
Journal of Artificial Intelligence Research 81 (2024) 443-479 Submitted 04/2024; published 10/2024

Expected 1.x Makespan-Optimal Multi-Agent Path Finding on
Grid Graphs in Low Polynomial Time

Teng Guo teng.guo@rutgers.edu
Jingjin Yu jingjin.yu@rutgers.edu
Rutgers, the State University of New Jersey, Piscataway, NJ, USA.

Abstract
Multi-Agent Path Finding (MAPF) is NP-hard to solve optimally, even on graphs,

suggesting no polynomial-time algorithms can compute exact optimal solutions for them.
This raises a natural question: How optimal can polynomial-time algorithms reach? Whereas
algorithms for computing constant-factor optimal solutions have been developed, the constant
factor is generally very large, limiting their application potential. In this work, among
other breakthroughs, we propose the first low-polynomial-time MAPF algorithms delivering
1-1.5 (resp., 1-1.67) asymptotic makespan optimality guarantees for 2D (resp., 3D) grids
for random instances at a very high 1/3 agent density, with high probability. Moreover,
when regularly distributed obstacles are introduced, our methods experience no performance
degradation. These methods generalize to support 100% agent density.

Regardless of the dimensionality and density, our high-quality methods are enabled
by a unique hierarchical integration of two key building blocks. At the higher level, we
apply the labeled Grid Rearrangement Algorithm (GRA), capable of performing efficient
reconfiguration on grids through row/column shuffles. At the lower level, we devise novel
methods that efficiently simulate row/column shuffles returned by GRA. Our implemen-
tations of GRA-based algorithms are highly effective in extensive numerical evaluations,
demonstrating excellent scalability compared to other SOTA methods. For example, in 3D
settings, GRA-based algorithms readily scale to grids with over 370, 000 vertices and over
120, 000 agents and consistently achieve conservative makespan optimality approaching 1.5,
as predicted by our theoretical analysis.

1. Introduction

We examine multi-agent pathfinding (MAPF (Stern, et al., 2019)) on two- and three-
dimensional grids with potentially regularly distributed obstacles (see Fig. 1). The main
objective of MAPF is to find collision-free paths for routing many agents from a start
configuration to a goal configuration. In practice, solution optimality is of key importance,
yet optimally solving MAPF is NP-hard (Surynek, 2010; Yu & LaValle, 2013b), even in planar
settings (Yu, 2015) and on obstacle-less grids (Demaine, et al., 2019). MAPF algorithms apply
to a diverse set of practical scenarios, including formation reconfiguration (Poduri & Sukhatme,
2004), object transportation (Rus, Donald, & Jennings, 1995), swarm robotics (Preiss, et al.,
2017; Hönig, et al., 2018), to list a few. Even when constrained to grid-like settings, MAPF
algorithms still find many large-scale applications, including warehouse automation for general
order fulfillment (Wurman, D’Andrea, & Mountz, 2008), grocery order fulfillment (Mason,
2019), and parcel sorting (Wan, et al., 2018).

Motivated by applications including order fulfillment and parcel sorting, we focus on
grid-like settings with extremely high agent density, i.e., with 1

3 or more graph vertices

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Guo & Yu

6

9

5

8

1

23

4

7

12

10

11 16

17

18

1314

(a) (b)
Figure 1: (a) Real-world parcel sorting system (at JD.com) using many agents on a large

grid-like environment with holes for dropping parcels; (b) A snapshot of a similar
MAPF instance our methods can solve in polynomial-time with provable optimality
guarantees. In practice, our algorithms scale to 2D maps of size over 450× 300,
supporting over 45K agents and achieving better than 1.5-optimality (see, e.g.,
Fig. 14). They scale further in 3D settings.

occupied by agents. Whereas recent studies (Yu, 2018; Demaine et al., 2019) show such
problems can be solved in polynomial time yielding constant-factor optimal solutions, the
constant factor is prohibitively high (≫ 1) to be practical. In this research, we tear down this
MAPF planning barrier, achieving (1 + δ)-makespan optimality asymptotically with high
probability in polynomial time where δ ∈ (0, 0.5] for 2D grids and δ ∈ (0, 23] for 3D grids.

This study’s primary theoretical and algorithmic contributions are outlined below and
summarized in Table 1. Through judicious applications of a novel row/column-shuffle-based
global Grid Rearrangement (GR) method called the Rubik Table Algorithm (Szegedy & Yu,
2023)1, employing many classical algorithmic techniques, and combined with careful analysis,
we establish that in low polynomial time:

• For m1m2 agents on a 2D m1 ×m2 grid, m1 ≥ m2, i.e., at maximum agent density, GRM
(Grid Rearrangement for MAPF) computes a solution for an arbitrary MAPF instance
under a makespan of 4m1 + 8m2; For m1m2m3 agents on a 3D m1 × m2 × m3 grids,
m1 ≥ m2 ≥ m3, GRM computes a solution under a makespan of 4m1 + 8m2 + 8m3;

• For 1
3 agent density with uniformly randomly distributed start/goal configurations, GRH

(Grid Rearrangement with Highways) computes a solution with a makespan of m1 + 2m2 +
o(m1) on 2D grids and m1 + 2m2 + 2m3 + o(m1) on 3D grids, with high probability. In
contrast, such an instance has a minimum makespan of m1 +m2 − o(m1) for 2D grids
and m1 + m2 + m3 − o(m1) for 3D grids with high probability. This implies that, as

1. It was noted in (Szegedy & Yu, 2023) that their Rubik Table Algorithm can be applied to solve MAPF;
we do not claim this as a contribution of our work. Rather, our contribution is to dramatically bring
down the constant factor through a combination of meticulous algorithm design and careful analysis.

444

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

m1 →∞, an asymptotic optimality guarantee of m1+2m2
m1+m2

∈ (1, 1.5] is achieved for 2D grids
and m1+2m2+2m3

m1+m2+m3
∈ (1, 53] for 3D grids, with high probability;

• For 1
2 agent density, the same optimality guarantees as in the 1

3 density setting can be
achieved using GRLM (Grid Rearrangements with Line Merge), using a merge-sort inspired
agent routing heuristic;

• Without modification, GRH achieves the same m1+2m2
m1+m2

optimality guarantee on 2D grids
with up to m1m2

9 regularly distributed obstacles together with 2m1m2
9 agents (e.g., Fig. 1(b)).

Similar guarantees hold for 3D settings;

• For agent density up to 1
2 , for an arbitrary (i.e., not necessarily random) instance, a

solution can be computed with a makespan of 3m1 + 4m2 + o(m1) on 2D grids and
3m1 + 4m2 + 4m3 + o(m1) on 3D grids.

• With minor numerical updates to the relevant guarantees, the above-mentioned results
also generalize to grids of arbitrary dimension k ≥ 4.

Moreover, we have developed many effective and principled heuristics that work together
with the GRA-based algorithms to further reduce the computed makespan by a significant
margin. These heuristics include (1) An optimized matching scheme, required in the
application of the grid rearrangement algorithm, based on linear bottleneck assignment
(LBA), (2) A polynomial time path refinement method for compacting the solution paths
to improve their quality. As demonstrated through extensive evaluations, our methods are
highly scalable and capable of tackling instances with tens of thousands of densely packed
agents. Simultaneously, the achieved optimality matches/exceeds our theoretical prediction.
With the much-enhanced scalability, our approach unveils a promising direction toward the
development of practical, provably optimal multi-agent routing algorithms that run in low
polynomial time.

Algorithms GRM 2x3 GRM 4x2 GRLM GRH
Applicable Density ≤ 1 ≤ 1 ≤ 1

2
≤ 1

3
Makespan Upperbound 7(2m2 +m1) 4(2m2 +m1) 4m2 + 3m1 4m2 + 3m1

Asymptotic Makespan 7(2m2 +m1) 4(2m2 +m1) 2m2 +m1 + o(m1) 2m2 +m1 + o(m1)
Asymptotic Optimality 7(1 + m2

m1+m2
) 4(1 + m2

m1+m2
) 1 + m2

m1+m2
1 + m2

m1+m2

Table 1: Summary results of the algorithms proposed in this work. All algorithms operate
on grids of dimensions m1 ×m2. GRH, GRM, and GRLM are all further derived
from GRA2D, each a variant characterized by distinct low-level shuffle movements.
Specifically for GRM, the low-level shuffle movement is tailored for facilitating
full-density robot movement

This paper builds on two conference publications (Guo & Yu, 2022; Guo, Feng, & Yu,
2022). Besides providing a unified treatment of the problem that streamlined the description
of GRA-based algorithms under 2D/3D/kD settings for journal archiving, the manuscript
further introduces many new results, including (1) The baseline GRM method (for the full-
density case) is significantly improved with a much stronger makespan optimality guarantee,
by a factor of 7

4 ; (2) A new and general polynomial-time path refinement technique is

445

Guo & Yu

developed that significantly boosts the optimality of the plans generated by all GRA-based
algorithms; (3) Complete and substantially refined proofs are provided for all theoretical
developments in the paper; and (4) The evaluation section is fully revamped to reflect the
updated theoretical and algorithmic development.

Related work. Literature on multi-agent path and motion planning (Hopcroft, Schwartz,
& Sharir, 1984; Erdmann & Lozano-Perez, 1987) is expansive; here, we mainly focus on
graph-theoretic (i.e., the state space is discrete) studies (Yu & LaValle, 2016; Stern et al.,
2019). As such, in this paper, MAPF refers explicitly to graph-based multi-agent path
planning. Whereas the feasibility question has long been positively answered (Kornhauser,
Miller, & Spirakis, 1984), the same cannot be said for finding optimal solutions, as computing
time- or distance-optimal solutions are NP-hard in many settings, including on general
graphs (Goldreich, 2011; Surynek, 2010; Yu & LaValle, 2013b), planar graphs (Yu, 2015;
Banfi, Basilico, & Amigoni, 2017), and regular grids (Demaine et al., 2019) that is similar to
the setting studied in this work.

Nevertheless, given its high utility, especially in e-commerce applications (Wurman et al.,
2008; Mason, 2019; Wan et al., 2018) that are expected to grow significantly (Dekhne, et al.,
2019; LogisticsIQ, 2020), many algorithmic solutions have been proposed for optimally solving
MAPF. Among these, combinatorial-search-based solvers (Lam, et al., 2019) have been
demonstrated to be fairly effective. MAPF solvers may be classified as being optimal or
suboptimal. Reduction-based optimal solvers solve the problem by reducing the MAPF
problem to another problem, e.g., SAT (Surynek, 2012), answer set programming (Erdem,
et al., 2013), integer linear programming (ILP) (Yu & LaValle, 2016). Search-based optimal
MAPF solvers include EPEA* (Goldenberg, et al., 2014), ICTS (Sharon, et al., 2013),
CBS (Sharon, et al., 2015), M* (Wagner & Choset, 2015), and many others.

Due to the inherent intractability of optimal MAPF, optimal solvers usually exhibit
limited scalability, leading to considerable interest in suboptimal solvers. Unbounded solvers
like push-and-swap (Luna & Bekris, 2011), push-and-rotate (De Wilde, Ter Mors, & Witteveen,
2014), windowed hierarchical cooperative A∗ (Silver, 2005), BIBOX (Surynek, 2009), all
return feasible solutions very quickly, but at the cost of solution quality. Balancing the
running time and optimality is one of the most attractive topics in the study of MAPF. Some
algorithms emphasize the scalability without sacrificing as much optimality, e.g., ECBS (Barer,
et al., 2014), DDM (Han & Yu, 2020), PIBT (Okumura, et al., 2019), PBS (Ma, et al.,
2019). There are also learning-based solvers (Damani, et al., 2021; Sartoretti, et al., 2019;
Li, et al., 2021) that scale well in sparse environments. Effective orthogonal heuristics have
also been proposed (Guo, Han, & Yu, 2021). Recently, O(1)-approximate or constant factor
time-optimal algorithms have been proposed, e.g. (Yu, 2018; Demaine et al., 2019; Han,
Rodriguez, & Yu, 2018), that tackle highly dense instances. However, these algorithms
only achieve a low-polynomial time guarantee at the expense of very large constant factors,
rendering them theoretically interesting but impractical.

