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Abstract
Theory of mind refers to the human ability to reason about the mental content of other people,

such as their beliefs, desires, and goals. People use their theory of mind to understand, reason about,
and explain the behaviour of others. Having a theory of mind is especially useful when people
collaborate, since individuals can then reason on what the other individual knows as well as what
reasoning they might do. Similarly, hybrid intelligence systems, where AI agents collaborate with
humans, necessitate that the agents reason about the humans using computational theory of mind.
However, to try to keep track of all individual mental attitudes of all other individuals becomes
(computationally) very difficult. Accordingly, this paper provides a mechanism for computational
theory of mind based on abstractions of single beliefs into higher-level concepts. These abstractions
can be triggered by social norms and roles. Their use in decision making serves as a heuristic to
choose among interactions, thus facilitating collaboration. We provide a formalization based on
epistemic logic to explain how various inferences enable such a computational theory of mind.
Using examples from the medical domain, we demonstrate how having such a theory of mind
enables an agent to interact with humans effectively and can increase the quality of the decisions
humans make.

1. Introduction

Hybrid intelligence requires human-agent collaboration, where a human and a computational agent
complement each other in the tasks that they achieve. Many times their interactions require a mixed
initiative. Computational agents are excellent at processing large amounts of data quickly and ac-
curately (High, 2012), as well as performing repetitive tasks with precision (Van der Aalst et al.,
2018). On the other hand, humans have creativity, intuition, and the ability to reason in complex,
non-linear ways. By working together, computational agents can enhance human decision-making
and problem-solving abilities, while humans can provide context, judgment, and critical thinking
skills that machines lack, paving the way for potentially revolutionizing many industries and im-
proving the quality of life for people around the world. In addition to performing their individual
tasks, agents and humans need to interact often and effectively so that they can create successful
collaborations. To realize these interactions, agents need to be empowered further with capabilities
that humans use on an everyday basis. One of these crucial capabilities is the modeling of Theory
of Mind (ToM). Put simply, this capability enables a human to reason about other humans, mak-
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ing it possible to understand and predict their behaviour (Premack & Woodruff, 1978; Carruthers
& Smith, 1996; Bamicha & Drigas, 2022; Ho et al., 2022). It is even possible for humans to use
higher-order ToM reasoning to infer how others employ ToM (e.g., Alice believes that I do not know
that she is an expert on this topic). This capability of ToM in humans is crucial in order to develop
and employ social skills, such as coordination, negotiation, persuasion, etc. These social skills allow
humans to carry out tasks effectively and efficiently, thereby allowing human social interactions to
create added value to all parties.

To understand how ToM works, various computational models have been developed. An impor-
tant line of research analyzed its use in game settings where the rules of the game are well-defined
and possible behaviours are limited (de Weerd et al., 2013, 2014b, 2015; Kröhling & Martı́nez,
2019; de Weerd et al., 2014a; Osten et al., 2017; de Weerd et al., 2017). Experiments in competi-
tive, cooperative, as well as mixed-motive settings show that agents equipped with ToM reasoning
achieve better results compared to agents without them. Various techniques to model ToM exist.
For example, Baker et al. (2011) model ToM within a Bayesian framework using partially observ-
able Markov decision processes. Their evaluation in a simple spatial setting is promising. Win-
field (2018) shows how robots use a ToM model by imitating other robots’ actions. Using simple
ethical rules, they show that ToM helps to improve robots’ safety.

An important area where computational Theory of Mind could be of particular use is hybrid
intelligence (Akata et al., 2020), where an agent can collaborate with a human towards a particular
goal, where the agent would have varying capabilities that could complement those of the human to
yield the goal. As an example, consider a computational agent doctor that is designed to collaborate
with a human doctor. Such an agent doctor’s capabilities can include cooperating with surgeons
in operations (Shademan et al., 2016) as well as providing assistance to improve medical diagno-
sis processes (Gargeya & Leng, 2017). For a more complete human-agent collaboration to take
place, an ideal agent doctor should not only function as a medical support tool, but also be able to
understand the doctor’s behaviour, communicate well with her, and continuously learn from their
shared experience. Thus, we argue that the agent doctor would benefit from having a functional
computational ToM for the human doctor in achieving their collective goals in such hybrid settings.

There has been a lot of research on human-machine collaboration in various domains such
as negotiation (Hindriks et al., 2008), planning (Sycara et al., 2010), and behavioral support sys-
tems (Shamekhi et al., 2017). However, the use of computational ToM in human-machine collabora-
tion is relatively new. Hiatt et al. (2011) describe a ToM robot model based on the ACT-R cognitive
architecture (Anderson, 2009) to account for human behavioral variability in human-robot teams.
Devin and Alami (2016) develop a ToM-based agent framework for collaborative task achievement.
Their system takes mental states regarding the goals, plans, and actions of humans into account
when executing human-robot shared plans. Buehler and Weisswange (2020) propose a ToM-based
communication framework for human-agent cooperation. They combine Bayesian inference with
planning under uncertainty to evaluate the effect of ToM-based communication on joint performance
in an illustrative scenario. Lim et al. (2020) design a Bayesian ToM-inspired (Baker et al., 2017)
agent model and investigate the performance of humans with agents with and without a ToM in a
collaborative setting. The results of these studies around computational ToM models are generally
promising and collectively suggest that the use of ToM can have positive impacts on human-agent
collaboration.
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Realizing such a ToM model for effective human-agent collaboration is useful but difficult. We
argue that for a computational ToM model to gain widespread adoption as a versatile tool applicable
across various settings, it needs to adhere to the following three important criteria:

Formal: Imbuing ToM with logical rigor helps us navigate the intricacies of human interaction.
At the same time, formal reasoning can provide the logical foundation necessary for a ToM-using
agent to formally interpret and anticipate the actions of others. By adhering to formal logical prin-
ciples, such an agent should be able to make explainable inferences, enhancing its overall reliability
in social reasoning tasks.

Human-inspired: Incorporating human-inspired social decision-making heuristics (e.g., trust
(Castelfranchi & Falcone, 2010)) is essential for bridging the gap between computational ToM and
human cognition. Being able to reason with these concepts enriches a ToM-using agent’s under-
standing of social dynamics and enables it to interpret and respond to human behavior in a more
nuanced manner, improving the quality of human-machine interactions.

Effective: In complex social settings characterized by continuous interaction between humans
and machines, a ToM-using agent will accumulate a diverse array of beliefs about others over time,
where some of these will only be applicable in certain situations, and others will be useful in other
situations. To continue its effectiveness in engaging with human partners over time, the agent should
also be effective in storing and maintaining (i.e., creating and updating) these beliefs, as well as
using them for a variety of interactive purposes.

