
Journal of Artificial Intelligence Research 80 (2024) 805–834 Submitted 03/2024; published 06/2024

Counting Complexity for Reasoning in Abstract
Argumentation

Johannes K. Fichte johannes.fichte@liu.se
Linköping University
58183 Linköping, Sweden

Markus Hecher hecher@mit.edu
MIT Computer Science & Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar St
Cambridge, MA 02139, USA

Arne Meier meier@thi.uni-hannover.de

Leibniz Universität Hannover

Institut für Theoretische Informatik

Appelstraße 4

30167 Hannover, Germany

Abstract

In this paper, we consider counting and projected model counting of extensions in ab-
stract argumentation for various semantics, including credulous reasoning. When asking
for projected counts, we are interested in counting the number of extensions of a given ar-
gumentation framework, while multiple extensions that are identical when restricted to the
projected arguments count as only one projected extension. We establish classical complex-
ity results and parameterized complexity results when the problems are parameterized by
the treewidth of the undirected argumentation graph. To obtain upper bounds for count-
ing projected extensions, we introduce novel algorithms that exploit small treewidth of
the undirected argumentation graph of the input instance by dynamic programming. Our
algorithms run in double or triple exponential time in the treewidth, depending on the
semantics under consideration. Finally, we establish lower bounds of bounded treewidth
algorithms for counting extensions and projected extension under the exponential time
hypothesis (ETH).

1. Introduction

Abstract argumentation (Dung, 1995; Rahwan, 2007) is a central framework for modeling
and evaluating arguments and their reasoning with applications to various areas in artificial
intelligence (AI) (Amgoud & Prade, 2009; Rago, Cocarascu, & Toni, 2018). The seman-
tics of argumentation is described in terms of arguments that are acceptable with respect
to an abstract framework, such as stable or admissible. Such sets of arguments are then
called extensions of a framework. In argumentation, one is particularly interested in the
credulous or skeptical reasoning problem, which asks, given an argumentation framework
and an argument, whether the argument is contained in some or all extension(s) of the
framework, respectively. A very interesting, but yet entirely unstudied question in abstract
argumentation is the computational complexity of counting, which asks for outputting the

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Hecher, Fichte & Meier

number of extensions with respect to a certain semantics. By counting extensions, we can
answer questions such as how many extensions are available that contain certain arguments.
This even opens the door to computing conditional probabilities with respect to quantities
of extensions for a given argument, which enables us to understand solutions and solution
spaces. Counting problems related to credulous reasoning can emphasize a quantitative view
of this type of reasoning. By this, the conditional probability can be expressed. In addition,
counting allows for more fine-grained reasoning between the usually two extreme cases of
skeptical and credulous reasoning, c.f. (Fichte, Hecher, & Nadeem, 2022; Fichte, Hecher,
Mahmood, & Meier, 2023). If we restrict our solutions to a certain subset of the arguments,
we ask for the number of projected extensions, which is sometimes also called forgetting.
Projected counting is a most natural extension of counting, since we are often interested
in the count with respect to a subset of the arguments where the auxiliary arguments are
not in one-to-one correspondence with other extensions. In the end, the proposed advance-
ments allow for developing probabilistic variants of classical reasoning problems (e.g., from
“‘is a given argument contained in an extension?” to “is a given argument contained in an
extension with probability P?”).

Interestingly, the computational complexity of the decision problem is already quite
hard. More precisely, the problem of credulous acceptance is NP-complete for the stable
semantics and even Σp

2-complete for the semi-stable semantics (Dunne & Bench-Capon,
2002; Dvořák & Woltran, 2010; Dvořák, 2012). The high worst-case complexity is often a
major issue to establish algorithms for frameworks of abstract argumentation. A classical
way in parameterized complexity and algorithmics is to identify structural properties of an
instance and establish efficient algorithms under certain structural restrictions (Downey &
Fellows, 1999, 2013; Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, &
Saurabh, 2015). Usually, one aims for algorithms that run in time polynomial in the input
size and exponential in a measure of the structure, so-called fixed-parameter tractable algo-
rithms. Such runtime results require more fine-grained runtime analyses and more evolved
reductions than in classical complexity theory, where one considers only the size of the in-
put. In this paper, we consider a graph-theoretic measure of the undirected graph of the
given argumentation framework. As a measure, we take treewidth, which is arguably the
most prominent graph invariant in combinatorics of graph theory, and makes various graph
problems easier when the input graph is of bounded treewidth.

The exponential time hypothesis (ETH) (Impagliazzo, Paturi, & Zane, 2001) states that
there is some real s > 0 such that we cannot decide satisfiability of a given 3-CNF formula φ
in time 2s·|φ| · ∥φ∥O(1). It is a widely believed hypothesis and has been used to establish
lower bounds for various problems, also in classical complexity theory.

Contributions. Our main contributions are as follows.

1. We establish the classical complexity of counting extensions and counting projected
extensions for various semantics in abstract argumentation. Furthermore, we exhibit
the counting complexity of (projected) credulous reasoning for the first time. By this,
we fill a gap in the literature and provide a comprehensive overview of the counting
complexity of reasoning in abstract argumentation. Table 1 shows an overview of the
counting complexity results.

806

Counting Complexity for Reasoning in Abstract Argumentation

semantics S #ExtS #PExtS #CredS #PCredS

admissible # · P # ·NP # · P # ·NP
complete # · P # ·NP # · P # ·NP

stable # · P # ·NP # · P # ·NP
preferred ∈ # · coNP # · ΣP

2 ∈ # · coNP # · ΣP
2

semi-stable # · coNP # · ΣP
2 # · coNP # · ΣP

2

stage # · coNP # · ΣP
2 # · coNP # · ΣP

2

Corollary 8 Corollary 12 Theorem 7 Theorem 11

Table 1: Overview of counting complexity results. The # · coNP results are completeness
results (except only membership for #Credpreferred) with respect to subtractive reductions,
the remainder is complete under parsimonious reductions.

semantics #CredS #PCredS

admissible 2Θ(k) · poly(|F |)∗ 22
Θ(k) · poly(|F |)

complete 2Θ(k) · poly(|F |)∗ 22
Θ(k) · poly(|F |)

stable 2Θ(k) · poly(|F |)∗ 22
Θ(k) · poly(|F |)

preferred 22
Θ(k) · poly(|F |)∗ 22

2Θ(k)

· poly(|F |)
semi-stable 22

Θ(k) · poly(|F |)∗ 22
2Θ(k)

· poly(|F |)
stage 22

Θ(k) · poly(|F |) 22
2Θ(k)

· poly(|F |)

Theorem 17 Theorem 21/23

Table 2: Summary of results for upper and lower bounds (under ETH) for projected cred-
ulous counting. *: Previously known upper bound.

2. We present an algorithm that solves the problem of counting projected extensions
by exploiting the treewidth in runtime, either double exponential in the treewidth or
triple exponential in the treewidth, depending on the semantics under consideration.
This is the first algorithm that solves counting projected extensions for argumentation
in time double or triple exponential in the treewidth. From a more practical point of
view, if the abstract argumentation frameworks of interest are of small treewidth, then
our algorithms efficiently solve hard counting problems.

3. Assuming ETH, we show that one cannot count projected extensions single exponen-
tial in the treewidth. This shows that our algorithms are tight under the ETH. These
results are summarized in Table 2.

Broader Relation to Argumentation and AI. Counting allows for more fine-grained
reasoning between the two extremes of skeptical and gullible reasoning by enabling quan-
titative and probabilistic reasoning. More precise cases of reasoning have also been inves-
tigated in argumentation. For example, Konieczny, Marquis, and Vesic (2015a) introduced

807

Hecher, Fichte & Meier

inference policies relying on greatest supports among extensions. There, extensions are com-
pared based on number of arguments in one extension not attacked by another extension. In
addition, counting is a key ingredient for handling probabilistic reasoning more effectively
than by enumeration alone (Fichte, Hecher, & Hamiti, 2021). By counting twice, taking
the number of extensions under an assumption and taking the number of all, we obtain
conditional probability. In this way, we can also move reasoning from a given argument con-
tained in an extension to arguments in an extension with a certain probability. Imposing
certain constraints on the joint probability distribution of the argument sets can also be
used to define advanced probabilistic semantics (Käfer, Baier, Diller, Dubslaff, Gaggl, &
Hermanns, 2022). Counting can also be helpful for understanding cases where a large num-
ber of extensions arise (Dachselt, Gaggl, Krötzsch, Méndez, Rusovac, & Yang, 2022; Fichte,
Gaggl, & Rusovac, 2022b) or when divergent solutions are sought (Böhl, Gaggl, & Rusovac,
2023). Interestingly, weighted argument systems have been introduced, where attacks are
assigned a weight indicating the relative strength of the attack (Dunne, Hunter, McBurney,
Parsons, & Wooldridge, 2011). Then, computing extensions turns into optimization, which
slightly increases the computational complexity. Such extensions could also be considered by
extending our results to weighted counting similar to sum-of-products or weighted model
counting (Fichte et al., 2021) or probabilistic logic programming (De Raedt & Kimmig,
2015). Finally, there exist recent work that studies quantitative aspects of claim-centric
reasoning in logic-based argumentation (Hecher, Mahmood, Meier, & Schmidt, 2024).

Related Work. Baroni, Dunne, and Giacomin (2010) considered general extension count-
ing and show #P-completeness and identify tractable cases. We generalize these results to
the problems of creadulous reasoning as well as to further argumentation semantics. Lampis,
Mengel, and Mitsou (2018) considered bounded treewidth algorithms and established lower
bounds on the runtime of an algorithm that solves reasoning in abstract argumentation un-
der the admissible and preferred semantics. These results do not extend trivially to counting
and are based on reductions to QBF. They give asymptotically tight bounds, but still yield a
constant factor. Unfortunately, even a small increase of one can add an order of magnitude in
inference time with dynamic programming (DP) algorithms for QBF. As a result, a factor of
just two can already render it impractical. Fichte, Hecher, Morak, Thier, and Woltran (2023)
gave dynamic programming algorithms for projected #SAT and established that it cannot
be solved in runtime double exponential in the treewidth under ETH using results by Lampis
and Mitsou (2017), who established lower bounds for the problem ∃∀-SAT. Dvořák, Pichler,
and Woltran (2012) introduced dynamic programming algorithms that exploit treewidth to
solve decision problems of various semantics in abstract argumentation. We employ these
results and lift them to projected counting. Dynamic programming algorithms for projected
counting in answer set programming (ASP) are known (Fichte & Hecher, 2018), but exist-
ing reductions from argumentation to ASP are not treewidth preserving. The results in this
paper could already be fruitfully used in the context of quantitative reasoning in abstract
argumentation quite recently (Fichte et al., 2023). The abstract argumentation track of
the 4th International Competition on Computational Models of Argumentation (ICCMA)
had as sub-track extension counting as a reasoning problem (CE) (Lagniez, Lonca, Mailly,
& Rossit, 2020, 2021). Projected counting is a crucial reasoning task and of central inter-
est in reasoning (Darwiche & Marquis, 2002; Aziz, Chu, Muise, & Stuckey, 2015; Fichte

808

Counting Complexity for Reasoning in Abstract Argumentation

et al., 2021, 2022b; Audemard, Lagniez, & Miceli, 2022; Yang, Chakraborty, & Meel, 2022;
Fichte et al., 2023; Vigouroux, Bozga, Ene, & Mounier, 2024). In fact, today most solvers
that participate in the Model Counting Competition also support projected model count-
ing (Hecher & Fichte, 2023). There exists plenty applications on projected model-counting
such as software reliability (Dueñas-Osorio, Meel, Paredes, & Vardi, 2017) and reliability of
power grids (Dueñas-Osorio et al., 2017). Recent results considered counting in epistemic
logic programs where one can reason inside a program about all or some solutions (Eiter,
Fichte, Hecher, & Woltran, 2024).