In contrast, with high probability, our methods run in low polynomial time with provable
1.x asymptotic optimality. To our knowledge, this paper presents the first MAPF algorithms
to simultaneously guarantee polynomial running time and 1.x solution optimality, which
works for any dimension ≥ 2.

Organization. The rest of the paper is organized as follows. In Sec. 2, starting with
2D grids, we provide a formal definition of graph-based MAPF, and introduce the Grid

446

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Rearrangement problem and the associated baseline algorithm (GRA) for solving it. GRM,
a basic adaptation of GRA for MAPF at maximum agent density which ensures a makespan
upper bound of 4m1 + 8m2, is described in Sec. 3. An accompanying lower bound of
m1 +m2 − o(m1) for random MAPF instances is also established. In Sec. 4 we introduce
GRH for 1

3 agent density achieving a makespan upper bound of m1+2m2+ o(m1). Obstacle
support is then discussed. We continue to show how 1

2 agent density may be supported
with similar optimality guarantees. In Sec. 5, we generalize the algorithms to work on 3+D
grids. In Sec. 6, we introduce multiple optimality-boosting heuristics to significantly improve
the solution quality for all variants of Grid Rearrangement-based solvers. We thoroughly
evaluate the performance of our methods in Sec. 7 and conclude with Sec. 8.

2. Preliminaries

2.1 Multi-Agent Path Finding on Graphs (MAPF)

Consider an undirected graph G(V,E) and n agents with start configuration S = {s1, . . . , sn} ⊆
V and goal configuration G = {g1, . . . , gn} ⊆ V . A path for agent i is a map Pi : N → V
where N is the set of non-negative integers. A feasible Pi must be a sequence of vertices
that connects si and gi: 1) Pi(0) = si; 2) ∃Ti ∈ N, s.t. ∀t ≥ Ti, Pi(t) = gi; 3) ∀t > 0,
Pi(t) = Pi(t − 1) or (Pi(t), Pi(t − 1)) ∈ E. A path set {P1, . . . , Pn} is feasible iff each Pi

is feasible and for all t ≥ 0 and 1 ≤ i < j ≤ n, Pi(t) = P , it does not happen that: 1)
Pi(t) = Pj(t); 2) Pi(t) = Pj(t+ 1) ∧ Pj(t) = Pi(t+ 1).

We work with G being 4-connected grids in 2D and 6-connected grids in 3D, aiming to
mainly minimize the makespan, i.e., maxi{|Pi|} (later, a sum-of-cost objective is also briefly
examined). Unless stated otherwise, G is assumed to be an m1 ×m2 grid with m1 ≥ m2

in 2D and m1 ×m2 ×m3 grid with m1 ≥ m2 ≥ m3 in 3D. As a note, “randomness” in this
paper always refers to uniform randomness. The version of MAPF we study is sometimes
referred to as one-shot MAPF (Stern et al., 2019). We mention our results also translate to
guarantees on the life-long setting (Stern et al., 2019), briefly discussed in Sec. 8.

2.2 The Grid Rearrangement Problem (GRP)

The Grid Rearrangement problem (GRP) (first proposed in (Szegedy & Yu, 2023) as
the Rubik Table problem) formalizes the task of carrying out globally coordinated object
reconfiguration operations on lattices, with many interesting applications. The problem has
many variations; we start with the 2D form, to be generalized to higher dimensions later.

Problem 1 (Grid Rearrangement Problem in 2D (GRP2D) (Szegedy & Yu, 2023)).
Let M be an m1(row)×m2(column) table, m1 ≥ m2, containing m1m2 items, one in each
table cell. The items have m2 colors with each color having a multiplicity of m1. In a shuffle
operation, the items in a single column or a single row of M may be permuted in an arbitrary
manner. Given an arbitrary configuration XI of the items, find a sequence of shuffles that
take M from XI to the configuration where row i, 1 ≤ i ≤ m1, contains only items of color i.
The problem may also be labeled, i.e., each item has a unique label in 1, . . . ,m1m2.

A key result (Szegedy & Yu, 2023), which we denote here as the (labeled) Grid Rear-
rangement Algorithm in 2D (GRA2D), shows that a colored GRP2D can be solved using
m2 column shuffles followed by m1 row shuffles, implying a low-polynomial time computation

447

Guo & Yu

time. Additional m1 row shuffles then solve the labeled GRP2D. We illustrate how GRA2D
works on an m1×m2 table with m1 = 4 and m2 = 3 (Fig. 2); we refer the readers to (Szegedy
& Yu, 2023) for details. The main supporting theoretical result is given in Theorem 2.2,
which depends on Theorem 2.1.

Theorem 2.1 (Hall’s Matching theorem with parallel edges (Hall, 2009; Szegedy & Yu,
2023)). Let B be a d-regular (d > 0) bipartite graph on n+ n nodes, possibly with parallel
edges. Then B has a perfect matching.

Theorem 2.2 (Grid Rearrangement Theorem (Szegedy & Yu, 2023)). An arbitrary
Grid Rearrangement problem on an m1×m2 table can be solved using m1 +m2 shuffles. The
labeled Grid Rearrangement problem can be solved using 2m1 +m2 shuffles.

GRA2D operates in two phases. In the first, a bipartite graph B(T,R) is constructed
based on the initial table where the bipartite set T are the colors/types of items, and the set
R the rows of the table (see Fig. 2(b)). An edge is added to B between t ∈ T and r ∈ R for
every item of color t in row r. From B(T,R), which is a regular bipartite graph, m2 perfect
matchings can be computed as guaranteed by Theorem 2.1. Each matching, containing
m1 edges, dictates how a table column should look like after the first phase. For example,
the first set of matching (solid lines in Fig. 2(b)) says the first column should be ordered
as yellow, cyan, red, and green, shown in Fig. 2(c). After all matchings are processed, we
get an intermediate table, Fig. 2(c). Notice each row of Fig. 2(a) can be shuffled to yield
the corresponding row of Fig. 2(c); a key novelty of GRA2D. After the first phase of m1

row shuffles, the intermediate table (Fig. 2(c)) can be rearranged with m2 column shuffles
to solve the colored GRP2D (Fig. 2(d)). Another m1 row shuffles then solve the labeled
GRP2D (Fig. 2(e)). It is also possible to perform the rearrangement using m2 column
shuffles, followed by m1 row shuffles, followed by another m2 column shuffles.

8 6

3 2 9

5

6 8

9

1

3 2

1 3 2

5

9

6 4

7 8

1 2 3

4

7

5 6

8 9

4

1

7

10

R1

R2

R3

R4 7 45

11

12

10 11

12

10 1112 10 11 12

(a) (b) (c) (d) (e)

Figure 2: Illustration of applying the 11 shuffles. (a) The initial 4× 3 table with a random
arrangement of 12 items that are colored and labeled. The labels are consistent with
the colors. (b) The constructed bipartite graph. It contains 3 perfect matchings,
determining the 3 columns in (c); only color matters in this phase. (c) Applying
4 row shuffles to (a), according to the matching results, leads to an intermediate
table where each column has one color appearing exactly once. (d) Applying 3
column shuffles to (c) solves a colored GRP2D. (e) 4 additional row shuffles fully
sort the labeled items.

448

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

GRA2D runs in O(m1m2 logm1) (notice that this is nearly linear with respect to
n = m1m2, the total number of items) expected time or O(m2

1m2) deterministic time.

3. Solving MAPF at Maximum Density Leveraging GRA2D

The built-in global coordination capability of GRA2D naturally applies to solving makespan-
optimal MAPF. Since GRA2D only requires three rounds of shuffles and each round involves
either parallel row shuffles or parallel column shuffles, if each round of shuffles can be realized
with makespan proportional to the size of the row/column, then a makespan upper bound of
O(m1 +m2) can be guaranteed. This is in fact achievable even when all of G’s vertices are
occupied by agents, by recursively applying a labeled line shuffle algorithm (Yu, 2018), which
can arbitrarily rearrange a line of m agents embedded in a grid using O(m) makespan.

Lemma 3.1 (Basic Simulated Labeled Line Shuffle (Yu, 2018)). For m labeled agents on a
straight path of length m, embedded in a 2D grid, they may be arbitrarily ordered in O(m)
steps. Moreover, multiple such reconfigurations can be performed on parallel paths within the
grid.

The key operation is based on a localized, 3-step pair swapping routine, shown in Fig. 3.
For more details on the line shuffle routine, see (Yu, 2018).

1 2

4 5

3

6

4 1

5 2

3

6

4 2

5 6

1

3

2 1

4 5

3

6

Figure 3: On a 2× 3 grid, swapping two agents may be performed in three steps with three
cyclic rotations.

However, the basic simulated labeled line-shuffle algorithm has a large constant factor.
Each shuffle takes 3 steps; doing arbitrary shuffling of a 2 × 3 takes 20+ steps in general.
The constant factor further compounds as we coordinate the shuffles across multiple lines.
Borrowing ideas from parallel odd-even sort (Bitton, et al., 1984), we can greatly reduce the
constant factor in Lemma 3.1. We will do this in several steps. First, we need the following
lemma. By an arbitrary horizontal swap on a grid, we mean an arbitrary reconfiguration or
a grid row.

Lemma 3.2. It takes at most 7, 6, 6, 7, 6, and 8 steps to perform arbitrary combinations of
arbitrary horizontal swaps on 3× 2, 4× 2, 2× 3, 3× 3, 2× 4, and 3× 4 grids, respectively.

Proof. Using integer linear programming (Yu & LaValle, 2016), we exhaustively compute
makespan-optimal solutions for arbitrary horizontal reconfigurations on 3×2 (8 = 23 possible
cases), 4× 2 grids (24 possible cases), 2× 3 grids (62 possible cases), 3× 3 grids (63 possible
cases), 2× 4 grids (242 possible cases), and 3× 4 grids (243 possible cases), which confirms
the claim.

449

Guo & Yu

1

3

5 6

4

2 6

4

2 5

1

3 2

4

6 5

3

13

5

6 4

2

1 4

1

2 5

3

6 1

2

5 3

6

4 2

6

5 3

4

13

6

4 2

5

1

Figure 4: An example of a full horizontal “swap” on a 3× 2 grid that takes seven steps, in
which all three pairs are swapped.

As an example, it takes seven steps to horizontally “swap” all three pairs of agents on a
3× 2 grid, as shown in Fig. 4.

Lemma 3.3 (Fast Line Shuffle). Embedded in a 2D grid, m agents on a straight path of
length m may be arbitrarily ordered in 7m steps. Moreover, multiple such reconfigurations
can be executed in parallel within the grid.

Proof. Arranging m agents on a straight path of length m may be realized using parallel
odd-even sort (Bitton et al., 1984) in m−1 rounds, which only requires the ability to simulate
potential pairwise “swaps” interleaving odd phases (swapping agents located at positions
2k + 1 and 2k + 2 on the path for some k) and even phases (swapping agents located at
positions 2k + 2 and 2k + 3 on the path for some k). Here, it does not matter whether m is
odd or even. To simulate these swaps, we can partition the grid embedding the path into
3× 2 grids in two ways for the two phases, as illustrated in Fig. 5.

Figure 5: Partitioning a grid into disjoint 3× 2 grids in two ways for simulating odd-even
sort. Highlighted agent pairs may be independently “swapped” within each 3× 2
grid as needed.

A perfect partition requires that the second dimension of the grid, perpendicular to the
straight path, be a multiple of 3. If not, some partitions at the bottom can use 4×2 grids. By
Lemma 3.2, each odd-even sorting phase can be simulated using at most 7m steps. Shuffling
on parallel paths is directly supported.

After introducing a 7m step line shuffle, we further show how it can be dropped to 4m,
using similar ideas. The difference is that an updated parallel odd-even sort will be used
with different sub-grids of sizes different from 2× 3 and 2× 4.

450

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

The updated parallel odd-even sort operates on blocks of four (Fig. 6) instead of two
(Fig. 5), which cuts down the number of parallel sorting operations from m − 1 to about
m/2. Here, if m is not even, a partition will leave either 1 or 3 at the end. For example, if
m = 11, it can be partitioned as 4, 4, 3 and 2, 4, 4, 1 in the two parallel sorting phases.