The contribution of our work in this paper is a novel computational ToM model that is designed
to meet these three criteria. Specifically, we propose a computational ToM mechanism based on ab-
stracting agents’ beliefs and knowledge into higher-level, abstract concepts, namely, abstractions.
These abstractions, similar to those that guide human interactions, can correspond to and be trig-
gered by various social roles, norms, human values as well as emotions among individuals. Collec-
tively, they serve as human-inspired, practical approximations for the computational agent to make
effective decisions when interacting with humans. To provide the foundation necessary to formally
describe how to create, update, and employ abstractions in the context of human-agent collabora-
tion, we use epistemic logic (Meyer & Van Der Hoek, 2004). We computationally model several
human decision-making heuristics and show how ToM reasoning can be efficiently used within our
abstraction procedure. We subsequently indicate the importance of social roles and norms with
respect to the interaction context and illustrate how these can be integrated naturally into our frame-
work. Integrating roles and norms helps the agent to choose among different actions to yield a result
that would fit the current situation better.

The rest of this paper is organized as follows. Section 2 discusses abstractions. Section 3
sets up our working example, featuring a human-agent collaboration scenario. Section 4 describes
our computational ToM mechanism and shows how epistemic logic can be used for abstracting
beliefs and knowledge of agents. Section 5 explains the dynamics of abstractions, such as their
creation and updates. Section 6 shows how the abstractions with ToM reasoning can be used to
enable effective interactions between humans and computational agents. Section 7 discusses our
work, addresses related research on computational ToM in the literature, and finally points to future
research directions.
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2. Understanding Abstractions in Hybrid Intelligence

We propose abstractions as enablers for agents to reason effectively in hybrid settings by capturing
essential characteristics of beliefs and knowledge. Rather than focusing on individual pieces of
belief and knowledge, the agent can reason about the abstractions, which can enhance the efficiency
of human-agent collaboration. Here, we examine the concept of abstractions, their importance
in collaborative settings, and their application in hybrid intelligence scenarios where agents and
humans work together to achieve shared goals.

2.1 The Concept and Importance of Abstractions

In general terms, abstracting is the process of reducing complex or concrete concepts, ideas, or
objects to their essential characteristics, in order to simplify them and make them more manage-
able (Falguera et al., 2022). It involves filtering out details and focusing on the most important
aspects or features of a subject which are relevant for a particular purpose. Thinking in abstractions
is viewed as a important characteristic of modern human behavior (McBrearty & Brooks, 2000),
and the development of this trait is believed to be closely linked to the advancement of human
language, as both the spoken and written forms of language seem to require and enable abstract
thinking. Since this cognitive process enables us to represent a vast collection of information in a
summary with a few words or sentences, whether to succinctly synthesize a general theory about
a topic or to convey a message in a methodically efficient manner, we argue that a software agent,
which is designed to work with humans in a skillful and efficient manner, can also benefit from
computationally capturing humans’ abstraction mechanisms when interacting with them.

In the context of human-agent collaboration, we are particularly interested in computationally
capturing how humans use their abstraction ability in complex social situations to effectively interact
with others. For example, consider the abstraction trust, which serves as a backbone in collabora-
tion and captures one’s confidence in others’ abilities, reliability, and commitment (Mattessich &
Monsey, 1992). During collaboration, a human can use the abstraction technique and reason about
the relevant information about her partner (e.g., “able?”, “reliable?”, “committed?”, etc.) in order
to decide whether to trust the partner or not. This serves as a reliable shortcut in making decisions,
capturing essential aspects of a situation while discarding irrelevant noise. We envision a computa-
tional agent that can mimic such an ability to simplify its beliefs and knowledge about its partner
into abstractions that can serve for behavioral heuristics to use in its decision-making processes, just
like humans do (Tversky & Kahneman, 1974).

An interesting extension to capturing abstractions is to embed them in ToM reasoning. Thus,
the agent would not only capture how much it trusts the human it is interacting with but also how
much the human trusts it back. Capturing trust in the human has the pre-mentioned benefit of easing
interactions (e.g., the agent can leave certain tasks to a human whom it trusts). Thanks to its ToM,
the agent can monitor the human to better understand their decisions. For example, the agent can
model that the human does not trust it enough and thus does not delegate certain tasks. This would
inspire the agent to perform additional actions to engender trust on the human side.

As we perceive them, abstractions can further offer computational agents flexibility in their in-
teractions by helping them adapt to changing circumstances. In dynamic environments, abstractions
enable individuals to make swift adjustments to their behavior and decisions based on updated in-
formation. For instance, in human-agent collaboration, an agent equipped with abstractions can
adjust its strategies in real-time to accommodate changes in its partner’s behavior or the task at

288



ABSTRACTION-BASED COMPUTATIONAL THEORY OF MIND

hand. That being said, abstractions may not always be suitable, particularly in situations where
circumstances rarely change or where precision is paramount. In static environments with stable
conditions in which agents do not need to change their decisions much, maintaining abstractions
can impose an additional computational burden. Furthermore, relying too heavily on abstractions
may lead to oversimplification and overlooking nuanced details. Similarly, in rapidly changing
environments where accuracy is critical, abstractions may fail to capture in a timely manner how
situations evolve, leading to sub-optimal decisions.

2.2 Application of Abstractions in Hybrid Settings

Abstractions can manifest (computationally) in various ways. Again, we look at trust as an ex-
ample. Extensive literature explores how a computational agent can learn whether to trust another
agent using machine learning methods (Teacy et al., 2006; Granatyr et al., 2015). Employing ma-
chine learning techniques often requires agents to have numerous interactions with others in order
to properly learn how to trust others. However, in real-world scenarios, one often must make trust
decisions with a limited number of interactions. That being said, humans benefit from other contex-
tually relevant information in order to make quick decisions, such as social cues and organizational
constructs. For example, humans might trust someone because they are a doctor in a reputable
hospital, even without prior interactions. It is also crucial to understand the underlying reasons
for trust (Castelfranchi & Falcone, 2010), which is difficult to accomplish with machine learning
techniques. Given our goal of facilitating computational agents to effectively create, update, and
reason about abstractions, we opt for formalizing abstractions through predefined rules of formal
logic rather than data-driven methods. However, whenever data necessary for data-driven methods
are available, then the abstractions can also so be created through them. The formal framework
that we propose in Section 4 is generic and can accommodate abstractions that are derived through
different methods.