Prior Work and Differences. A preliminary version of this article entitled “Count-
ing complexity for reasoning in abstract argumentation” (Fichte, Hecher, & Meier, 2019)
has been published in the proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019. The present version clarifies all implications on extension count-
ing, projected counting, and (projected) counting on credulous extensions (Corollaries 8
and 12), while the preliminary version focused on credulous counting only. Our results are
more comprehensive, only one hardness case remains open, in particular we include results
for the preferred cases in our classifications. Results in Theorem 23 all hold directly under
ETH, now. In addition, we provide all proof details, more examples, and a more thorough
outlook.

2. Formal Background

We assume graphs to be undirected and use digraphs for directed graphs with their usually
definitions (Bondy & Murty, 2008). Furthermore, we follow standard terminology in com-
putational complexity (Papadimitriou, 1994) and parameterized complexity (Cygan et al.,
2015). Let Σ and Σ′ be some finite alphabets and L ⊆ Σ∗×N be a parameterized problem.
For (I, k) ∈ L, we call I ∈ Σ∗ an instance and k the parameter. For a set X, let 2X consist
of all subsets of X. Later we use the generalized combinatorial inclusion-exclusion principle,
which allows to compute the number of elements in the union over all subsets (Graham,
Grötschel, & Lovász, 1995).

2.1 Counting Complexity

We follow standard terminology in this area (Toda & Watanabe, 1992; Hemaspaandra
& Vollmer, 1995; Durand, Hermann, & Kolaitis, 2005). In particular, we will make use
of complexity classes preceded with the sharp-dot operator ‘#·’. Note the difference to
Valiant’s classes (1979). A witness function is a function w : Σ∗ → P<ω(Γ∗), where Σ
and Γ are alphabets, mapping to a finite subset of Γ∗. Such functions associate with the
counting problem “given x ∈ Σ∗, find |w(x)|”. If C is a decision complexity class then # · C
is the class of all counting problems whose witness function w satisfies (1.) ∃ polynomial
p such that for all y ∈ w(x), we have that |y| ⩽ p(|x|), and (2.) the decision problem
“given x and y, is y ∈ w(x)?” is in C. A parsimonious reduction between two counting
problems #A,#B preserves the cardinality between the corresponding witness sets and is
computable in polynomial time. A subtractive reduction between two counting problems
#A and #B is composed of two functions f, g between the instances of A and B such
that B(f(x)) ⊆ B(g(x)) and |A(x)| = |B(g(x))| − |B(f(x))|, where A and B are respective

809

Hecher, Fichte & Meier

Σ∗

A
x

• • • • • •
• • • • • •
• • • • • •
• • • • • •so

lu
ti
o
n

sp
a
ce

o
f
x

A(x)

∆∗

B
f(x)

• • • • • •
• • • • • •
• • • • • •
• • • • • •so

lu
ti
o
n

sp
a
ce

o
f
f
(x
)

B(f(x))

f

parsimonious reductions maintain cardinalities
of the solution spaces, so |A(x)| = |B(f(x))|

Σ∗

A
x

• • • • • •
• • • • • •
• • • • • •
• • • • • •so

lu
ti
o
n

sp
a
ce

o
f
x

A(x)

∆∗

B
g(x)

f(x)

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •so

lu
ti
o
n

sp
a
ce

o
f
g
(x
)

so
lu
tio

n
sp
a
ce

o
f
f
(x
)

B(g(x)) B(f(x))

g

f

subtractive reductions recalculate cardinal-
ities: |A(x)| = |B(g(x))| − |B(f(x))|

Figure 1: Difference between parsimonious and subtractive reductions.

FP

· P

·NP # · coNP

·NPNP = # · ΣP
2PH

PSPACE FPSPACE

P#·P = PPP

Figure 2: Counting complexity landscape with relevant classes in this paper.

witness functions. See Figure 1 for some intuition on the difference of the two considered
reduction types. Figure 2 shows the relevant counting complexity classes in our settings,
and relates them to classical decision complexity classes.

2.2 Abstract Argumentation

We make use of the formal argumentation theory developed by Dung (1995). An argu-
mentation framework (AF), or framework for short, is a digraph F = (A,R) where A is a
non-empty and finite set of arguments, and R ⊆ A × A is a set of pairs of arguments rep-
resenting a direct attack relationship between arguments. More formally, given S, S′ ⊆ A,
we define S ↣R S′, which denotes {s ∈ S | ({s} × S′) ∩ R ̸= ∅}, and S ↢R S′ := {s ∈ S |
(S′×{s})∩R ̸= ∅}. In argumentation, we are interested in computing so-called extensions,
which are subsets S ⊆ A of the arguments that meet certain properties according to certain
semantics as given below. An argument s ∈ S, is called defended by S in F if for every
(s′, s) ∈ R, there exists s′′ ∈ S such that (s′′, s′) ∈ R. The family defF (S) is defined by
defF (S) := { s | s ∈ A, s is defended by S in F }. Now, we turn towards the definitions of
the semantics. We say S ⊆ A is

810

Counting Complexity for Reasoning in Abstract Argumentation

v w x y z

Figure 3: Argumentation framework FEx .

(i) conflict-free in S if (S × S) ∩R = ∅;

(ii) admissible in F if S is conflict-free in F , and every s ∈ S is defended by S in F .

(iii) Assume an admissible set S. Then,

(iiia) S is complete in F if defF (S) = S;

(iiib) S is preferred in F , if there is no S′ ⊃ S that is admissible in F ;

(iiic) S is semi-stable in F if there is no admissible set S′ ⊆ A in F with S+
R ⊊ (S′)+R,

where S+
R := S ∪ { a | (b, a) ∈ R, b ∈ S };

(iiid) S is stable in F if every s ∈ A \ S is attacked by some s′ ∈ S.

(iv) A conflict-free set S is stage in F if there is no conflict-free set S′ ⊆ A in F with S+
R ⊊

(S′)+R.

Let ALL abbreviate the set {admissible, complete, preferred, semi-stable, stable, stage}.
For a semantics S ∈ ALL, S(F) denotes the set of all extensions of semantics S in F .
In general stable(F) ⊆ semi-stable(F) ⊆ preferred(F) ⊆ complete(F) ⊆ admissible(F) ⊆
conflict-free(F) and stable(F) ⊆ stage(F) ⊆ conflict-free(F).

Example 1. Figure 3 illustrates an AF where F1 = (A1, R1) with A1 = {v, w, x, y, z} and
R1 = {(w, x), (x,w), (w, y), (z, z), (z, x)}, c.f. (Bliem, Hecher, & Woltran, 2016, Ex. 2.7).
Observe that ∅ ∈ conflict-free(F1). For every a ∈ A1 such that a ̸= z it holds that {a} ∈
conflict-free(F1); since v is isolated, also {v, a} ∈ conflict-free(F1) for every a ∈ AF1 with
a ̸= z. Argument z is not contained in any S ∈ conflict-free(F1), since it attacks itself.
Finally, conflict-free(F1) = {∅, {v}, {w}, {x}, {y}, {v, w}, {v, x}, {v, y}, {x, y}, {v, x, y}}.
Argument x can never be part of any admissible extension as z has a self-loop. We have
that admissible(F1) = {∅, {v}, {w}, {v, w}}. The set ∅ is not complete since defF1(∅) = {v};
{w} ̸∈ complete({w}), since defF1({w}) = {v, w}. In the end, complete(F1) = {{v}, {v, w}}.
Observe that preferred(F1) = semi-stable(F1) = stage(F1) = {{v, w}}. Finally, since z is
not contained in any extension S ∈ conflict-free(F1) and it is not attacked by any a ∈ S (z
only attacks itself), there cannot be any stable extension.

2.3 Problems of Interest

In argumentation, one is usually interested extension existence as well as in credulous and
skeptical reasoning problems. In this paper, we are in addition interested in counting versions
of these problems. Therefore, let S ∈ ALL be an abstract argumentation semantics, F =
(A,R) be an argumentation framework, and a ∈ A be an argument. The three central
decision problems are as follows.

811

Hecher, Fichte & Meier

drinking cocktails surfing surfing expensive

seasonal surfing pass req. cheap if once

adventure req. relaxing req.

Figure 4: Argumentation framework F : surfing vs. cocktails. See an explanation in Ex. 2.

• The extension existence problem, ExtS , asks whether a F has an extension according
to S.

• The credulous reasoning problem CredS asks to decide whether there is an S-extension
of F that contains the given argument a.

• The skeptical reasoning problem SkepS asks to decide whether all S-extensions of F
contain a given argument a.

Now, we turn towards counting versions. Here, the following are of interest.

• The extenstion counting problem #ExtS asks to output the number of S-extensions.

• The credulous counting problem #CredS asks to output the number of S-extensions
of F that contain given argument a, i.e., |{S | S ∈ S(F), a ∈ S }|.

We are also interested in projections in the counting environment.

• The projected extension counting problem #PExtS asks to output the number of S-
extensions restricted to the projection arguments P , i.e., |{S ∩ P | S ∈ S(F) }|.

• The projected credulous counting problem #PCredS asks to output the number of S-
extensions restricted to the projection arguments P , i.e., |{S ∩ P | S ∈ S(F), a ∈ S }|.

Example 2. Consider the framework F from Figure 4, which depicts a framework for de-
ciding between surfing and drinking cocktails. The narrative here is, for example, if you need
to relax, you will not go surfing; or if you want adventure, you will probably not drink cock-
tails. Framework F admits three stable extensions stable(F) = {{d, r, c}, {s, a, c}, {s, a, p}}.
#Credstable for argument s equals 2, whereas #PCredstable for argument s restricted to P :=
{a, r} equals 1. Intuitively, the projection here serves as a filter for counting the extensions
that contain arguments from P . By this, one has more flexibility in emphasizing certain
arguments in the counting process.

Refering back to the example, Konieczny et al. (Konieczny, Marquis, & Vesic, 2015b)
have used the number of times an argument is contained in an extension to determine the
strength of that argument, and then compared such extensions based on the quality of the
arguments contained.

812

Counting Complexity for Reasoning in Abstract Argumentation

{a, d, p}t1 {a, r, s} t2

{a, e, s} t3

{a, e, p} t4

{c, e, p} t5T :

Figure 5: A Tree decomposition of F .

2.4 Tree Decompositions (TDs)

For a tree T = (N,ET , n) with root n and a node t ∈ N , we let children(t, T) be the
sequence of all nodes t′ in arbitrarily but fixed order, which have an edge (t, t′) ∈ A.

Definition 3 (Robertson and Seymour, (1986)). Let G = (V,E) be an undirected graph. A
tree decomposition (TD) of graph G is a pair T = (T, χ), where T = (N,ET , n) is a rooted
tree, n ∈ N the root, and χ a mapping that assigns to each node t ∈ N a set χ(t) ⊆ V ,
called a bag, such that the following conditions hold:

(i) V =
⋃

t∈N χ(t) and E ⊆
⋃

t∈N{ {u, v} | u, v ∈ χ(t) }; and

(ii) for each r, s, t, such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s).

Then, width(T) := maxt∈N |χ(t)| − 1. The treewidth tw(G) of G is the minimum
width(T) over all tree decompositions T of G.

