
Journal of Artificial Intelligence Research 81 (2024) 643-681 Submitted 04/2024; published 11/2024

Approximate Counting of Linear Extensions in Practice

Topi Talvitie topi.talvitie@helsinki.fi

Mikko Koivisto mikko.koivisto@helsinki.fi

Department of Computer Science

University of Helsinki, Finland

Abstract

We investigate the problem of computing the number of linear extensions of a given
partial order on n elements. The problem has applications in numerous areas, such as
sorting, planning, and learning graphical models. The problem is #P-hard but admits fully
polynomial-time approximation schemes. However, the polynomial complexity bounds of
the known schemes involve high degrees and large constant factors, rendering the schemes
only feasible when n is some dozens. We present novel schemes, which stem from the idea
of not requiring provable polynomial worst-case running time bounds. Using various new
algorithmic techniques and implementation optimizations, we discover schemes that yield
speedups by several orders of magnitude, enabling accurate approximations even when n
is in several hundreds.

1. Introduction

Counting problems ask the number of objects in an implicitly given set, each object possibly
equipped with a multiplicity or weight. The interest of artificial intelligence researchers in
counting problems stems not only from their numerous applications in AI methods, but also
from the computational challenge they tend to present. Indeed, various important counting
problems have proven presumably computationally intractable, #P-hard (Valiant, 1979).
Moreover, fully polynomial-time randomized approximation schemes, fprases, either are
unlikely to exist (e.g., the decision variant is NP-hard) or have proven difficult to discover
or prohibitively slow in practice. As a remedy, a branch of AI research has turned its
attention to heuristic methods for solving “practical instances” of hard counting problems:
instead of worrying about the worst-case asymptotic complexity, the interest is in algorithms
that often terminate sufficiently fast and return either the exact count or an approximation
along with a guaranteed error bound; for examples of previous works in this direction, we
refer to Gomes et al. (2006), Thurley (2006), Chakraborty et al. (2013), Ermon et al. (2013),
Kuck et al. (2019a, 2019b), Pavan et al. (2023).

When aiming at high-performing heuristics, one has to consider trade-offs between gen-
erality and efficiency. If an algorithm can, in principle, solve arbitrary instances of a very
expressive problem—such as Boolean satisfiability or integer linear programming, or their
counting variants—then on some classes of instances the algorithm will be outperformed by
specialized algorithms tailored for those instance classes. Oftentimes, those classes corre-
spond to well established prototypic hard problems, such as maximum clique, graph color-
ing, travelling salesman, network reliability, or matrix permanent, which are important in
their own right. Creating novel heuristics for prototypic problems is a way to advance AI
research: Not only particular problems will be solved more efficiently, but the discoveries

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Talvitie & Koivisto

may also put forward ideas and techniques the can be adopted more generally. Recent
examples are the adaptive partitioning technique (Kuck et al., 2019a) and the deep rejec-
tion sampling method (Harviainen et al., 2021) introduced in the context of estimating the
matrix permanent.

In this paper, we investigate a representative counting problem: computing the number
of linear extensions of a given partial order on n elements; an equivalent problem is to
count the topological orderings of a given acyclic digraph. The problem has applications in
various areas, ranging from sorting (Peczarski, 2004) and planning (Muise et al., 2016) to
convex rank tests (Morton et al., 2009), discovery of sequential patterns (Mannila & Meek,
2000), and learning graphical models (Wallace et al., 1996; Niinimäki et al., 2016). The
complexity status of the problem remained a recognized open problem until Brightwell and
Winkler (1991) proved #P-completeness. Before that, a fpras had been discovered as a
special case of approximating the volume of convex bodies (Dyer et al., 1991). Brightwell
and Winkler also gave a faster fpras running in time O(ε−2n9 log6 n) for any relative error
ε ≤ 1 and fixed confidence. This result relies on approximately uniform sampling of linear
extensions along a rapidly mixing Markov chain due to Karzanov and Khachiyan (1991). A
series of later works (Bubley & Dyer, 1999; Wilson, 2004; Banks et al., 2018) have managed
to improve the bound to O(ε−2n5 log3 n).

Despite the progress in worst-case asymptotic complexity bounds, the practical value
of the fprases has remained unclear. Concerning the practical feasibility, the rapid growth
of the polynomial bound is discouraging. Indeed, one can expect a relatively simple exact
exponential algorithm to run faster in the feasible range of n, even though its worst-case
bound is O(2nn) (De Loof et al., 2006); for example, if ε = 0.05 and n = 30, we have
ε−2n5 ln3 n ≈ 4 × 1011, while 2nn ≈ 3 × 1010. Furthermore, the state-of-the-art exact
algorithms exploit the particular structure of a given problem instance and often run sub-
stantially faster, being feasible up to around n = 60 in practice (Kangas et al., 2016).
Moreover, allowing approximation, we may expect variants of exponential algorithms to
scale up even further. This raises the main question we study in this paper: When the in-
terest is in the practical performance of counting linear extensions, is it better to implement
a fpras or an exponential-time scheme?

We will show that the best performance is, in fact, obtained by a hybrid that is an
offspring of both a polynomial-time and an exponential-time scheme, combining approxi-
mation schemes and exact computations. For a proper comparison of existing schemes, we
classify them into three approaches and present algorithmic enhancements for each, aiming
at schemes that are fast in practice. First, in Section 3, we introduce an approximation
scheme that exploits the exact exponential time algorithms of Kangas et al. (2016). The
idea is to use rejection sampling: we sample linear extensions of a “simpler” partial order
obtained as an appropriate relaxation of the original input. We call the scheme adaptive
relaxation Monte Carlo (ARMC). Second, in Section 4, we revisit the telescoping product
estimator by Brightwell and Winkler (1991). We give an improved construction that yields,
not only speedups in practice, but also a factor of log n reduction in the total worst-case
time complexity, and thereby asymptotically the fastest known scheme we are aware of,
running in time O(ε−2n5 log2 n). Third, in Section 5, we revisit the Tootsie Pop Algorithm
(TPA), which can be viewed as a continuous version of the generic, discrete telescoping
product estimator by Huber and Schott (2010) and Banks et al. (2018). We give an im-

644

Approximate Counting of Linear Extensions

provement to the generic TPA, as well as a novel instantiation of it to approximate counting
of linear extensions. Furthermore, we give efficient implementations using modern hardware
equipped with multiple cores, vector instructions, and a graphical processing unit (GPU).
Our code is available at https://github.com/ttalvitie/linext.

Parts of this work have been published in preliminary form (Talvitie et al., 2018a,
2018b). The main technical extensions here are the enhancement of the general TPA and
the modifications needed for efficient vectorization and parallelization. We have also omitted
some material: we exclude the comparison to schemes that employ SAT solvers, for these
schemes appeared to be uncompetitive in our preliminary study (Talvitie et al., 2018b).

The remainder of this article is organized as follows. Section 2 introduces the key
concepts related to partial orders and some basic facts about sampling methods we will
frequently need in later sections. After presenting the schemes in Sections 3–5, we report
on experimental results in Section 6. We conclude in Section 7 by discussing the lessons
learned and directions for future research.

2. Preliminaries

We review some basic concepts and results on partially ordered sets, randomized approx-
imation methods, and Markov chains. The concepts and the introduced notation will be
frequently used in the later section. This section does not present new results.

2.1 Partial Orders, Relaxations, Extensions, and Other Basic Concepts

Let V be a finite set and ≺ a binary relation on V . We call ≺ a partial order on V if it is
irreflexive and transitive, and a linear order on V if in addition every two distinct elements
a, b ∈ V are comparable, i.e., a ≺ b or b ≺ a. If a ≺ b we say that a precedes b. If ≺′ is
another partial order on V that is a superset (resp. subset) of ≺, then ≺′ is an extension
(resp. relaxation) of ≺. A maximal extension is called a linear extension, for it is a linear
order. The unique minimal relaxation is the empty relation.

We call the pair P = (V,≺) a partially ordered set, or poset, and V its ground set. Any
subset S ⊆ V induces a poset P [S] := (S,≺S), where ≺S is the restriction of ≺ to S, that
is, ≺S is the intersection of ≺ and S × S. By an extension or relaxation of a poset we refer
to the poset obtained by equipping the ground set with an extension or relaxation of the
partial order relation. The cover graph of P = (V,≺) is the directed graph (V,E) obtained
as the transitive reduction of the graph (V,≺), that is, (a, b) ∈ E exactly when a ≺ b and
there is no c ∈ U such that a ≺ c ≺ b.

We denote by L(P) the set of linear extensions of P , and by ℓ(P) := |L(P)| their
number. For an induced subposet P [S], we may write simply ℓ(S) instead ℓ(P [S]) when
the underlying partial order is clear in the context.

There are two frequently occurring ways to combine two smaller posets into a larger
poset. Let Q and R be two posets on disjoint ground sets A and B, respectively. Consider
a poset P = (A ∪ B,≺) such that P [A] = Q and P [B] = R. We say that P is the series
composition of Q and R if the elements in A precede the elements in B; observe that then
ℓ(P) = ℓ(Q)ℓ(R). Similarly, P is the parallel composition of Q and R if the elements in A

645

Talvitie & Koivisto

a

b c

d e

f

(a) poset

a

b c

d e

f

(b) relaxation

a

b c

d e

f

(c) extension

a

b c

d e

f

(d) linear extension

Figure 1: We visualize partial orders ⪯ as DAGs where each edge x → y indicates the or-
dering constraint x ≺ y in the partial order. We often omit the edges that follow
by transitivity. In the partial order of (a), these edges are shown as dashed lines.
(b) is a relaxation of (a), as it is obtained by removing the constraints c ⪯ d and
a ⪯ d from the partial order relation. The extension (c) is obtained from (a) by
adding the constraints a ⪯ b and b ⪯ c; we also need to add b ⪯ e to satisfy
transitivity. After adding the constraint e ⪯ d to the relation, we get a linear ex-
tension (d) of the poset (a) corresponding to the ordered list (a, b, c, e, d, f). This
is one of the 7 linear extensions of the poset (a); the other six are (a, b, c, d, e, f),
(a, c, b, d, e, f), (a, c, b, e, d, f), (a, c, e, b, d, f), (b, a, c, d, e, f), and (b, a, c, e, d, f).

are incomparable with the elements in B; now ℓ(P) =
(|V |
|A|

)
ℓ(Q)ℓ(R), since interleaving any

linear extensions of Q and R results in a linear extension of P .
Figure 1 illustrates the key concepts.

2.2 Basics of Randomized Approximations

Let ε and δ be nonnegative reals. Call a random variable Z an (ε, δ)-approximation of a
real r ̸= 0 if Z is within the factor 1 + ε of r with probability at least 1− δ, that is,

Pr
(
1/(1 + ε) ≤ Z/r ≤ 1 + ε

)
≥ 1− δ .

Observe that then, with probability at least 1 − δ, we also have |Z/r − 1| ≤ ε, bounding
the relative error, and | ln(Z/r)| ≤ ε, bounding the absolute error of logarithms, which
are two slightly weaker conditions sometimes taken as the defining conditions; cf., e.g.,
Mitzenmacher and Upfal (2005, Def. 10.1) and Jerrum, Sinclair, and Vigoda (2004).

Thanks to the symmetry in the definition, we have the following.

Lemma 1 (Multiplicative inverse). Let Z be an (ε, δ)-approximation of r. Then 1/Z is an
(ε, δ)-approximation of 1/r.

Since 1/(1+ ε) ≤ 1− ε0 exactly when ε0 ≤ ε/(1+ ε), we have the following implication.

Lemma 2 (Relative error). Suppose Pr
(
|Z/r − 1| ≤ ε/(1 + ε)

)
≥ 1 − δ. Then Z is an

(ε, δ)-approximation of r.

Chernoff bounds are a powerful tool for showing that a random variable concentrates
around its mean. Bounds for binomial variables are among the most frequently used; for a
proof, see, e.g., Mitzenmacher and Upfal (2005).

646

Approximate Counting of Linear Extensions

Lemma 3 (Binomial tails). Let Z be a binomial random variable with mean µ > 0. Let
a ≥ 0. Then Pr(Z ≥ µ+ a) ≤ exp{−a2/(2µ+ a)} and Pr(Z ≤ µ− a) ≤ exp{−a2/(2µ)}.

Similar concentration bounds are known for the Poisson distribution, considered as
folklore; for a short proof, we refer to Banks et al. (2018, Lemma 8).

Lemma 4 (Poisson tails). Let Z be a Poisson random variable with mean λ > 0. Let a ≥ 0.
Then Pr(Z ≥ λ+ a) ≤ exp{−a2/(2λ+ 2a)} and Pr(Z ≤ λ− a) ≤ exp{−a2/(2λ)}.

Sometimes it is useful to boost a constant success probability of an estimate by taking
a median of multiple independent copies (Jerrum, Valiant, & Vazirani, 1986).