A specific area of related work involves use of POMDPs and interactive POMDPs (Gmy-
trasiewicz & Doshi, 2005; Rathnasabapathy et al., 2006; Baker et al., 2011, 2017). Markov de-
cision processes offer a formal mathematical framework for modeling decision-making processes
in dynamic environments, allowing for abstract representation of belief states and explicitly cap-
turing uncertainty and state transitions (Dearden & Boutilier, 1997; Abel et al., 2016; Congeduti
& Oliehoek, 2022). This approach allows for precise probabilistic reasoning and optimal decision
making under uncertainty and has been shown to be useful for computational ToM modeling (albeit
in simpler settings (Rathnasabapathy et al., 2006; Baker et al., 2017)). However, POMDPs can be
computationally demanding and may require extensive data and computational resources to imple-
ment effectively in complex social settings that feature continuous interaction (e.g., human-agent
collaboration). In contrast, the way that we define abstractions focuses on simplifying complex in-
formation into intuitive concepts, emphasizing human-like reasoning and decision making. While
our approach may lack the precision of Markov decision processes, it offers a more interpretable
and human-centric approach, which can be advantageous in contexts where transparency and ease
of understanding are prioritized.

Our interpretation of abstractions needs more precision. In the remainder of this text, we will
refer to the abstract behavioral heuristics of humans, such as trust, which we aim to formally capture
for use by computational agents in their interactions, as abstractions – the “what” aspect of our
framework. Furthermore, we will refer to the formal methods by which agents create and update
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these abstractions as abstraction rules – the “how” aspect of our framework. To clarify, our intention
of introducing abstraction rules is not only to group abstraction-related information and aggregate
them into a label that passes as an abstraction definition. Instead, we want to show how the reasoning
processes behind creating and updating abstractions can be clarified via use of epistemic logic.
Moreover, these rules are more than mere deduction/induction tools. When considered together with
an agent’s (current) set of beliefs and knowledge, abstraction rules can act as an action-interpreting
device to support why agents perform certain actions depending on their (current) set of abstractions.
We will formalize these notions in Section 4.

3. Collaboration Essentials of Hybrid Intelligence

In order to give a sense of the types of interactions required for hybrid intelligence, we now present
a working example. Following this example, we will highlight the challenges related to the mainte-
nance and application of abstractions in such collaborative settings.

3.1 Working Example: Human-Agent Collaboration in Medicine

Our working example is inspired from a medical diagnostic process (National Academies of Sci-
ences, and Engineering, and Medicine and others, 2015), where different collaborators share the
workload according to their strengths during the diagnostic process. Without loss of generality,
we consider a computational agent doctor A and a human doctor D that work together towards the
diagnosis of a patient C’s health problem. In this setting, the core objective of A is to use its ca-
pabilities to complement those of D. For example, D can perform the patient interview and the
physical examination processes, while A can work on the diagnostic testing (e.g., analyzing MRI
scan results (Hazlett et al., 2017)).

Although Artificial Intelligence (AI) research in healthcare continues to progress (Loh, 2018;
Briganti & Le Moine, 2020), the usual paradigm suggests that AI agents as well as robots and
software applications are treated as decision support systems that doctors can use (Sutton et al.,
2020). Doctors have the final say in the medical procedure and can neglect the information that
such agents may provide altogether. However, within our working example, we give equal stance
to both agents and humans in the diagnostic process; thus, we have both an “agent doctor” and a
“human doctor” (Coeckelbergh, 2010; De Graaf et al., 2021). Essentially, our example provides a
collective decision-making process in which A and D can share their findings with each other, assess
each other’s work, and agree on the diagnosis together in an interactive manner. Although we do not
explicitly discuss this point, the interaction can include that the human doctor explains her decision
to the agent doctor. This will in itself also be a good check for the human doctor on the correctness
of that decision.

Now, suppose that a difference of opinion has arisen between A and D during their discussion
for the diagnosis of C’s health problem. For instance, D may say that the clinical interview R1 and
the physical examination results R2 (provided by D) together point to a specific disease S1 but A
may say that it can be another disease S2 according to the diagnostic testing results R3 (provided
by A). D may further add that they should discount the diagnostic testing results R3 because the
disease is nearly always S1 when similar physical examination results are observed. In this case, A
can simply check whether it should insist on its own diagnosis decision and elaborate on its findings
or simply accept D’s decision, say, because of time constraints.
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Compared to a simple medical decision support tool that is designed to register and retrieve
patient data and diagnostic testing results, one can see that A can utilize its beliefs and knowledge
interactively in different ways. In our scenario, the set of possible actions that A can do includes (but
is not limited to) doing interactive reasoning to check whether a diagnostic result is of good quality,
warning D about poor quality results, advising D to put more emphasis on one result rather than
another, consulting another doctor E, telling D its beliefs and knowledge, and asking D’s opinion
on a subject that is relevant to C’s health problem. Figure 1 outlines the interaction that takes place
among the agent doctor A, the human doctor D, and the patient C during the diagnostic process. In
the remainder of this paper, we refer to A as “it”, D as “her”, and C as “him” for practical purposes.

Figure 1: Hybrid Collaboration in Medicine: A computational agent doctor A and a human doctor
D are working together towards the diagnosis of a patient C’s health problem. Each doctor has
different set of capabilities that would be useful for the diagnosis.

3.2 Challenges Regarding Maintenance and Usage of Abstractions

To fully harness the potential of our agent A for hybrid intelligence, it is imperative that A’s capabil-
ities are not limited to these actions alone. Specifically, we argue that making A capable of tracking
mental contents of both D and C and interacting via computational ToM reasoning (when necessary)
can bring added value to human-agent collaboration. Below, we address two challenges regarding
the effective maintenance and usage of abstractions within the context of our disagreement resolu-
tion scenario and provide six examples for clarification.

Effective Maintenance of Abstraction-based ToM: A needs to use its ToM of D and C to decide
on the actions to perform when interacting with them. Over time, the number of its beliefs and
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knowledge about both D and C can increase dramatically. Even then, A should be capable of making
its decisions efficiently. What would be a practical way for A to do this?

Example 1 Some actions of A can be dependent on its trust in D. For instance, when a disagreement
happens between A and D, A can decide that they should consult another doctor if it does not trust
D. Thus, A needs to decide whether it should trust D or not. How can A estimate its trust in D in an
efficient manner?

One way of addressing the situation in Example 1 could be to collect a lot of data to create an
accurate trust model for D as is customary in computational trust literature (Granatyr et al., 2015).
However, many times, collaborations might emerge on the spot without a long history; hence it
would not be possible to have a large amount of historical interaction data. Hence, it would be
required to derive abstractions from a small amount of data.

Example 2 Other actions of A can be dependent on its perception of D’s trust in itself. For example,
when another disagreement happens between A and D, A can decide that they should converse with
each other in a collaborative manner (instead of seeking an additional opinion) if it believes that D
trusts A. How can A practically check whether D trusts A or not?