For arbitrary but fixed w ≥ 1, it is feasible in linear time to decide if a graph has
treewidth at most w and, if so, to compute a TD of width w (Bodlaender, 1996). However,
in practice, heuristics (Abseher, Musliu, & Woltran, 2017) to compute a tree decompo-
sition are often sufficient. For the case of unfixed w the problem is NP-complete (Arn-
borg, Corneil, & Proskurowski, 1987). In order to simplify case distinctions in the algo-
rithms, we assume nice TDs, which can be computed in linear time without increasing the
width (Kloks, 1994) and are defined as follows. For a node t ∈ N , we say that type(t) is
leaf if children(t, T) = ⟨⟩; join if children(t, T) = ⟨t′, t′′⟩ where χ(t) = χ(t′) = χ(t′′) ̸= ∅;
int (“introduce”) if children(t, T) = ⟨t′⟩, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)| + 1; rem (“re-
move”) if children(t, T) = ⟨t′⟩, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)|+1. If for every node t ∈ N ,
type(t) ∈ {leaf, join, int, rem} and bags of leaf nodes and the root are empty, then the TD
is called nice.

Example 4. Figure 5 shows a tree decomposition T of F of Figure 4. Observe that the
width of T is optimal, i.e., there is no TD of F of width 2. Intuitively, T allows us to
evaluate F in parts, where the overall computation of extensions of F is guided by the TD.

2.5 Logic

We use basic concepts in propositional logic (Ebbinghaus, Flum, & Thomas, 1994). We
denote a negated variable x often by x̄. A literal is either a variable or a negated variable.
A clause is a disjunction of literals. A formula is said to be in conjunctive normal form

813

Hecher, Fichte & Meier

(CNF) if it is a conjunction of clauses. Symmetrically, a formula is in disjunctive normal
form (DNF) if it is a disjunction of conjunctions of literals.

3. Classical Counting Complexity

In this section, we study the classical counting complexity of the credulous reasoning prob-
lem.

Lemma 5. #CredS is in

1. # · P if S is conflict-free, stable, admissible, or complete.

2. # · coNP if S is preferred, semi-stable, or stage.

Proof. The nondeterministic machine first guesses a candidate extension set S and then
verify whether it is an extension of the desired semantics plus if the given argument is
contained in it. The number of computation paths then corresponds one-to-one to the
possible extensions.

1. Being conflict-free can be checked in P. Coste-Marquis, Devred, and Marquis (2005)
show that the verification process of extensions for the semantics admissible, stable,
and complete can be done in deterministic polynomial time.

2. For semi-stable, resp., stage extensions, we need to ensure that there exists no set
S′ ⊆ A whose range is a superset of the range of the extension candidate. This property
can be verified with a coNP oracle. Similarly, Dunne and Bench-Capon (2002) claim
that verifying if a given extension is preferred is coNP-complete.

Note that the next lemma considers neither conflict-free nor preferred extensions.

Lemma 6. #CredS is

1. # · P-hard under parsimonious reductions if S is stable, admissible, or complete.

2. # · coNP-hard under subtractive reductions if S is semi-stable, or stage.

Proof. 1. Start with the case of stable or complete extensions. Adopting ideas of Dunne
and Bench-Capon (2002), we construction a parsimonious reduction from #SAT. Given a
propositional formula φ(x1, . . . , xn) =

∧m
i=1Ci with clauses Ci, define an AF Fφ = (A,R)

where

A = {xi, x̄i | 1 ⩽ i ⩽ n } ∪ {Ci | 1 ⩽ i ⩽ m } ∪ {t, t̄},
R = { (xi, x̄i), (x̄i, xi) | 1 ⩽ i ⩽ n }
∪ { (xi, Cj) | xi ∈ Cj } ∪ { (x̄i, Cj) | x̄i ∈ Cj }
∪ { (Ci, t) | 1 ⩽ i ⩽ m } ∪ {(t, t̄), (t̄, t)}.

Then, due to the range maximality, the number of satisfying assignments of φ coincides
with the number of stable (complete) extensions of Fφ which contain the argument t.

For the case of admissible extensions, to count correctly, it is crucial that for each variable
xi either argument xi or x̄i is part of the extension. To ensure this, we introduce arguments

814

Counting Complexity for Reasoning in Abstract Argumentation

s1, . . . , sn attacking t that can only be defended by one of xi or x̄i. As a result, for each
admissible extension S, we have that |S ∩ {xi, x̄i}| = 1 for each 1 ⩽ i ⩽ n. Notice that the
arguments si are not part of any admissible extension. Because of this, these arguments
have no influence on the overall count of admissible extensions. The modified framework
for this case then is F ′

φ = (A′, R′), where

A′ = A ∪ { si | 1 ⩽ i ⩽ n },
R′ = R ∪ { (si, t), (xi, si), (x̄i, si) | 1 ⩽ i ⩽ n }.

2. We state a parsimonious reduction from counting minimal models of CNFs to the
#CredS problem. The formalism of circumscription is well-established in the area of AI
(McCarthy, 1980). Formally, one considers assignments of Boolean formulas that are min-
imal regarding the pointwise partial order on truth assignments: if s = (s1, . . . , sn), s

′ =
(s′1, . . . , s

′
n) ∈ {0, 1}n, then write s < s′ if s ̸= s′ and si ⩽ s′i for every i ⩽ n. Then, we define

the problem #Circumscription which asks given a Boolean formula φ in CNF to output
the number of minimal models of φ. Durand et al. (2005) showed that #Circumscription
is # · coNP-complete via subtractive reductions (that is why the hardness in our result is
only under this reduction type). Given a Boolean formula φ(x1, . . . , xn) =

∧m
i=1Ci with Ci

are disjunctions of literals, we will construct an argumentation framework Fφ = (A,R) as
follows:

A = {xi, x̄i, bi | 1 ⩽ i ⩽ n } ∪ {Ci | 1 ⩽ i ⩽ m } ∪ {t},
R = { (bi, bi), (x̄i, bi), (xi, x̄i), (x̄i, xi) | 1 ⩽ i ⩽ n }
∪ { (xi, Cj) | xi ∈ Cj } ∪ { (x̄i, Cj) | x̄i ∈ Cj }
∪ { (Ci, t) | 1 ⩽ i ⩽ m }.

The crux is that choosing negative literals is more valuable than selecting positive ones.
This is true as each negative literal additionally attack a corresponding bi and thereby
increases the range (more than the positive literal could). Consequently, this construction
models subset minimal models. Finally, one merely needs to select models where t is in a
range-maximal semi-stable, resp., stage extension.

Lemma 5 and 6 together show the following theorem.

Theorem 7. #CredS is # · P-complete under parsimonious reductions if S ∈ {stable,
admissible, complete}, and # · coNP-complete under subtractive reductions if S ∈ {semi-
stable, stage}.

While for the case of #Credpreferred membership in # · coNP is clear (by Lemma 5)
the lower bound is still open. With the previous construction it is not clear how to utilize
subset-maximization.

Yet, the complexity of counting extensions is a direct consequence of the previous the-
orem.

Corollary 8. #ExtS is # · P-complete under parsimonious reductions if S ∈ {stable, admis-
sible, complete}, and # · coNP-complete under subtractive reductions if S ∈ {semi-stable,
stage}.

815

Hecher, Fichte & Meier

Now, consider the case of projected counting.

Lemma 9. #PCredS is in

1. # ·NP if S is stable, admissible, or complete.

2. # · ΣP
2 if S is semi-stable, preferred, or stage.

Proof. Given an argumentation framework AF , a projection set P , and an argument a.
Nondeterministically branch on a possible projected extension S. Accordingly, we have that
S ⊆ P . If a ∈ S and S is of the respective semantics, then accept. Otherwise, make the one
allowed nondeterministic oracle guess S′ ⊇ S, verify if P ∩ S′ = S, a ∈ S′, and S′ is of the
desired semantics. As explained in the proof of Lemma 5, extension verification is (1.) in
P for stable, admissible, or complete, and (2.) in coNP for semi-stable, preferred, or stage.
Concluding, we get an NP oracle call for the first case, and an NPcoNP = NPNP = ΣP

2 oracle
call in the second case. This yields either # ·NP or # · ΣP

2 as upper bounds.

Consider the problem #ΣkSAT, which asks, given

φ(Y) = ∃x1∀x2 · · ·Qkxkψ(X1, . . . , Xk, Y),

where ψ is a propositional DNF if k is even (and CNF if k is odd), Xi, for each i, and Y
are sets of variables, to output the number of truth assignments to the variables from Y
that satisfy φ. Durand et al. (2005) have shown that the problem is # · ΣP

k -complete via
parsimonious reductions.

Lemma 10. #PCredS is

1. # · ΣP
2 -hard w.r.t. parsimonious reductions if S is stage, preferred, or semi-stable.

2. # ·NP-hard w.r.t. parsimonious reductions if S is admissible, stable, or complete.

Proof. 1. We state a parsimonious reduction from #Σ2SAT to #PCredS . We use an ex-
tended version of the construction of Dvořák and Woltran (2010). Given a formula φ(X) =
∃Y ∀Z ψ(X,Y, Z), where X,Y, Z are sets of variables, and ψ is a DNF. Consider now
the negation of φ(X), i.e., φ′(X) = ¬φ(X) ≡ ∀Y ∃Z ¬ψ(X,Y, Z). Let ψ′(X,Y, Z) be
¬ψ(X,Y, Z) in NNF. Accordingly, ψ′ is a CNF, ψ′(X,Y, Z) =

∧m
i=1Ci and Ci is a dis-

junction of literals for 1 ⩽ i ⩽ m. Note that, the formula φ′(X) is of the same kind as the
formula in the construction of Dvořák and Woltran (2010). Now define an argumentation
framework AF = (A,R), where

A = {x, x̄ | x ∈ X } ∪ { y, ȳ, y′, ȳ′ | y ∈ Y }
∪ { z, z̄ | z ∈ Z } ∪ {t, t̄, b}

R = { (y′, y′), (ȳ′, ȳ′), (y, y′), (ȳ, ȳ′), (y, ȳ), (ȳ, y) | y ∈ Y }
∪ {(b, b), (t, t̄), (t̄, t), (t, b)}
∪ { (Ci, t) | 1 ⩽ i ⩽ m }
∪ { (u,Ci) | u ∈ X ∪ Y ∪ Z, u ∈ Ci, 1 ⩽ i ⩽ m }
∪ { (ū, Ci) | u ∈ X ∪ Y ∪ Z, ū ∈ Ci, 1 ⩽ i ⩽ m }

816

Counting Complexity for Reasoning in Abstract Argumentation

Note that, by construction, the y′, ȳ′ variables make the extensions w.r.t. the universally
quantified variables y incomparable. Further observe that choosing t is superior to selecting
t̄, as t increases the range by one more. (This is crucial in our case, as stage as well as
semi-stable strive for range maximal extensions.)

Notice that, each time, when there is a possible solution to ψ′(X,Y, Z), semantically
¬ψ(X,Y, Z) w.r.t. the free X-variables is to be considered. Accordingly, if for every assign-
ment over the Y -variables there exists an assignment to the Z-variables, then the extension
will contain t. As a result, the extensions containing t correspond to the dissatisfying assign-
ments. So, this achieves a one-to-one correspondence between the number of dissatisfying
assignments of ¬φ(X) and the number of extensions containing t. In turn, this means there
is a one-to-one correspondence between the number of satisfying assignments of φ(X) and
the number of extensions not containing t (yielding t̄ in the extension).