Figure 6: We can make the parallel odd-even sort work twice faster by increasing the swap
block size from two to four.

With the updated parallel odd-even sort, we must be able to make swaps on blocks of
four. We do this by partition an m1 ×m2 grid into 2× 4, which may have leftover sub-grids
of sizes 2× 3, 3× 4, and 3× 3. Using the same reasoning in proving Lemma 3.3 and with
Lemma 3.2, we have

Lemma 3.4 (Faster Line Shuffle). Embedded in a 2D grid, m agents on a straight path
of length m may be arbitrarily ordered in approximately 4m steps. Moreover, multiple such
reconfigurations can be executed in parallel within the grid.

Proof sketch. The updated parallel odd-even sort requires a total of m/2 steps. Since each
step operated on a 2× 4, 2× 3, 3× 4, or 3× 3 grid, which takes at most 8 steps, the total
makespan is approximately 4m.

Combining GRA2D and fast line shuffle (Lemma 3.4) yields a polynomial time MAPF
algorithm for fully occupied grids with a makespan of 4m1 + 8m2.

Theorem 3.1 (MAPF on Grids under Maximum Agent Density, Upper Bound). MAPF
on an m1 ×m2 grid, m1 ≥ m2 ≥ 3, with each grid vertex occupied by an agent, can be solved
in polynomial time in a makespan of 4m1 + 8m2.

Proof Sketch. By combining the GRA2D and the line shuffle algorithms, the problem can be
efficiently solved through two row-shuffle phases and one column-shuffle phase. During the
row-shuffle phases, all rows can be shuffled in 4m2 steps, and similarly, during column-shuffle
phases, all columns can be shuffled in 4m1 steps. Summing up these steps, the entire problem
can be addressed in 4m1 + 8m2 steps. The primary computational load lies in computing
the perfect matchings, a task achievable in O(m1m2 logm1) expected time or O(m2

1m2)
deterministic time.

It is clear that, by exploiting the idea further, smaller makespans can potentially be
obtained for the full-density setting, but the computation required for extending Lemma 3.2
will become more challenging. It took about two days to compute all 243 cases for the 3× 4
grid, for example.

451

Guo & Yu

We call the resulting algorithm from the process GRM (for 2D), with “M” denoting
maximum density, regardless of the used sub-grids. The straightforward pseudo-code is given
in Alg. 1. The comments in the main GRM routine indicate the corresponding GRA2D
phases. For MAPF on an m1 ×m2 grid with row-column coordinates (x, y), we say agent
i belongs to color 1 ≤ j ≤ m1 if gi.y = j. Function Prepare() in the first phase finds
intermediate states {τi} for each agent through perfect matchings and routes them towards
the intermediate states by (simulated) column shuffles. If the agent density is smaller than
required, we may fill the table with “virtual” agents (Han et al., 2018; Yu, 2018). For each
agent i, we have τi.y = si.y. Function ColumnFitting() in the second phase routes the
agents to their second intermediate states {µi} through row shuffles where µi.x = τi.x and
µi.y = gi.y. In the last phase, function RowFitting() routes the agents to their final goal
positions using additional column shuffles.

Algorithm 1: Labeled Grid Rearrangement Based MAPF Algorithm for 2D
(GRA2D)

Input: Start and goal vertices S = {si} and G = {gi}
1 Function RTA2D(S,G):
2 Prepare(S,G) ▷ Computing Fig. 2(b)
3 ColumnFitting(S,G) ▷ Fig. 2(a) → Fig. 2(c)
4 RowFitting(S,G) ▷ Fig. 2(c) → Fig. 2(d)

5 Function Prepare(S,G):
6 A← [1, ...,m1m2]
7 for (t, r) ∈ [1, ...,m1]× [1, ...,m1] do
8 if ∃i ∈ A where si.x = r ∧ gi.y = t then
9 add edge (t, r) to B(T,R)

10 remove i from A

11 compute matchingsM1, ...,Mm2 of B(T,R)
12 A← [1, ...,m1m2]
13 foreachMr and (t, r) ∈Mr do
14 if ∃i ∈ A where si.x = r ∧ gi.y = t then
15 τi ← (r, si.y) and remove i from A
16 mark agent i to go to τi

17 perform simulated column shuffles in parallel

18 Function ColumnFitting(S,G):
19 foreach i ∈ [1, ...,m1m2] do
20 µi ← (τi.x, gi.y) and mark agent i to go to µi

21 perform simulated row shuffles in parallel

22 Function RowFitting(S,G):
23 foreach i ∈ [1, ...,m1m2] do
24 mark agent i to go to gi

25 perform simulated column shuffles in parallel

We now establish the optimality guarantee of GRM on 2D grids, assuming MAPF
instances are randomly generated. For this, a precise lower bound is needed.

452

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Proposition 3.1 (Precise Makespan Lower Bound of MAPF on 2D Grids). The minimum
makespan of random MAPF instances on an m1 ×m2 grid with Θ(m1m2) agents is m1 +
m2 − o(m1) with arbitrarily high probability as m1 →∞.

Proof. Without loss of generality, let the constant in Θ(m1m2) be some c ∈ (0, 1], i.e., there
are cm1m2 agents. We examine the top left and bottom right corners of the m1 × m2

grid G. In particular, let Gtl (resp., Gbr) be the top left (resp., bottom right) αm1 × αm2

sub-grid of G, for some positive constant α≪ 1. For u ∈ V (Gtl) and v ∈ V (Gbr), assuming
each grid edge has unit distance, then the Manhattan distance between u and v is at least
(1− 2α)(m1 +m2). Now, the probability that some u ∈ V (Gtl) and v ∈ V (Gbr) are the start
and goal, respectively, for a single agent, is α4. For cm1m2 agents, the probability that at
least one agent’s start and goal fall into Gtl and Gbr, respectively, is p = 1− (1− α4)cm1m2 .

Because (1− x)y < e−xy for 0 < x < 1 and y > 0 2, p > 1− e−α4cm1m2 . Therefore, for
arbitrarily small α, we may choose m1 such that p is arbitrarily close to 1. For example,
we may let α = m

− 1
8

1 , which decays to zero as m1 → ∞, then it holds that the makespan

is (1− 2α)(m1 +m2) = m1 +m2 − 2m
− 1

8
1 (m1 +m2) = m1 +m2 − o(m1) with probability

p > 1− e−c
√
m1m2 .

Comparing the upper bound established in Theorem 3.1 and the lower bound from
Proposition 3.1 immediately yields

Theorem 3.2 (Optimality Guarantee of GRM). For random MAPF instances on an
m1 × m2 grid with Ω(m1m2) agents, as m1 → ∞, GRM computes in polynomial time
solutions that are 4(1 + m2

m1+m2
)-makespan optimal, with high probability.

Proof Sketch. By Proposition 5.1 and Theorem 3.1, the asymptotic optimality ratio is
4
(
1 + m2

m1+m2

)
.

GRM always runs in polynomial time and has the same running time as GRA2D; the
high probability guarantee only concerns solution optimality. The same is true for other
high-probability algorithms proposed in this paper. We also note that high-probability
guarantees imply guarantees in expectation.

4. Near-Optimally Solving MAPF with up to One-Third and One-Half
Agent Densities

Though GRM runs in polynomial time and provides constant factor makespan optimality
in expectation, the constant factor is 4+ due to the extreme density. In practice, a agent
density of around 1

3 (i.e., n = m1m2
3) is already very high. As it turns out, with n = cm1m2

for some constant c > 0 and n ≤ m1m2
2 , the constant factor can be dropped to close to 1.

4.1 Up to One-Third Density: Shuffling with Highway Heuristics

For 1
3 density, we work with random MAPF instances in this subsection; arbitrary instances

for up to 1
2 density are addressed in later subsections. Let us assume for the moment that m1

2. This is because log(1− x) < −x for 0 < x < 1; multiplying both sides by a positive y and exponentiate
with base e then yield the inequality.

453

Guo & Yu

and m2 are multiples of three; we partition G into 3× 3 cells (see, e.g., Fig. 1(b) and Fig. 7).
We use Fig. 7, where Fig. 7(a) is a random start configuration and Fig. 7(f) is a random
goal configuration, as an example to illustrate GRH– Grid Rearrangement with Highways,
targeting agent density up to 1

3 . GRH has two phases: unlabeled reconfiguration and MAPF
resolution with Grid Rearrangement and highway heuristics.

5

1

8

9

66

9

5 8

1

2

3

4

712 10

11

12

3

7

4

2

10

11

9

8

7

10

11

5

1

2

4

6

3

12

9

8

7

10

5

1

2

4

3

6

12

11 6

95

81

2

3

4 7 12

10

11

8 361 11

9 25 7 4

10

12

5

1

9

8

6

4

3

7

2

10

11

12

3 861 11

2 954 7

10

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: An example of applying GRH to solve an MAPF instance. (a) The start configura-
tion; (b) The start balanced configuration obtained from (a); (c) The intermediate
configuration obtained from the Grid Rearrangement preparation phase; (d). The
intermediate configuration obtained from (c); (e) The intermediate configuration
obtained from the column fitting phase; (f) Apply additional column shuffles
for labeled items; (g) The goal balanced configuration obtained from the goal
configuration; (h) The goal configuration.

In unlabeled reconfiguration, agents are treated as being indistinguishable. Arbitrary start
and goal configurations (under 1

3 agent density) are converted to intermediate configurations
where each 3× 3 cell contains no more than 3 agents. We call such configurations balanced.
With high probability, random MAPF instances are not far from being balanced. To establish
this result (Proposition 4.1), we need the following.

Theorem 4.1 (Minimax Grid Matching (Leighton & Shor, 1989)). Consider an m ×m
square containing m2 points following the uniform distribution. Let ℓ be the minimum length
such that there exists a perfect matching of the m2 points to the grid points in the square for
which the distance between every pair of matched points is at most ℓ. Then ℓ = O(log

3
4 m)

with high probability.

Theorem 4.1 applies to rectangles with the longer side being m as well (Theorem 3
in (Leighton & Shor, 1989)).

454

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Proposition 4.1. On an m1 ×m2 grid, with high probability, a random configuration of
n = m1m2

3 agents is of distance o(m1) to a balanced configuration.

Proof. We prove for the case of m1 = m2 = 3m using the minimax grid matching theorem
(Theorem 4.1); generalization to m1 ≥ m2 can be then seen to hold using the generalized
version of Theorem 4.1 that applies to rectangles (Theorem 3 of (Leighton & Shor, 1989),
which applies to arbitrarily simply-connected region within a square region).

Now let m1 = m2 = 3m. We may view a random configuration of m2 agents on a
3m× 3m grid as randomly placing m2 continuous points in an m×m square with scaling
(by three in each dimension) and rounding. By Theorem 4.1, a random configuration of m2

continuous points in an m×m square can be moved to the m2 grid points at the center of the
m2 disjoint unit squares within the m×m square, where each point is moved by a distance
no more than O(log

3
4 m), with high probability. Translating this back to a 3m× 3m gird, m2

randomly distributed agents on the grid can be moved so that each 3× 3 cell contains exactly
one agent, and the maximum distance moved for any agent is no more than O(log

3
4 m), with

high probability. Applying this argument three times yields that a random configuration of
m2

1
3 agents on an m1 ×m1 gird can be moved so that each 3× 3 cell contains exactly three

agents, and no agent needs to move more than a O(log
3
4 m1) steps, with high probability.

Because the agents are indistinguishable, overlaying three sets of reconfiguration paths will
not cause an increase in the distance traveled by any agent.

In the example, unlabeled reconfiguration corresponds to Fig. 7(a)→Fig. 7(b) and
Fig. 7(f)→Fig. 7(e) (MAPF solutions are time-reversible). We simulated the process of
unlabeled reconfiguration for m1 = m2 = 300, i.e., on a 300× 300 grids. For 1

3 agent density,
the actual number of steps averaged over 100 random instances is less than 5. We call
configurations like Fig. 7(b)-(e), which have all agents concentrated vertically or horizontally
in the middle of the 3× 3 cells, centered balanced or simply centered. Completing the first
phase requires solving two unlabeled problems (Yu & LaValle, 2012; Ma & Koenig, 2016),
doable in polynomial time.