Generally, A needs to be flexible in its trust modeling: Others’ reasons for trusting A can be
different than its own reasons for trusting others. In this situation, A needs to employ computational
ToM reasoning to take D’s perspective first and accordingly assess D’s trust in itself. To do this,
it can benefit from available context-relevant information that D deems important for trust (e.g., D
believes that A has good medical capabilities) in the form of knowledge and beliefs (e.g., A believes
that D believes that A has good medical capabilities).

Example 3 As interactions between A and D progress, D’s initial trust in A to change or even
disappear over time. Thus, A should be able to update its belief about D’s trust in A to stay consistent
with the actual situation. Furthermore, A’s trust in D may also change due to other reasons. How
can A capture these changes effectively?

Addressing the situation in Example 3 requires the agent to have an update mechanism for its
abstractions. For efficiency concerns, this update mechanism should not run after every change in
the environment but should quickly handle the major updates (e.g., D starts to avoid collaborating
with A). Hence, it might be acceptable to miss slight changes in trust evaluation because the updates
are not frequent, but major changes should be reflected in a timely manner.

Effective Usage of Abstraction-based ToM: Even though A works with humans collaboratively,
it does not need to reason exactly like humans; but when it needs to interpret why humans perform
certain actions that involve ToM reasoning, it can benefit from the decision-making heuristics from
which humans also benefit.

Example 4 Suppose A decides that D is reluctant to trust A. After checking possible reasons, A
infers that this is due to D’s lack of knowledge about A’s medical capabilities. How can A use this
information to perform actions to positively change D’s trust?
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Simply observing the environment and the others passively is not enough for computational
agents to interact effectively with humans. The agents need to decide which actions to perform to
make a desired change in others’ ToM. For Example 4, one interesting approach for A to positively
influence D’s trust is through proactive communication and demonstration of its medical expertise.

Example 5 Suppose A observes that the patient C does not seem to trust D, which can have negative
effects in the diagnostic process. A further observes that D is not aware of this, exhibiting an
inconsistency in their respective beliefs about the situation. How can A identify and act in order to
resolve such inconsistencies effectively?

To address this, A first needs to explicitly point out the contradicting beliefs (i.e., its own and
D’s beliefs about C’s trust), as well as the reasons behind the inconsistency. Then, A can engage in
direct communication with D to make the necessary warnings about the diagnostic process. Using
this information, A can further advise D to perform other actions that can help them resolve the
diagnostic disagreement (e.g., consulting another doctor).

Example 6 Before deciding how to interact with D during a conflict resolution moment, A may
need to consider multiple pieces of information that it has about the situation (e.g., trust between A
and D and trust between D and C). On their own, such pieces of information may indicate conflicting
courses of action for A to follow (e.g., “A trusts D, so agree with A’s diagnosis” vs. “C does not
trust D (which can negatively affect the diagnostic process), so consult another doctor’s opinion”).
How can A resolve such inconsistencies effectively?

Selecting the appropriate course of action poses a challenge for A when it needs to consider
multiple abstractions before making a decision. Depending on the context, A may need to adopt
different strategies. For instance, if one abstraction holds greater significance than another, the
action aligned with the former may supersede that of the latter.

4. Computational Theory of Mind with Abstractions (ToMA)

We propose TOMA to accommodate the collaboration requirements for hybrid intelligence. TOMA
has at its core a formal model of Theory of Mind, where abstractions play a key role. We explain
this formal core and its usage next.

4.1 Formal Design of TOMA

Representing the above conceptualization requires taking into account two important aspects. First,
the agent’s abstractions about the human and its perception of what the human thinks of the agent
can vary in time. For example, the agent might trust the human now but the trust might decline
over time. Similarly, the agent might perceive that the human trust it, only to find out later that
this is not the case. Hence, it is necessary to be able to capture the fluid nature of the state of the
abstractions. Second, since in many settings multiple agents and humans are present, it is necessary
to be able to differentiate individual beliefs and knowledge from each other and enable each agent
to do its own reasoning based on its own information. To accommodate these requirements, we base
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our formalization on epistemic logic (Meyer & Van Der Hoek, 2004), a subfield of epistemology
concerned with logical approaches to knowledge, belief, and related notions.

Agents: We define an agent as an entity that can hold beliefs and knowledge about other agents,
maintain its beliefs and knowledge over time, and use its beliefs and knowledge when interacting
with other agents. We denote the finite set of agents as X where X ,Y are agents in X .

Knowledge and Beliefs: Our agents can form beliefs through interactions with other agents, ob-
servations, or other means. These beliefs do not need to be true. In contrast, agents only have true
knowledge. Moreover, if an agent knows something, then the agent also believes it. This distinction
provides flexibility for our agents, allowing them to make decisions based on both uncertain beliefs
and certain knowledge.

To formally represent knowledge and beliefs of a set of agents X , we use the modal operators
KX and BX for all X ∈ X and the following language L X

KB given by the Backus-Naur form:

ϕ := p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | KX ϕ | BX ϕ

Here, p are propositional atoms that represent atoms in a fragment of first-order logic and X ∈
X . For example, given p1 = Doctor(Y ) and X ,Y ∈ X , KX p1 and BX p1 are read as “X knows that
Y is a doctor” and “X believes that Y is a doctor”, respectively. Notice that BY KX p1, which is read as
“Y believes that X knows that Y is a doctor”, is also a member of L X

KB . Such formulas with nested
epistemic operators allow us to represent agents’ higher-order beliefs and knowledge succinctly.

The semantics of our language are defined in terms of possible worlds. Given the set of agents
X , let M = (W,

⋃
X∈X

RKX ,
⋃

X∈X
RBX ,π) be a Kripke structure where:

• W is a non-empty set of possible worlds,

• RKX ⊆W ×W is binary relation on W representing knowledge of agent X , such that RKX (w,w
′)

means that world w′ is accessible from world w according to X’s knowledge,

• RBX ⊆ W ×W is binary relation on W representing beliefs of agent X , such that RBX (w,w
′)

means that world w′ is accessible from world w according to X’s beliefs, and

• π is valuation function that assigns truth values to propositional atoms in each world.

For the knowledge and belief operators, we use the standard modal systems S5n and KD45n for n
agents, respectively (Meyer & Van Der Hoek, 2004; Dignum et al., 2001), where n equals to the
number of agents in X . Formulas are evaluated with respect to pairs (M,w) of a model M and a
world w ∈ W , using binary relations RKX and RBX corresponding to each agent X’s knowledge and
beliefs. The relations RKX and RBX are serial, transitive, and euclidean. The relations RKX are also
reflexive (i.e., knowledge is always true) yet the relations RBX may not be (i.e., a belief may not be
true).