Let A(φ(X)) be the set of assignments of a given #Σ2SAT-formula, and B(AF,P, a) be
the set of stage/semi-stable/preferred extensions which contain a and are projected to P .
Then, the previous explanations establish |A(φ(X))| = |B(AF,X, t̄)| proving the desired
parsimonious reduction (as t̄ together with the negation of φ(X) in the beginning, intuitively,
is a double negation yielding a reduction from #Σ2SAT).

2. Now turn to the case of admissible, stable, or complete extensions. Again, we provide
a similar parsimonious reduction, but this time, from #Σ1SAT to #PCredS . Consider a
formula φ(X) = ∃Y ψ(X,Y), where X,Y are sets of variables, ψ =

∧m
i=1Ci and Ci is a

disjunction of literals for 1 ⩽ i ⩽ m. Essentially the reduction is the same, however we
need the same extension as in the proof of Lemma 6 and we neither need the y′, ȳ′ nor—of
course—the z variables. Define the framework AF = (A,R) as follows:

A = {x, x̄ | x ∈ X } ∪ { y, ȳ | y ∈ Y }
∪ {t, t̄, b} ∪ { sx, sy | x ∈ X, y ∈ Y }

R = {(b, b), (t, t̄), (t̄, t), (t, b)}
∪ { (Ci, t) | 1 ⩽ i ⩽ m }
∪ { (sx, t), (sy, t) | x ∈ X, y ∈ Y }
∪ { (x, sx), (x̄, sx), (y, sy), (ȳ, sy) | x ∈ X, y ∈ Y }
∪ { (u,Ci) | u ∈ X ∪ Y, u ∈ Ci, 1 ⩽ i ⩽ m }
∪ { (ū, Ci) | u ∈ X ∪ Y, ū ∈ Ci, 1 ⩽ i ⩽ m }

This time, let A(φ(X)) denote the set of satisfying assignments of an Σ1SAT instance.
Similarly as for (1.), we achieve the desired one-to-one correspondence as before. Then,
define B(AF,P, a) be the set of admissible/stable/complete extensions which contain a and
are projected to P . Finally, the explanation from above achieve |A(φ(X))| = |B(AF,X, t)|
showing the claimed reduction and # ·NP-hardness via parsimonious reductions.

Theorem 11. #PCredS is # · NP-complete via parsimonious reductions if S ∈ {stable,
admissible, complete}, and # · ΣP

2 -complete via parsimonious reductions if S ∈ {stage,
preferred, semi-stable}.

As before, the complexity of the projection variant for counting extensions is a direct
consequence of the previous theorem.

817

Hecher, Fichte & Meier

Corollary 12. #PExtS is # · NP-complete via parsimonious reductions if S ∈ {stable,
admissible, complete}, and # · ΣP

2 -complete via parsimonious reductions if S ∈ {stage,
preferred, semi-stable}.

Similarly, one can introduce problems of the form #SkepS and #PSkepS , which corre-
spond to the counting versions of the skeptical reasoning problem. Since skeptical is dual to
credulous reasoning, one easily obtains completeness results for the dual counting classes.
Formally, however, functions for the counting problems #SkepS and #PSkepS can only take
the values 0 (in the negative case) or the number of (projected) extensions (when all exten-
sions contain the given argument). As a result, this is a rather limited problem, since it is
closely related to extension counting.

4. Dynamic Programming for Abstract Argumentation

In this section, we recall dynamic programming techniques from the literature to solve
skeptical and credulous reasoning in abstract argumentation. Additionally, we establish
lower bounds for exploiting treewidth in algorithms that solve these problems for the most
common semantics. Therefore, let F = (A,R) be a given argumentation framework and S
be an argumentation semantics. While an abstract argumentation framework can already
be seen as a digraph, treewidth is a measure for undirected graphs. Consequently, for the
framework F we consider the underlying graph GF , where we simply drop the direction of
each edge, i.e., GF = (A,R′) where R′ := { {u, v} | (u, v) ∈ R }. Note that this does not
affect the evaluation of the abstract argumentation framework along the tree decomposition.
The parameter could be smaller if we keep the direction of the edges, but this would certainly
require different algorithms. In fact, there exists the notion of directed treewidth (Johnson,
Robertson, Seymour, & Thomas, 2001). In the following, we use the more common notion of
undirected treewidth. Let T = (T, χ) be a TD of the underlying graph of F . Furthermore,
we need some auxiliary definitions. Let T = (N,ET , n) and t ∈ N . Then, post-order(T, n)
defines a sequence of nodes for tree T rooted at n in post-order traversal. The bag-framework
is defined as Ft := (At, Rt), where At := A ∩ χ(t) and Rt := (At × At) ∩ R, the framework
below t as F⩽t := (A⩽t, R⩽t), where A⩽t := { a | a ∈ χ(t), t′ ∈ post-order(T, t) }, and R⩽t :=
(A⩽t ×A⩽t) ∩R. It holds that Fn = F⩽n = F .

A standard approach (Bodlaender & Kloks, 1996) to benefit algorithmically from small
treewidths is to design dynamic programming algorithms that traverse a given TD and
execute a so-called local algorithm A at each node. The local algorithm makes case distinc-
tions based on the types type(t) of a nice TD and stores information in a table, which is
a set of rows where a row u⃗ is a sequence of fixed length (and the length is bounded by
the treewidth). Later, we traverse the TD multiple times. We also access information in
tables computed in previous traversals and formalize access to previously computed tables
in Tabled Tree Decomposition (TTD) by taking in addition to the TD T = (T, χ) a mapping
τ that assigns a table to a node t of T . Then, the TTD is the triple T = (T, χ, τ). Later, for
easy use in algorithms, we assume that τ(t) is initialized by the empty set for each node t
of T . To solve the considered problem, we perform the following steps:

1. Compute a TD T = (T, χ) of the underlying graph of F .

818

Counting Complexity for Reasoning in Abstract Argumentation

Listing 1: Local algorithm ADM(t, χt, ·, (Ft, c, ·), ⟨τ1, τ2⟩), c.f., (Dvořák et al., 2012).

In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous argument c, and ⟨τ1, τ2⟩ is the
sequence of tables of children of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {⟨∅, ∅, ∅⟩}
2 else if type(t) = int and a∈χt is the introduced argument then
3 τt ← {⟨J,O⊎

At↣RtJ
, D⊎

At↢RtJ
⟩ | ⟨I,O,D⟩ ∈ τ1, J ∈ {I, I+a },

J ↣Rt
J = ∅, J ∩ {c} = χ(t) ∩ {c}}

4 else if type(t) = rem and a ̸∈ χt is the removed argument then
5 τt ← {⟨I−a , O−

a , D
−
a ⟩ | ⟨I,O,D⟩ ∈ τ1, a ̸∈ O \D}

6 else if type(t) = join then
7 τt ← {⟨I,O1

⊎
O2
, D1

⊎
D2
⟩ | ⟨I,O1, D1⟩ ∈ τ1, ⟨I,O2, D2⟩ ∈ τ2}

8 return τt

S⊎
S′ := S ∪ S′, S+

e := S ∪ {e}, and S−
e := S \ {e}.

2. Run algorithm DPA, which takes a TTD T = (T, χ, ι) with T = (N,ET , n) and tra-
verses T in post-order. At each node t ∈ N it stores the result of algorithm A in
table o(t). Algorithm A can access only information that is restricted to the cur-
rently considered bag, namely, the type of the node t, the atoms in the bag χ(t), the
bag-framework Ft, and every table o(t′) for any child t′ of t.

3. Print the solution by interpreting table o(n) for root n of the resulting TTD (T, χ, o).

4.1 Credulous Reasoning

Dynamic programming algorithms for credulous reasoning of various semantics have already
been established in the literature (Dvořák et al., 2012) and their implementations are also of
practical interest (Dvořák, Morak, Nopp, & Woltran, 2013). While a dynamic programming
algorithm for semi-stable (Bliem et al., 2016) semantics was presented as well, stage seman-
tics has been missing. This section fills the gap by introducing a local algorithm for this
case. The worst-case complexity of these algorithms depends on the semantics and ranges
from single to double exponential in the treewidth. In the following, we take these algo-
rithms from the literature, simplify them and adapt them to solve #PCred for the various
semantics. First, we present the algorithm DPADM that uses the algorithm in Listing 1 as
local algorithm to solve credulous reasoning for the admissible semantics (notice that ‘·’ are
placeholders for positions that are not referenced. DPADM outputs a new TTD that we will
use to solve our actual counting problem. At each node t, we store the rows of the table o(t)
in the form u⃗ = ⟨I,O,D⟩ and construct parts of the extensions. The first position of the
rows consists of a set I ⊆ χ(t) of arguments that will be considered for a part of an exten-
sion; we write E(u⃗) := I to address this extension part. The second position consists of a
set O ⊆ χ(t) \ I that represents arguments that attack any other argument of the extension
part. Finally, the third position is the set D ⊆ χ(t) of arguments in the current bag that
have already been defeated (counterattacked) by any argument in the extension, thus in a
sense compensating for the set O of attacking arguments. The idea of the algorithm is as
follows. For nodes with type(t) = leaf, Line 1 initially sets the extension part I, set O of

819

Hecher, Fichte & Meier

⟨I1.i, O1.i, D1.i⟩
⟨{a}, ∅, {d}⟩
⟨{a, p},{d}, {d}⟩

τ1

i

1
2

Figure 6: The table for node t1, obtained by Listing 1 and credulous argument c = a.

attackers, and set D of defeated arguments to the empty set. Intuitively, in Line 3 whenever
we encounter an argument a for the first time while traversing the TD (type(t) = int), we
guess whether a ∈ I or a ̸∈ I. We also make sure that I is conflict-free and that we only
construct rows where c ∈ I if a = c. Since ultimately every argument must be defended by
the extension, we keep track of attacking arguments in O and defeated arguments in D. In
Line 5, whenever we remove an argument a (type(t) = rem), we are not allowed to store a
in the table anymore, because the length of a row u⃗ in the table o(t) depends on the argu-
ments that occur in the bag χ(t); otherwise we would exceed the length and lose the bound
on the treewidth. However, we must make sure that either a is not an attacking argument
(a ̸∈ O), or that a was defeated at some point (a ∈ D). In the end, Condition (ii) of a
TD ensures that whenever an argument no longer occurs in the bag, we have encountered
its entire involvement in the attack relation. Finally, Line 7 ensures that we only combine
rows that agree on the extension and combine information concerning attacks and defeats
accordingly. This case can be seen as a combination of database joins (type(t) = join).

Intuitively, these dynamic programming algorithms compute and maintain tables from
the leaf nodes towards the root of a tree decomposition.

Example 13. Recall the argumentation framework F in Figure 4 and the tree decomposi-
tion T of F in Figure 5. Now, in order to maintain these tables, we execute the algorithm
given in Listing 1. However, for simplicity, this listing is given for nice tree decompositions.
While T is not nice, we can still easily follow Listing 1, but we would need to execute all
cases for intermediate nodes that would be required to make T nice. We assume that the
credulous argument c = a. In order to obtain the table for node t1, we therefore follow the
case for the empty leaf node (Line 1), followed by introducing arguments a, d, p (Line 2).
Consequently, we obtain the table as highlighted in Figure 6. Indeed, since c = a, we can
additionally either pick p or not. Observe that d can never be in any admissible extension
including a, as the set would not be conflict-free.

Similarly, we obtain the table for t2. Observe that in the transition from t2 to t3 we
forget r and introduce e. Then, from t1 to t4 we forget d, introduce e and join the result
with the table obtained from the table for t3 after forgetting s and introducing p. Finally,
after computing the table for root node t5, we can read the resulting admissible extensions
restricted to {c, e, p} from the table for t5.