Lemma 5 (The median trick). Let m ≥ 12 ln δ−1. Let Z1, Z2, . . . , Zm be independent
(ε, 1/4)-approximations of r and Y their median. Then Y is an (ε, δ)-approximation of r.

Proof. The median is too small or large only if at least m/2 of the variables Zi are. By
Lemma 3, for a Bin(m, 1/4) variable, this occurs with probability at most e−m/12 ≤ δ.

How many independent samples of a {0, 1}-valued random variable are needed for ob-
taining an (ε, δ)-approximation of its mean p? By applying Lemma 3 for the sample average,
we get that m := ⌈2p−1(1+ε)ε−2 ln(2/δ)⌉ samples will suffice. This result, however, cannot
be used directly, as the mean p is supposed to be unknown. Dagum, Karp, Luby, and Ross
(2000) were the first to show how to efficiently circumvent this obstacle:

Theorem 6 (Optimal Monte Carlo). Let X1, X2, . . . be independent {0, 1}-valued random
variables, each with mean p. For any positive integer m, let Sm = X1+X2+ · · ·+Xm. Let
ε ∈ (0, 1) and δ > 0. Let T be the smallest integer such that

ST = mε,δ := ⌈1 + 4(e− 2)(1 + ε)ε−2 ln(2/δ)⌉ .

Then ST /T is an (ε, δ)-approximation of p and the expected value of T is at most ST /p.

This bound on the required sample size is within a constant of the optimum (Dagum
et al., 2000). Gajek, Niemiro, and Pokarowski (2013) improve the leading constant factor
of the upper bound from 4(e − 2) ≈ 2.873 to 2, with an asymptotically matching lower
bound. Huber (2017) presents the Gamma Bernoulli approximation scheme (GBAS), in
which the sum ST is not divided by the negative binomial random variable T , but by a
Gamma random variable; this estimator also achieves the leading factor of 2, along with
certain other desirable properties.

2.3 Basics of Markov Chains

A sequence of random variables X0, X1, . . . taking values in a set Ω is a Markov chain if
Xt is conditionally independent of {Xj : j < t} given Xt−1, for all t ≥ 1. We will only
consider homogeneous Markov chains, in which the conditional distribution of Xt given
Xt−1 is the same for all t. If this transition kernel leaves a distribution π invariant (i.e.,
Xt−1 ∼ π implies Xt ∼ π), then π is called a stationary distribution of the chain. Let ptx
denote the distribution of Xt when X0 = x. If the chain is finite, irreducible, and aperiodic,
then ptx converges to a unique stationary distribution π as t grows. On a continuous state

647

Talvitie & Koivisto

space, a sufficient condition for convergence to π (π-almost surely w.r.t. the initial state)
is that the transition probability density, p(x, y), is reversible with respect to π, that is,
π(x)p(x, y) = π(y)p(y, x) for all x, y ∈ Ω (Roberts & Rosenthal, 2004). The mixing time
of the chain is the smallest t for which ptx is at variational distance at most 1/4 from π,
regardless of the initial state x; the variational distance is the supremum of |ptx(B)− π(B)|
over all events B. The constant 1/4 here is sufficient for characterizing the convergence
time, since the distance decays below any ε > 0 as soon as t exceeds the mixing time by
the factor ⌈log2 ε−1⌉ (Levin & Peres, 2017, Section 4.5).

Sometimes one can turn an approximate Markov chain sampler to an exact sampler
(or perfect sampler) by using a technique called coupling from the past (CFTP) (Propp
& Wilson, 1996). In general this requires that we can construct a bounding chain for the
Markov chain. A bounding chain is a Markov chain itself that “bounds” in which states the
original Markov chain can be. In the beginning of the simulation the bounding chain allows
all states. Once the bounding chain has converged to bound only one state, we know it must
be the current state of the original Markov chain, regardless of the starting state. Thus,
if the simulation started sufficiently far from the past, the chain will converge with high
probability. What is sufficiently far, can be found by trying repeatedly further from the past
(using the same random numbers at the same time points). Discovering a bounding chain
that converges quickly can be challenging. On the other hand, typically a bounding chain
has the desirable feature that the required number of simulation steps varies depending on
the actual underlying problem instance, being in practice much smaller than any known
worst-case upper bound; this is in sharp contrast to approximate Markov chain samplers.

In Section 5, we will use monotone coupling from the past, which constructs a bounding
chain using a monotonicity property (Propp & Wilson, 1996). Let ϕ a deterministic transi-
tion function such that Xt = ϕ(Xt−1, Ut), where the Ut are independent random variables
distributed uniformly in [0, 1]. We say that the stationary distribution of ϕ is the stationary
distribution of the Markov chain X0, X1, . . . (with any initial distribution of X0). Supposing
the state space Ω admits a partial ordering ≺ such that x ⪯ y implies ϕ(x, U) ≤ ϕ(y, U)
almost surely with respect to U , then ϕ is called monotone in relation to ≺ and the Markov
chain is called monotonic. If the poset (Ω,≺) has a unique minimal element and a unique
minimal element, then Algorithm 1 can be employed to draw an exact sample from the
stationary distribution (Propp & Wilson, 1996, Theorem 1). While the original treatment
of Propp and Wilson (1996) assumes that the state space is finite, it is not difficult to see
that the algorithm works correctly whenever the chains started from the minimal and the
maximal element coalesce with a positive probability (i.e., L = R on line 7; these letters
refer to left and right, or lower and upper, and should not be confused with linear extensions
and relaxations). For Markov chains on uncountable state spaces this property is generally
challenging to establish; however, we will do exactly this in our special case (Theorem 14).

3. Adaptive Relaxation Monte Carlo

This section presents the adaptive relaxation Monte Carlo (ARMC) scheme for approximate
counting of the linear extensions of a given poset. ARMC relies on a dynamic programming
algorithm for exact counting due to Kangas et al. (2016), which also enables exact uniform
sampling of linear extensions; we begin by describing this building block in Section 3.1.

648

Approximate Counting of Linear Extensions

Algorithm 1 Monotone coupling from the past

Input: A transition function ϕ that is monotone in relation to a partial order with unique
minimal element 0 and maximal element 1, sequence of independent uniform random
variables Ut ∈ [0, 1] for t = −1,−2,

Output: A sample from the stationary distribution of ϕ.
1. T ← 1.
2. repeat
3. L← 0, R← 1
4. for t = −T to −1 do
5. L← ϕ(L,Ut), R← ϕ(R,Ut)

6. T ← 2T
7. until L = R
8. return L

The idea of ARMC is to find a relaxation of the poset so as to balance the time spent, on
the one hand, by counting the linear extensions of the relaxation, and on the other hand,
by sampling sufficiently many linear extensions to yield an accurate Monte Carlo estimator
of the linear extensions of the original poset; we describe the Monte Carlo estimator in
Section 3.2 and our heuristic algorithm for finding a good relaxation in Section 3.3.

3.1 Exact Counting and Sampling by Dynamic Programming

The algorithm of De Loof et al. (2006) counts the linear extensions by dynamic programming
(DP) based on the observation that each linear extension of poset P is obtained by choosing
a minimal element a of P as the first element, followed by an arbitrary linear extension of
the rest of the poset P [V \ {a}]. This gives a recurrence over non-empty subsets S of V :

ℓ(S) =
∑

a ∈ minP [S]

ℓ(S \ {a}) , (1)

with the boundary case ℓ(∅) = 1. Thus, the linear extensions of an n-element poset can be
counted with O(2nn) basic operations. A more refined bound is obtained by observing that
the recurrence is, in fact, only over the upsets of P , that is, sets S with the property that
a ∈ S and a ≺ b imply b ∈ S: for posets with u upsets and width w, the linear extensions
can be counted with O(uw) basic operations (De Loof et al., 2006). By Dilworth’s theorem
(Dilworth, 1950), u ≤ (n/w + 1)w = O(nw).

Kangas et al. (2016) refined the algorithm by observing that it suffices to only consider
upsets that are connected: if S can be partitioned into disjoint sets A and B such that
no element in A is comparable with an element in B, then each linear extension of P [S] is
obtained by arbitrarily interleaving some linear extensions of P [A] and P [B]. Consequently,

ℓ(S) =

(
|S|
|A|

)
ℓ(A)ℓ(B) . (2)

Our implementation uses memoization, starting from the ground set V and storing the
values ℓ(S) in a hash table for connected upsets S.

649

Talvitie & Koivisto

Once the DP algorithm has finished, it also enables straightforward sampling of linear
extensions from the uniform distribution: If S is connected, the first element a of a linear
extension is drawn from the minimal elements of P [S], with the probability ℓ(S \{a})/ℓ(S),
and the order on the remaining elements is sampled by recursing on S \ {a}. If S is not
connected, a linear extension is sampled recursively for each connected component and the
sampled extensions are then interleaved uniformly at random. In this manner a single
sample can be drawn in O(n2) time.

3.2 Relaxation Monte Carlo

Given a poset P , the basic idea of ARMC is to relax P by removing ordering constraints
until the counting problem becomes feasible for the exact DP algorithm. We then estimate
the error introduced by the removal of constraints using Monte Carlo. Specifically, let R
be a relaxation of P , and let µ = ℓ(P)/ℓ(R) be the probability that a linear order sampled
from L(R) uniformly at random is also in L(P). To approximate ℓ(P), we first use the
DP algorithm to compute ℓ(R) and then sample m linear orders from L(R) to compute an
estimate

µ̂ :=
1

m

m∑
i=1

Zi ,

where Zi = 1 if the ith sample is in L(P) and Zi = 0 otherwise. As m grows, µ̂ concentrates
around µ and thus µ̂ · ℓ(R) concentrates around ℓ(P). Specifically, using the optimal Monte
Carlo method (Theorem 6) we obtain an (ε, δ)-approximation by sampling from L(R) until
mε,δ = O(ε−2 log δ−1) of the samples have fallen in L(P). The smaller the fraction µ is, the
more samples we need for an accurate approximation. The efficiency of this scheme thus
depends crucially on how the relaxation R is chosen, as it determines both µ and the time
required to run the DP algorithm.

Here, we consider partition relaxations. We obtain a partition relaxation R = (V,≺′)
by (arbitrarily) partitioning the ground set U into disjoint sets V1, V2, . . . , V⌈n/k⌉ of some
appropriate size k (the last set potentially being smaller), and letting a ≺′ b if and only if
a ≺ b and a and b belong to same set. In other words, we remove all ordering constraints
between sets while keeping all constraints within the sets. Now, to compute ℓ(R), the DP
algorithm will immediately apply the decomposition rule (2) and then solve each of the
⌈n/k⌉ subproblems in time O(2kk2), yielding in total a time requirement of O(2kkn). The
parameter k controls the tradeoff: increasing k causes the DP phase to take longer, but
typically brings R closer to P and thus saves time in the sampling phase.

Before we proceed to devising a procedure for finding a good partition relaxation, let us
summarize the worst-case complexity of the scheme for a given partition relaxation.

Proposition 7. Let R be a partition relaxation of P with parts of size k. Let µ = ℓ(P)/ℓ(R).
The relaxation Monte Carlo scheme runs in expected time O(2kkn+ n2µ−1ε−2 log δ−1).

For a concrete illustration of this result, consider an arbitrary partition relaxation R
with two parts. The size of the larger part is thus k ≥ n/2. Since there are exactly

(
n
k

)
ways to interleave two linear orders on k and n−k elements, we have that µ−1 ≤

(
n
k

)
. Now,

putting k = ⌊0.77n⌋, we find that
(
n
k

)
≤ 2k and get that the relaxation Monte Carlo runs in

650

Approximate Counting of Linear Extensions

a

d e

g

b

f

h

c

(a) poset

a

d e

g

b

f

h

c

(b) initial relaxation

a

d e

g

b

f

h

c

(c) optimal relaxation

Figure 2: To find the relaxation to use for the poset in (a) with parameter k = 4, we start
from an arbitrarily chosen initial partition V1 = {b, d, e, h} and V2 = {a, c, f, g}
of sets of size k. The relaxation is obtained by removing all the ordering con-
straints between different sets of the partition, which are shown in (b) as dashed
arrows. Note that we have to add the constraint arrow a → g to the graphical
representation as it no longer follows by transitivity. Initially, the heuristic value,
given by the number of removed constraints, is 8. The greedy local search swaps
g and h, improving the heuristic to 5, and then a and b, further improving the
heuristic to 4. This leads to the case in (c), which cannot be improved further.
By minimizing the heuristic value, we have successfully reduced the number of
linear extensions of the relaxation from 1680 in (b) to 420 in (c).

expected time O
(
20.77nn2ε−2 log δ−1

)
. Compare this to the bound O(n5 log3 nε−2 log δ−1)

of the fastest known fpras (prior to this work): supposing the hidden constant factors and
additive lower order terms are approximately equal, the exponential bound is better as long
as 20.77n < (n log2 n)

3, which holds when n ≤ 27. For moderate values of the accuracy
parameters, say ε = 1/2 and δ = 1/4, the exponential approximation scheme also beats the
exact exponential algorithm in terms of the known worst-case running time upper bound.