In the second phase, GRA is applied with a highway heuristic to get us from Fig. 7(b)
to Fig. 7(e), transforming between vertical centered configurations and horizontal centered
configurations. To do so, GRA is applied (e.g., to Fig. 7(b) and (e)) to obtain two inter-
mediate configurations (e.g., Fig. 7(c) and (d)). To go between these configurations, e.g.,
Fig. 7(b)→Fig. 7(c), we apply a heuristic by moving agents that need to be moved out of
a 3× 3 cell to the two sides of the middle columns of Fig. 7(b), depending on their target
direction. If we do this consistently, after moving agents out of the middle columns, we
can move all agents to their desired goal 3× 3 cell without stopping nor collision. Once all
agents are in the correct 3× 3 cells, we can convert the balanced configuration to a centered
configuration in at most 3 steps, which is necessary for carrying out the next simulated
row/column shuffle. Adding things up, we can simulate a shuffle operation using no more than
m+ 5 steps where m = m1 or m2. The efficiently simulated shuffle leads to low makespan
MAPF algorithms. It is clear that all operations take polynomial time; a precise running
time is given at the end of this subsection.

Theorem 4.2 (Makespan Upper Bound for Random MAPF, ≤ 1
3 Density). For random

MAPF instances on an m1 ×m2 grid, where m1 ≥ m2 are multiples of three, for n ≤ m1m2
3

455

Guo & Yu

agents, an m1 + 2m2 + o(m1) makespan solution can be computed in polynomial time, with
high probability.

Proof. By Proposition 4.1, unlabeled reconfiguration requires distance o(m1) with high
probability. This implies that a plan can be obtained for unlabeled reconfiguration that
requires o(m1) makespan (for detailed proof, see Theorem 1 from (Yu, 2018)). For the
second phase, by Theorem 2.2, we need to perform m1 parallel row shuffles with a row
width of m2, followed by m2 parallel column shuffles with a column width of m1, followed by
another m1 parallel row shuffles with a row width of m2. Simulating these shuffles require
m1 + 2m2 +O(1) steps. Altogether, a makespan of m1 + 2m2 + o(m1) is required, with a
very high probability.

Contrasting Theorem 4.2 and Proposition 3.1 yields

Theorem 4.3 (Makespan Optimality for Random MAPF, ≤ 1
3 Density). For random

MAPF instances on an m1×m2 grid, where m1 ≥ m2 are multiples of three, for n = cm1m2

agents with c ≤ 1
3 , as m1 →∞, a (1 + m2

m1+m2
) makespan optimal solution can be computed

in polynomial time, with high probability.

Since m1 ≥ m2, 1 + m2
m1+m2

∈ (1, 1.5]. In other words, in polynomial running time, GRH
achieves (1 + δ) asymptotic makespan optimality for δ ∈ (0, 0.5], with high probability.

From the analysis so far, if m1 and/or m2 are not multiples of 3, it is clear that all
results in this subsection continue to hold for agent density 1

3 −
(m1 mod 3)(m2 mod 3)

m1m2
, which is

arbitrarily close to 1
3 for large m1 and m2. It is also clear that the same can be said for grids

with certain patterns of regularly distributed obstacles (Fig. 1(b)), i.e.,

Corollary 4.1 (Random MAPF, 1
9 Obstacle and 2

9 Agent Density). For random MAPF
instances on an m1×m2 grid, where m1 ≥ m2 are multiples of three and there is an obstacle
at coordinates (3k1 + 2, 3k2 + 2) for all applicable k1 and k2, for n = cm1m2 agents with
c ≤ 2

9 , a solution can be computed in polynomial time that has makespan m1 + 2m2 + o(m1)
with high probability. As m1 → ∞, the solution approaches 1 + m2

m1+m2
optimal, with high

probability.

Proof. Because the total density of robot and obstacles are no more than 1/3, if Theorem 4.1
extends to support regularly distributed obstacles, then Theorem 4.3 applies because the
highway heuristics do not pass through the obstacles. This is true because each obstacle can
only add a constant length of path detour to an agent’s path. In other words, the length ℓ

in Theorem 4.3 will only increase by a constant factor and will remain as ℓ = O(log
3
4 m).

Similar arguments hold for Proposition 4.1.

We now give the running time of GRM and GRH.

Proposition 4.2 (Running Time, GRH). For n ≤ m1m2
3 agents on an m1 ×m2 grid, GRH

runs in O(nm2
1m2) time.

Proof. The running time of GRH is dominated by the matching computation and solving un-
labeled MAPF. The matching part takes O(m2

1m2) in deterministic time or O(m1m2 logm1)
in expected time (Goel, Kapralov, & Khanna, 2013). Unlabeled MAPF may be tackled

456

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

using the max-flow algorithm (Ford & Fulkerson, 1956) in O(nm1m2T) = O(nm2
1m2) time,

where T = O(m1 +m2) is the expansion time horizon of a time-expanded graph that allows
a routing plan to complete.

4.2 One-Half Agent Density: Shuffling with Linear Merging

Using a more sophisticated shuffle routine, 1
2 agent density can be supported while retaining

most of the guarantees for the 1
3 density setting; obstacles are no longer supported.

To best handle 1
2 agent density, we employ a new shuffle routine called linear merge, based

on merge sort, and denote the resulting algorithm as Grid Rearrangement with Linear Merge
or GRLM. The basic idea is straightforward: for m agents on a 2×m grid, we iteratively
sort the agents first on 2× 2 grids, then 2× 4 grids, and so on, much like how merge sort
works. An illustration of the process on a 2× 8 grid is shown in Fig. 8.

Algorithm 2: Line Merge Algorithm
Input: An array arr representing the vertices labeled from 1 to n with current and

intermediate locations of n agents.
1 Function LineMerge(arr):
2 if length of arr > 1 then
3 mid← length of arr ÷ 2
4 left← arr[0 . . .mid− 1]
5 right← arr[mid . . . length of arr − 1]
6 LineMerge(left)
7 LineMerge(right)
8 Merge(arr)

9 Function Merge(arr):
10 Sort agents located at the vertices in arr to obtain intermediate states
11 for i ∈ arr do
12 ai ← agent at vertex i
13 if ai.intermediate > i then
14 Route ai moving rightward using the bottom line while avoiding blocking those

agents that are moving leftward

15 else
16 Route ai moving leftward using the upper line without stopping

17 Synchronize the paths

Lemma 4.1 (Properties of Linear Merge). On a 2×m grid, m agents, starting on the first
row, can be arbitrarily ordered using m+ o(m) steps, using the Alg. 2, inspired from merge
sort. The motion plan can be computed in polynomial time.

Proof. We first show feasibility. The procedure takes ⌈logm⌉ phases; in a phase, let us denote
a section of the 2×m grid where robots are treated together as a block. For example, the
left 2 × 4 grid in Fig. 8(b) is a block. It is clear that the first phase, involving up to two
robots per block, is feasible (i.e., no collision). Assuming that phase k is feasible, we look at
phase k + 1. We only need to show that the procedure is feasible on one block of length up

457

Guo & Yu

35 8 2 6 1 7 448 5 2 6 1 7 3

42 5 6 8 1 3 7 71 2 3 4 5 6 8

(a) (b)

(c) (d)

Figure 8: A demonstration of the linear merge shuffle primitive on a 2× 8 grid. Agents going
to the left always use the upper channel while agents going to the right always use
the lower channel.

to 2k+1. For such a block, the left half-block of length up to 2k is already fully sorted as
desired, e.g., in increasing order from left to right. For the k + 1 phase, all robots in the left
half-block may only stay in place or move to the right. These robots that stay must be all at
the leftmost positions of the half-block and will not block the motions of any other robot.
For the robots that need to move to the right, their relative orders do not need to change
and, therefore, will not cause collisions among themselves. Because these robots that move
in the left half-block will move down on the grid by one edge, they will not interfere with any
robot from the right half-block. Because the same arguments hold for the right half-block
(except the direction change), the overall process of merging a block occurs without collision.

Next, we examine the makespan. For any single robot r, at phase k, suppose it belongs
to block b and block b is to be merged with block b′. It is clear that the robot cannot move
more than len(b′) + 2 steps, where len(b′) is the number of columns of b′ and the 2 extra
steps may be incurred because the robot needs to move down and then up the grid by one
edge. This is because any move that r needs to do is to allow robots from b′ to move toward
b. Because there are no collisions in any phase, adding up all the phases, no robot moves
more than m+ 2(logm+ 1) = m+ o(m) steps.

Finally, the merge sort-like linear merge shuffle primitive runs in O(m logm) time since
it is a standard divide-and-conquer routine with logm phases.

We distinguish between 1
3 and 1

2 density settings because the overhead in GRLM is larger.
Nevertheless, with the linear merge, the asymptotic properties of GRH for 1

3 agent density
mostly carry over to GRLM.

Theorem 4.4 (Random MAPF, 1
2 Agent Density). For random MAPF instances on an

m1 × m2 grid, where m1 ≥ m2 are multiples of two, for m1m2
3 ≤ n ≤ m1m2

2 agents, a
solution can be computed in polynomial time that has makespan m1 + 2m2 + o(m1) with high
probability. As m1 →∞, the solution approaches an optimality of 1 + m2

m1+m2
∈ (1, 1.5], with

high probability.

Proof Sketch. The proof follows by combining Proposition 5.1 and Lemma 4.1.

458

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

4.3 Supporting Arbitrary MAPF Instances on Grids

We now examine applying GRH to arbitrary MAPF instances up to 1
2 agent density. If an

MAPF instance is arbitrary, all that changes to GRH is the makespan it takes to complete
the unlabeled reconfiguration phase. On an m1 ×m2 grid, by computing a matching, it is
straightforward to show that it takes no more than m1 +m2 steps to complete the unlabeled
reconfiguration phase, starting from an arbitrary start configuration. Since two executions of
unlabeled reconfiguration are needed, this adds 2(m1 +m2) additional makespan. Therefore,
the following results holds.

Theorem 4.5 (Arbitrary MAPF, ≤ 1
2 Density). For arbitrary MAPF instances on an

m1×m2 grid, m1 ≥ m2, for n ≤ m1m2
2 agents, a 3m1 +4m2 + o(m1) makespan solution can

be computed in polynomial time.

5. Generalization to 3D

We now explore the 3D setting. To keep the discussion focused, we mainly show how to
generalize GRH to 3D, but note that GRM and GRLM can also be similarly generalized.
High-dimensional GRP (Szegedy & Yu, 2023) is defined as follows.

Problem 2 (Grid Rearrangement in kD (GRPKD)). Let M be an m1× . . .×mk table,
m1 ≥ . . . ≥ mk, containing

∏k
i=1mi items, one in each table cell. In a shuffle operation, the

items in a single column in the i-th dimension of M , 1 ≤ i ≤ k, may be permuted arbitrarily.
Given two arbitrary configurations S and G of the items on M , find a sequence of shuffles
that take M from S to G.

We may solve GRP3D using GRA2D as a subroutine by treating GRP as an GRP2D,
which is straightforward if we view a 2D slice of GRA2D as a “wide” column. For example, for
the m1 ×m2 ×m3 grid, we may treat the second and third dimensions as a single dimension.
Then, each wide column, which is itself an m2 × m3 2D problem, can be reconfigured
by applying GRA2D. With some proper counting, we obtain the following 3D version of
Theorem 2.2 as follows.

Theorem 5.1 (Grid Rearrangement Theorem, 3D). An arbitrary Grid Rearrangement
problem on an m1 × m2 × m3 table can be solved using m1m2 + m3(2m2 + m1) + m1m2

shuffles.