Abstractions: An abstract concept is a human-inspired, abstract decision-making heuristic such
as trust or respect, which can guide agents in their interaction decisions. We formally define a
finite set of abstract concepts as A = {Abs1,Abs2, ...,Absm} such that Absi denotes an abstract
concept where 1 ≤ i ≤ m. For example, A = {Trust,Respect} denotes the set of abstract concepts
Trust and Respect. Essentially, these abstract concepts are meaningful only when defined in a
relational manner. Thus, we formally define an abstraction as an atom of first-order logic structured
as Abs(X ,Y ), where Abs ∈ A and X ,Y ∈ X . For example, Trust(X ,Y ) can be read as “X trusts Y ”.
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Our formalization also allows agents to hold (higher-order) knowledge and beliefs about ab-
stractions. For instance, given p2 = Trust(X ,Y ), KY p2 and BX BY p2 can be read as “Y knows that
X trusts Y ” and “X believes that Y believes that X trusts Y ”, respectively. We refer to such (higher-
order) knowledge and beliefs about abstractions simply as abstractions.

Abstraction Rules: An abstraction rule is a derivation rule in the form of ϕ → ψ such that ψ

is an abstraction. For instance, both p1 → p2 (i.e., “Y is a doctor” implies that “X trusts Y ”) and
KX p1 → BX KY p2 (i.e., “X knows that Y is a doctor” implies that “X believes that Y knows that
X trusts Y ”) are abstraction rules. Note that the ϕ can pertain to multiple pieces of knowledge and
beliefs as well as other abstractions – the abstraction rules are not only used for creating abstractions
but also for updating them (e.g., from “trust” to “no trust”).

Epistemic logic enables us to formally exploit epistemic principles. In our framework, we will
use the following prominent epistemic principles PK , PB, and PI to create and update abstractions:

PK : KX(ϕ → ψ)→ (KX ϕ → KX ψ) (i.e., knowledge is closed under implication)

PB: BX(ϕ → ψ)→ (BX ϕ → BX ψ) (i.e., belief is closed under implication)

PI: KX ϕ → BX ϕ (i.e., knowledge implies belief)

These epistemic principles are useful for deriving new beliefs and knowledge – and especially
abstractions – from already existing ones. For example, if we have that KX p1 and KX(p1 → p2), by
using PK and modus ponens, we can derive that KX p1 → KX p2 and hence, KX p2. Similarly, if we
have that KX(p1) and BX(p1 → p2), we can first use PI to get BX(p1), and then use PB and modus
ponens to derive that BX p1 → BX p2 and hence, BX p2. Here, one may notice the utility of using PI ,
as it allows an agent to derive beliefs from knowledge. Note that it is useful to be able to reason
with both knowledge and belief in an interaction context. For instance, it may be preferable for an
agent to know the conditions under which it should not trust another agent, while merely believing
when to trust that agent may be sufficient.

4.2 TOMA in Use

Actions and Action Decision Rules: An agent uses its knowledge and beliefs for two purposes.
The first one is creating and updating abstractions through abstraction rules. The second purpose is
deciding which actions to perform next according to the action decision rules that the agent has. In
our framework, the action decision rules are based on conditional reasoning, where actions depend
on the agent’s specific knowledge or beliefs, which may correspond to abstractions as well.

While we acknowledge that actions and action decision rules could be introduced into the formal
language ϕ as explicit operators, we choose not to add them directly within the language. In line
with our contribution TOMA, a computational ToM mechanism based on abstractions, we want to
have a clear separation between epistemic reasoning and procedural decision-making and focus on
knowledge, beliefs, and abstractions without complicating the framework with action dynamics.

To illustrate how agents decide which actions to perform based on their knowledge, beliefs, and
abstractions, we use the following notation for action decision rules: ϕ → U where ϕ ∈ L X

KB and
U is an action. For example, KX p1 → Accept(S1) can be read as “‘X knows that Y is a doctor’
implies that X performs the action ‘Accept diagnosis S1”’. To clearly distinguish them, actions are
represented in bold and for specificity reasons, they are combined with elements from L X

KB .
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In the following sections, representation of an agent’s abstractions and action decisions will be
done via derivation tables which consists of three parts (separated by two horizontal lines): Action
decision rules (1st part), beliefs and knowledge (2nd part), and derived abstractions and action deci-
sions (3rd part). Figure 2 explains the different parts of a derivation table. Figure 2 also illustrates
how we actualize abstraction by using epistemic logic. By using KX(p → q) and PK , the agent can
logically derive KX p → KX q via modus ponens. By using KX p and KX p → KX q, the agent can
further derive KX q, which is presented in the third part of the derivation table. One can see that
the derivation of BX s is also made in a similar manner as well as the action decisions. All of the
abstraction examples given in Sections 5 and 6 feature this type of epistemological flow.

KX q → U Agent’s action decision rules are shown in the first part (until the first line).
BX s → V
KX p Agent’s beliefs and knowledge are in the second part (until the second line).
KX (p → q) They are used to create abstractions with the help of PK , PB, and modus ponens.
BX r
BX (r → s)

∴ KX q Abstractions come first in the third part.
BX s
U Action decisions (in bold) come second.
V

Figure 2: Visual representation of an agent’s abstraction and action decision mechanisms.

Instantiated atom Meaning
Doctor(A) A is a doctor.
Doctor(D) D is a doctor.
Doctor(E) E is a doctor.
Patient(C) C is a patient.

Diagnosis(S1) S1 is a diagnosis.
Diagnosis(S2) S2 is a diagnosis.

MedicalCollaboration(A,D) A and D collaborate in a medical setting.
GoodCommunication(A,D) A communicates well with D.

Capabilities(A) A has medical capabilities.
Result(D,C,R1) R1 is a result that D gets after examining C.

Lie(C,D) C lies to D.
Disagreement(A,S2,D,S1) A’s diagnosis S2 conflicts with D’s diagnosis S1.

Arguable(A,S2,D,S1) A’s diagnosis S2 can be argued against D’s diagnosis S1.
Trust(A,D) A trusts D.
Trust(D,A) D trusts A.
Trust(C,D) C trusts D.

TrustHigh(A,D) A has a high level of trust in D.

Table 1: List of instantiated atoms of first-order logic that are used in the examples.
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For our working example that features a total of three agents (human and computational), we
specifically use L X

KB where the set of agents consists of A, D, and C. Table 1 provides a list of
things that agents may know or believe, represented in the form of instantiated atoms of first-order
logic together with their meanings. Table 2 provides the list of actions that A can perform.

Action Meaning
Demonstrate(D,Capabilities(A)) Demonstrate A’s medical capabilities to D.

Warn(D,¬Trust(C,D)) Warn D about the lack of C’s trust towards D.
Consult(A,D,E) Advise a consultation meeting with A, D, and E.

Accept(S1) Accept diagnosis S1.
Argue(S2,D,S1) Argue diagnosis S2 against D’s diagnosis S1.