ADM can vacuously be extended to an algorithm STAB for stable semantics. There one
simply drops the set O and ensures in Line 5 that the removed atom a is either in the
extension part I or defeated (in a ∈ D). An algorithm COMP for the complete semantics
requires some additional technical effort. There one can distinguish five states, namely
elements that are in the extension, defeated “candidates”, already defeated, candidates for
not being in the extension (unrelated), or actually proven to be unrelated.

820

Counting Complexity for Reasoning in Abstract Argumentation

In the following proposition, we give more precise runtime upper bounds for the algo-
rithms presented in the literature (Dvořák et al., 2012) that can be obtained by employing
sophisticated data structures, especially for handling nodes t with type(t) = join.

Proposition 14. Algorithm DPSTAB runs in time O(3k · k · g), DPADM in O(4k · k · g),
and DPCOMP in O(5k · k · g) where k is the width and g the number of nodes of the TD.

Proof (Sketch). Let d = k+1 be maximum bag size of the TD T . We only discuss the case
for algorithm DPADM here. The table τ(t) has at most 4d rows of the form ⟨I,A,D⟩, since an
argument actually can be either in one of these sets I,A,D or in none of them (just modify
ADM such that A ∩ D = ∅). In total, with the help of efficient data structures, e.g., for
nodes t with type(t) = join, one can establish a runtime bound of O(4d). Then, we check
within the bag for admissibility, keeping in mind only the changes and apply this to every
node t of the TD, which resulting in running time O(4d · d · g) ⊆ O(4k · k · g).

The definitions of preferred, semi-stable, and stage semantics involve subset maximiza-
tion. Therefore, one often introduces a concept of witness (extension part) and counter-
witness in the rows in dynamic programming, where the counter-witness tries to invalidate
subset-maximality of the corresponding witness (Jakl, Pichler, & Woltran, 2009). In the
counter-witness one stores sets of arguments that are supersets of the considered exten-
sion, so that in the end there was no superset of an extension in the counter-witness at
the root while traversing the TD. In other words, for a witness, the counter-witness has
failed to invalidate maximality, and accordingly the witness is subset-maximal. In the liter-
ature (Dvořák et al., 2012), algorithms that involving such an interplay between witnesses
and counter-witnesses have been defined for preferred and semi-stable semantics, we simply
refer to them as DPPREF and DPSEMI.

For the stage semantics, we provide the algorithm in Listing 2. Intuitively, we com-
pute conflict-free extensions during the TD traversal and additionally guess candidates AC
that ultimately have to be attacked (A) by the extension part I. This then allows us to
subset-maximize on the range part I ∪AC, by trying to find counter-witnesses C to subset-
maximality. An element c of the set set C also comprises the three tuple components exten-
sion part J , attack candidates AC, attacked arguments A, but also contains an additional
fourth component σ. This component σ is just a Boolean variable that indicates whether
we found a witness that the range of J is strictly larger than the range of I. Indeed, we also
need to maintain extensions, whose range is not strictly larger (yet, up to the current tree
decomposition node). Note that the operator “∨” used in Listing 2 is just a regular logical
disjunction.

Example 15. Recall the argumentation framework F in Figure 4 and the tree decompo-
sition T of F in Figure 5. As the computation of stage semantics is more involved, also
the local algorithm for maintaining tables takes more effort. Similar to above, in order to
maintain these tables, we execute the algorithm given in Listing 2. We assume that the
credulous argument c = a. In order to compute the table for node t1, we follow the case for
the empty leaf node (Line 1), followed by introducing arguments a, d, p (Line 2). This al-
lows us to obtain the table as highlighted in Figure 7. Observe that this algorithm maintains
potential subsets I of extensions with additional information on attacks A and candidate

821

Hecher, Fichte & Meier

⟨I1.i, A1.i, AC1.i, C1.i⟩
⟨{a}, {d}, {d}, {⟨⟨{a}, {d}, {d}⟩,⊥⟩,

{⟨⟨{a}, {d}, {d, p}⟩,⊥⟩,
⟨⟨{a, p}, {d}, {d}⟩,⊤⟩}⟩

⟨{a}, {d}, {d, p}, {⟨⟨{a}, {d}, {d, p}⟩,⊥⟩,
⟨⟨{a, p}, {d}, {d}⟩,⊥⟩}⟩

⟨{a, p},{d}, {d} {⟨⟨{a}, {d}, {d, p}⟩,⊥⟩,
⟨⟨{a, p}, {d}, {d}⟩,⊥⟩}⟩

τ1

i

1

2

3

Figure 7: The table for node t1, obtained by Listing 2 and credulous argument c = a.

attacks AC. Further, the set C maintains extensions of potentially larger range (⊤ indicates
strictly larger range).

Again, a more detailed runtime analysis yields the following result.

Proposition 16. Algorithms DPPREF, DPSEMI, and DPSTAG run in time O(224k+1 · g) where
k is the width and g the number of nodes of the TD.

Proof. For each node t of T , we consider the table ν(t) of Tpurged. Let TDD (T, χ, π) be
the output of DPPROJ. In the worst case, we store in π(t) each subset ρ ⊆ ν(t) together
with exactly one counter. Hence, we have at most 2m many rows in ρ. In order to compute
ipc for ρ, we consider every subset φ ⊆ ρ and compute pc. Since |ρ| ⩽ m, we have at
most 2m many subsets φ of ρ. Finally, for computing pc, we consider in the worst case each
subset of the origins of φ for each child table, which are at most 2m · 2m because of nodes t
with type(t) = join. In total, we obtain a runtime bound of O(2m · 2m · 2m · 2m · γ(∥F∥)) ⊆
O(24m ·γ(∥F∥)) due to multiplication of two n-bit integers for nodes t with type(t) = join at
costs γ(n). Then, we apply this to every node of T resulting in runtimeO(24m·g·γ(∥F∥)).

4.2 Lower Bounds

A natural question is whether we can significantly improve the algorithms given in propo-
sitions 14 and 16. In other words, we are interested in lower bounds on the runtime of an
algorithm that exploits treewidth for credulous reasoning. A common method in complex-
ity theory is to assume that the exponential time hypothesis (ETH) holds and to establish
reductions. The ETH states that there is some real s > 0 such that we cannot decide satis-
fiability of a given 3-CNF formula φ in time 2s·|φ| · ∥φ∥O(1) (Cygan et al., 2015, Ch. 14). We
then establish lower bounds, assuming that ETH uses known reductions from the literature,
and show that there is no hope for a better algorithm.

Theorem 17. Let S ∈ {admissible, complete, stable}, F be a framework and k the treewidth
of the underlying graph GF . Unless ETH fails, CredS cannot be solved in time 2o(k) · ∥F∥o(k)

and for S = semi-stable, CredS and SkepS cannot be solved in time 22
o(k) · ∥F∥o(k).

Proof. The existing reductions by Dunne and Bench-Capon (2002) increase the treewidth
only linearly and are hence sufficient. For semi-stable statements the reductions by Dvořák
and Woltran (2010) can be applied, since preferred and semi-stable extensions of the con-
structed argumentation framework coincide.

822

Counting Complexity for Reasoning in Abstract Argumentation

Listing 2: Local algorithm STAG(t, χt, ·, (Ft, c, ·), ⟨τ1, τ2⟩).
In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous argument c, and ⟨τ1, τ2⟩ is the

sequence of tables of children of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {⟨∅, ∅, ∅, ∅⟩}
2 else if type(t) = int and a ∈ χt is the introduced argument then
3 τt ← {⟨J,A⊎

At↢RtJ
, AC, C⊕⟨J,A,AC⟩(a)⟩ | ⟨I,A,AC, C⟩ ∈ τ1, (J,AC) ∈

Statesa(I,AC), J ∩ {c} = χ(t) ∩ {c}}
4 else if type(t) = rem and a ̸∈ χt is the removed argument then
5 τt ← {⟨I−a ,A−

a ,AC
−
a , C∼a ⟩ | ⟨I,A,AC, C⟩ ∈ τ1, a ∈ I ∪ A}

6 else if type(t) = join then
7 τt ← {⟨I,A1

⊎
A2
,AC, (C1 ▷◁ C2)∪(C1 ▷◁ {⟨u2,⊥⟩}) ∪ ({⟨u,⊥⟩} ▷◁ C2)⟩ | u1 ∈ τ1, u2 ∈ τ2,

u1 = ⟨I,A1,AC, C1⟩, u2 = ⟨I,A2,AC, C2⟩}
8 return τt

Statesa(I,AC) :=
{
(J,AC) | J ∈ {I, I+a }, AC ∈ {AC,AC+

a }, J ∩AC = ∅, [J ↣Rt J] = ∅,
[At ↢Rt J] ⊆ AC

}
,

C⊕
⟨J′,A′,AC′⟩(a) :=

{
⟨⟨J,A⊎

J↣Rt
At

, AC⟩, (J⊎
AC ⊊ J ′⊎

AC′) ∨ s⟩
∣∣

⟨⟨I,A,AC⟩, s⟩ ∈ C+
⟨J,A,AC⟩,⊥⟩, (J,AC) ∈ Statesa(I,AC), J ∩ {c} = χ(t) ∩ {c}},

C∼
a := { ⟨⟨I−a ,A−

a ,AC−
a ⟩, σ⟩ | ⟨⟨I,A,AC⟩, σ⟩ ∈ C, a ∈ I ∪ A},

C1 ▷◁ C2 :=
{
⟨⟨I,A1

⊎
A2

,AC⟩, σ1 ∨ σ2⟩ | ⟨⟨I,A1,AC⟩, σ1⟩ ∈ C1, ⟨⟨I,A2,AC⟩, σ2⟩ ∈ C2

}
.

Listing 3 presents a local algorithm CONF for conflict-free extensions, whose core is also
used in Listing 2. A local algorithm STAB for stable extensions, which, in fact, is a simpli-
fication of Listing 1, is provided in Listing 4. Finally, Listing 5 depicts an algorithm COMP
for complete semantics working with five different states, as mentioned in Section “Dy-
namic Programming for Abstract Argumentation”. For computing preferred semantics via
dynamic programming (DPPREF), one can use the idea of the local algorithm ADM for
admissible semantics and subset-maximize using counterwitnesses (similar to Listing 2) ac-
cordingly. Finally, local algorithm SEMI finally is similar to STAB, but relies on the idea
of ADM.

Listing 3: Local algorithm CONF(t, χt, ·, (Ft, c, ·), ⟨τ1, τ2⟩).
In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous argument c, and ⟨τ1, τ2⟩ is the

sequence of tables of children of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {⟨∅⟩}
2 else if type(t) = int and a∈χt is the introduced argument then
3 τt ← {⟨J⟩ | ⟨I⟩ ∈ τ1, J ∈ {I, I+a }, J ↣Rt

J = ∅, J ∩ {c} = χ(t) ∩ {c}}
4 else if type(t) = rem and a ̸∈ χt is the removed argument then
5 τt ← {⟨I−a ⟩ | ⟨I⟩ ∈ τ1}
6 else if type(t) = join then
7 τt ← {⟨I⟩ | ⟨I⟩ ∈ τ1, ⟨I⟩ ∈ τ2}
8 return τt

823

Hecher, Fichte & Meier

Listing 4: Local algorithm STAB(t, χt, ·, (Ft, c, ·), ⟨τ1, τ2⟩), c.f., (Dvořák et al., 2012).