Although (Szegedy & Yu, 2023) offers a broad framework for addressing GRPKD, it is
not directly applicable to multi-agent routing in high-dimensional spaces. To overcome this
limitation, we have developed the high-dimensional MAPF algorithm by incorporating and
elaborating on its underlying principles similar to the 2D scenarios. Denote the corresponding
algorithm for Theorem 5.1 as GRA3D, we illustrate how it works on a 3×3×3 table (Fig. 9).
GRA operates in three phases. First, a bipartite graph B(T,R) is constructed based on
the initial table where the partite set T are the colors of items representing the desired
(x, y) positions, and the set R are the set of (x, y) positions of items (Fig. 2(b)). Edges are
added as in the 2D case. From B(T,R), m3 perfect matchings are computed. Each matching
contains m1m2 edges and connects all of T to all of R. processing these matchings yields
an intermediate table (Fig. 9(c)), serving a similar function as in the 2D case. After the

459

Guo & Yu

first phase of m1m2 z-shuffles, the intermediate table (Fig. 9(c)) that can be reconfigured by
applying GRA2D with m1 x-shuffles and 2m2 y-shuffles. This sorts each item in the correct
x-y positions (Fig. 2(d)). Another m1m2 z-shuffles can then sort each item to its desired z
position (Fig. 2(e)).

1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9

2 4 7
3 6 7
1 6 9
1 2 8
4 5 8
3 6 9
2 4 7
1 5 8
5 3 9

2 4 7
6 3 7
1 9 6
8 2 1
8 4 5
9 6 3
4 2 7
1 8 5
5 9 3

1 2 3
5 4 6
8 9 7
2 3 1
4 6 5
8 9 7
1 2 3
6 4 5
9 8 7

(𝟏𝟏,𝟏𝟏)
(𝟏𝟏,𝟐𝟐)
(𝟏𝟏,𝟑𝟑)
(𝟐𝟐,𝟏𝟏)
(𝟐𝟐,𝟐𝟐)
(𝟐𝟐,𝟑𝟑)
(𝟑𝟑,𝟏𝟏)
(𝟑𝟑,𝟐𝟐)
(𝟑𝟑,𝟑𝟑)

(a) (b) (c) (d) (e)

𝑧𝑧

(𝑥𝑥
,𝑦𝑦

)

Figure 9: Illustration of applying GRA3D. (a) The initial 3× 3× 3 table with a random
arrangement of 27 items that are colored and labeled. Color represents the (x, y)
position of an item. (b) The constructed bipartite graph. The right partite
set contains all the possible (x, y) positions. It contains 3 perfect matchings,
determining the 3 columns in (c). (c) Applying z-shuffles to (a), according to the
matching results, leads to an intermediate table where each x-y plane has one
color appearing exactly once. (d) Applying wide shuffles to (c) correctly places
the items according to their (x, y) values (or colors). (e) Additional z-shuffles fully
sort the labeled items.

5.1 Extending GRH to 3D

Alg. 3, which calls Alg. 4 and Alg. 5, outlines the high-level process of extending GRH
to 3D. In each x-y plane, G is partitioned into 3 × 3 cells (e.g.,Fig. 7). Without loss of
generality, we assume that m1,m2,m3 are multiples of 3 and there are no obstacles. First, to
make GRA3D applicable, we convert the arbitrary start/goal configurations to intermediate
balanced configurations S1 and G1, treating agents as unlabeled, as we have done in GRH,
wherein each 2D plane, each 3× 3 cell contains no more than 3 agents (Fig. 10).

GRA3D can then be applied to coordinate the agents moving toward their intermediate
goal positions G1. Function MatchingXY finds a feasible intermediate configuration S2

and routes the agents to S2 by simulating shuffle operations along the z axis. Function
XY-Fitting apply shuffle operations along the x and y axes to route each agent i to its
desired x-y position (g1i.x, g1i.y). In the end, the function Z-Fitting is called, routing each
agent i to the desired g1i by performing shuffle operations along the z axis and concatenating
the paths computed by unlabeled MAPF planner UnlabeledMRPP.

460

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Figure 10: Applying unlabeled MAPF to convert a random configuration to a balanced
centering one on 6× 6× 3 grids.

Algorithm 3: GRH3D
Input: Start and goal vertices S = {si} and G = {gi}

1 Function GRH3D(S,G):
2 S1, G1 ←UnlabeledMRPP(S,G)
3 MatchingXY()
4 XY-Fitting()
5 Z-Fitting()

We now explain each part of GRH3D. MatchingXY uses an extended version of GRA to
find perfect matching that allows feasible shuffle operations. Here, the “item color" of an
item i (agent) is the tuple (g1i.x, g1i.y), which is the desired x-y position it needs to go. After
finding the m3 perfect matchings, the intermediate configuration S2 is determined. Then,
shuffle operations along the z direction can be applied to move the agents to S2. The agents
in each x-y plane will be reconfigured by applying x-shuffles and y-shuffles. We need to apply
GRA2D for these agents in each plane, as demonstrated in Alg. 5. In GRH, for each 2D
plane, the “item color" for agent i is its desired x position g1i.x. For each plane, we compute
the m2 perfect matchings to determine the intermediate position g2. Then each agent i
moves to its g2i by applying y-shuffle operations. In Line 18, each agent is routed to its
desired x position by performing x-shuffle operations. In Line 19, each agent is routed to its
desired y position by performing y-shuffle operations. After all the agents reach the desired
x-y positions, another round of z-shuffle operations in Z-Fitting can route the agents to
the balanced goal configuration computed by an unlabeled MAPF planner. In the end, we
concatenate all the paths as the result.

GRLM and GRM can be extended to 3D in similar ways by replacing the solvers in 2D
planes. For GRM, there is no need to use unlabeled MAPF for balanced reconfiguration,
which yields a makespan upper bound of 4m1 + 8m2 + 8m3 (as a direct combination of
Theorem 3.1 and Theorem 5.1). For arbitrary instances under half density in 3D, the
makespan guarantee in Theorem 4.5 updates to 3m1 + 4m2 + 4m3 + o(m1).

461

Guo & Yu

Algorithm 4: MatchingXY
Input: Balanced start and goal vertices S1 = {s1i} and G1 = {g1i}

1 Function MatchingXY(S1, G1):
2 A← [1, ..., n]
3 T ← the set of (x, y) positions in S1

4 for (r, t) ∈ T × T do
5 if ∃i ∈ A where (s1i.x, s1i.y) = r ∧ (g1i.x, g1i.y) = t then
6 add edge (r, t) to B(T,R)
7 remove i from A

8 compute matchingsM1, ...,Mm3
of B(T,R)

9 A← [1, ..., n]
10 foreachMc and (r, t) ∈Mc do
11 if ∃i ∈ A where (s1i.x, s1i.y) = r ∧ (g1i.x, g1i.y) = t then
12 s2i ← (s1i.x, s1i.y, c) and remove i from A
13 mark agent i to go to s2i

14 perform simulated z-shuffles in parallel

Algorithm 5: XY-Fitting
Input: Current positions S2 and balanced goal positions G1

1 Function XY-Fitting():
2 for z ← [1, ...,m3] do
3 A← {i|s2i.y = z}
4 GRH2D(A, z)

5 Function GRH2D(A, z):
6 T ← the set of x positions of S2

7 for (r, t) ∈ T × T do
8 if ∃i ∈ A where s2i.x = r ∧ g1i.x = t then
9 if agent i is not assigned then

10 add edge (r, t) to B(T,R)
11 mark i assigned

12 compute matchingsM1, ...,Mm2
of B(T,R)

13 A′ ← A
14 foreachMc and (r, t) ∈Mc do
15 if ∃i ∈ A′ where s2i.x = c ∧ g1i.x = t then
16 g2i ← (s2i.x, c, z) and remove i from A′

17 mark agent i to go to g2i

18 route each agent i ∈ A to g2i
19 route each agent i ∈ A to (g2i.x, g1i.y, z)
20 route each agent i ∈ A to (g1i.x, g1i.y, z)

462

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

5.2 Properties of GRH3D

Computation for GRH3D is dominated by perfect matching and unlabeled MAPF. Finding
m3 “wide column” matchings takes O(m3m

2
1m

2
2) deterministic time or O(m3m1m2 log(m1m2))

expected time. We apply GRA2D for simulating “wide column” shuffle, which requires
O(m3m

2
1m2) deterministic time or O(m1m2m3 logm1) expected time. Therefore, the total

time complexity for the Grid Rearrangement part is O(m3m
2
1m

2
2 +m2

1m2m3). For unlabeled
MAPF, we can use the max-flow based algorithm (Yu & LaValle, 2013a) to compute
the makespan-optimal solutions. The max-flow portion can be solved in O(n|E|T) =
O(n2(m1 +m2 +m3)) where |E| is the number of edges and T = O(m1 +m2 +m3) is the
time horizon of the time expanded graph (Ford & Fulkerson, 1956). One can also perform
two “wide column” shuffles plus one z shuffle, which yields 2(2m1 +m2) +m3 number of
shuffles and O(m1m2m

2
3 +m3m1m

2
2). This requires more shuffles but a shorter running time.

Next, we derive the optimality guarantee, for which the upper and lower bounds on the
makespan are needed. These are straightforward generalizations of results in 2D.

Theorem 5.2 (Makespan Upper Bound). GRH3D returns solutions with m1 + 2m2 +
2m3 + o(m1) asymptotic makespan for MAPF instances with m1m2m3

3 random start and
goal configurations on 3D grids, with high probability. GRLM3D returns solutions with
m1 + 2m2 + 2m3 + o(m1) asymptotic makespan for MAPF instances with m1m2m3

2 random
start and goal configurations on 3D grids, with high probability. GRM3D returns solutions
with 3m1 + 6m2 + 6m3 + o(m1) asymptotic makespan for MAPF instances with m1m2m3

random start and goal configurations on 3D grids, with high probability. Moreover, if
m1 = m2 = m3 = m, GRH3D and GRLM3D returns solutions with 5m+ o(m) makespan,
GRM3D returns solutions with 15m+ o(m) makespan.

Proposition 5.1 (Makespan Lower Bound). For MAPF instances on m1 ×m2 ×m3 grids
with Θ(m1m2m3) random start and goal configurations on 3D grids, the makespan lower
bound is asymptotically approaching m1 +m2 +m3, with high probability.

Theorem 5.3 (Makespan Optimality Ratio). GRH3D and GRLM3D yield asymptotic
1 + m2+m3

m1+m2+m3
makespan optimality ratio for MAPF instances with Θ(m1m2m3) ≤ m1m2m3

3
and ≤ m1m2m3

2 random start and goal configurations respectively on 3D grids, with high
probability. GRM3D yields asymptotic 3 + 3(m1+m2)

m1+m2+m3
makespan optimality ratio for MAPF

instances with Θ(m1m2m3) ≤ m1m2m3 random start and goal configurations on 3D grids
with high probability.

We may further generalize the result to higher dimensions.

Theorem 5.4. Consider a k-dimensional cubic grid with grid size m. For uniformly
distributed start and goal configurations, GRH and GRLM can solve the instances with
asymptotic makespan optimality being 2k−1+1

k and GRM yields 4(2k−1+1)
k asymptotic makespan

optimality.

Proof. Unlabeled MAPF takes o(m) makespan (note for k ≥ 3, the minimax grid matching
distance is O(log1/k m) (Shor & Yukich, 1991)). Extending proposition 5.1 to k-dimensional
grid, the asymptotic lower bound is mk. We prove that the asymptotic makespan f(k) is
(2k−1 +1)m+ o(m) by induction. The Grid Rearrangement algorithm solves a k-dimensional

463

Guo & Yu

problem by using two 1-dimensional shuffles and one (k−1)-dimensional “wide column" shuffle.
Therefore, we have f(k) = 2m+f(k−1). It’s trivial to see f(1) = m+o(m), f(2) = 3m+o(m),
which yields that f(k) = 2k−1m+m+ o(m) and makespan optimality ratio being 2k−1+1

k for
GRH and GRLM while 4(2k−1+1)

k for GRM.

6. Optimality-Boosting Heuristics

6.1 Reducing Makespan via Optimizing Matching

Based on GRA, GRH has three simulated shuffle phases. The makespan is dominated by the
agent needing the longest time to move, as a sum of moves in all three phases. As a result, the
optimality of Grid Rearrangement methods is determined by the first preparation/matching
phase. Finding arbitrary perfect matchings is fast but the process can be improved to reduce
the overall makespan.