Table 2: List of actions that are used in the examples along with their meanings.

5. Dynamics of TOMA

An important part of TOMA is the management of abstractions that one has of others as well as
the believed abstractions others have. Managing these abstractions requires creating and revising
individual abstractions as well as addressing different perspectives.

5.1 Abstractions and Abstraction Rules

Creating abstractions and formulating abstraction rules are not always easy. If the agent has access
to a large data set to learn from, one possibility could be to incorporate machine learning techniques
to learn existing abstractions as well as to learn rules that apply in different situations. However,
such a dataset is generally not available in many settings. Humans, on the other hand, derive these
abstractions from a few interactions and accept that they might not be accurate and can be updated
as the interactions progress. We follow the same reasoning here to show how an agent can derive
abstractions from roles and abstraction rules from norms of the society.

Roles serve as socially expected sets of behaviors based on an individual’s status or position
within society (Solomon et al., 1985). Humans, as well as agents, can have multiple social roles
in the groups to which they belong (Dastani et al., 2003). Understanding these roles requires a
sophisticated ToM to discern how role-governance dynamics, concerning attitudes such as beliefs,
goals, emotions, etc., correspond to specific roles. Norms, which encompass commonly accepted
standards of social behavior, represent integral components of these dynamics. Ranging from basic
customs like politeness to complex rules governing attire and conduct, norms foster social order and
cohesion by establishing behavioral expectations and guiding interactions. Using ToM reasoning in
tandem with social norms and roles, humans can correctly interact with others in a very practical
manner. For instance, an individual equipped with a functional ToM can anticipate and adhere to
cultural norms, such as removing shoes before entering someone’s home, thereby demonstrating re-
spect for cultural practices and avoiding potential offense. Within this context, the roles are “host”
and “guest” and the norm is to be aware of these roles as well as the context in order to show re-
spect. In the following examples, we will show how roles can facilitate the creation and updating of
abstractions and how norms can contribute to the formulation of rules that govern these abstractions
within social contexts.
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5.2 Creating Abstractions

We have stated in Example 1 that capturing and interpreting trust computationally can be helpful
in case of a disagreement between the agent doctor A and the human doctor D. To capture trust in
a practical manner, A can directly benefit from D’s role. Specifically, A can begin with a state of
trust towards D, just because D is a doctor and they are working together in a medical setting. If,
for example, they were in a completely different setting (e.g., competitors in an auction), A would
not need to trust D due to her profession. Table 3 illustrates this short-cutting abstraction approach.
Note that the abstraction rule “BA(Doctor(D)∧MedicalCollaboration(A,D)→ Trust(A,D))” is ex-
pressed as a belief rather than knowledge, reflecting the inherent uncertainty that A must account
for in this situation.

KA(Doctor(D))
KA(MedicalCollaboration(A,D))
BA(Doctor(D)∧MedicalCollaboration(A,D)→ Trust(A,D))

∴ BA(Doctor(D))
BA(MedicalCollaboration(A,D))
BA(Trust(A,D))

Table 3: An abstraction can be directly induced by a role: Capturing A’s trust towards D.

By using its contextually relevant knowledge and the principles PB and PI , A makes the abstrac-
tion of trust. In Table 3, KA(Doctor(D)) and KA(MedicalCollaboration(A,D)) correspond to the
knowledge that A uses to create the beliefs BA(Doctor(D)) and BA(MedicalCollaboration(A,D))
first (via PI and modus ponens) and then, the abstraction BA(Trust(A,D)) in the form of a derived
belief (via PB and modus ponens). Let us revisit Example 1 where A needs to decide whether it
should trust D or not. In case of a disagreement with D, A can now decide not to consult another
doctor thanks to its trust in D. Instead, A can simply agree with D’s diagnostic decisions as long as
it continues to trust D.

5.3 Capturing Others’ Abstractions

For the computational agent, in addition to creating abstractions about others, it is also important
to create abstraction on how others see the agent. That is, the agent would monitor what others
(including humans) think of it. One way of doing this is to assume that others would have the same
abstraction rules to infer the same abstractions. This would mean that the agent assumes others
would trust it in the same way the agent would trust them. However, it is possible that different
participants model this abstraction differently; hence, one agent develops trust in a different way
than another.

Recall Example 2 in which A wants to check whether D trusts A. Here, D does not need to
trust A in the same way that A trusts D. Taking a more critical approach, D can demand more
from A to comfortably trust A’s decisions when working together. For instance, D may further want
to see whether A is designed to communicate well with doctors and can demonstrate the benefits
of its medical capabilities that are valuable to D. Table 4 shows how computational ToM reason-
ing can help A to model D’s trust towards it in such a setting. The formulas BABD(Doctor(A)),
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BABD(GoodCommunication(A,D)), and BABD(Capabilities(A)) represent the beliefs that are used
to produce the abstraction BA(Trust(D,A)). Notice that instead of KA, we use BA in Table 4 to rep-
resent the uncertainty that A may have in this case: A may not be completely sure about D’s beliefs
about A. Regardless, thanks to being capable of having higher-order beliefs about others’ beliefs
and how it may impact their behaviour (both essential for effective ToM reasoning), A can utilize
this basis as a checkpoint for capturing D’s trust. Furthermore, A can build on this abstraction to
decide its action in case of a disagreement with D (e.g., conversing with D collaboratively for a
mutually agreed diagnosis instead of agreeing with D’s diagnosis without a conversation).

BABD(Doctor(A))
BABD(GoodCommunication(A,D))
BABD(Capabilities(A))
BA(BD(Doctor(A))∧BD(GoodCommunication(A,D))∧BD(Capabilities(A))→ Trust(D,A))

∴ BA(Trust(D,A))

Table 4: The role of a role in abstraction can differ between agents: Capturing D’s trust towards A.

5.4 Updating Abstractions

Updating abstractions like trust in response to evolving trust dynamics between humans and com-
putational agents is crucial for maintaining alignment in collaborative interactions. Let us re-visit
Example 3 where A needs to reassess the trust dynamics between itself and D. Suppose A has ob-
served D making critical mistakes during their collaborations. Suppose also that A has observed
that D has recently started to interact with A in such a way that A formed the belief that D does not
believe that A has good capabilities anymore (e.g., D wants to do diagnoses on her own or interro-
gates A’s every decision/action). To act correctly in its interactions with D in the future, it is crucial
for A to update its trust in D and D’s perceived trust in A depending on these changes. Table 5
below describes how A can handle this situation: A updates its abstractions according to the changes
that happen in its beliefs and knowledge about D. Notice that in the table, KA(¬Trust(A,D)) and
BA(¬Trust(D,A)) are created via PK and PB, respectively. It is important to explicitly state what kind
of beliefs and knowledge should be taken into account when revising abstractions. This way, A does
not need to consider changes that are neither relevant nor significant when updating its abstractions.