3.3 Adaptive Relaxations

To complete the ARMC scheme, we give a heuristic to search for a good partition relaxation
R. Suppose for a moment that the size k is fixed. Ideally, we wish to minimize ℓ(R).
Since evaluating this objective function is still relatively expensive, we make use of an
approximation and aim to minimize the number of removed ordering constraints |≺ \ ≺′ |,
or equivalently, maximize |≺′ |. Unfortunately, even with this simplified objective function
the optimization problem is NP-hard, for it subsumes the minimum bisection problem
(Garey, Johnson, & Stockmeyer, 1976). Instead of attempting an optimal solution, we
resort to greedy hillclimbing that starts at a random partition and iteratively swaps pairs
of elements between different sets that yield the largest decrease in the number of removed
constraints. We have found this strategy to work well in practice, even if it may not converge
to a global optimum. Figure 2 illustrates the greedy algorithm.

Consider then the remaining task of setting the parameter k. We propose the following
procedure that adapts k based on the structure of the input poset. We start from a small
value of k and increase it until the running times of the two phases of the algorithm are
balanced. For each tested k, we find the relaxation, count its linear extensions using the DP
algorithm, and finally estimate µ by sampling. When it becomes clear that the sampling

651

Talvitie & Koivisto

Algorithm 2 The ARMC scheme

Input: A poset P , reals ε, δ > 0, integers k0, k1 ≥ 1, reals 0 < α ≤ 1 < β.
Output: An (ε, δ)-approximation of ℓ(P).
1. k ← k0 − k1
2. repeat
3. k ← k + k1 ▷ The first value of k is k0
4. R← a partition relaxation of P with parts of size k, obtained by greedy hillclimbing

started at a random partition.
5. Run DP to obtain ℓ(R) and to enable efficient sampling from L(R)
6. T5 ← the time spent in step 5
7. Run sampling from L(R) tentatively for time α · T5; obtain m′ samples from L(P)
8. T7 ← the time spent in step 7
9. if m′ = 0 then
10. t7 ←∞
11. else
12. t7 ← T7 ·mε,δ/m

′ ▷ Estimated time to run the sampling phase in full

13. t5 ← β · T5 ▷ Estimated time to run DP for k + k1 parts
14. until t7 < t5
15. Run sampling from L(R) in full to obtain mε,δ samples from L(P)
16. m← the number of samples from L(R)
17. return ℓ(R) ·mε,δ/m

phase will take significantly more time than the DP algorithm, we give up and try a larger
value of k instead. If we increment k in sufficiently large steps, the failed attempts will not
introduce notable overhead, since the time complexity of each attempt grows exponentially
in k. Algorithm 2 describes the above procedure in more detail and completes it to a scheme
that outputs an estimate of ℓ(P).

3.4 Implementation

In the experiments, we set the user parameters as follows: k0 = 20, k1 = 5 and α = 0.1,
β = 10; we observed these values to perform well on average. As a practical optimization,
we also keep the previous relaxation found in step 4 if it has fewer linear extensions than
the new relaxation. We restart 50 times to get slightly better relaxations. Furthermore, if k
becomes so large that the DP algorithm starts running out of memory, we proceed directly
to the sampling phase with the best relaxation found so far. We parallelize the DP phase by
running DP for each component of the relaxation in a different thread. We also parallelize
the sampling phase into multiple threads, and construct each sample from L(R) iteratively
such that we can in most cases detect that the sample is not in L(P) without having to
completely construct it.

652

Approximate Counting of Linear Extensions

4. Telescoping Product Estimators

The relaxation Monte Carlo method, described in the previous section, is relatively in-
effective if the relaxation is far away from the original poset, resulting in a worst-case
exponential-time scheme. There is a known technique for improving this scheme: bridge
the gap between the relaxation and the poset by a chain of relaxations where adjacent relax-
ations are close to each other. Then it suffices to estimate the ratio of the linear extension
counts for any two adjacent relaxations, each estimate of which now requires a relatively
small number of samples. The challenge is to efficiently sample random linear extensions
of a relaxation that is close to the original poset and thus infeasible for the dynamic pro-
gramming approach; here rapidly mixing Markov chains can come to rescue. This is an
instantiation of a generic strategy for approximate counting of solutions to self-reducible
combinatorial problems (Jerrum & Sinclair, 1997).

Brightwell and Winkler (1991) implemented this strategy for approximate counting of
linear extensions, with one significant twist: they introduced a chain of extensions from
the original poset to some linear extension, instead of a chain of relaxations to some simple
relaxation. We next describe the original, basic version of their method (Section 4.2), and
a way to enhance it, leading to the best worst-case bound we are aware of (Section 4.3).
Both schemes assume the availability of an efficient sampler of linear extensions for a given
poset—we begin (Section 4.1) with a review of the most relevant results in the literature.

4.1 Markov Chains on Linear Extensions

Karzanov and Khachiyan (1991) studied a simple Markov chain on linear extensions. The
Karzanov–Khachiyan chain makes an attempt to swap the positions of two random adjacent
elements in the current linear order; if the elements are comparable, the attempt is rejected
and the chain stays in the current state. Karzanov and Khachiyan proved that the chain
mixes in time O(n6 log n), but later investigations have shown that the worst-case mixing
time is within a constant factor of n3 lnn (Bubley & Dyer, 1999; Wilson, 2004).

The insertion chain is another simple Markov chain. It removes a random element from
the ordering and reinserts it to a random position. Bubley and Dyer (1999) give a lower
bound Ω(n2) and an upper bound O(n5 log2 n) for the worst-case mixing time. The shuffle
chain (Talvitie, Niinimäki, & Koivisto, 2017) is a more complicated Markov chain. It selects
a random interval of positions, finds the connected components of the poset induced by the
elements in the interval, and randomly reorders the elements in the interval such that within
each component the ordering is unchanged. The worst-case mixing time is O(n4 log2 n)
(Talvitie et al., 2017, Prop. 1). The insertion chain and the shuffle chain may mix much
faster in practice than what is guaranteed by the worst-case upper bounds (Talvitie et al.,
2017). However, the unavailability of better bounds (or stopping rules) currently renders
these chains inferior to the Karzanov–Khachiyan chain.

Huber (2006) gives a bounding chain for the Karzanov–Khachiyan chain, yielding a
perfect sampler that draws linear extensions exactly from the uniform distribution. The
idea is to keep track of an upper bound for the position of each element in the order. The
expected running time of the resulting CFTP algorithm is O(n3 log n). If implemented
as described in the original article, the algorithm always takes the same number of steps
for a fixed number of elements n (and a fixed output sequence of the random number

653

Talvitie & Koivisto

generator). A modification that initializes the bounding chain adaptively according to the
input partial order can terminate after a smaller number of steps (Mark L. Huber, personal
communication, August 12, 2016). We refer to this perfect sampling method as the exact
Karzanov–Khachiyan chain.

Later Huber (2014) gave another type of bounding chain, which is related to the in-
sertion chain but operates in a continuous state space, the unit n-cube [0, 1]n. Each
point in this space (except a zero-measure subset) corresponds to a unique linear order
on V determined by the ordinary order on reals. In particular, drawing a point from{
x ∈ [0, 1]n : xa ≤ xb whenever a ≺ b

}
corresponds to drawing a linear extension of P . A

straightforward Gibbs sampler makes a transition by drawing an element a from V and
then resampling the coordinate xa. This roughly corresponds to reinserting an element to a
randomly selected location as in the insertion chain. This chain is monotonic and yields an
efficient CFTP algorithm. Huber shows that the expected running time of the algorithm is
O(∆2n log n) on height-2 partial orders where every element is comparable with at most ∆
other elements; no bound is given for the general case.

4.2 The Basic Brightwell–Winkler Estimator

Brightwell andWinkler (1991) constructed an estimator of ℓ(P) as follows. Let P0, P1, . . . , Pk

be a sequence of posets on the same ground set V such that Pi equals P if i = 0 and is oth-
erwise obtained from Pi−1 by adding some ordering constraint ai ≺ bi and those that follow
by transitivity, ending in some linear order Pk. Since ℓ(Pk) = 1, we can write µ := 1/ℓ(P)
as the telescoping product µ =

∏k
i=1 µi, where µi := ℓ(Pi)

/
ℓ(Pi−1). Now, let µ̂i,m be a

zero–one Monte Carlo estimator of µi, that is, the proportion of members of L(Pi) in m
independent samples drawn uniformly at random from L(Pi−1). We get an estimator

µ̂m :=

k∏
i=1

µ̂i,m

whose expected value is µ and whose variance decreases as m grows.

Proposition 8. Let ε, t ∈ (0, 1]. Let µi ≥ t for i = 1, 2, . . . , k and m ≥ 5k (1 − t)t−1ε−2
0 ,

where ε0 := ε/(1 + ε). Then µ̂m is an (ε, 1/4)-approximation of 1/ℓ(P).

Proof. Observe that µ̂i,m is a random variable with the expected value µi and variance
µi(1− µi)/m. By Chebyshev’s inequality,

ε20 Pr(|µ̂m − µ| > ε0µ) ≤
Var(µ̂m)

E[µ̂m]2
=

k∏
i=1

(
1 +

Var(µ̂i,m)

E[µ̂i,m]2

)
− 1 =

k∏
i=1

(
1 +

1− µi

mµi

)
− 1 .

Now, using the lower bounds of µi and m, we get (1 − µi)/(mµi) ≤ ε20/(5k). Putting
z := ε20/5 ≤ 1/5 and applying the inequality (1 + z/k)k ≤ 1 + z + z2 ≤ 1 + (6/5)z gives
Pr(|µ̂m/µ− 1| > ε0) ≤ (6/5)(1/5) < 1/4, whence the claim follows by Lemma 2.

To bound the ratios µi from below by a positive constant, Brightwell and Winkler (1991)
employ an iterative method. The next poset Pi is obtained from Pi−1 by choosing a pair
of incomparable elements (a, b) and adding one of the constraints a ≺ b and b ≺ a along

654

Approximate Counting of Linear Extensions

with the constraints that follow then by transitivity. Making the right choice among the
two possible directions for the added constraint is critical, as one of them might yield a
very small µi. Let P ′

i and P ′′
i denote the two possible outcome posets and µ′

i and µ′′
i the

respective ratios. Clearly, µ′
i and µ′′

i add up to 1 and thus the larger of the two is at least
1/2. Consequently, O(log δ−1

0) samples of linear extensions of Pi−1 allow us to estimate µ′
i,

say to within a relative error of 1/3, and thereby decide the ordering so that µi ≥ 1/3 holds
with probability at least 1 − δ0. By setting δ0 := δ/k and using the union bound, we get
that the lower bound holds for all i = 1, 2, . . . , k with probability at least 1− δ.

A direct implementation of this idea guarantees that the constructed sequence of posets
has length k = O(n2), as one can add at most n(n − 1)/2 constraints before reaching a
linear order. This bound can be improved by observing that the way the sequence of posets
is constructed is analogous to comparison sorting (Brightwell & Winkler, 1991): deciding
whether to add the constraint a ≺ b or b ≺ a corresponds to comparing the elements a
and b. By emulating an O(n log n)-time comparison sorting algorithm, we get that after
k = O(n log n) steps, one linear extension of the original poset is singled out.

In summary, by Proposition 8 above and the median trick (Lemma 5), we obtain an
(ε, δ)-approximation of ℓ(P) by drawing O(k2ϵ−2 log δ−1) linear extensions of certain posets
on n elements, each draw taking an expected time of O(n3 log n). The total expected
running time is thus O(ε−2n5 log3 n log δ−1). We postpone a more detailed proof to the
next subsection where we further reduce the time bound by a factor of log n.

4.3 An Enhanced Brightwell–Winkler Estimator

So far our analysis only used the fact that the ground set V of each considered poset Pi

has n elements—no structural properties were assumed. We now add a new observation:
we can construct the posets in such a way that for large i the poset Pi becomes a series
composition of two or more smaller posets, and so the linear extensions of Pi are obtained
by simply concatenating the linear extensions of the component posets. This will yield both
theoretical savings in computational complexity as well as practical savings in running time.

