically, to understand
what is the minimum value of γ such that a γ-approximate equilibria can always be found.
In this direction, it is worth noticing that, a viable strategy to obtain lower bounds on
the approximation factor could be that of exploiting a linear programming formulation
for the problem, as done for other combinatorial problems in the past. Finally, it would
be interesting to understand whether the equilibrium computed by approx-3 is the best
approximation one can determine, in polynomial time, for k = O(log n).

Note that, a further step of progress toward a full characterization of digraph k-coloring
games is that of considering weighted digraphs. Even if we did not treat this case explicitly,
we emphasize that our result for k = Ω

(
logn
ε

)
colors can be generalized to show the existence

of an equilibria with the same approximation ratio for k = Ω
(

logW
ε

)
, whereW is the overall

sum of the edge weights. However, it remains unclear whether such an equilibria can be
identified in polynomial time. In this wording, it is also worth remarking that, even when
the graph is weighted and undirected (in such a case pure Nash equilibria always exists
since we have a potential game, however the problem of computing pure Nash Equilibria
is PLS-complete), efficient algorithms that compute constant approximate Nash equilibria
only exist for the case when k = 2, that is for the cut game, with γ = 3 + ε (Bhalgat et al.,
2010; Caragiannis et al., 2017). Moreover, even for such a particular setting, there is no
evidence that the current proposed solutions are the best approximate Nash equilibria that
can be computed in polynomial time, i.e., that the known results are tight.
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