For improving matching, we propose two heuristics; the first is based on integer pro-
gramming (IP). We create binary variables {xri} where r represents the row number
and i the agent. agent i is assigned to row r if xri = 1. Define single agent cost as
Cri(λ) = λ|r − si.x|+ (1− λ)|r − gi.x|. We optimize the makespan lower bound of the first
phase by letting λ = 0 or the third phase by letting λ = 1. The objective function and
constraints are given by

max
r,i
{Cri(λ = 0)xri}+max

r,i
{Cri(λ = 1)xri} (1)∑

r

xri = 1, for each agent i (2)∑
gi.y=t

xri ≤ 1, for each row r and each color t (3)

∑
si.x=c

xri = 1, for each column cand each row r (4)

Eq. (1) is the summation of makespan lower bound of the first phase and the third
phase. Note that the second phase can not be improved by optimizing the matching. Eq.
(2) requires that agent i be only present in one row. Eq. (3) specifies that each row should
contain agents that have different goal columns. Eq. (4) specifies that each vertex (r, c) can
only be assigned to one agent. The IP model represents a general assignment problem which
is NP-hard in general. It has limited scalability but provides a way to evaluate how optimal
the matching could be in the limit.

A second matching heuristic we developed is based on linear bottleneck assignment
(LBA) (Burkard, Dell’Amico, & Martello, 2012), which takes polynomial time. LBA differs
from the IP heuristic in that the bipartite graph is weighted. For the matching assigned to
row r, the edge weight of the bipartite graph is computed greedily. If column c contains
agents of color t, we add an edge (c, t) and its edge cost is

Cct = min
gi.y=t

Cri(λ = 0) (5)

We choose λ = 0 to optimize the first phase. Optimizing the third phase (λ = 1) would
give similar results. After constructing the weighted bipartite graph, an O(

m2.5
1

logm1
) LBA

464

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

algorithm (Burkard et al., 2012) is applied to get a minimum bottleneck cost matching for
row r. Then we remove the assigned agents and compute the next minimum bottleneck cost
matching for the next row. After getting all the matchings Mr, we can further use LBA
to assign Mr to a different row r′ to get a smaller makespan lower bound. The cost for
assigning matchingMr to row r′ is defined as

CMrr′ = max
i∈Mr

Cr′i(λ = 0) (6)

The total time complexity of using LBA heuristic for matching is O(
m3.5

1
logm1

).
We denote GRH with IP and LBA heuristics as GRH-IP and GRH-LBA, respectively.

We mention that GRM, which uses the line swap motion primitive, can also benefit from
these heuristics to re-assign the goals within each group. This can lower the bottleneck path
length and improve optimality.

6.2 Path Refinement

Final paths from GRA-based algorithms are concatenations of paths from multiple planning
phases. This means agents are forced to “synchronize” at phase boundaries, which causes
unnecessary idling for agents finishing a phase early. Noticing this, we de-synchronize the
planning phases, which yields significant gains in makespan optimality.

Our path refinement method does something similar to Minimal Communication Policy
(MCP) (Ma, Kumar, & Koenig, 2017a), a multi-agent execution policy proposed to handle
unexpected delays without stopping unaffected agents. During execution, MCP let agents
execute their next non-idling move as early as possible while preserving the relative execution
orders between agents, e.g., when two agents need to enter the same vertex at different times,
that ordering is preserved.

We adopt the principle used in MCP to refine the paths generated by GRA-based
algorithms as shown in Alg. 6, with Alg. 7 as a sub-routine. The algorithms work as follows.
All idle states are removed from the initial agent but the order of visits for each vertex is
kept (Line 2-3). Then we enter a loop executing the plans following the MCP principle (Line
8-10). In Alg. 7, if i is the next agent that enters vertex vi according to the original order, we
check if there is a agent currently at vi. If there is not, we let i enter vi. If another agent j is
currently occupying vj , we examine if j is moving to its next vertex vj in the next step by
recursively calling the function Move. We check if there is any cycle in the agent movements
in the next original plan. If i is in a cycle, we move all the agents in this cycle to their
next vertex recursively (Line 20-28). If no cycle is found and j is to enter its next vertex vj ,
we let i also move to its next vertex vi. Otherwise, i should wait at ui. The algorithm is
deadlock-free by construction (Ma et al., 2017a).

Let T be the makespan of the initial paths, the makespan of the solution obtained by
running Refine is clearly no more than T . In each loop of Refine, we essentially run DFS
on a graph that has n nodes and traverse all the nodes, for which the time complexity is
O(n), Therefore the time complexity of the path refinement is bounded by O(nT).

Other path refinement methods, such as (Li, et al., 2021a; Okumura, Tamura, & Défago,
2021), can also be applied in principle, which iteratively chooses a small group of agents and
re-plan their paths holding other agents as dynamic obstacles. However, in dense settings
that we tackle, re-planning for a small group of agents has little chance of finding better
paths this way.

465

Guo & Yu

Algorithm 6: Path Refinement
Input: Paths P generated by GRA

1 Function Refine(P):
2 foreach v ∈ V , V Order[v]← Queue()
3 Preprocess(InitialP lans, V Order)
4 while true do
5 for i = 1...n do
6 Moved← Dict()
7 CycleCheck ← Set()
8 Move(i)
9 if AllReachedGoals()=true then

10 break

Algorithm 7: Move
1 Function Move(i):
2 if i in Moved then
3 return Moved[i]

4 ui ← current position of i
5 vi ← next position of i
6 if i = V Order[vi].front() then
7 j ← the agent currently at vi
8 if i is in CycleCheck then
9 MoveAllAgentsInCycle(i)

10 return true

11 CycleCheck.add(i)
12 if Move(j) = true or j =None then
13 let i enter vi
14 V Order[vi].popfront()
15 Moved[i]←true
16 return true

17 let i wait at ui

18 Moved[i]=false
19 return false

20 Function MoveAllAgentsInCycle(i):
21 V isited← Set()
22 j ← i
23 while j is not in visited do
24 let j enter its next vertex vj
25 V isited.add(j)
26 V Order[vj].popfront()
27 Moved[j]← true
28 j ← the agent currently at vertex vj

466

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

7. Simulation Experiments

We thoroughly evaluated GRA-based algorithms and compared them with many similar
algorithms. We mainly highlight comparisons with EECBS (w=1.5) (Li, Ruml, & Koenig,
2021b), LaCAM (Okumura, 2023) and DDM (Han & Yu, 2020). These two methods are, to
our knowledge, two of the fastest near-optimal MAPF solvers. Beyond EECBS and DDM,
we considered a state-of-the-art polynomial algorithm, push-and-swap (Luna & Bekris, 2011),
which gave fairly sub-optimal results: the makespan optimality ratio is often above 100 for
the densities we examine.

As a reader’s guide to this section, in Sec. 7.1, as a warm-up, we show the 2D performance
of all GRA-based algorithms at their baseline, i.e., without any efficiency-boosting heuristics
mentioned in Sec. 6. In Sec. 7.4, for 2D square grids, we show the performance of all
GRA-based algorithms with and without the two heuristics discussed in Sec. 6. We then
thoroughly evaluate the performance of all versions of the GRH 2d algorithm at 1

3 agent
density in Sec. 7.2. Some special 2D patterns are examined in Sec. 7.3. 3D settings are
briefly discussed in Sec. 7.5.

All experiments are performed on an Intel® CoreTM i7-6900K CPU at 3.2GHz. Each
data point is an average of over 20 runs on randomly generated instances unless otherwise
stated. A running time limit of 300 seconds is imposed over all instances. The optimality
ratio is estimated as compared to conservatively estimated makespan lower bounds. All the
algorithms are implemented in C++. We choose Gurobi (Gurobi Optimization, LLC, 2021)
as the mixed integer programming solver and ORtools (Perron & Furnon,) as the max-flow
solver.

7.1 Optimality of Baseline Versions of GRA-Based Methods

First, we provide an overall evaluation of the optimality achieved by basic versions of GRM,
GRLM, and GRH over randomly generated 2D instances at their maximum designed agent
density. That is, these methods do not contain the heuristics from Sec. 6. We test over three
m1 : m2 ratios: 1 : 1, 3 : 2, and 5 : 1. For GRM, different sub-grid sizes for dividing the
m1 ×m2 grid are evaluated. The result is plotted in Fig. 11. Computation time is not listed;
we provide the computation time later for GRH; the running times of GRM, GRLM, and
GRH are all similar. The optimality ratio is computed as the ratio between the solution
makespan and the longest Manhattan distance between any pair of start and goal, which is
conservative.

GRM does better and better on the optimality ratio as the sub-grid size ranges from
3 × 2, 3 × 3, 2 × 3, and 2 × 4, dropping to just above 3. In general, using “longe” sub-
grids for the shuffle will decrease the optimality ratio because there are opportunities to
reduce the overhead. However, the time required for computing the solutions for all possible
configurations grows exponentially as the size of the sub-grids increases.

On the other hand, both GRLM and GRH achieve a sub-2 optimality ratio in most test
cases, with the result for GRH dropping below 1.5 on large grids. For all settings, as the grid
size increases, there is a general trend of improvement of optimality across all methods/grid
aspect ratios. This is due to two reasons: (1) the overhead in the shuffle operations becomes
relatively smaller as grid size increases, and (2) with more agents, the makespan lower bound
becomes closer to m1 +m2. Lastly, as m1 : m2 ratio increases, the optimality ratio improves

467

Guo & Yu

GRHGRM3x2 GRM2x3 GRM3x3 GRM2x4 GRLM

Figure 11: Makespan optimality ratio for GRM (3x2, 2x3, 3x3, 2x4), GRLM, and GRH at
their maximum design density, for different m2 values and m1 : m2 ratios. The
largest GRM problems have 90, 000 agents on a 300× 300 grid.

as predicted. For many test cases, the optimality ratio for GRH at m1 : m2 = 5 is around
1.3.

of Agents 5 10 15 20 25
Optimality Gap 1 1.0025 1.004 1.011 1.073

Table 2: Optimality gap investigation on 5× 5 grids

The exploration of optimality gaps is conducted on 5 × 5 grids, as shown in Table. 2.
For every specified number of agents, we create 100 random instances and employ the ILP
solver to solve them. The optimality gap is then assessed by calculating the average ratio
between the optimal makespan and the makespan lower bound. The optimality gap widens
with higher agent density.

7.2 Evaluation and Comparative Study of GRH

7.2.1 Impact of Grid Size

For our first detailed comparative study of the performance of GRA,GRLM and GRH
at 100%, 1

2 and 1
3 density respectively, we set m1 : m2 = 3 : 2 in terms of computation

time and makespan optimality ratio. We compare with DDM (Han & Yu, 2020), EECBS
(w = 1.5) (Li et al., 2021b), Push and Swap(Luna & Bekris, 2011), LaCAM (Okumura,
2023) in Fig. 12-14. For EECBS, we turn on all the available heuristics and reasonings.

When at 100% agent density, GRM methods can solve huge instances, e.g., on 450× 300
grids with 135, 000 agents in about 40 seconds while none of the other algorithms can.
LaCAM can only solve instances when m2 = 30, though the resulting makespan optimality
is around 2073 and thus is not shown in the figure. When at 1

2 ,
1
3 agent density, GRLM

and GRH still are the fastest methods among all, scaling to 45,000 agents in 10 seconds
while the optimality ratio is close to 1.5 and 1.3 respectively. LaCAM also achieves great
scalability and is able to solve problems when m2 ≤ 270. However, after that, LaCAM faces

468

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

100 200 300
Grid length m2

0

25

50

75

100

125
C

om
pu

ta
tio

n
Ti

m
e(

s)
GRM GRM-LBA GRM-PR iGRM-LBA LACAM

100 200 300
Grid length m2

4.5

5.0

5.5

O
pt

im
al

ity
R

at
io

Figure 12: Computation time and optimality ratios on m1 ×m2 grids of varying sizes with
m1 : m2 = 3 : 2 and agent density at 100% density.