KA(CriticalMistakes(D))
BABD(¬Capabilities(A))
KA(CriticalMistakes(D)→¬Trust(A,D))
BA(BD(¬Capabilities(A))→¬Trust(D,A))

∴ KA(¬Trust(A,D))
BA(¬Trust(D,A))

Table 5: Revising abstractions: Detecting changes in the trust dynamics between A and D.
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While we employ modus ponens and the epistemic principles PK , PB, and PI for basic log-
ical derivations within our framework, updating abstractions involves more than these methods.
We acknowledge that this challenge is also related to the well-studied problem of belief revi-
sion (Gärdenfors, 2003). One potential approach for managing conflicting abstractions could use
principles from AGM belief revision theory (Alchourrón et al., 1985). For instance, A might revise
its abstractions (e.g., changing BA(Trust(D,A)) to BA(¬Trust(D,A))) by considering which indi-
vidual beliefs to retain and which to adjust (e.g., removing the old belief BABD(Capabilities(A))
from its set of beliefs and keeping the new one BABD(¬Capabilities(A)) instead), ensuring con-
sistency with the new information. Such an approach enables systematic updates of abstractions
while maintaining the flexibility to adapt to the specific needs of the interaction context. As detailed
mechanisms for managing conflicting abstractions are beyond the scope of this work, we do not
explore them further here.

6. TOMA for Hybrid Intelligence Interactions

As already mentioned in Section 3, hybrid intelligence requires effective interactions between agents
and humans. We explain more what these interactions are and demonstrate how TOMA handles
them in several examples.

6.1 Realizing Missing Abstractions Proactively

Trust plays an important role for cooperative behavior, and agents may take proactive measures
to foster trust within human-agent collaborations. Recall Example 4 in which A decides that D is
reluctant to trust A. In this situation, A should first look for the reasons why D is reluctant to trust
it. Suppose that after ruling out the other potential reasons, A learns that this is due to D’s lack
of knowledge about A’s medical capabilities. Building on this reasoning, A can then proactively
demonstrate its capabilities in an attempt to change D’s stance towards it. Table 6 below describes
the situation and A’s corresponding action: A demonstrates its capabilities if it finds out that D’s
lack of knowledge is the root cause of her lack of trust in A.

BA(¬Trust(D,A))∧BA¬KD(Capabilities(A))→ Demonstrate(D,Capabilities(A))
BA(¬Trust(D,A))
BA(¬Trust(D,A)→¬KD(Capabilities(A)))

∴ BA¬KD(Capabilities(A))
Demonstrate(D,Capabilities(A))

Table 6: Realizing abstractions: A proactively taking action.

The agent uses PB and modus ponens to make the inference BA¬KD(Capabilities(A)) and then
acts accordingly. On the other hand, if A observed that D indeed trusted it, then the inference would
not be triggered and A would not need to demonstrate its capabilities to D.

6.2 Monitoring Inconsistencies

Normally, a doctor-patient relationship is expected to be built on trust, communication, and a com-
mon understanding of both sides’ needs (National Institutes of Health (U.S.), 2016). Founding a

300



ABSTRACTION-BASED COMPUTATIONAL THEORY OF MIND

good relationship is deemed important since it can affect the quality of the patient interviewing
process and hence, the determination of the diagnosis (National Institutes of Health (U.S.), 2016).
In our collaborative diagnosis scenario, D needs C to share all relevant information, whereas C
trusts D to keep this information to herself and not disclose it to others. Although adhering to these
medico-social norms is expected from both parties, they may choose to not follow them.

Consider Example 5 where A observes that C does not seem to trust D, which can have negative
effects in the diagnostic process. Now, suppose that C chooses to keep some sensitive information
about himself and lie about his health conditions out of mistrust, shame, or other personal reasons
and that A observes this. With this information, A can infer that C does not trust D. This is an
important piece of information for A to capture since the lack of trust could have a negative effect
on the accurate determination of D’s diagnosis. Now suppose also that A further learns that D
still thinks that C trusts her (i.e., “A believes that D believes that C trusts D.”). Building on this
inconsistency in their beliefs, A can then warn D about the inconsistency during their discussion
and advise her to use the interview information cautiously. A can further support its argument by
providing accompanying reasons (e.g., shortness of the duration of the interview, lack of detailed
questions/answers, etc.) and suggest putting more emphasis on the diagnostic testing results R3
rather than the interview R1 and seeking consultation with another doctor E. In Table 7, we give an
example reasoning mechanism and an accompanying action scheme that A can use in this case. A
uses its beliefs about D and C and the principle PB to infer C’s lack of trust in D. Since A is capable
of doing ToM reasoning, it further checks if there is an inconsistency between its own belief and D’s
belief about C’s trust. Correspondingly, A can warn D about C’s lack of trust in D and the patient
interview R1 and advises D to also consult doctor E.

BABD(Trust(C,D))∧BA(¬Trust(C,D))→ Warn(D,¬Trust(C,D))
BABD(Trust(C,D))∧BA(¬Trust(C,D))∧KA(Result(D,C,R1))→ Warn(D,R1)
BABD(Trust(C,D))∧BA(¬Trust(C,D))∧KA(Doctor(E))→ Consult(A,D,E)
BA(Lie(C,D))
BA(Lie(C,D)→¬Trust(C,D))
BABD(Trust(C,D))
KA(Result(D,C,R1))
KA(Doctor(E))

∴ BA(¬Trust(C,D))
Warn(D,¬Trust(C,D))
Warn(D,R1)
Consult(A,D,E)

Table 7: Monitoring inconsistencies: A’s actions after inferring lack of trust in doctor-patient rela-
tionship.

6.3 Managing Multiple Abstractions

Consider Example 6 where A needs to take multiple abstractions into account before deciding how
to engage with the doctor about the case. On one hand, the medico-social norm can dictate that
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the agent should argue for a more detailed resolution of the disagreement, especially if the patient-
doctor relationship is known to be problematic (i.e., the patient does not trust the doctor). On the
other hand, the agent can be designed in such a way that having a high level of trust in D (for
instance, due to her experience and specialization in the medical area of concern) can override the
norm to not take an argumentative approach in certain contexts. Then, A may need to simply accept
D’s diagnosis S1 over its own diagnosis S2. Below, Table 8 illustrates A’s decision-making process
in this case: By following the norm (i.e., “argue when there is a diagnostic disagreement”), A finds
out that its own diagnosis can be argued against that of D’s; however, its high trust in D restrains it
from actually arguing with D and instead, it accepts D’s diagnosis.