For what follows, it is crucial that we consider the Quicksort algorithm, instead of
an arbitrary fast comparison based sorting algorithm. When the algorithm chooses its
first pivot element p ∈ V , it performs |V | − 1 comparisons; in other words, we will add
the respective constraints, as well as those that follow by transitivity, yielding a poset
Pi = (V,≺i) with a partition of V \ {p} into the predecessors A and successors B of p.
We get that a ≺i p ≺i b for all a ∈ A and b ∈ B, and thus Pi is a series composition of
the posets induced by the sets A, {p}, and B. Denoting P ′

i := Pi[A] and P ′′
i := Pi[B], we

have ℓ(Pi) = ℓ(P ′
i)ℓ(P

′′
i). Consequently, we can estimate the ratio of interest, 1/ℓ(Pi), by

estimating 1/ℓ(P ′
i) and 1/ℓ(P ′′

i) independently and taking their product. This means that
the product estimator µ̂m will include factors from both branches. We may also branch
using the reduction rule for parallel compositions: if the constructed poset decomposes into
independent components A and B, we branch respectively and multiply the estimate µ̂m by
the factor 1

/(|A|+|B|
|A|

)
. Naturally, these branching rules are applied recursively, effectively

resulting in a tree-structured decomposition into smaller subproblems rather than a sequence
of same size problems. Figures 3 and 4 illustrate the simulation of Quicksort.

655

Talvitie & Koivisto

f

ba b

d

e f

g h

c

P0 = P

a

d

e f

g h

c

P1

a

d

e f

g h

c

P2

ba

d

e

g h

c

P3

b

ba

d

e f

h

c

P4

g

ba

d

e

h

c

P5

g

f

ba

d

e

h

c

P6 = L

g

f

Figure 3: An example of the increasing sequence of posets (Pi)
6
i=0 obtained by simulating

the Quicksort algorithm. The algorithm begins with the original poset P0 = P ,
and picks a pivot element d. The only element that is incomparable with d is c,
and by sampling linear extensions of P0, the algorithm decides that adding the
constraint in the direction c→ d instead of direction d→ c to form the next poset
P1 results in smaller reduction in the number of linear extensions. After this, the
pivot d has partitioned the poset into its predecessors {a, b, c} and successors
{e, f, g, h}. The algorithm goes on to recursively order the set of predecessors,
choosing b as the pivot and comparing it with the other elements, and the set of
successors, first using pivot e and then g, eventually reaching a linear extension L.
This sequence gradually reduces the number of linear extensions from ℓ(P) = 29
to 1, because (ℓ(Pi))

6
i=0 = (29, 15, 10, 5, 3, 2, 1).

Suppose we emulate a Quicksort implementation that always chooses a pivot that is a
median of the elements. To find a median of n elements, one needs at most 3n comparisons
(Dor & Zwick, 1999). Thus, after 4n− 1 comparisons, the obtained poset P4n−1 is a series
composition of two posets, consisting of the n/2 elements that respectively are smaller (or
equal to) or larger than the pivot. After 2n − 1 further comparisons in both branches,
the poset becomes a series composition of 4 posets on n/4 elements, and so forth. Let us
summarize and complete the analysis of this enhanced algorithm:

Theorem 9. There is a randomized algorithm that given ε, δ ∈ (0, 1/2) and a poset on n
elements, computes an (ε, δ)-approximation of the number of linear extensions of the poset
in O(ε−2n5 log2 n log δ−1) expected time.

Proof. We analyze the complexity of the described algorithm; see Algorithm 3. Let P be
the input poset on n elements. The algorithm operates on k = O(n log n) posets, of which
O(n) have at most n elements, O(n) have at most n/2 elements, and so forth.

Per poset, O(log 2k/δ) random linear extensions are generated to perform the compar-
ison and to decide the ordering constraint to be added. This guarantees that µi ≥ 1/3 for
all i = 1, 2, . . . , k with probability at least 1− δ/2.

656

Approximate Counting of Linear Extensions

a b

d

e f

g h

a b

c

f

g h

a

c

f

g h

f

h

d

b

g

e

e

c

/
(
3
2

)

/
(
3
1

)

Figure 4: The tree obtained when using the Quicksort algorithm and the decomposition
rules to the same poset P as in the example of Figure 3. After adding the con-
straint c → d, the poset decomposes into three parts. The first one decomposes
further into incomparable parts {a, c} and {b}, which are linear posets. The sec-
ond part is also linear, as it consists of only the pivot d. In the third part we have
to add the constraint e → f , but after that everything decomposes into linear
parts without the need for additional sampling. Compared to the telescopic prod-
uct algorithm without the decomposition rules, this method reduces the number
of factors we need to estimate by sampling from six to two, and in the second
sampling operation, the number of elements in the poset is 4 instead of 8.

By Proposition 8, additional O(kε−2) samples of linear extensions per poset suffice for
guaranteeing that the estimate µ̂m is an (ε, 1/4) approximation of 1/ℓ(P). By the median
trick (Lemma 5) and taking the inverse estimate (Lemma 1), O(kε−2 log 2/δ) samples suffice
to get an (ε, δ/2) approximation of ℓ(P), assuming µi ≥ 1/3 for all i.

The estimate can fail to be within a relative error of ε only if at least one of the two
steps fails, thus with probability at most δ/2 + δ/2 = δ.

Since the complexity of generating a random linear extension is at least linear in the
number of elements, the work for the first O(n) posets on at most n elements dominate
the total complexity. Given that the expected time of generating a random linear exten-
sion is O(n3 log n), the expected time for computing an (ε, δ)-approximation of ℓ(P) is
O
(
(n3 log n)(n)(n log n)ε−2 log δ−1

)
, which simplifies to the claimed bound.

657

Talvitie & Koivisto

Algorithm 3 The Telescope Tree scheme

Input: A poset P , reals ε, δ > 0, an exact sampler of linear extensions M .
Output: An (ε, δ)-approximation of ℓ(P).

1. function RatioEstimate(P , P∗) ▷ Estimate of ℓ(P)/ℓ(P∗)
2. Draw ⌈10 k (1 + ε)2ε−2⌉ samples of linear extensions of P drawn using M
3. Let µ∗ be the fraction of samples that are also extensions of P∗
4. return µ∗

5. function Pivot(P) ▷ Select a pivot
6. Find a median p of P by comparing elements pairwise, each using ⌈ln 2k/δ⌉

samples of linear extensions of P drawn using M
7. return p

8. function AddConstraints(P , p) ▷ Add constraints to P
9. µ∗ ← 1, P∗ ← P
10. for each element q incomparable to p in P do
11. Draw ⌈ln 2k/δ⌉ samples of linear extensions of P drawn using M
12. Obtain P∗ by adding the more frequent ordering of p and q to P
13. Add to P∗ the constraints that follow by transitivity
14. µ∗ ← µ∗ ·RatioEstimate(P, P∗)
15. P ← P∗
16. return (P∗, µ∗)

17. function TelescopeTree(P) ▷ Estimate of ℓ(P)
18. if P is a parallel composition of P [A] and P [B], both nonempty then

19. return TelescopeTree(P [A]) ·TelescopeTree(P [B]) ·
(|A|+|B|

|A|
)

20. p← Pivot(P)
21. (P∗, µ∗)← AddConstraints(P, p)
22. Let A and B consist of the elements that respectively precede and succeed p in P∗
23. return TelescopeTree(P [A]) ·TelescopeTree(P [B])

/
µ∗

24. k ← ⌈n log2 n⌉, where n is the number of elements in P
25. m← ⌈12 ln 2/δ⌉
26. for j ← 1, 2, . . . ,m do
27. ℓ̂j ← TelescopeTree(P)

28. return the median of ℓ̂1, ℓ̂2, . . . , ℓ̂m

4.4 Implementation

For both the basic and the enhanced estimator, our practical implementations deviate from
the above descriptions in certain details, keeping the approximation guarantees, of course.

658

Approximate Counting of Linear Extensions

Instead of using the exact median, we choose the pivot heuristically: we maximize the
minimum of the number of predecessors and the number of successors. In the factorization
phase, we use a fixed number of samples per comparison; in preliminary experiments, 300
was found to give a good tradeoff in most cases.

Instead of using the upper bound for the number of samples per factor given in Proposi-
tion 8, we determine the required number of samples algorithmically, by finding the smallest
bound that yields a failure probability bound at most δ, using binary search:

(i) For each candidate number of samples m, find for µi for all i a lower bound l in the
range [0, 1/2] (instead of the fixed 1/3) that yields the smallest possible bound for the
total failure probability, using ternary search.

(ii) For each candidate pair (m, l), bound the total failure probability as in the proofs of
Proposition 8 and Theorem 9: the probability that some factor µi is smaller than l
is bounded using a Chernoff bound (with 300 samples); the probability that the final
estimate is not within a relative error of ε is bounded using Chebyshev’s inequality.

Instead Huber’s (2006) O(n3 log n)-time exact sampler, we use Huber’s (2014) Gibbs
sampler, which appears to work faster in practice, even if we know no good general run-
ning time bound for it. In its CFTP implementation, we use the PCG32 random number
generator, which can skip backwards, to avoid storing generated random numbers. We also
parallelize sampling into multiple threads and use 32-bit integers for coordinates (instead
of floats) to avoid overhead and to obtain maximum precision for the chosen bit depth.

5. Schemes Based on the Tootsie Pop Algorithm

The Tootsie Pop algorithm (TPA) by Huber and Schott (2010) is a generic sampling-based
method for estimating the ratio of sizes of two nested sets. The idea is, as suggested
by the name of the method,1 to draw a random sequence of intermediate sets, starting
from the larger set and ending at the smaller set. The main difference to the telescopic
product estimator is that in the TPA the number of intermediate steps is not fixed but a
Poisson random variable whose expected value equals the natural logarithm of the ratio of
interest. Thus, taking the average length of sufficiently many independent sequences yields,
through the exp-function, an estimator of the ratio. Banks et al. (2018) applied the TPA
for approximate counting of linear extensions.

In this section, we first consider the TPA in general. We begin by reviewing the technical
requirements and results in detail in Section 5.1. Then, in Section 5.2, we present an
improvement upon the basic TPA by taking a tighter control of tail probabilities of a
Poisson distribution. We turn to the application to counting linear extensions in Section 5.3.
We briefly review the scheme of Banks et al. (2018), in which the discrete set of linear
extensions is augmented with a continuous unit-hypercube, and then present our second
contribution in this section: a novel TPA based scheme for counting linear extensions. Our
scheme differs significantly from the previous scheme and, among other things, requires a
routine for sampling from a particular constrained state space; Section 5.4 is devoted to

1. A Tootsie Pop is a hard candy lollypop, known for the catch phrase “How many licks does it take to get
to the Tootsie Roll center of a Tootsie Pop?”, first introduced in a commercial on US television in 1969.

659

Talvitie & Koivisto

the needed sampler. Finally, we consider various implementation issues related to efficient
parallelization of the computations in Section 5.5.

5.1 The Basic TPA

Let µ be a measure over a set U . In what follows, we implicitly assume that all subsets of
U we consider are measurable; for simplicity of exposition, we do not explicitly treat the
underlying sigma-algebra over U . Consider the problem of estimating the measure µ(S1)
of a given set S1 ⊆ U , assuming we are given another set S0 ⊆ S1 whose measure µ(S0) is
known or easy to estimate.

The TPA utilizes a continuum of intermediate sets Sβ, for β ∈ [0, 1], specified such that
the map β 7→ µ(Sβ) is continuous in [0, 1] and Sβ ⊆ Sβ′ for all 0 ≤ β ≤ β′ ≤ 1. Furthermore,
the algorithm assumes the availability of a routine that for a given β generates a uniform
sample from Sβ, and a routine that for a given sample X finds the smallest β for which Sβ

contains X. Armed with these properties, the TPA repeats the following procedure some
number of times, m, independently:

1. Let k := 1 and β0 := 1.

2. Let X be a uniform sample from Sβk−1
.

3. Let βk := inf
{
β ∈ [0, 1] : X ∈ Sβ

}
.

4. If βk = 0, return k; else let k := k + 1 and go to step 2.

We have that k−1 is Poisson distributed with mean r := ln
(
µ(S1)/µ(S0)

)
. Indeed, in each

step of the algorithm we decrease µ(S1) by a factor that is uniformly distributed in [0, 1],
until we reach µ(S0); this is equivalent to decreasing lnµ(S1) by subtracting exponentially
distributed random variables, yielding the Poisson distribution. As an estimate of the ratio
µ(S1)/µ(S0) = er, the algorithm outputs eZ/m, where Z is the sum of the sampled m
Poisson variables.

To guarantee that the output is an (ε, δ) approximation, it suffices to ensure that
exp{|Z/m− r|} ≥ 1 + ε with probability at most δ. Applying the tail bound in Lemma 4,
with λ := mr and a := m ln(1 + ε), leaves us to solve 2 exp{−a2/(2λ+ 2a)} ≤ δ, yielding

m ≥ 2(r + ε0) ε
−2
0 ln(2δ−1) , with ε0 := ln(1 + ε) .

For small ε > 0 we have ε0 ≈ ε, and for all ε < 1/2 we have ε0 > 4ε/5 by standard bounds.
As r is unknown, we run the TPA in two phases (Banks et al., 2018), first approximating

r to within a larger factor and then using this approximation to bound m. More precisely,
we use m0 := ⌈2 ln(2δ−1)⌉ initial samples to get an approximation r0, and then select the
smallest integer m that exceeds 2(r′ + ε0) ε

−2
0 ln(4δ−1), where r′ := r0 +

√
r0 + 2. Namely,

the first phase guarantees r ≤ r′ with probability at least 1 − δ/2. Since the expected
value of r0 is r, the increase in the expected number of samples is negligible when r ≫ 2.
Asymptotically, the TPA consumes O(r2ε−2 log δ−1) samples in total on expectation.