In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous argument c, and ⟨τ1, τ2⟩ is the
sequence of tables of children of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {⟨∅, ∅⟩}
2 else if type(t) = int and a∈χt is the introduced argument then
3 τt ← {⟨J,D⊎

At↢RtJ
⟩ | ⟨I,D⟩ ∈ τ1, J ∈ {I, I+a }, J ↣Rt J = ∅, J ∩ {c} = χ(t) ∩ {c}}

4 else if type(t) = rem and a ̸∈ χt is the removed argument then
5 τt ← {⟨I−a , D−

a ⟩ | ⟨I,D⟩ ∈ τ1, a ∈ I ∪D}
6 else if type(t) = join then
7 τt ← {⟨I,D1

⊎
D2
⟩ | ⟨I,D1⟩ ∈ τ1, ⟨I,D2⟩ ∈ τ2}

8 return τt

Listing 5: Local algorithm COMP(t, χt, ·, (Ft, c, ·), ⟨τ1, τ2⟩), c.f., (Dvořák et al., 2012).

In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous argument c, and ⟨τ1, τ2⟩ is the
sequence of tables of children of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {⟨∅, ∅, ∅, ∅, ∅⟩}
2 else if type(t) = int and a∈χt is the introduced argument then
3 τt ← {⟨J,D⊎

D↢RtJ
, D,O⊎

O↢RtO
, O⟩ | ⟨I,D,DC,O,OC⟩ ∈ τ1, J ∈ {I, I+a },

D ∈ {DC,DC+a }, O ∈ {OC,OC
+
a }, J ∩D ∩O = ∅, J ↣Rt J = ∅, J ↣Rt O = ∅,

O ↣Rt
J = ∅, J ∩ {c} = χ(t) ∩ {c}}

4 else if type(t) = rem and a ̸∈ χt is the removed argument then
5 τt ← {⟨I−a ,D−

a ,DC
−
a ,O−

a ,OC
−
a ⟩ | ⟨I,D,DC,O,OC⟩ ∈ τ1, a ∈ I ∪ D ∪O}

6 else if type(t) = join then
7 τt ← {⟨I,D1

⊎
D2
,DC,O1

⊎
O2
,OC⟩ | ⟨I,D1,DC,O1,OC⟩ ∈ τ1, ⟨I,D2,DC,O2,OC⟩ ∈ τ2}

8 return τt

5. Algorithms for Projected Credulous Counting by Exploiting Bounded
Treewidth

In the previous section, we presented algorithms for solving abstract reasoning problems.
These algorithms can be extended relatively easily to count extensions without projection
by adding counters to each row at quadratic runtime instead of linear in the size of the
input instance. One can even reconstruct extensions (Pichler, Rümmele, & Woltran, 2010).
However, things are more complicated for projected credulous counting. In this section, we
present an algorithm PCNTS that solves the projected credulous counting problem (#PCredS)
for semantics S ∈ ALL. Our algorithm lifts results for projected model counting in the
computationally and conceptually much easier setting of propositional satisfiability (Fichte
et al., 2023) to abstract argumentation. Our algorithm is based on dynamic programming
and traverses a TD three times. To this end, we employ algorithms S ∈ {ADM, COMP,
PREF, STAG, SEMI, STAB} as presented in the previous section according to the con-
sidered semantics S. The first traversal consists of DPS, where S is a local algorithm for
credulous reasoning of the chosen semantics, which results in TTD TS-Cred = (T, χ, τ).

In the following, let again F = (A,R) be the given framework, a ∈ A an argument, (T, χ)
a TD of GF with T = (N,ET , n) and the root n, and TS-Cred = (T, χ, τ) be the TTD that has

824

Counting Complexity for Reasoning in Abstract Argumentation

been computed by the respective algorithms as described in the previous section. Then we
intermediate traverse TS-Cred in pre-order and prune irrelevant rows, thereby removing all
rows that cannot be extended to a credible extension of the corresponding semantics S. We
call the resulting TTD TS-Pruned = (T, χ, ν). Note that pruning does not affect correctness,
since it only removes rows where the count is already 0 without considering the projection.
However, pruning serves as a technical trick for the last traversal to avoid counter correction
and backtracking.

In the final traversal, we count the projected credulous extensions. Therefore, we com-
pute a TTD TS-Proj = (T, χ, π) using algorithm DPPROJ using local algorithm PROJ as given
in Listing 6. Algorithm PROJ stores for each node a pair ⟨σ, c⟩ ∈ π(t), where σ ⊆ ν(t) is a
table ν(t) from the previous traversal and c ≥ 0 is an integer representing what we call the
intersection projected count (ipc).

Before we start with explaining how to obtain these ipc values c, we require auxiliary
notations from the literature. First, we need a notion to reconstruct extensions of T , more
precisely, for a given row to define its predecessors in the corresponding child tables. There-
fore, let t be a node of T with children t1 and t2, if it exists. Since the sequences used in the
following depend on the number of children, it is assumed for the sake of simplicity that
sequences are implicitly of appropriate length, even if they are given as of length 2. For se-
quence s⃗ = ⟨s1, s2⟩, let ⟨{s⃗}⟩ := ⟨{s1}, {s2}⟩. For a given row u⃗ ∈ τ(t), we define the originat-
ing rows of u⃗ in node t by origins(t, u⃗) := { s⃗ | s⃗ ∈ τ(t1)×τ(t2), u⃗ ∈ S(t, χ(t), ·, (Ft, ·), ⟨{s⃗}⟩) }
and for a table σ as the union over the origins for all rows u⃗ ∈ σ. Next, let σ ⊆ ν(t). To
combine rows and solve the projection accordingly, we need equivalence classes of rows. Let
therefore relation =P ⊆ σ× σ consider equivalent rows with respect to the projection of its
extension part by =P := { (u⃗, v⃗) | u⃗, v⃗ ∈ σ,E(u⃗)∩P = E(v⃗)∩P }. Let bucketsP (σ) be the set
of equivalence classes induced by =P on σ, i.e., bucketsP (σ) := (σ/=P) = { [u⃗]P | u⃗ ∈ σ },
where [u⃗]P = { v⃗ | v⃗=P u⃗, v⃗ ∈ σ} (Wilder, 1965).

When computing the ipc values c stored in each row u⃗ of π(t), we compute a so-called
projected count (pc) as follows. First, we define the stored ipc of σ ⊆ ν(t) in table π(t) by
s-ipc(π(t), σ) :=

∑
⟨σ,c⟩∈π(t) c. We use the ipc value in the context of “accessing” ipc values in

table π(ti) for a child ti of t. This can be generalized to a sequence s = ⟨π(t1), π(t2)⟩ of tables
and a set O = {⟨σ1, σ2⟩, ⟨σ′1, σ′2⟩, . . .} of sequences of tables by s-ipc(s,O) = s-ipc(s(1), O(1)) ·
s-ipc(s(2), O(2)). Then, the projected count pc of rows σ ⊆ ν(t) is the application of the
inclusion-exclusion principle to the stored intersection projected counts, i.e., ipc values of
children of t. Therefore, pc determines the origins of table σ, and uses the stored counts
(s-ipc) in the PROJ-tables of the children ti of t for all subsets of these origins. Formally,
we define

pc(t, σ, ⟨π(t1), π(t2)⟩) :=
∑

∅⊊O⊆origins(t,σ)

(−1)(|O|−1) · s-ipc(⟨π(t1), π(t2)⟩, O).

Intuitively, pc defines the number of distinct projected extensions in framework F⩽t to
which any row in σ can be extended. Finally, the intersection projected count ipc for σ
is the result of another application of the inclusion-exclusion principle. It describes the
number of common projected S-extensions which the rows in σ have in common in frame-
work F⩽t. We define ipc(t, σ, s) := 1 if type(t) = leaf and otherwise ipc(t, σ, s) :=

∣∣ pc(t, σ, s)
+
∑

∅⊊φ⊊σ(−1)|φ| · ipc(t, φ, s)
∣∣, where s = ⟨π(t1), π(t2)⟩. In other words, if a node is of

825

Hecher, Fichte & Meier

type leaf, ipc is one, since bags of leaf nodes are empty. Observe that since bags χ(n) for
root node n are empty, there is only one entry in π(n) and pc(n, ν(n), s) = ipc(n, ν(n), s),
which corresponds to the number of projected credulous extensions. In the end, we col-
lect pc-values for all subsets of ν(t).

Listing 6: Local algorithm PROJ(t, ·, νt, (·, ·, P), ⟨π1, π2⟩) for projected counting, c.f., (Fichte
et al., 2023).

In: Node t, table νt after purging, set P of projection atoms, ⟨π1, π2⟩ is the sequence of
tables at the children of t.

Out: Table πt of pairs ⟨σ, c⟩, where σ ⊆ νt, and c ∈ N.
1 πt←

{
⟨σ, ipc(t, σ, ⟨π1, π2⟩)⟩

∣∣ ∅ ⊊ σ ⊆ bucketsP (νt)
}

2 return πt

Theorem 18. Algorithm PCNTS is correct and solves #PCredS for local algorithms S ∈
{ADM, COMP, PREF, STAG,SEMI, STAB}, i.e., s-ipc(π(n), ∅) returns the projected cred-
ulous count at the root n for resp. semantics S.

Proof. We can establish an invariant for each row of each table. Then, we show this invariant
by simultaneous structural induction on pc and ipc starting at the leaf nodes and stepping
until the root. This yields that the intersection projected count for the empty root corre-
sponds to #PCredS for the semantics S. For completeness, we demonstrate by induction
from root to leaves that a well-defined row of one table, which can indeed be obtained by
the corresponding table algorithm, always has some preceding row in the respective child
nodes.

Runtime Bounds (Upper and Lower). In the following, we present upper bounds for
the algorithm PROJ, which directly lead to runtime results for PCNTS. So let γ(n) be the
number of operations needed to multiply two n-bit integers. Note that γ(n) ∈ O(n · log(n) ·
log(log(n))) (Knuth, 1998). Further note that in the following proposition m depends on
the treewidth k. However, the actual order depends on the semantics.

Proposition 19 (Fichte and Hecher, (2018)). DPPROJ runs in time O(24m · g · γ(∥F∥)),
where g is the number of nodes of the given TD of the underlying graph GF of the considered
framework F and m := max{|ν(t)| | t ∈ N} for input TTD Tpurged = (T, χ, ν) of DPPROJ.

Corollary 20. For S ∈ {ADM, COMP, STAB}, PCNTS runs in time O(224k · g · γ(∥F∥)).
For S ∈ {PREF, SEMI, STAG}, runs in time O(222

4k

· g · γ(∥F∥)) where k is the treewidth
of the underlying graph GF of the given AF F .

Next, we again consider the Exponential Time Hypothesis (ETH) to establish lower
bounds for counting projected extensions. In particular, we find that, under reasonable
assumptions, we cannot expect to significantly improve the algorithms presented.

Theorem 21. Let S ∈ {admissible, complete, stable}. Unless ETH fails, we cannot solve

the problem #PCredS in time 22
o(k) · ∥F∥o(k) where k is the treewidth of the underlying

graph GF of the considered framework F .

826

Counting Complexity for Reasoning in Abstract Argumentation

Proof. We establish the lower bound by reducing an instance of ∀∃-SAT to an instance of a
version of CredS where the extension is of size exactly ℓ. Note that under ETH the problem
∀∃-SAT cannot be solved (Lampis & Mitsou, 2017) in time 22

o(k) · ∥F∥o(k) in the worst
case. We follow the reduction from the proof of Statement 2 in Lemma 10. Let ℓ = |X|,
and observe that we can compute reduction in polynomial-time and the treewidth of the
projected credulous counting instance is increased only linearly. Note that the reduction
is correct since |B(AF,X, t)| = ℓ = |X| if and only if φ(X) = ∃Y ψ(X,Y) holds for all
assignments using X. Consequently, the claim follows.