100 200 300
Grid length m2

0

25

50

75

100

125

C
om

pu
ta

tio
n

Ti
m

e(
s)

GRLM
GRLM-LBA

GRLM-PR
iGRLM-LBA

LACAM
DDM

EECBS
PushAndSwap

100 200 300
Grid length m2

2

3

4

O
pt

im
al

ity
R

at
io

Figure 13: Computation time and optimality ratios on m1 ×m2 grids of varying sizes with
m1 : m2 = 3 : 2 and agent density at 1

2 density.

out-of-memory error. This is due to the fact that LaCAM is a search algorithm on joint
configurations, and the required memory grows exponentially as the number of agents. In
contrast, GRH, GRLM do not have the issue and solve the problems consistently despite the
optimality being worse than LaCAM. EECBS, stopped working after m2 = 90 at 1

3 agent
density and cannot solve any instance within the time limit at 100% and 1

2 agent density,

469

Guo & Yu

100 200 300
Grid length m2

0

25

50

75

100

125

C
om

pu
ta

tio
n

Ti
m

e(
s)

GRH
GRH-LBA

GRH-PR
iGRH

LACAM
DDM

EECBS
PushAndSwap

100 200 300
Grid length m2

0.5

1.0

1.5

2.0

2.5

3.0

O
pt

im
al

ity
R

at
io

Figure 14: Computation time and optimality ratios on m1 ×m2 grids of varying sizes with
m1 : m2 = 3 : 2 and agent density at 1/3 density.

while DDM stopped working after m2 = 180. Push and Swap also performed poorly, and its
optimality ratio is more than 30 in those scenarios and thus is not presented in the figure.

7.2.2 Handling Obstacles

GRH can also handle scattered obstacles and is especially suitable for cases where obstacles
are regularly distributed. For instance, problems with underlying graphs like that in Fig. 1(b),
where each 3× 3 cell has a hole in the middle, can be natively solved without performance
degradation. Such settings find real-world applications in parcel sorting facilities in large
warehouses (Wan et al., 2018; Li, et al., 2020). For this parcel sorting setup, we fix the agent
density at 2

9 and test EECBS, DDM, GRH, GRH-LBA, GRH-PR, iGRH on graphs with
varying sizes. The results are shown in Fig 15. Note that DDM can only apply when there
is no narrow passage. So we added additional “borders” to the map to make it solvable for
DDM. The results are similar as before; we note that iGRH reaches a conservative optimality
ratio estimate of 1.26.

7.2.3 Impact of Grid Aspect Ratios

In this section, we fix m1m2 = 90000 and vary the m2 : m1 ratio between 0 (nearly one
dimensional) and 1 (square grids). We evaluated four algorithms, two of which are GRH
and iGRH. Now recall that GRP on an m1 ×m2 table can also be solved using 2m2 column
shuffles and m1 row shuffles. Adapting GRH and iGRH with m1 + 2m2 shuffles gives the
other two variants we denote as GRH-LL and iGRH-LL, with “LL” suggesting two sets of
longer shuffles are performed (each set of column shuffle work with columns of length m1).
The result is summarized in Fig. 16.

470

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

0 100 200 300
Grid m2 length

1.0

1.5

2.0

2.5

3.0

O
pt

im
al

ity
ra

tio

0 100 200 300
Grid m2 length

0

5

10

15

20

25

C
om

pu
ta

tio
n

tim
e

(s
)

EECBS
DDM

GRH
GRH-LBA

GRH-PR
iGRH

LACAM

Figure 15: Computation time and optimality ratios on environments of varying sizes with
regularly distributed obstacles at 1

9 density and agents at 2
9 density. m1 : m2 =

3 : 2.

0.0 0.2 0.4 0.6 0.8 1.0
m2/m1

1.0

1.2

1.4

1.6

1.8

2.0

O
pt

im
al

ity
ra

tio

0.0 0.2 0.4 0.6 0.8 1.0
m2/m1

4×101

5×101

6×101

C
om

pu
ta

tio
n

tim
e

(s
) GRH

iGRH
GRH-LL
iGRH-LL

Figure 16: Computation time and optimality ratios on rectangular grids of varying aspect
ratio and 1

3 agent density.

Interestingly but not surprisingly, the result clearly demonstrates the trade-offs between
computation effort and solution optimality. GRH and iGRH achieve better optimality ratio
in comparison to GRH-LL and iGRH-LL but require more computation time. Notably,
the optimality ratio for GRH and iGRH is very close to 1 when m2 : m1 is close to 0. As
expected, iGRH does much better than GRH across the board.

471

Guo & Yu

7.3 Special Patterns

We experimented iGRH on many “special” instances, two are presented here (Fig. 17). For
both settings, we set m1 = m2. In the first, the “squares” setting, agents form concentric
square rings and each agent and its goal are centrosymmetric. In the second, the “blocks”
setting, the grid is divided into smaller square blocks (not necessarily 3× 3) containing the
same number of agents. Agents from one block need to move to another randomly chosen
block. iGRH achieves optimality that is fairly close to 1.0 in the square setting and 1.7 in
the block setting. The computation time is similar to that of Fig. 15; EECBS performs well
in terms of optimality, but its scalability is limited, working only on grids with m ≤ 90. On
the other hand, LaCAM exhibits excellent scalability and good optimality for block patterns,
although its optimality is comparatively worse for square patterns. Other algorithms are
excluded from consideration due to significantly poorer optimality; for example, DDM’s
optimality exceeds 9, and Push&Swap’s optimality is greater than 40.

(a) (b) (c)

Figure 17: (a) An illustration of the “squares” setting. (b) An illustration of the “blocks”
setting. (c) Optimality ratios for the two settings for EECBS, LaCAM, and
GRH-LBA.

7.4 Effectiveness of Matching and Path Refinement Heuristics

In this subsection, we evaluate the effectiveness of heuristics introduced in Sec. 6 in boosting
the performance of baseline GRA-based methods (we will briefly look at the IP heuristic
later). We present the performance of GRM, GRLM, and GRH at these methods’ maximum
design density. For each method, results on all 4 combinations with the heuristics are included.
For a baseline method X, X-LBA, X-PR, and iX mean the method with the LBA heuristic,
the path refinement heuristic, and both heuristics, respectively. In addition to the makespan
optimality ratio, we also evaluated sum-of-cost (SOC) optimality ratio, which may be of
interest to some readers. The sum-of-cost is the sum of the number of steps taking individual
agents to reach their respective goals. We tested the worst-case scenario, i.e., m = m1 = m2.
The result is shown in Fig. 18.

We make two key observations based on Fig. 18. First, both heuristics provide significant
individual boosts to nearly all baseline methods (except GRLM-LBA), delivering around 10%–
20% improvement on makespan optimality and 30%–40% improvement on SOC optimality.

472

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

50 100 150

9

10

11

M
K

PN
O

pt
im

al
ity

50 100 150
21

23

25

27

SO
C

O
pt

im
al

ity

50 100 150
0

100

200

R
un

tim
e(

s)

GRM
GRM-PR
GRM-LBA
iGRM

50 100 150

2

3

M
K

PN
O

pt
im

al
ity

50 100 150
4

6

8

SO
C

O
pt

im
al

ity

50 100 150
0

50

100

R
un

tim
e(

s)

GRLM
GRLM-PR
GRLM-LBA
iGRLM

50 100 150

1.5

2.0

2.5

M
K

PN
O

pt
im

al
ity

50 100 150
3

4

5

SO
C

O
pt

im
al

ity

50 100 150
0

20

40

R
un

tim
e(

s)

GRH
GRH-PR
GRH-LBA
iGRH

Figure 18: Effectiveness of heuristics in boosting GRA-based algorithms on m×m grids.
For all figures, the x-axis is the grid side length m. Each row shows a specific
algorithm (GRM, GRLM, and GRH). From left to right, makespan(MKPN)
optimality ratio, SOC optimality ratio, and the computation time required for
the path refinement routine are given.

Second, the combined effect of the two heuristics is nearly additive, confirming that the
two heuristics are orthogonal two each other, as their designs indicate. The end result is a
dramatic overall cross-the-board optimality improvement. As an example, for GRH, for the
last data point, the makespan optimality ratio dropped from around 1.8 for the based to
around 1.3 for iGRH. In terms of computational costs, the LBA heuristic adds negligible
more time. The path refinement heuristic takes more time in full and 1

2 density settings but
adds little cost in the 1

3 density setting.

7.5 Evaluations on 3D Grids

For the 3D setting, the performance and solution structure of our methods are largely similar
to the 2D setting. As such, we provide basic evaluations for completeness, fixing the aspect
ratio at m1 : m2 : m3 = 4 : 2 : 1 and density at 1

3 , and examine GRH3D variants on
obstacle-free grids with varying sizes. Here, because DDM only applies to 2D, we use ILP

473

Guo & Yu

with split heuristics (Yu & LaValle, 2016) instead of DDM. Start and goal configurations are
randomly generated; the results are shown in Fig. 19. ILP with 16-split heuristic and EECBS
compute solution with better optimality ratio but does not scale. In contrast, GRH3D
variants readily scale to grids with over 370, 000 vertices and 120, 000 agents. Optimality
ratios for GRH variants decrease as the grid size increases, approaching 1.5-1.7.

10 20 30
Grid m3 length

1.0

1.5

2.0

2.5

3.0

3.5

O
pt

im
al

ity
ra

tio

EECBS
ILP 16-split
RTH3D
RTH3D-LBA
RTH3D-PR
iRTH3D

10 20 30
Grid m3 length

10−2

10−1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

Figure 19: Computation time and optimality ratio for four methods on m1 ×m2 ×m3 grids
with varying grid size and m1 : m2 : m3 = 4 : 2 : 1.

8. Conclusion and Discussion

In this study, we propose to apply Grid Rearrangements (Szegedy & Yu, 2023) to solve MAPF.
A basic adaptation of GRA, with a more efficient line shuffle routine, enables solving MAPF
on grids at maximum agent density, in polynomial time, with a previously unachievable
optimality guarantee. Then, combining GRA, a highway heuristic, and additional matching
heuristics, we obtain novel polynomial time algorithms that are provably asymptotically
1 + m2

m1+m2
makespan-optimal on m1 × m2 grids with up to 1

3 agent density, with high
probability. Similar guarantees are also achieved with the presence of obstacles and at an
agent density of up to one-half. These results in 2D are then shown to readily generalize
to 3D and higher dimensions. In practice, our methods can solve problems on 2D graphs
with over 105 number of vertices and 4.5× 104 agents to 1.26 makespan-optimal (which can
be better with a larger m1 : m2 ratio). Scalability is even better in 3D. To our knowledge,
no previous MAPF solvers provide dual guarantees on low-polynomial running time and
practical optimality.

Limitation While the GRA excels in achieving reasonably good optimality within
polynomial time for dense instances, it does have limitations when applied to scenarios
with a small number of robots or instances that are inherently easy to solve. In such cases,
although GRA remains functional, its performance may lag behind other algorithms, and
its solutions might be suboptimal compared to more specialized or efficient approaches.
The algorithm’s strength lies in its ability to efficiently handle complex, densely populated
scenarios, leveraging its unique methodology. However, users should be mindful of its relative
performance in simpler instances where alternative algorithms may offer superior solutions.

474

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

This limitation underscores the importance of considering the specific characteristics of the
robotic system and task at hand when choosing an optimization algorithm, tailoring the
selection to match the intricacies of the given problem instance.

Our study opens the door for many follow-up research directions; we discuss a few here.

New line shuffle routines. Currently, GRLM and GRH only use two/three rows to
perform a simulated row shuffle. Among other restrictions, this requires that the sub-grids
used for performing simulated shuffle be well-connected (i.e. obstacle-free or the obstacles are
regularly spaced so that there are at least two rows that are not blocked by static obstacles
in each motion primitive to simulate the shuffle). Using more rows or irregular rows in a
simulated row shuffle, it is possible to accommodate larger obstacles and/or support density
higher than one-half.

Better optimality at lower agent density. It is interesting to examine whether
further optimality gains can be realized at lower agent density settings, e.g., 1

9 density or
even lower, which are still highly practical. We hypothesize that this can be realized by
somehow merging the different phases of GRA so that some unnecessary agent travel can be
eliminated after computing an initial plan.