Remark 1. We can slightly lower the bound of Banks et al. (2018), to r′ := r0 +
√
r0 + 1.

Namely, if r ≤ 1, then r ≤ r′ holds surely. Otherwise, algebraic manipulation reveals that
r ≤ r′ fails only if r0 < r−ar, where ar := 1/2+

√
r − 3/4. Sincem0r0 is Poisson distributed

660

Approximate Counting of Linear Extensions

with mean m0r, the failure probability is, by Lemma 4, at most exp
{
−m0a

2
r/(2r)

}
, which

is at most δ/2, since m0 ≥ 2 ln(2δ−1) and a2r = r − 1/2 +
√

r − 3/4 ≥ r.

5.2 An Enhanced TPA

We next present an improved scheme to bound the required number of independent samples,
m, from the Poisson distribution. The main idea is to avoid using the tail bounds, which
can be relatively loose for certain configurations of the key parameters r and ε. Recall that
we seek an m, as small as possible, such that Pr(|Z/m− r| < ε0) ≥ 1− δ. In principle, we
could compute the exact probability by summing up the point probabilities Pr(Z−mr = j)
for all integers j satisfying |j| < mε0. The issue is that we do not know the value r; we
only have an upper bound r′. In what follows, we will effectively consider a range of values
of the unknown r ≤ r′.

Suppose we have guessed m and wish to determine whether m is sufficiently large; we
use binary search to find the smallest sufficient m. Put λ′ := mr′ and d := mε0. For all
λ > 0, write Zλ for a Poisson random variable with mean λ, and p(λ) := Pr(|Zλ − λ| < d).
Furthermore, let p′ := inf{p(λ) : 0 < λ ≤ λ′}. Now, if p′ ≥ 1− δ, we know that the guessed
m is sufficiently large, no matter what the unknown r is. The challenge is to compute the
value p′, or at least a good lower bound for it. If p(λ) was a decreasing function of λ, we
would simply have p′ = p(λ′). But due to the discrete nature of the Poisson distribution,
this is not the case. To address this issue we craft a function that bounds p(λ) from below
and is monotonically decreasing.

We begin by writing the cumulative distribution function in terms of the regularized
upper incomplete gamma function Q (a well-known fact obtained by integration by parts):

Pr(Zλ ≤ z) = Q(⌊z⌋+ 1, λ) , where Q(s, x) :=
Γ(s, x)

Γ(s)
;

here Γ(s, x) :=
∫∞
x ts−1e−tdt is the upper incomplete gamma function. We obtain

p(λ) = Pr(Zλ < λ+ d)− Pr(Zλ ≤ λ− d) = Q(⌈λ+ d⌉, λ)−Q(⌊λ− d⌋+ 1, λ) .

We can show that Q(s, x) is increasing in s, and thus we get a lower bound for p(λ) by
removing the ceiling and floor functions:

qd(λ) := Q(λ+ d, λ)−Q(λ− d+ 1, λ) .

Furthermore, if d ≥ 1, we can show that the lower bound qd(λ) is decreasing in λ, and thus
qd(λ

′) ≤ p′ = inf{p(λ) : 0 < λ ≤ λ′}. The needed arguments and calculation are given in
Appendix A.1, in the proof of the following result.

Proposition 10. Let d ≥ 1. Then qd(λ
′) ≤ p′.

Remark 2. The constraint d ≥ 1 is not restrictive in practice. Namely, if d < 1, there
can be at most 2 integers within a distance less than d from λ. Since the mode of Zλ is
⌊λ⌋, we obtain2 Pr(|Zλ − λ| < d) ≤ Pr(Zλ = ⌊λ⌋) + Pr(Zλ = ⌊λ⌋ + 1), which is at most
1/
√
2π + 1/

√
4π < 3/4 at any λ ≥ 1, and so p′ ≤ p(λ′) is not sufficiently large (assuming

δ ≤ 1/4); note that λ′ ≥ r′ ≥ 1 (cf. Remark 1).

2. Using Stirling’s formula, Pr(Zλ = j) = λje−λ/j! ≤ (2πj)−1/2(λ/j)jej−λ ≤ (2πj)−1/2.

661

Talvitie & Koivisto

We summarize the proposed enhanced TPA:

1. Run the TPA for m0 = ⌈2 ln(2δ−1)⌉ samples, obtain an estimate r0, and set r′ :=
r0 +

√
r0 + 1.

2. Using binary search, find the smallest integer m ≥ 1 for which d := m ln(1 + ε) ≥ 1
and qd(mr′) ≥ 1−δ. (Replaces the Chernoff bound based estimate of the basic TPA.)

3. Run the TPA for m samples, obtain the sum Z, and return eZ/m.

Remark 3. We have empirically observed that our enhanced scheme typically reduces the
number of samples m to around one third, as compared to the basic bound.

5.3 Counting Linear Extensions with Relaxation TPA

Banks et al. (2018) instantiate the TPA for approximate counting the linear extensions
of a given poset P . The algorithm embeds the discrete problem into a continuous space
by augmenting the set of linear extensions L(P) with a continuous dimension. More pre-
cisely, the outer set S1 is L(P) × [0, 1] and the inner set S0 is {L0} × [0, 1], where L0 is
a fixed linear extension of P ; for a careful construction of the intermediate sets Sβ and
details of the scheme, we refer to the original work. The algorithm runs in expected time
O
(
n3 log n log2 ℓ(P) ε−2 log δ−1

)
.

We employ a very different embedding. With each element a ∈ V in a poset P = (V,≺)
we associate a position xa ∈ [0, 1] and require xa ≤ xb whenever a ≺ b. Putting

S0 :=
{
x ∈ [0, 1]V : xa ≤ xb if a ≺ b

}
we obtain ℓ(P) as µ(S0)n!, where µ(S0) is the n-dimensional volume of the polytope S0.
We estimate this volume using TPA by comparing it to µ(S1) = 1, where S1 is the whole
hypercube [0, 1]V . The sets S0 and S1 are connected by a continuum of sets Sβ obtained
by adding β ∈ [0, 1] as a slack variable to the inequality constraints as follows:

Sβ :=
{
x ∈ [0, 1]V : xa − xb ≤ β if a ≺ b

}
.

Note that in our scheme L(P) is bridged to an extreme relaxation, an empty partial order,
whereas the scheme of Banks et al. (2018) works in the direction of extensions.

To optimize our scheme further, we incorporate the idea of ARMC and use a close
relaxation R = (V,≺′) of P to squeeze the estimated ratio. Accordingly, we take

S1 :=
{
x ∈ [0, 1]V : xa ≤ xb if a ≺′ b

}
as the outer set, instead of [0, 1]V , the estimated ratio becoming µ(S1)/µ(S0) = ℓ(R)/ℓ(P).
To connect S0 and S1, we generalize the definition of Sβ to

Sβ :=
{
x ∈ [0, 1]V : (xa − xb ≤ β if a ≺ b) and (xa ≤ xb if a ≺′ b)

}
.

We will give an algorithm, the constraint hypercube sampler, for drawing exact samples from
Sβ in Section 5.4. Observe that given a sample x ∈ [0, 1]V , it is straightforward to find the

662

Approximate Counting of Linear Extensions

Algorithm 4 The Relaxation TPA scheme

Input: A poset P , reals ε, δ > 0, constrained hypercube sampler M .
Output: An (ε, δ)-approximation of ℓ(P).
1. Find a relaxation R of P , along with ℓ(R), using the heuristics
2. Obtain an estimate Y of ℓ(P)/ℓ(R) by running the (enhanced) TPA on (ε, δ) and the

sets {Sβ} specified by P and R, using the sampler M
3. return ℓ(R) · Y

L(R) L(P)

(a) ARMC

f−1L(R) f−1L(P)

(b) Relaxation TPA

g−1L(P)g−1{L}

(c) Banks et al.

Figure 5: Comparison of the relaxation TPA scheme (b) to two other methods (a, c). Like
(a), the scheme computes the number of linear extensions of poset P by estimating
its ratio to the known number of linear extensions of a relaxation R of P . Method
(c) works in the other direction: it relates the size of L(P) to that of {L} where
L ∈ L(P). Similarly to (c), the scheme uses an embedding f from the continuous
space [0, 1]V to the space of linear orders and imposes a layered structure in
the continuous space, allowing it to use TPA, which estimates the ratio using
decreasing random walks with respect to the layers. However, the embedding
and the layers used in (b) are different from those in (c). In contrast, (a) works
directly in the space of linear orders and uses Monte Carlo to estimate the ratio
by repeatedly drawing samples from L(R). Adapted from Talvitie et al. (2018b).

smallest β such that x ∈ Sβ: simply set β := max{xa−xb : a ≺ b}, which can be computed
in time O(n2).

Algorithm 4 shows the steps of the resulting Relaxation TPA scheme. Figure 5 illustrates
the differences of ARMC, the scheme of Banks et al. (2018), and Relaxation TPA.

Substituting ln ℓ(R)/ℓ(P) for the ratio r in the complexity bound of the generic TPA
yields the following:

Proposition 11. Given a relaxation R of P , with known ℓ(R), Relaxation TPA computes
an (ε, δ)-approximation of ℓ(P) using on expectation O

(
(log2(ℓ(R)/ℓ(P)) ε−2 log δ−1

)
inde-

pendent samples from the sets Sβ, 0 ≤ β ≤ 1.

To find a relaxation R that is close to P , we use several heuristics. The heuristics differ
from those employed in ARMC, for here the goal is to avoid the exponential growth of the
running time in the number of elements. Our heuristics stem from the observation that for

663

Talvitie & Koivisto

many special classes of posets, the number of linear extensions is easy to compute exactly
or the problem can at least be reduced to counting the linear extensions of some induced
subposets. First we check if the poset already belongs to such a special class:

1. If P is a series composition of P1 and P2, then we recursively find the relaxations R1

and R2, respectively, and take R as their series composition.

2. If P is a parallel composition of P1 and P2, then we recursively find the relaxations
R1 and R2, respectively, and take R as their parallel composition.

3. If the cover graph of P is a tree, then we use P as the relaxation.

4. If an exact linear extension counter finishes computing ℓ(P) within a short time limit,
we use P as the relaxation. In our experiments we ran the counter due to Kangas
et al. (2016) until its dynamic programming table has 10,000 items.

If none of these attempts succeeds, we try the next two methods and select the relaxation
with fewer linear extensions.

5. We relax P by taking a spanning tree of its cover graph. We repeat the following 6
times: Assign random weights to all cover graph edges, construct a minimum spanning
tree using these weights, and compute the number of linear extensions using the known
exact algorithm for posets whose cover graph is a tree (Atkinson, 1990).

6. If V can partitioned into V1, V2, V3 such that V1 precedes V2 (i.e., every a ∈ V1 precedes
every b ∈ V2), then we recursively find relaxations Rk := (Vk,≺k), k = 1, 2, 3, and
combine them into relaxation R := (V,≺′), where we keep the constraints between V1

and V2 but remove all constraints between V1∪V2 and V3. We search in a greedy fashion
for a partition that maximizes the value

(|V1|+|V2|
|V1|

)
; this would be inversely correlated

with the number of linear extensions if every ≺k was empty. We try all initializations
V1 := {a}, for a ∈ V , and add elements to V1 one by one while maintaining V2 as the
maximal set such that V1 precedes V2.

5.4 Continuous Relocation Chain

We now turn to the problem of generating a uniformly distributed sample from the con-
strained hypercube

Ω :=
{
x ∈ [0, 1]n : xi − xj ≤ sij for all 1 ≤ i < j ≤ n

}
,

where the numbers sij ≥ 0 are given as input.
To sample from Ω, we give a simple Markov chain, which we call the continuous relocation

chain. In the chain, the next state y is obtained from the previous state x by the following
transition: First, sample dimension i ∈ {1, 2, . . . , n} and coordinate u ∈ [0, 1] independently
and uniformly at random, and let y′ be the state obtained by setting y′i := u and y′j := xj
for j ̸= i. Second, if y′ ∈ Ω, let y := y′; otherwise do nothing, y := x. Accordingly,
the transition function of the chain is ϕ : (x, i, u) 7→ y. Since the transition is symmetric,
that is, the probability density of y given x is the same if we swap the states, we have the
following.

664

Approximate Counting of Linear Extensions

Proposition 12 (Uniform stationary distribution). The uniform distribution on Ω is a
stationary distribution of the continuous relocation chain.