For semi-stable, preferred and stage semantics, we believe that this lower bound is not
tight. Hence, we apply the ETH for quantified Boolean formulas (QBF) together with the
following result.

Proposition 22 (Fichte, Hecher, and Pfandler, 2020, Thm. 13). Unless ETH fails, the

problem ∃∀∃-SAT for a QBF Φ of treewidth k can not be decided in time 22
2o(k) · ∥Φ∥o(k).

Using ETH together with the previous proposition, we establish the following result.

Theorem 23. Let S ∈ {preferred, semi-stable, stage} be a semantics. Unless ETH fails,

we cannot solve the problem #PCredS in time 22
2o(k) · ∥F∥o(k) where k is the treewidth of

the underlying graph of F .

Proof. Assuming ETH, Proposition 22 implies that we cannot solve an instance of ∀∃∀-SAT
in time 22

2o(k) · ∥F∥o(k), otherwise we could solve an instance Φ of ∃∀∃-SAT, using a decision

procedure for ∀∃∀-SAT with the inverse of Φ and inverting the result, in time 22
2o(k) ·∥F∥o(k).

Towards the lower bound, we finally establish a reduction from ∀∃∀-SAT to projected cred-
ulous count exactly ℓ (c.f., Theorem 21). Thereby, we apply the reduction provided in
Statement 1 of Lemma 10, set ℓ := |X| and proceed analogously to Theorem 21.

6. Conclusion and Outlook

We classified the classical complexity of counting problems in abstract argumentation. Fur-
thermore, we presented an algorithm that solves counting projected credulous extensions
when exploiting treewidth in runtime double exponential in the treewidth or triple expo-
nential in the treewidth depending on the considered semantics. Then, assuming ETH, we
established that the runtime of the algorithms are asymptotically tight. While the upper
bounds in Lemma 5 can be easily transferred to counting, the number of extensions of a
certain kind, the corresponding lower bounds cannot be immediately adopted directly from
Lemma 6. Moreover, we derived similar results for counting (projected) extensions.

An open question is to investigate whether # · coNP-hardness also applies for the pre-
ferred semantics. An interesting further research direction is to study whether we can obtain
better runtime results by designing algorithms that take in addition also the number (small
or large) of projection arguments into account. While dynamic programming techniques
have already been used for counting extensions (without projections) (Dewoprabowo, Fichte,
Gorczyca, & Hecher, 2022), techniques for incremental counting (Fichte, Gaggl, Hecher, &
Rusovac, 2024), massive parallelization (Fichte, Hecher, & Roland, 2021), or approximate

827

Hecher, Fichte & Meier

counting (Kabir, Everardo, Shukla, Hecher, Fichte, & Meel, 2022) could be interesting for
argumentation as well. Today, the best argumentation-based solvers (Niskanen & Järvisalo,
2020, 2023) rely on techniques from SAT-based solving in its core (Fichte, Berre, Hecher,
& Szeider, 2023). So it might also be interesting to consider SAT-based counting tech-
niques (Fichte et al., 2021) for argumentation. Furthermore, our technique might also be
applicable to problems such as circumscription (Durand et al., 2005), default logic (Fichte,
Hecher, & Schindler, 2022a), or QBFs (Charwat & Woltran, 2016). Since argumentation
has been applied to questions in human reasoning (Dietz, Kakas, & Michael, 2021, 2022)
and quantitative reasoning plays an interesting role there as well (Dietz, Fichte, & Hamiti,
2022), we suspect that counting and probabilistic questions can have an interesting appli-
cation there as well. Considering the (parameterized) enumeration complexity (Johnson,
Papadimitriou, & Yannakakis, 1988; Creignou, Meier, Müller, Schmidt, & Vollmer, 2017;
Creignou, Ktari, Meier, Müller, Olive, & Vollmer, 2019; Meier, 2020) of the studied prob-
lems is also planned as future work. Finally, other measures such as fractional hypertree
width or backdoors (Dvořák, Hecher, König, Schidler, Szeider, & Woltran, 2022) might be
interesting to consider. Also studying implementation aspect might yield insights that lead
to algorithmic improvements. Lower bounds for other decomposition-based parameters have
recently been established for QBF (Fichte, Ganian, Hecher, Slivovsky, & Ordyniak, 2023),
we suspect that these results can be directly applied to argumentation using decomposition
guided reductions (Fichte, Hecher, Mahmood, & Meier, 2021).

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions. Authors
are ordered alphabetically. The work has been carried out while Hecher visited the Simons
Institute at UC Berkeley. Research is supported by the the Austrian Science Fund (FWF)
grant J4656; ELLIIT funded by the Swedish government; the German Research Fund DFG
grants ME 4279/1-2 and ME 4279/3-1, and the Society for Research Funding in Lower
Austria (GFF) grant ExzF-0004.

References

Abseher, M., Musliu, N., & Woltran, S. (2017). htd – a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In Salvagnin, D., & Lombardi, M. (Eds.),
Proceedings of the 14th International Conference on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint Programming (CPAIOR’17),
Padova, Italy.

Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining decisions.
Artificial Intelligence, 173 (3-4), 413–436.

Arnborg, S., Corneil, D. G., & Proskurowski, A. (1987). Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods, 8 (2), 277–284.

Audemard, G., Lagniez, J.-M., & Miceli, M. (2022). A new exact solver for (weighted)
Max#SAT. In Meel, K. S., & Strichman, O. (Eds.), Proceedings of the 25th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’22),

828

Counting Complexity for Reasoning in Abstract Argumentation

Vol. 236 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 28:1–28:20.
Dagstuhl Publishing.

Aziz, R. A., Chu, G., Muise, C., & Stuckey, P. (2015). #(∃)SAT: Projected Model Counting.
In Heule, M., & Weaver, S. (Eds.), Proceedings of the 18th International Conference
on Theory and Applications of Satisfiability Testing (SAT’15), pp. 121–137, Austin,
TX, USA. Springer Verlag.

Baroni, P., Dunne, P. E., & Giacomin, M. (2010). On extension counting problems in
argumentation frameworks. In COMMA, Vol. 216 of Frontiers in Artificial Intelligence
and Applications, pp. 63–74. IOS Press.

Bliem, B., Hecher, M., & Woltran, S. (2016). On efficiently enumerating semi-stable exten-
sions via dynamic programming on tree decompositions. In Baroni, P., Gordon, T. F.,
Scheffler, T., & Stede, M. (Eds.), Proceedings of the 6th International Conference on
Computational Models of Argument (COMMA’16), Vol. 287 of Frontiers in Artificial
Intelligence and Applications, pp. 107–118, Potsdam, Germany. IOS Press.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25 (6), 1305–1317.

Bodlaender, H. L., & Kloks, T. (1996). Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms, 21 (2), 358–402.

Böhl, E., Gaggl, S. A., & Rusovac, D. (2023). Representative answer sets: Collecting some-
thing of everything. In Gal, K., Nowé, A., Nalepa, G. J., Fairstein, R., & Rad-
ulescu, R. (Eds.), Proceedings of the 26th European Conference on Artificial Intelli-
gence (ECAI’23), Vol. 372 of Frontiers in Artificial Intelligence and Applications, pp.
271–278, Kraków, Poland. IOS Press.

Bondy, J. A., & Murty, U. S. R. (2008). Graph theory, Vol. 244 of Graduate Texts in
Mathematics. Springer Verlag, New York, USA.

Charwat, G., & Woltran, S. (2016). Dynamic programming-based QBF solving. In Lonsing,
F., & Seidl, M. (Eds.), Proceedings of the 4th International Workshop on Quantified
Boolean Formulas (QBF’16), Vol. 1719, pp. 27–40. CEUR Workshop Proceedings
(CEUR-WS.org). co-located with 19th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’16).

Coste-Marquis, S., Devred, C., & Marquis, P. (2005). Symmetric argumentation frameworks.
In ECSQARU, Vol. 3571 of Lecture Notes in Computer Science, pp. 317–328. Springer.

Creignou, N., Meier, A., Müller, J., Schmidt, J., & Vollmer, H. (2017). Paradigms for
parameterized enumeration. Theory Comput. Syst., 60 (4), 737–758.

Creignou, N., Ktari, R., Meier, A., Müller, J., Olive, F., & Vollmer, H. (2019). Parameterised
enumeration for modification problems. Algorithms, 12 (9), 189.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer Verlag.

Dachselt, R., Gaggl, S. A., Krötzsch, M., Méndez, J., Rusovac, D., & Yang, M. (2022).
NEXAS: A visual tool for navigating and exploring argumentation solution spaces. In
Toni, F., Polberg, S., Booth, R., Caminada, M., & Kido, H. (Eds.), Proceedings of the

829

Hecher, Fichte & Meier

9th International Conference on Computational Models of Argument Computational
Models of Argument (COMMA’22), Vol. 353 of Frontiers in Artificial Intelligence and
Applications, pp. 116–127, Cardiff, Wales, UK. IOS Press.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. J. Artif. Intell. Res.,
17 (1), 229–264.

De Raedt, L., & Kimmig, A. (2015). Probabilistic (logic) programming concepts. Machine
Learning, 100 (1), 5–47.

Dewoprabowo, R., Fichte, J. K., Gorczyca, P. J., & Hecher, M. (2022). A practical ac-
count into counting dung’s extensions by dynamic programming. In Gottlob, G., In-
clezan, D., & Maratea, M. (Eds.), Proceedings of the 16th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’22), pp. 387–400, Gen-
ova, Italy. Springer Verlag.

Dietz, E., Fichte, J. K., & Hamiti, F. (2022). A quantitative symbolic approach to individual
human reasoning. In Culbertson, J., Perfors, A., Rabagliati, H., & Ramenzoni, V.
(Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society
(CogSci’22), pp. 2838–2846.

Dietz, E., Kakas, A. C., & Michael, L. (2021). Computational argumentation & cognitive AI.
In Chetouani, M., Dignum, V., Lukowicz, P., & Sierra, C. (Eds.), Human-Centered
Artificial Intelligence - Advanced Lectures, 18th European Advanced Course on AI,
ACAI 2021, Berlin, Germany, October 11-15, 2021, extended and improved lecture
notes, Vol. 13500 of Lecture Notes in Computer Science, pp. 363–388. Springer.

Dietz, E., Kakas, A. C., & Michael, L. (2022). Argumentation: A calculus for human-centric
AI. Frontiers Artif. Intell., 5.

Downey, R. G., & Fellows, M. R. (1999). Parameterized Complexity. Monographs in Com-
puter Science. Springer.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer Verlag, London, UK.

Dueñas-Osorio, L., Meel, K. S., Paredes, R., & Vardi, M. Y. (2017). Counting-based re-
liability estimation for power-transmission grids. In AAAI, pp. 4488–4494. AAAI
Press.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77 (2), 321–357.

Dunne, P. E., & Bench-Capon, T. J. M. (2002). Coherence in finite argument systems.
Artificial Intelligence, 141 (1/2), 187–203.

Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., & Wooldridge, M. (2011). Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence, 175 (2), 457–486.

Durand, A., Hermann, M., & Kolaitis, P. G. (2005). Subtractive reductions and complete
problems for counting complexity classes. Theoretical Computer Science, 340 (3), 496–
513.