Consideration of more realistic robot models. The current study assumes a unit-
cost model in which an agent takes a unit amount of time to travel a unit distance and allows
turning at every integer time step. In practice, robots will need to accelerate/decelerate
and also need to make turns. Turning can be especially problematic and cause a significant
increase in plan execution time if the original plan is computed using the unit-cost model
mentioned above. We note that GRH returns solutions where robots move in straight lines
most of the time, which is advantageous compared to all existing MAPF algorithms, such as
ECBS and DDM, which have many directional changes in their computed plans. it would be
interesting to see whether the performance of GRA-based MAPF algorithms will further
improve as more realistic robot models are adapted.

Remark 1. Currently, our GRA-based MAPF solves are limited to a static setting whereas
e-commerce applications of multi-agent motion planning often require solving life-long settings
(Ma, et al., 2017b). The metric for evaluating life-long MAPF is often the throughput,
namely the number of goals reached per time step. We note that GRH also provides optimality
guarantees for such settings, e.g., for the setting where m1 = m2 = m, the direct application
of GRH to large-scale life-long MAPF on square grids yields an optimality ratio of 2

9 on
throughput.

We may solve life-long MAPF using GRH in batches. For each batch with n agents,
GRH takes about 3m steps; the throughput is then TRTH = n

3m . As for the lower bound
estimation of the throughput, the expected Manhattan distance in an m×m square, ignoring
inter-agent collisions, is 2m

3 . Therefore, the lower bound throughput for each batch is Tlb = 3n
2m .

The asymptotic optimality ratio is TRTH
Tlb = 2

9 . The 2
9 estimate is fairly conservative because

GRH supports much higher agent densities not supported by known life-long MAPF solvers.
Therefore, it appears very promising to develop an optimized Grid Rearrangement-inspired
algorithms for solving life-long MAPF problems.

475

Guo & Yu

Acknowledgments

This work is supported in part by NSF awards IIS-1845888, CCF-1934924, IIS-2132972, and
CCF-2309866, and an Amazon Research Award.

References

Banfi, J., Basilico, N., & Amigoni, F. (2017). Intractability of time-optimal multirobot path
planning on 2d grid graphs with holes. IEEE Robotics and Automation Letters, 2 (4),
1941–1947.

Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.

Bitton, D., DeWitt, D. J., Hsaio, D. K., & Menon, J. (1984). A taxonomy of parallel sorting.
ACM Computing Surveys (CSUR), 16 (3), 287–318.

Burkard, R., Dell’Amico, M., & Martello, S. (2012). Assignment problems: revised reprint.
SIAM.

Damani, M., Luo, Z., Wenzel, E., & Sartoretti, G. (2021). Primal _2: Pathfinding via rein-
forcement and imitation multi-agent learning-lifelong. IEEE Robotics and Automation
Letters, 6 (2), 2666–2673.

De Wilde, B., Ter Mors, A. W., & Witteveen, C. (2014). Push and rotate: a complete
multi-agent pathfinding algorithm. Journal of Artificial Intelligence Research, 51,
443–492.

Dekhne, A., Hastings, G., Murnane, J., & Neuhaus, F. (2019). Automation in logistics: Big
opportunity, bigger uncertainty. In McKinsey Q, pp. 1–12.

Demaine, E. D., Fekete, S. P., Keldenich, P., Meijer, H., & Scheffer, C. (2019). Coordinated
motion planning: Reconfiguring a swarm of labeled robots with bounded stretch. SIAM
Journal on Computing, 48 (6), 1727–1762.

Erdem, E., Kisa, D. G., Oztok, U., & Schüller, P. (2013). A general formal framework for
pathfinding problems with multiple agents. In Twenty-Seventh AAAI Conference on
Artificial Intelligence.

Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica, 2 (1),
477–521.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian journal
of Mathematics, 8, 399–404.

Goel, A., Kapralov, M., & Khanna, S. (2013). Perfect matchings in o(n\logn) time in regular
bipartite graphs. SIAM Journal on Computing, 42 (3), 1392–1404.

Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N., Holte, R. C., & Schaeffer,
J. (2014). Enhanced partial expansion a. Journal of Artificial Intelligence Research,
50, 141–187.

476

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Goldreich, O. (2011). Finding the shortest move-sequence in the graph-generalized 15-puzzle
is np-hard. In Studies in complexity and cryptography. Miscellanea on the interplay
between randomness and computation, pp. 1–5. Springer.

Guo, T., Feng, S. W., & Yu, J. (2022). Polynomial time near-time-optimal multi-robot path
planning in three dimensions with applications to large-scale uav coordination. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
10074–10080.

Guo, T., Han, S. D., & Yu, J. (2021). Spatial and temporal splitting heuristics for multi-robot
motion planning. In IEEE International Conference on Robotics and Automation.

Guo, T., & Yu, J. (2022). Sub-1.5 Time-Optimal Multi-Robot Path Planning on Grids in
Polynomial Time. In Proceedings of Robotics: Science and Systems, New York City,
NY, USA. DOI: 10.15607/RSS.2022.XVIII.057.

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual.. https://www.
gurobi.com.

Hall, P. (2009). On representatives of subsets. In Classic Papers in Combinatorics, pp. 58–62.
Springer.

Han, S. D., Rodriguez, E. J., & Yu, J. (2018). Sear: A polynomial-time multi-robot path
planning algorithm with expected constant-factor optimality guarantee. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
1–9. IEEE.

Han, S. D., & Yu, J. (2020). Ddm: Fast near-optimal multi-robot path planning using
diversified-path and optimal sub-problem solution database heuristics. IEEE Robotics
and Automation Letters, 5 (2), 1350–1357.

Hönig, W., Preiss, J. A., Kumar, T. S., Sukhatme, G. S., & Ayanian, N. (2018). Trajectory
planning for quadrotor swarms. IEEE Transactions on Robotics, 34 (4), 856–869.

Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning
for multiple independent objects; pspace-hardness of the" warehouseman’s problem".
The International Journal of Robotics Research, 3 (4), 76–88.

Kornhauser, D., Miller, G., & Spirakis, P. (1984). Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications. In Proceedings IEEE Symposium on
Foundations of Computer Science, pp. 241–250.

Lam, E., Le Bodic, P., Harabor, D. D., & Stuckey, P. J. (2019). Branch-and-cut-and-price
for multi-agent pathfinding.. In IJCAI, pp. 1289–1296.

Leighton, T., & Shor, P. (1989). Tight bounds for minimax grid matching with applications
to the average case analysis of algorithms. Combinatorica, 9 (2), 161–187.

Li, J., Chen, Z., Harabor, D., Stuckey, P., & Koenig, S. (2021a). Anytime multi-agent path
finding via large neighborhood search. In International Joint Conference on Artificial
Intelligence (IJCAI).

Li, J., Ruml, W., & Koenig, S. (2021b). Eecbs: A bounded-suboptimal search for multi-agent
path finding. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

477

Guo & Yu

Li, J., Tinka, A., Kiesel, S., Durham, J. W., Kumar, T. S., & Koenig, S. (2020). Lifelong
multi-agent path finding in large-scale warehouses.. In AAMAS, pp. 1898–1900.

Li, Q., Lin, W., Liu, Z., & Prorok, A. (2021). Message-aware graph attention networks for
large-scale multi-robot path planning. IEEE Robotics and Automation Letters, 6 (3),
5533–5540.

LogisticsIQ (2020). Warehouse automation market with post-pandemic (covid-19) im-
pact by technology, by industry, by geography - forecast to 2026. https://www.
researchandmarkets.com/r/s6basv. Accessed: 2022-01-05.

Luna, R. J., & Bekris, K. E. (2011). Push and swap: Fast cooperative path-finding with
completeness guarantees. In Twenty-Second International Joint Conference on Artificial
Intelligence.

Ma, H., Harabor, D., Stuckey, P. J., Li, J., & Koenig, S. (2019). Searching with consistent
prioritization for multi-agent path finding. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33, pp. 7643–7650.

Ma, H., & Koenig, S. (2016). Optimal target assignment and path finding for teams of agents.
In AAMAS.

Ma, H., Kumar, T. S., & Koenig, S. (2017a). Multi-agent path finding with delay probabilities.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

Ma, H., Li, J., Kumar, T. K. S., & Koenig, S. (2017b). Lifelong multi-agent path finding for
online pickup and delivery tasks. In AAMAS.

Mason, R. (2019). Developing a profitable online grocery logistics business: Exploring inno-
vations in ordering, fulfilment, and distribution at ocado. In Contemporary Operations
and Logistics, pp. 365–383. Springer.

Okumura, K. (2023). Lacam: Search-based algorithm for quick multi-agent pathfinding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, pp. 11655–11662.

Okumura, K., Machida, M., Défago, X., & Tamura, Y. (2019). Priority inheritance with
backtracking for iterative multi-agent path finding. In IJCAI.

Okumura, K., Tamura, Y., & Défago, X. (2021). Iterative refinement for real-time multi-robot
path planning. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 9690–9697. IEEE.

Perron, L., & Furnon, V. Or-tools.. https://developers.google.com/optimization/.

Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In
Proceedings IEEE International Conference on Robotics & Automation.

Preiss, J. A., Hönig, W., Sukhatme, G. S., & Ayanian, N. (2017). Crazyswarm: A large
nano-quadcopter swarm. In IEEE Int. Conf. on Robotics and Automation (ICRA).

Rus, D., Donald, B., & Jennings, J. (1995). Moving furniture with teams of autonomous
robots. In Proceedings IEEE/RSJ International Conference on Intelligent Robots &
Systems, pp. 235–242.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. S., Koenig, S., & Choset, H. (2019).
Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4 (3), 2378–2385.

478

Expected 1.x-Makespan-Optimal MAPF on Grids in Low-Poly Time

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219, 40–66.

Sharon, G., Stern, R., Goldenberg, M., & Felner, A. (2013). The increasing cost tree search
for optimal multi-agent pathfinding. Artificial Intelligence, 195, 470–495.

Shor, P. W., & Yukich, J. E. (1991). Minimax grid matching and empirical measures. The
Annals of Probability, 19 (3), 1338–1348.

Silver, D. (2005). Cooperative pathfinding.. Aiide, 1, 117–122.

Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., Walker, T. T., Li, J., Atzmon, D.,
Cohen, L., Kumar, T. S., et al. (2019). Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Twelfth Annual Symposium on Combinatorial Search.

Surynek, P. (2009). A novel approach to path planning for multiple robots in bi-connected
graphs. In 2009 IEEE International Conference on Robotics and Automation, pp.
3613–3619. IEEE.

Surynek, P. (2010). An optimization variant of multi-robot path planning is intractable. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24.

Surynek, P. (2012). Towards optimal cooperative path planning in hard setups through
satisfiability solving. In Pacific Rim International Conference on Artificial Intelligence,
pp. 564–576. Springer.

Szegedy, M., & Yu, J. (2023). Rubik tables and object rearrangement. The International
Journal of Robotics Research, 42 (6), 459–472.

Wagner, G., & Choset, H. (2015). Subdimensional expansion for multirobot path planning.
Artificial intelligence, 219, 1–24.

Wan, Q., Gu, C., Sun, S., Chen, M., Huang, H., & Jia, X. (2018). Lifelong multi-agent path
finding in a dynamic environment. In 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 875–882. IEEE.

Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI magazine, 29 (1), 9–9.

Yu, J. (2015). Intractability of optimal multirobot path planning on planar graphs. IEEE
Robotics and Automation Letters, 1 (1), 33–40.

Yu, J. (2018). Constant factor time optimal multi-robot routing on high-dimensional grids.
In 2018 Robotics: Science and Systems.

Yu, J., & LaValle, M. (2012). Distance optimal formation control on graphs with a tight
convergence time guarantee. In 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), pp. 4023–4028. DOI: 10.1109/CDC.2012.6426233.

Yu, J., & LaValle, S. M. (2013a). Multi-agent path planning and network flow. In Algorithmic
foundations of robotics X, pp. 157–173. Springer.

Yu, J., & LaValle, S. M. (2013b). Structure and intractability of optimal multi-robot path
planning on graphs. In Twenty-Seventh AAAI Conference on Artificial Intelligence.

Yu, J., & LaValle, S. M. (2016). Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics, 32 (5), 1163–1177.

479