The continuous relocation chain is similar to a Markov chain due to Huber (2014),
which can be used for sampling from the uniform distribution on Ω in the special case
where sij ∈ {0, 1} for all 1 ≤ i < j ≤ n. Huber achieved perfect simulation of the chain
employing monotone coupling from the past. We will next show that the same technique
applies to our continuous relocation chain for sampling from Ω in the more general case of
arbitrary values sij ≥ 0.

It suffices to show that the chain is monotone in relation to its transition function ϕ and
some partial order ⊏ on Ω. Define

⊏ :=
{
(x, y) ∈ Ω× Ω : x ̸= y and xi ≤ yi for all 1 ≤ i ≤ n

}
.

Denote by 0 and 1 the elements (0, 0, . . . , 0) and (1, 1, . . . , 1) of the hypercube [0, 1]n. We
prove the following in Appendix A.2.

Proposition 13 (Monotonicity). We have the following:

(i) The relation ⊏ is a partial order on Ω.

(ii) We have 0,1 ∈ Ω and 0 ⊑ x ⊑ 1 for all x ∈ Ω.

(iii) If x ⊑ y, then ϕ(x, i, u) ⊑ ϕ(y, i, u) for all i ∈ {1, 2, . . . , n} and u ∈ [0, 1].

The generic method of monotone CFTP now yields the following algorithm to draw a
sample from Ω. We run two parallel bounding chains (Lt)

0
t=−T and (Rt)

0
t=−T that are copies

of the continuous relocation chain, governed by the same sequence of random numbers it
and ut, but with the different initial states L−T := 0 and R−T := 1. The term coupling
refers to the chain (Lt, Rt) on the state space Ω×Ω. If it happens that L0 = R0, the chains
have coupled and we know due to the monotonicity property of Proposition 13(iii) that a
chain that started at time −T in any initial state must also be in this state at time 0; thus
this state can be returned as a sample from the stationary distribution. Otherwise, L0 ̸= R0

and we need to run the chain starting further into past, in which case we double T and
retry, always using the same random numbers (i.e., the dimension i = it and the coordinate
u = ut) for the same transition from time t− 1 to time t. Figure 6 illustrates the behavior
of the bounding chain.

We can show that the expected running time of this sampling algorithm is finite, as the
chains will couple with positive probability for some T > 0; see Appendix A.3 for a proof.

Theorem 14 (Finite expected time). Monotone CFTP for the continuous relocation chain
outputs a sample from the uniform distribution on Ω in finite expected time.

One advantage of coupling from the past compared to directly simulating the chain is
that, even though we do not have any good a priori bounds on the number of transitions T
needed for coupling, we can still use the algorithm in practice, as it knows when to stop.

665

Talvitie & Koivisto

x1

x2

x3

×
×

×

×

×
×

L−6

x1

x2

x3

R−6 L−5 R−5 R−4L−4

R−3L−3 R−2L−2 R−1L−1 L0=R0

(a) The chains have coupled after T = 6 steps

L−3 R−3

x1

x2

x3

×

L−2 R−2

×

L−1 R−1

×
L0 R0

(b) The chains have not coupled after T = 3 steps

Figure 6: We visualize the bounding chains (Lt)
0
t=−T and (Rt)

0
t=−T when using monotone

coupling from the past with the continuous relocation chain for sampling from
Ω = {x ∈ [0, 1]3 : x1 ≤ x2 ≤ x3}. We use the symbol × to mark the random num-
bers (the dimension i ∈ {1, 2, 3} and coordinate u ∈ [0, 1]) for each transition.
In (a), we see that after T = 6 steps, the chains have coupled and we obtain a
sample L0 = R0, whereas in (b) we see that T = 3 is not sufficient for the chains
to couple with these random numbers.

5.5 Implementation

Our theoretical algorithm design and analysis necessarily were limited to a simplistic model
of computation. For practical implementation, we have various opportunities to optimize
the computations by taking into account the available modern computing architecture, in
particular, multiple threads, vector instructions, and a GPU. Next we present some key
implementation details and the modifications needed for the TPA scheme.

5.5.1 Numbers, Threads, and Restructuring of the Markov Chain

We parallelize sampling to multiple threads; each TPA sequence from β = 1 to β = 0 is
always handled in a single thread, but different TPA sequences can be run independently in
different threads. In the CFTP, we use the PCG32 random number generator (RNG), which
can skip backwards to avoid storing generated random numbers. We use 32-bit integers for
coordinates, instead of floats, to avoid overhead and to obtain maximum precision for the
chosen bit depth.

In the continuous relocation chain, the usage of a random element on each iteration
makes vectorization difficult and adds RNG overhead. As a remedy, we divide the iterations
into groups of size 2n− 1 such that in each of these “super-iterations,” the chosen elements

666

Approximate Counting of Linear Extensions

are always in the order 1, 2, . . . , n, n− 1, . . . , 1. While the same correctness analysis works
for this chain, the behavior of the chain may be sensitive to the order of the elements—
for fairness of running time comparisons, we always first shuffle the input poset elements.
Importantly, this chain implementation has a completely static data path: there is no
indexing by variables, we only perform fixed operations on 32-bit and 64-bit registers.

5.5.2 Vectorization

Now that all computations run on simple 32-bit integer operations (with some 64-bit op-
erations in the implementation of PCG32, but these can be split into 32-bit parts) with a
static data path, the algorithm enables relatively straightforward vectorization.

The basic principle is as follows. In our vectors, we have L = 8 (256-bit AVX2) or
L = 16 (512-bit AVX512) 32-bit lanes; this means that we can do per-lane basic arith-
metic/logical operations between vectors in an optimized manner. Within one thread, each
lane is responsible for running a single TPA sequence at a time, that is, we have vectors for
the left and right bounding chain positions of each element, the RNG state, and β values,
each vector containing data for all L parallel independent computations. Thus, these L
lanes can be thought of as “sub-threads” of each thread.

Most of the time we are running the bounding chain for the L states in the L lanes;
as this does exactly the same things for all lanes, it vectorizes perfectly. The rest of the
time, we do housekeeping tasks: if we have run the bounding chain to completion, we check
coupling: if the bounding chains have coupled, then we reinitialize to the next step in the
TPA sequence (or start a new sequence if we have reached β = 0); otherwise, we reinitialize
with twice the number of iterations and RNG skipped back. Since the convergence time
of each bounding chain is random, not all lanes need to do these tasks at the same time;
as this part does not vectorize, we perform these tasks serially only for the lanes that need
them. These tasks being quite rare, the effect on the total efficiency is small; we further
help with this by always performing the super-iterations (of 2n− 1 iterations) in chunks of
16, and only checking the states between chunks.

5.5.3 GPU Implementation

For our purposes, the NVIDIA GeForce RTX 2080 GPU we used in the experiments is
essentially 46 roughly independent cores (“symmetric multiprocessors”), each running at
most 2048 threads, organized into warps of 32 threads that run in lockstep, similarly to
vectorized computations with L = 32. Each core also has 64 kB of fast core-specific memory
(“shared memory”); in addition, there is a large amount of slower global memory. While
other modern general-purpose computing-capable GPUs typically have slightly different
configurations, similar algorithm design principles and constraints still apply.

Each core advances the computation of only one warp on each clock cycle; still, to hide
latencies, there should typically be multiple warps running alternately to get maximum
efficiency. A common rule of thumb is that we need 8–32 warps, i.e., 256–1024 threads per
core. By this rule, to achieve trivial parallelization, we should have between 46 ·256 = 11776
and 46·1024 = 47104 independent computations. In our case, the independent computations
are the m independent TPA sequences. This number m is typically relatively small. For
example, when considering AvgDeg(5) instances (see Sect. 6) of size 256 and (ϵ, δ) = (1, 1/4),

667

Talvitie & Koivisto

then m is roughly 250; if (ϵ, δ) = (1/2, 1/10), then m is a bit closer to the ideal range, about
5000. Furthermore, if we wish to store the chain state in the faster shared memory, we have
only space for 64 · 1024/(4 · 2 · n) = 8192/n concurrent TPA random walks per core. For
example, if n = 512, then we have space only for 16 TPA walks.

Due to the aforementioned higher parallelism requirements and stricter memory con-
straints in GPUs compared to vectorized CPU computations, we need to introduce paral-
lelism to the simulation of each individual bounding chain, resulting in the following scheme:

(i) Each core handles 16 TPA walks concurrently; each of them is handled by two lanes
of each warp. (As the left and right bounding chains do the same computations, we
move them to separate lanes to increase parallelism.)

(ii) We use 32 warps per core, operating concurrently on a shared state when running the
continuous relocation chain. For the sake of efficiency, we do not want to synchronize
the warps too often when running the chain; to this end, we heuristically find a proper
coloring of the elements (no constraint between two elements of the same color), and in
each super-iteration handle the elements color by color in parallel (each element being
independent of the movement of the other elements of the same color), synchronizing
the warps only when changing the color. Note that in this GPU implementation, the
element order comes from the coloring, instead of being sampled uniformly at random.
Ideally, there are only a few colors and thus, if n is large enough, most warps are kept
busy for most of the time.

(iii) If the chain states fit into shared memory (i.e., n ≤ 512), we use it; otherwise, we use
global memory (the shared memory then works as a L1 cache).

6. Experimental Results

In the previous sections, we have developed algorithms that, given a poset and probabilistic
error tolerance (ε, δ), output a real number that, with probability at least 1 − δ, is within
a relative error at most ε of the number of linear extensions of the poset. For the time
complexity of the algorithms we only gave some characterizations relying on conservative
choices of some user parameters (e.g., the underlying Markov chain sampler) to obtain
worst-case bounds. We have argued that the algorithms are likely to run faster in “typical
instances” if replacing the conservative choices by more adaptive ones.

In this section, we present empirical results that compare the performance of the algo-
rithms and their implementations (summarized in Section 6.1) on various problem instances
(described in Section 6.2). We first compare the generic algorithm designs ARMC, Tele-
scope product, and TPA (Section 6.3) and then the performance of different optimizations
of TPA (Section 6.4).

6.1 Algorithms, Implementations, and Environment

Of the three generic algorithm designs, we implemented multiple variants for telescope
product estimators and for the TPA to assess how the proposed ideas affect the running
time in practice. Table 1 summarizes the tested algorithms and implementations.

668

Approximate Counting of Linear Extensions

Name Description Reference

ARMC The ARMC scheme Algorithm 2, Section 3.4
BasicTelescope The basic Brightwell–Winkler estimator Sections 4.2 and 4.4

Telescope The Telescope Tree scheme Algorithm 3, Section 4.4
ChernoffTPA The relaxation TPA using Chernoff bounds Algorithm 4, Section 5.1

TPA The relaxation TPA using the enhanced analysis Algorithm 4, Section 5.2
AVX2TPA Implementation of TPA using AVX2 instructions Section 5.5.2

AVX512TPA Implementation of TPA using AVX512 instructions Section 5.5.2
GPUTPA Implementation of TPA using GPU Section 5.5.3

Table 1: Tested algorithms and implementations

We implemented each algorithm variant in C++ (for GPUTPA we used CUDA C++); the
implementations are available in https://github.com/ttalvitie/linext. Each imple-
mentation is multithreaded to take advantage of all the cores of the CPU. Apart from the
vectorized implementations AVX2TPA, AVX512TPA, and the GPU implementation GPUTPA,
none of the implementations use CPU vector extensions or GPUs, allowing fair comparison
of their running times. The experiments were run on identical high-end desktop computers,
each with a 4-core 3.6 GHz Intel Xeon W-2123 CPU and an NVIDIA GeForce RTX 2080
GPU.

6.2 Problem Instances

We consider the same types of benchmark poset instances as the preliminary works (Talvitie
et al., 2018a, 2018b), with extended range in the poset size n and density of random posets.

We included two classes of random posets:

Bipartite(p) is a random height-2 poset P = (A ∪ B,≺) with |A| = ⌈n/2⌉, |B| = ⌊n/2⌋,
A ∩ B = ∅ constructed by ordering a ≺ b for each (a, b) ∈ A× B independently with
probability p, leaving a and b incomparable with probability 1−p. We considered the
values p ∈ {0.2, 0.5}.

AvgDeg(k) is a random poset P = (V,≺) constructed by first randomly shuffling V into
a linear order (v1, v2, . . . , vn), then forming a DAG (V,E) by including each possible
edge (vi, vj) ∈ E for 1 ≤ i < j ≤ n independently with probability p := k/(n − 1),
and finally taking ≺ as the transitive closure of E on V . With this choice of p, the
expected average indegree and degree are respectively n−1

∑n
i=1(n− i)p = k/2 and k.

We varied k in {3, 5, 7, 9, 13, 17} but will show results only for k ∈ {3, 9, 17}.

In addition, we generated random posets of varying sizes from the four largest bench-
mark Bayesian network structures (DAGs) Diabetes, Link, Pigs, and Munin available in
the Bayesian Network Repository (https://www.cs.huji.ac.il/~galel/Repository/);
Table 2 gives some basic statistics of these DAGs. For each of these four DAGs, we obtain
a random poset of size n as the transitive closure of a connected subgraph induced by a set
of n nodes constructed iteratively: starting from a random node, in each iteration we pick,
uniformly at random, a node that is adjacent to at least one of the already chosen nodes.