830

Counting Complexity for Reasoning in Abstract Argumentation

Dvořák, W., Morak, M., Nopp, C., & Woltran, S. (2013). dynpartix - a dynamic program-
ming reasoner for abstract argumentation. In Applications of Declarative Programming
and Knowledge Management, pp. 259–268. Springer Berlin Heidelberg.

Dvořák, W. (2012). Computational aspects of abstract argumentation. Ph.D. thesis, TU
Wien.

Dvořák, W., Hecher, M., König, M., Schidler, A., Szeider, S., &Woltran, S. (2022). Tractable
abstract argumentation via backdoor-treewidth. Proceedings of the AAAI Conference
on Artificial Intelligence, 36 (5), 5608–5615.

Dvořák, W., & Woltran, S. (2010). Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Information Processing Letters, 110 (11), 425 – 430.

Dvořák, W., Pichler, R., & Woltran, S. (2012). Towards fixed-parameter tractable algo-
rithms for abstract argumentation. Artificial Intelligence, 186, 1–37.

Ebbinghaus, H., Flum, J., & Thomas, W. (1994). Mathematical logic (2. ed.). Undergrad-
uate texts in mathematics. Springer Verlag.

Eiter, T., Fichte, J. K., Hecher, M., & Woltran, S. (2024). Epistemic logic programs: Non-
ground and counting complexity. In Larson, K. (Ed.), Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence (IJCAI-24). To appear.

Fichte, J., Hecher, M., Mahmood, Y., & Meier, A. (2021). Decomposition-guided reduc-
tions for argumentation and treewidth. In Zhou, Z.-H. (Ed.), Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI-21), pp. 1880–1886.
International Joint Conferences on Artificial Intelligence Organization. Main Track.

Fichte, J. K., Berre, D. L., Hecher, M., & Szeider, S. (2023). The silent (r)evolution of SAT.
Communications of the ACM, 66 (6), 64–72.

Fichte, J. K., Gaggl, S. A., Hecher, M., & Rusovac, D. (2024). IASCAR: Incremental answer
set counting by anytime refinement. Theory Pract. Log. Program., 2, 1–28.

Fichte, J. K., Ganian, R., Hecher, M., Slivovsky, F., & Ordyniak, S. (2023). Structure-aware
lower bounds and broadening the horizon of tractability for QBF. In Procedings of
the 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’23),
pp. 1–14.

Fichte, J. K., & Hecher, M. (2018). Exploiting treewidth for counting projected answer
sets. In Proceedings of the 16th International Conference on Principles of Knowledge
Representation and Reasoning (KR’18).

Fichte, J. K., Hecher, M., & Hamiti, F. (2021). The model counting competition 2020.
ACM J. Exp. Algorithmics, 26.

Fichte, J. K., Hecher, M., Morak, M., Thier, P., & Woltran, S. (2023). Solving projected
model counting by utilizing treewidth and its limits. Artificial Intelligence, 314,
103810.

Fichte, J. K., Hecher, M., & Nadeem, M. A. (2022). Plausibility reasoning via projected
answer set counting - a hybrid approach. In Raedt, L. D. (Ed.), Proceedings of the 31st
International Joint Conference on Artificial Intelligence (IJCAI’22), pp. 2620–2626.
International Joint Conferences on Artificial Intelligence Organization.

831

Hecher, Fichte & Meier

Fichte, J. K., Hecher, M., & Roland, V. (2021). Parallel model counting with cuda: Algo-
rithm engineering for efficient hardware utilization. In Proceedings of the 27th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’21).
Dagstuhl Publishing.

Fichte, J. K., Hecher, M., & Schindler, I. (2022a). Default logic and bounded treewidth.
Information and Computation, 283, 104675. Selected papers of the 12th International
Conference on Language and Automata Theory and Applications, LATA 2018.

Fichte, J. K., Gaggl, S. A., & Rusovac, D. (2022b). Rushing and strolling among answer
sets – navigation made easy. In Honavar, V., & Spaan, M. (Eds.), Proceedings of the
36th AAAI Conference on Artificial Intelligence (AAAI’22), pp. 5651–5659.

Fichte, J. K., Hecher, M., Mahmood, Y., & Meier, A. (2023). Quantitative reasoning and
structural complexity for claim-centric argumentation. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI’23), pp. 3212–3220.
ijcai.org.

Fichte, J. K., Hecher, M., & Meier, A. (2019). Counting complexity for reasoning in abstract
argumentation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI’19), pp. 2827–2834. The AAAI Press.

Fichte, J. K., Hecher, M., & Pfandler, A. (2020). Lower bounds for QBFs of bounded
treewidth. In Hermanns, H., Zhang, L., Kobayashi, N., & Miller, D. (Eds.), Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’20),
pp. 410–424. Assoc. Comput. Mach., New York.

Graham, R. L., Grötschel, M., & Lovász, L. (1995). Handbook of combinatorics, Vol. I.
Elsevier Science Publishers, North-Holland.

Hecher, M., & Fichte, J. K. (2023). The 4th competition on model counting (MC 2023).
https://mccompetition.org/past_iterations.

Hecher, M., Mahmood, Y., Meier, A., & Schmidt, J. (2024). Quantitative claim-centric
reasoning in logic-based argumentation. In Proceedings of the 33rd International Joint
Conference on Artificial Intelligence (IJCAI’24). ijcai.org. To appear.

Hemaspaandra, L. A., & Vollmer, H. (1995). The satanic notations: Counting classes beyond
#P and other definitional adventures. SIGACT News, 26 (1), 2–13.

Impagliazzo, R., Paturi, R., & Zane, F. (2001). Which problems have strongly exponential
complexity?. J. of Computer and System Sciences, 63 (4), 512–530.

Jakl, M., Pichler, R., & Woltran, S. (2009). Answer-set programming with bounded
treewidth. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), Vol. 2, pp. 816–822.

Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M. (1988). On generating all maximal
independent sets. Inf. Process. Lett., 27 (3), 119–123.

Johnson, T., Robertson, N., Seymour, P. D., & Thomas, R. (2001). Directed tree-width. J.
Combin. Theory Ser. B, 82 (1), 138–154.

Kabir, M., Everardo, F. O., Shukla, A. K., Hecher, M., Fichte, J. K., & Meel, K. S. (2022).
ApproxASP – a scalable approximate answer set counter. In Honavar, V., & Spaan, M.

832

https://mccompetition.org/past_iterations

Counting Complexity for Reasoning in Abstract Argumentation

(Eds.), Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI’22),
pp. 5755–5764.

Käfer, N., Baier, C., Diller, M., Dubslaff, C., Gaggl, S. A., & Hermanns, H. (2022). Admis-
sibility in probabilistic argumentation. J. Artif. Intell. Res., 74.

Kloks, T. (1994). Treewidth. Computations and Approximations, Vol. 842 of Lecture Notes
in Computer Science. Springer Verlag.

Knuth, D. E. (1998). How fast can we multiply?. In The Art of Computer Programming
(3 edition)., Vol. 2 of Seminumerical Algorithms, chap. 4.3.3, pp. 294–318. Addison-
Wesley.

Konieczny, S., Marquis, P., & Vesic, S. (2015a). On supported inference and extension selec-
tion in abstract argumentation frameworks. In Destercke, S., & Denoeux, T. (Eds.),
Proceeding of the 13th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU’15), pp. 49–59, Cham. Springer Verlag.

Konieczny, S., Marquis, P., & Vesic, S. (2015b). On supported inference and extension
selection in abstract argumentation frameworks. In ECSQARU, Vol. 9161 of Lecture
Notes in Computer Science, pp. 49–59. Springer.

Lagniez, J.-M., Lonca, E., Mailly, J.-G., & Rossit, J. (2020). Introducing the fourth in-
ternational competition on computational models of argumentation. In Gaggl, S. A.,
Thimm, M., & Vallati, M. (Eds.), Proceedings of the 3rd International Workshop on
Systems and Algorithms for Formal Argumentation co-located with the 8th Interna-
tional Conference on Computational Models of Argument (COMMA 2020), Vol. 2672,
pp. 80–85. CEUR Workshop Proceedings (CEUR-WS.org).

Lagniez, J.-M., Lonca, E., Mailly, J.-G., & Rossit, J. (2021). Results of the fourth
international competition on computational models of argumentation. https://

argumentationcompetition.org/2021/downloads/iccma_results_ijcai.pdf.

Lampis, M., Mengel, S., & Mitsou, V. (2018). QBF as an Alternative to Courcelle’s The-
orem. In Beyersdorff, O., & Wintersteiger, C. M. (Eds.), Theory and Applications of
Satisfiability Testing – SAT 2018, pp. 235–252. Springer Verlag.

Lampis, M., & Mitsou, V. (2017). Treewidth with a quantifier alternation revisited. In Lok-
shtanov, D., & Nishimura, N. (Eds.), Proceedings of the 12th International Symposium
on Parameterized and Exact Computation (IPEC’17). Dagstuhl Publishing.

McCarthy, J. (1980). Circumscription - A form of non-monotonic reasoning. Artificial
Intelligence, 13 (1-2), 27–39.

Meier, A. (2020). Parametrised enumeration. Gottfried Wilhelm Leibniz Universität Han-
nover, Hannover, Germany. Habilitation thesis. https://doi.org/10.15488/9427.

Niskanen, A., & Järvisalo, M. (2020). µ-toksia: An Efficient Abstract Argumentation Rea-
soner. In Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR’20), pp. 800–804.

Niskanen, A., & Järvisalo, M. (2023). µ-toksia in iccma 2023. Tech. rep., Department of
Computer Science Series of Publications B, University of Helsinki.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

833

https://argumentationcompetition.org/2021/downloads/iccma_results_ijcai.pdf
https://argumentationcompetition.org/2021/downloads/iccma_results_ijcai.pdf
https://doi.org/10.15488/9427

Hecher, Fichte & Meier

Pichler, R., Rümmele, S., & Woltran, S. (2010). Counting and enumeration problems with
bounded treewidth. In Clarke, E. M., & Voronkov, A. (Eds.), Proceedings of the
16th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’10), Vol. 6355 of Lecture Notes in Computer Science, pp. 387–404.
Springer Verlag.

Rago, A., Cocarascu, O., & Toni, F. (2018). Argumentation-based recommendations: Fan-
tastic explanations and how to find them. In Lang, J. (Ed.), Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI’18), pp. 1949–1955,
Stockholm, Sweden. The AAAI Press.

Rahwan, I. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171 (10-
15), 619–641.

Robertson, N., & Seymour, P. D. (1986). Graph minors. II. algorithmic aspects of tree-
width. J. Algorithms, 7 (3), 309–322.

Toda, S., & Watanabe, O. (1992). Polynomial time 1-Turing reductions from #PH to #P.
Theor. Comput. Sci., 100 (1), 205–221.

Valiant, L. G. (1979). The complexity of computing the permanent. Theor. Comput. Sci.,
8, 189–201.

Vigouroux, T., Bozga, M., Ene, C., & Mounier, L. (2024). Function synthesis for maxi-
mizing model counting. In Dimitrova, R., Lahav, O., & Wolff, S. (Eds.), Proceedings
of the 25th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’24), pp. 258–279. Springer Verlag.

Wilder, R. L. (1965). Introduction to the Foundations of Mathematics (2nd edition edition).
John Wiley & Sons.

Yang, J., Chakraborty, S., & Meel, K. S. (2022). Projected model counting: Beyond in-
dependent support. In Bouajjani, A., Hoĺık, L., & Wu, Z. (Eds.), Proceedings of the
20th International Symposium on Automated Technology for Verification and Analysis
(ATVA’22), pp. 171–187. Springer Verlag.

834