669

Talvitie & Koivisto

Name Number of nodes Number of arcs Average indegree

Diabetes 413 602 1.46
Pigs 441 592 1.34
Link 724 1125 1.55

Munin 1041 1397 1.34

Table 2: Benchmark Bayesian network structures

For every poset type and size 8 ≤ n ≤ 1024, in roughly 26 % geometric increments, we
generated five independent benchmark posets. We ran every algorithm variant for every
poset with a time limit of 6 hours. For ARMC, the memory limit was set to 30 gigabytes;
the other algorithms are not memory-bound. To see the effect of the approximation quality
parameters (ε, δ) on the performance of the algorithms, we ran all the algorithm variants
with both the configuration (ε, δ) = (1, 14) that was used in the preliminary publications
and a stricter configuration (ε, δ) = (14 ,

1
10).

6.3 Comparison of Algorithms

The results on the class Bipartite(p) reveal dramatic differences between the approximation
schemes (Fig. 7). Regardless of the density, the error tolerance, or the poset size, TPA is
the fastest, ChernoffTPA slightly slower (up to a factor of 5 for larger instances), Telescope is
significantly slower (by several orders of magnitude for larger instances), and BasicTelescope

is the slowest by a large margin. For these schemes the time requirements appear to grow
polynomially in the poset size. ARMC is an outlier: the growth rate appears to be exponential
(in agreement with the theory), yet the scheme is the fastest for posets of moderate size,
say from 32 to 128. ARMC is also the least sensitive to the error tolerance; with the stricter
configuration, its performance improves in relation to the other schemes.

On the class AvgDeg(k), we see the same pattern, especially for the smaller values
of k (Fig. 8). We see that BasicTelescope and Telescope are not sensitive to the density
of the poset and that the employed Gibbs sampling algorithm does not slow down the
computations even if the sampler is designed particularly for height-2 posets. On the other
hand, the perfomance of ChernoffTPA and Telescope clearly degrade as k grows. ARMC is very
competitive up to some critical poset size between about 128 and 256, depending on k.

The results on posets constructed from benchmark Bayesian network structures are
very similar to those on AvgDeg(k) with k = 3, that is, with expected average indegree
k/2 = 1.5 (Fig. 9). This may not be surprising since each generating Bayesian network
structure has a small average indegree, around 1.5, which is expected to be inherited by
the constructed random subgraphs. There are also differences between the four benchmark
structures: Diabetes instances clearly are the hardest for the TPA based schemes, the other
three classes being close to each other; for example, on posets of size 256 under the looser
error tolerance, TPA runs in some minutes on Diabetes instances, while taking only some
seconds on the other three classes. ARMC is competitive under the stricter error tolerance,
however, with significantly larger variance in the running times as compared to the other
schemes or to ARMC on the instances classes Bipartite(p) and AvgDeg(k).

670

Approximate Counting of Linear Extensions

(ε, δ) = (1, 1
4
) (ε, δ) = (1

4
, 1
10

)

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.2)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.2)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.5)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.5)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

n n

Figure 7: Empirical running times for (ε, δ)-approximation of the number of linear exten-
sions of random height-2 posets, as a function of the poset size n. The solid line
shows the median and the shaded area the range of five independent instances
per n.

6.4 Comparison of TPA Implementations

We compared the four implementations of the enhanced TPA on all classes of random
posets, but show here only selected results focusing on the most challenging instance classes
(Fig. 10).

Clearly, GPUTPA is the slowest on the smallest instances up to sizes around 128, after
which it is the fastest or second fastest of the four schemes. On the largest instances GPUTPA
is the fastest, followed by AVX512TPA, AVX2TPA, and TPA, in this order; the difference of the
fastest and the slowest scheme ranges from one to two orders of magnitude; an exception
is the Diabetes class with the looser approximation guarantees, for which the differences
between the schemes are small. With the tighter approximation guarantees, all schemes
become slower, as expected. The size of this effect, however, depends on the scheme:
on the largest instances, TPA slows down by a factor around 50, while for GPUTPA the
factor is around 10—this can be explained by the relatively small number of independent
computations and thus underuse of the GPU with the looser guarantees (see Section 5.5.3).

671

Talvitie & Koivisto

(ε, δ) = (1, 1
4
) (ε, δ) = (1

4
, 1
10

)

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(3)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(3)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(9)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(9)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(17)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(17)

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

n n

Figure 8: Empirical running times for (ε, δ)-approximation of the number of linear exten-
sions of random posets of varying density, as a function of the poset size n. The
solid line shows the median and the shaded area the range of five independent
instances per n.

7. Discussion

We have studied various approaches to estimate the number of linear extensions of a given
partial order. We required controlled probabilistic approximation guarantees but set no
requirement for provable running time upper bounds, whether in the worst case or on av-
erage over problem instances. While this viewpoint deviates from that commonly taken in
theoretical computer science, it is well aligned with artifical intelligence research. Indeed,
it invites discovering algorithms and intelligent heuristics that can yield significant com-

672

Approximate Counting of Linear Extensions

(ε, δ) = (1, 1
4
) (ε, δ) = (1

4
, 1
10

)

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Diabetes

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Diabetes

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Pigs

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Pigs

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Link

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Link

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Munin

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Munin

ARMC
BasicTelescope
Telescope
ChernoffTPA
TPA

n n

Figure 9: Empirical running times for (ε, δ)-approximation of the number of linear exten-
sions of posets generated from Bayesian networks, for varying poset sizes n. The
solid line shows the median and the shaded area the range of five independent
instances per n.

673

Talvitie & Koivisto

(ε, δ) = (1, 1
4
) (ε, δ) = (1

4
, 1
10

)

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.5)

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Bipartite(0.5)

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(17)

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
AvgDeg(17)

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Diabetes

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Diabetes

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Munin

TPA
AVX2TPA
AVX512TPA
GPUTPA

8 16 32 64 128 256 512 1024
0.01 s

0.1 s

1 s

8 s

1 min

8 min

1 h

6 h
Munin

TPA
AVX2TPA
AVX512TPA
GPUTPA

n n

Figure 10: Empirical running times for (ε, δ)-approximation of the number of linear exten-
sions of random posets of selected classes, as a function of the poset size n. The
solid line shows the median and the shaded area the range of five independent
instances per n.

674

Approximate Counting of Linear Extensions

putational savings in practice—with this respect counting problems are not different from
decision and search problems. Even if we currently lack formal characterization of how
the computational saving depends on the particular instance, empirically observed running
times may lead to better analytic bounds in a longer run.

The most important theoretical findings in this work are perhaps (i) the new record in
the worst-case running time bound, albeit by just a logarithmic factor, (ii) the enhancement
of the generic TPA, (iii) and the somewhat specialized continuous relocation chain for exact
sampling of linear extensions embedded into a continuous space. On a more conceptual
level, our results reinforce the understanding that when solving hard problems in practice,
worst-case asymptotic bounds are, at best, only partial measures of efficiency. Empirically
we observed that the exponential ARMC scheme is often the fastest in a certain range
of moderate-size instances, while on larger instances the fastest is the TPA variant that
appears to scale polynomially, even though we could not prove any polynomial bounds.

There are multiple directions for future research. One intriguing question is to identify
classes of instances for which we could prove analytic bounds for the TPA scheme, roughly
matching the empirical observations. Or, how do the hard or the hardest instances for the
TPA look like? To investigate this question, one could, for example, run a computer-assisted
or automated heuristic search in the input space of partial orders. One could also simply
extend the empirical study by collecting real-world instances and including various models
of random instances: such an extensive empirical study is beyond the present work, which
focuses on algorithmic results along with highly-optimized implementations. Having richer
empirical data at hand, one could also consider the question of selecting the best algorithm
for a given problem instance using machine learning (Leyton-Brown, Nudelman, & Shoham,
2009; Kerschke, Hoos, Neumann, & Trautmann, 2019).

While this paper focused on one concrete counting problem, some of the ideas and
techniques might be applicable to other counting problems as well. In particular, it remains
to be investigated whether our ideas could be successfully extended to the more general
problem of approximating the volume of convex bodies, or vice versa, whether the advanced
techniques recently developed for that problem (Lovász & Deák, 2012; Cousins & Vempala,
2016; Emiris & Fisikopoulos, 2018) are valuable also in the special case of counting linear
extensions.

Acknowledgments

The authors would like to thank Kustaa Kangas and Teppo Niinimäki for their pivotal
contributions and valuable collaboration for the preliminary work, which is the basis of the
present article. The work was supported in part by the Academy of Finland, Grant 316771.

Appendix A. Deferred Proofs

This section presents some deferred proofs.

675

Talvitie & Koivisto

A.1 Proof of Proposition 10

Recall that we defined

qd(λ) := Q(λ+ d, λ)−Q(λ− d+ 1, λ)

and that we have to show that qd(λ
′) ≤ p′ = min{p(λ) : 0 ≤ λ ≤ λ′} for d ≥ 1.

Our proof will use the lower incomplete gamma function

γ(s, x) := Γ(s)− Γ(s, x) =

∫ x

0
ts−1e−tdt .

Our first monotonicity result is well known; Gautschi (1998) attributes it to Tricomi
(1950). We include a short proof for completeness.

Lemma 15. For every x > 0, the function Q(s, x) is increasing in s > 0.

Proof. Fix x > 0 and u > s > 0. Since γ(u, x) ≤ xu−sγ(s, x) while Γ(u, x) ≥ xu−sΓ(s, x),
we have γ(u, x)/Γ(u, x) ≤ γ(s, x)/Γ(s, x). This implies Q(u, x) ≥ Q(s, x).

By the definition of qd we thus have qd(λ) ≤ p(λ) for all λ ≥ 0. Next we show that qd
is a decreasing function.

Our second lemma concerns the monotonicity of Q(s, x) when both parameters grow at
the same rate. Whether we have an increasing or decreasing function depends crucially on
which one the two parameters is larger.

Lemma 16. For every d ≥ 1, the function qd(x) is decreasing in x > d− 1.

Proof. Consider first the second term of qd(x). Chojnacki (2008, Theorem 1) proved that
Q(s, s + b) is increasing in s > 0 for every b ≥ 0. Substituting s := x − b gives us that
Q(x− b, x) is increasing in x > b for every b ≥ 0.

Now, it suffices to show thatQ(x+b, x) is decreasing in x > 0 if b ≥ 1. We give a straight-
forward extension of a proof of the case b = 1 by van de Lune (1975, Lemmas 3 and 4).
Consider the term γ(x+ b, x). Let s := x+ b− 1. The substitution t := s− u

√
s gives us∫ x

0
e−ttsdt =

∫ √
s

(b−1)/
√
s
e−s+u

√
s(s− u

√
s)s
√
sdu =

√
s
(s
e

)s
∫ √

s

(b−1)/
√
s
eu

√
s
(
1− u√

s

)s
du .

This representation is motivated by the formula

Γ(s+ 1) =
(s
e

)s√
2πs · eθ(s) ,

where θ(s) :=
∫∞
0

(
1
2 −

1
t +

1
et−1

)
e−ts

t dt is Binet’s function, which is decreasing in s > 0.

Indeed, we obtain

1−Q(x+ b, x) =
γ(x+ b, x)

Γ(x+ b)
=

e−θ(s)

√
2π

∫ √
s

(b−1)/
√
s
exp

{
u
√
s+ s ln

(
1− u√

s

)}
du .

676

Approximate Counting of Linear Extensions

Since b ≥ 1, the range of the integral grows with s. The integrand being nonnegative,
it suffices to show that it is increasing in s for all u in the range. To this end, use the series
expansion ln(1− z) = −

∑∞
k=1 z

k/k to conclude that

u
√
s+ s ln

(
1− u√

s

)
= −u2

2
−

∞∑
k=3

uk

k
s−k/2+1

is increasing in s ≥ 0 for any u ≥ 0.

A.2 Proof of Proposition 13

Recall that we have the prove the following:

(i) The relation ⊏ is a partial order on Ω.

(ii) We have 0,1 ∈ Ω and 0 ⊑ x ⊑ 1 for all x ∈ Ω.

(iii) If x ⊑ y, then ϕ(x, i, u) ⊑ ϕ(y, i, u) for all i ∈ {1, 2, . . . , n} and u ∈ [0, 1].

For convenience, also recall the definitions of Ω and ⊏:

Ω :=
{
x ∈ [0, 1]n : xi − xj ≤ sij for all 1 ≤ i < j ≤ n

}
,

where the numbers sij ≥ 0 are given as input;

⊏ :=
{
(x, y) ∈ Ω× Ω : x ̸= y and xi ≤ yi for all 1 ≤ i ≤ n

}
.

We consider each claim in turn.

(i) The relation ⊏ is irreflexive by the definition. To see that it is transitive, suppose
x ⊏ y and y ⊏ z. Let 1 ≤ i ≤ n. We have xi ≤ yi and yi ≤ zi, whence xi ≤ zi. Since
xj < yj for some dimension j, we must have xj < zj and thus x ̸= z. This implies x ⊏ z.

(ii) It follows from the assumption sij ≥ 0 that 0,1 ∈ Ω, since 0− 0 ≤ 0 and 1− 1 ≤ 0.
Now, let x ∈ Ω \ {0,1}. Thus xi ∈ [0, 1] for each 1 ≤ i ≤ n. Since x ̸= 0, we have 0 < xi
for some i, implying 0 ⊏ x. Since x ̸= 1, we have xj < 1 for some j, implying x ⊏ 1.

(iii) Let x ⊑ y. Let i ∈ {1, 2, . . . , n} and u ∈ [0, 1]. To prove that ϕ(x, i, u) ⊑ ϕ(y, i, u)
it suffices to show that ϕ(x, i, u)i ⊑ ϕ(y, i, u)i, since the map ϕ does not change the jth
coordinate of its first argument for j ̸= i. For each z ∈ {x, y}, let

lz := max
{
{0} ∪ {zj − sji : 1 ≤ j < i}

}
, rz := min

{
{1} ∪ {zj + sij : i < j ≤ n}

}
.

By the definition of Ω, we have zi ∈ [lz, rz], and if u ∈ [lz, rz], then ϕ(z, i, u)i = u and else
ϕ(z, i, u)i = zi. Because x ⊑ y, we also have lx ≤ ly and rx ≤ ry.

We now show that ϕ(x, i, u)i ⊑ ϕ(y, i, u)i in cases. First, if u ∈ [ly, rx], then u ∈
[lx, rx] ∩ [ly, ry] and thus ϕ(x, i, u)i = u = ϕ(y, i, u)i. Second, if u < ly (case u > rx
is symmetric), then ϕ(x, i, u)i equals either xi or u. We have xi ≤ yi, as x ⊑ y, and
u < ly ≤ yi, as yi ∈ [ly, ry]. Combining these yields ϕ(x, y, u)i ≤ yi = ϕ(y, i, u)i.

677

Talvitie & Koivisto

A.3 Proof of Theorem 14

We show that Monotone CFTP for the continuous relocation chain outputs a sample from
the uniform distribution on Ω in finite expected time.

Let d := 2n− 1. For all positive integers k, define Ak as the event

it = n− |n− kd− t− 1| and it − 1 ≤ utn ≤ it for all −kd ≤ t < −kd+ d .

In words, Ak occurs when for d time points t starting from −kd, the dimension it takes
the values 1, 2, . . . , n, n− 1, . . . , 2, 1 in this order and the respective coordinate ut is in the
interval from (it − 1)/n to it/n.

Suppose Ak occurs in some iteration T ≥ kd. We claim that then L−kd+d = R−kd+d,
and so the algorithm terminates after that iteration. To see that the claim holds, consider
first the first n steps, i := it taking the values 1, 2, . . . , n, with the respective coordinate
u := ut ∈ [(i − 1)/n, i/n]. By induction on i, we can show that after the ith step, the ith
coordinate xi of the state x, whether Lt or Rt, is at most i/n for each i = 1, 2, . . . , n. Indeed,
if the proposed move to u is accepted, then this clearly holds, as xi is not changed in other
steps; otherwise the move is not accepted due to a conflict with some xj , j > i, implying
that u is larger than xi, whence xi ≤ i/n. Now turn to the latter n− 1 steps, i := it taking
the values n−1, n−2, . . . , 1, again with the respective coordinate u := ut ∈ [(i−1)/n, i/n].
In these steps, every proposal is accepted, since for the ith coordinate xi, we already have
xj ≥ (j − 1)/n for all j > i (by induction), but also xj ≤ j/n ≤ (i− 1)/n for all j < i (by
the first n steps). So the state after the steps does not depend on the initial state (whether
Lt or Rt), completing the proof of the claim.

The events A1, A2, . . . are mutually exclusive and occur with the same probability p =
(1/n2)d = n2−4n > 0. Let K be the smallest k such that the event Ak occurs. Because
the algorithm doubles T on every iteration, at least half of the time is spent in the last
iteration, and thus the running time is O(K) when viewing n as a constant. Since K is
geometrically distributed with parameter p, its expected value is 1/p <∞.

References

Atkinson, M. D. (1990). On computing the number of linear extensions of a tree. Order,
7 (1), 23–25.

Banks, J., Garrabrant, S., Huber, M., & Perizzolo, A. (2018). Using TPA to count linear
extensions. Journal of Discrete Algorithms, 51, 1–11.

Brightwell, G., & Winkler, P. (1991). Counting linear extensions. Order, 8 (3), 225–242.

Bubley, R., & Dyer, M. (1999). Faster random generation of linear extensions. Discrete
Mathematics, 201 (1), 81–88.

Chakraborty, S., Meel, K. S., & Vardi, M. Y. (2013). A scalable approximate model counter.
In Schulte, C. (Ed.), Proceedings of the Principles and Practice of Constraint Pro-
gramming - 19th International Conference, CP 2013, Vol. 8124 of Lecture Notes in
Computer Science, pp. 200–216. Springer.

Chojnacki, W. (2008). Some monotonicity and limit results for the regularised incomplete
gamma function. Annales Polonici Mathematici, 94 (3), 283–291.

678

Approximate Counting of Linear Extensions

Cousins, B., & Vempala, S. S. (2016). A practical volume algorithm. Mathematical Pro-
gramming Computation, 8 (2), 133–160.

Dagum, P., Karp, R., Luby, M., & Ross, S. (2000). An optimal algorithm for Monte Carlo
estimation. SIAM Journal on Computing, 29 (5), 1484–1496.

De Loof, K., De Meyer, H., & De Baets, B. (2006). Exploiting the lattice of ideals repre-
sentation of a poset. Fundamenta Informaticae, 71 (2–3), 309–321.

Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51 (1), 161–166.

Dor, D., & Zwick, U. (1999). Selecting the median. SIAM Journal on Computing, 28 (5),
1722–1758.

Dyer, M., Frieze, A., & Kannan, R. (1991). A random polynomial time algorithm for
approximating the volume of convex bodies. Journal of the ACM, 38 (1), 1–17.

Emiris, I. Z., & Fisikopoulos, V. (2018). Practical polytope volume approximation. ACM
Transactions on Mathematical Software, 44 (4), 38:1–38:21.

Ermon, S., Gomes, C. P., Sabharwal, A., & Selman, B. (2013). Taming the curse of di-
mensionality: Discrete integration by hashing and optimization. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, Vol. 28 of JMLR
Workshop and Conference Proceedings, pp. 334–342. JMLR.org.

Gajek, L., Niemiro, W., & Pokarowski, P. (2013). Optimal Monte Carlo integration with
fixed relative precision. Journal of Complexity, 29 (1), 4–26.

Garey, M., Johnson, D., & Stockmeyer, L. (1976). Some simplified NP-complete graph
problems. Theoretical Computer Science, 1 (3), 237–267.

Gautschi, W. (1998). The incomplete gamma functions since Tricomi. In Tricomi’s Ideas
and Contemporary Applied Mathematics, Atti Convegni Lincei, n. 147, pp. 203–237.
Accademia Nazionale dei Lincei, Rome.

Gomes, C. P., Sabharwal, A., & Selman, B. (2006). Model counting: A new strategy for
obtaining good bounds. In Proceedings of the 21st National Conference on Artificial
Intelligence, AAAI 2006, pp. 54–61.

Harviainen, J., Röyskö, A., & Koivisto, M. (2021). Approximating the permanent with
deep rejection sampling. In Advances in Neural Information Processing Systems 34,
pp. 213–224. Curran Associates, Inc.

Huber, M. (2006). Fast perfect sampling from linear extensions. Discrete Mathematics,
306 (4), 420–428.

Huber, M. (2014). Near-linear time simulation of linear extensions of a height-2 poset with
bounded interaction. Chicago Journal of Theoretical Computer Science, Article 03,
1–16.

Huber, M. (2017). A Bernoulli mean estimate with known relative error distribution. Ran-
dom Structures & Algorithms, 50 (2), 173–182.

Huber, M., & Schott, S. (2010). Using TPA for Bayesian inference. Bayesian Statistics, 9,
257–282.

679

Talvitie & Koivisto

Jerrum, M., & Sinclair, A. (1997). Approximation Algorithms for NP-hard Problems, chap.
The Markov Chain Monte Carlo Method: An Approach to Approximate Counting and
Integration, pp. 482–520. PWS.

Jerrum, M., Sinclair, A., & Vigoda, E. (2004). A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM, 51 (4),
671–697.

Jerrum, M., Valiant, L. G., & Vazirani, V. V. (1986). Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43, 169–188.

Kangas, K., Hankala, T., Niinimäki, T., & Koivisto, M. (2016). Counting linear extensions of
sparse posets. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence, IJCAI 2016, pp. 603–609.

Karzanov, A., & Khachiyan, L. (1991). On the conductance of order Markov chains. Order,
8 (1), 7–15.

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm
selection: Survey and perspectives. Evolutionary Computation, 27 (1), 3–45.

Kuck, J., Dao, T., Rezatofighi, H., Sabharwal, A., & Ermon, S. (2019a). Approximating the
permanent by sampling from adaptive partitions. In Advances in Neural Information
Processing Systems 32, pp. 8860–8871. Curran Associates, Inc.

Kuck, J., Dao, T., Zhao, S., Bartan, B., Sabharwal, A., & Ermon, S. (2019b). Adaptive
hashing for model counting. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence, UAI 2019.

Levin, D., & Peres, Y. (2017). Markov Chains and Mixing Times (2nd edition). Providence:
American Mathematical Society.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2009). Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM, 56 (4),
22:1–22:52.

Lovász, L., & Deák, I. (2012). Computational results of an O∗(n4) volume algorithm.
European Journal on Operations Research, 216 (1), 152–161.

Mannila, H., & Meek, C. (2000). Global partial orders from sequential data. In Proceedings
of the 6th International Conference on Knowledge Discovery and Data Mining (KDD),
pp. 161–168.

Mitzenmacher, M., & Upfal, E. (2005). Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, USA.

Morton, J., Pachter, L., Shiu, A., Sturmfels, B., & Wienand, O. (2009). Convex rank tests
and semigraphoids. SIAM Journal on Discrete Mathematics, 23 (3), 1117–1134.

Muise, C., Beck, J. C., & McIlraith, S. A. (2016). Optimal partial-order plan relaxation via
MaxSAT. Journal of Artificial Intelligence Research, 57, 113–149.

Niinimäki, T., Parviainen, P., & Koivisto, M. (2016). Structure discovery in Bayesian
networks by sampling partial orders. Journal of Machine Learning Research, 17 (57),
1–47.

680

Approximate Counting of Linear Extensions

Pavan, A., Vinodchandran, N. V., Bhattacharyya, A., & Meel, K. S. (2023). Model counting
meets distinct elements. Communications of the ACM, 66 (9), 95–102.

Peczarski, M. (2004). New results in minimum-comparison sorting. Algorithmica, 40 (2),
133–145.

Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures & Algorithms, 9 (1–2), 223–
252.

Roberts, G. O., & Rosenthal, J. S. (2004). General state space Markov chains and MCMC
algorithms. Probability Surveys, 1, 20–71.

Talvitie, T., Kangas, K., Niinimäki, T. M., & Koivisto, M. (2018a). Counting linear ex-
tensions in practice: MCMC versus exponential Monte Carlo. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 1431–1438.
AAAI Press.

Talvitie, T., Kangas, K., Niinimäki, T. M., & Koivisto, M. (2018b). A scalable scheme for
counting linear extensions. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, pp. 5119–5125. ijcai.org.

Talvitie, T., Niinimäki, T. M., & Koivisto, M. (2017). The mixing of Markov chain on
linear extensions in practice. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, pp. 524–530. ijcai.org.

Thurley, M. (2006). sharpSAT – counting models with advanced component caching and
implicit BCP. In Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2006, pp. 424–429.

Tricomi, F. G. (1950). Sulla funzione gamma incompleta. Annali di Matematica Pura ed
Applicata, 4 (31), 263–279.

Valiant, L. G. (1979). The complexity of computing the permanent. Theoretical Computer
Science, 8, 189–201.

van de Lune, J. (1975). A note on Euler’s (incomplete) Γ-function. Tech. rep. ZN 61,
Stichting Mathematisch Centrum, Amsterdam.

Wallace, C. S., Korb, K. B., & Dai, H. (1996). Causal discovery via MML. In Proceedings
of the Thirteenth International Conference in Machine Learning, ICML 1996, pp.
516–524. Morgan Kaufmann.

Wilson, D. B. (2004). Mixing times of lozenge tiling and card shuffling Markov chains.
Annals of Applied Probability, 14 (1), 274–325.

681