KA(Arguable(A,S2,D,S1))∧KA(¬Trust(C,D))∧KA(TrustHigh(A,D))→ Accept(S1)
KA(Arguable(A,S2,D,S1))∧KA(¬Trust(C,D))∧¬KA(TrustHigh(A,D))→ Argue(S2,D,S1)
KA(TrustHigh(A,D))
KA(¬Trust(D,C))
KA(Disagreement(A,S2,D,S1))
KA(Disagreement(A,S2,D,S1)→ Arguable(A,S2,D,S1))

∴ KA(Arguable(A,S2,D,S1))
Accept(S1)

Table 8: Managing multiple abstractions: Role-induced abstraction overrides norm.

The reasoning process in Table 8 is one way to deal with clashing abstractions, namely, one
overriding another. There are other alternatives. For instance, A can ask D for more information
before deciding on the action to perform next. Such information may be about the diagnosis itself
and/or include D’s own beliefs and knowledge about the case (e.g., her stance towards the diagnosis
with more details, her confidence in her decision, etc.). With a little more reasoning, A can then
make a more informed decision about its next actions regarding the diagnostic disagreement. Alter-
natively, when managing multiple abstractions, A can also choose to perform a (slightly) different
action rather than “accepting” and “arguing”. For example, A can still accept D’s decision (due to
high level of trust) but also provide the information on why it chooses to do so along with the ab-
stract beliefs and knowledge that are relevant to the context and used in its reasoning process (e.g.,
“although the norm dictates that I should argue with you in case of a disagreement, I decided to
accept your diagnosis instead due to my trust in you and your experience in the field”).

7. Conclusion

Computationally modeling ToM ability with the abstraction heuristics that we defined in Section 4
is a first step towards our long-term goal of designing social agents that are capable of collaborat-
ing efficiently with human partners. With examples from the medical domain, we illustrated how
abstracting beliefs and knowledge into higher-level concepts can be useful for an agent doctor in
dealing with disagreements that can happen when doing collective decision-making with a human
doctor towards the diagnosis of a patient’s health problem. By explicitly taking into account the
interaction context that the agent is in, we emphasized how social dynamics shaped by roles and
norms can play important parts in such hybrid settings. Furthermore, we sketched several ways with
the help of epistemic logic to demonstrate how the agent doctor can employ these social dynamics
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computationally to create various abstractions and use them to resolve disagreements efficiently,
suggesting the power and versatility of the proposed abstraction framework.

7.1 Discussion of TOMA

We further explore how TOMA meets the three criteria outlined in Section 1. TOMA is a formal
framework, as its elements, including abstractions and their dynamics, have been formalized in
epistemic logic. This enables the model to be enacted formally. The way abstractions and their
dynamics work, such as inducing an abstraction from a social role or an abstraction rule from a
social norm, mimic how humans derive such heuristics. An agent that implements TOMA will be
able to formally execute operations on abstractions and has the potential to interact with humans
seamlessly as it accounts for human-inspired notions. As mentioned in Section 3, the effectiveness
of such a framework comes in two parts. The first part is to effectively maintain the information it
contains (e.g., update only when needed). Examples 1–3 demonstrate the dynamics expected from
such frameworks. Section 5 demonstrates how TOMA handles these cases. The second part to
effectiveness is in handling interactions with humans as expected in a hybrid intelligence setting,
as demonstrated by Examples 4–6. Section 6 shows how TOMA addresses these interactions; thus,
yielding an effective framework.

In general, computational or human, agents use their (contextually relevant) beliefs and knowl-
edge to make decisions about the actions to take when interacting with others. We argue that the
computational agents that benefit from TOMA can effectively simplify the same beliefs and knowl-
edge (via abstraction rules) into more compact information in the form of abstractions that they can
use for the same purpose. It is important to recognize that this capability may not always be useful
for agents, as its utility depends heavily on the interaction setting. For instance, in scenarios where
decisions are infrequent, abstractions may introduce unnecessary computational overhead. On the
other hand, if the setting features continuous interaction, which often demands agents’ participation,
then abstractions will prove valuable to such agents.

The environment also plays a role in determining the utility of abstractions. For example, in
simpler cases (e.g., games like Rock-Paper-Scissors as used widely in the literature) where a compu-
tational agent needs to maintain only a few of beliefs about others, abstractions may not be needed
at all. We provide abstraction rules mainly for creating abstractions from individual beliefs and
knowledge, so the overall setting should be complex enough to necessitate abstracting. Further-
more, the frequency and magnitude of changes in the environment are also important. In a highly
static environment, an agent can create abstractions at the beginning and may not need to use ab-
straction rules ever again. Since our formalization enables an agent to employ abstraction rules also
for updating its abstractions when its beliefs and knowledge change, a more dynamic environment
provides more potential for our design to thrive. That being said, if the environment is excessively
dynamic and requires the agent to take many actions, abstractions and abstraction rules may become
cumbersome for the agent.

The research on computational ToM models suggests that agents can benefit in various ways
from ToM reasoning, especially at higher orders. De Weerd et al.’s research (2013) shows that
agents can benefit from first-order and second-order ToM reasoning in competitive game-theoretic
situations, although with diminishing returns beyond third-order ToM. They also explore how higher-
order ToM reasoning can aid agents in a strictly cooperative game (de Weerd et al., 2015), demon-
strating that agents with beyond zero-order ToM can establish communication more quickly. De
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Weerd et al. (2017) investigate the extent to which agents can benefit from higher-order ToM reason-
ing in a mixed-motive scenario called Colored Trails, finding that second-order ToM provides con-
siderable advantages, while first-order ToM has limited effectiveness. Kröhling and Martı́nez (2019)
examine the role of ToM in single-issue negotiations between context-aware agents, where the ne-
gotiation context is modeled by two variables: necessity and risk. Görür et al. (2017) propose a
ToM-based agent model for estimating human intentions in a shared human-robot task while Brooks
and Szafir (2019) demonstrate how robots can create second-order ToM models by observing hu-
man actions in spatial settings. Montes et al. (2023) introduce an agent model that integrates ToM
reasoning with abductive reasoning capabilities, testing it within the framework of an incomplete-
information, cooperative card game called Hanabi (Bard et al., 2020).

Although these research results are generally promising and demonstrate that the use of ToM
leads to better outcomes for the studied tasks, the existing models have not been widely adopted
as a computational tool in many real-life settings. This is mainly because the computational ToM
models are not meant to deal with all of the three criteria that we address in Section 1 (i.e., formal,
human-inspired, and effective). Most of these formal models are tailored for a specific, restricted
setting in which the agents’ action space and the information that they can use for ToM reasoning
are limited (e.g., moves in a spatial setting, tactics in a simple game, and so on). This creates
a crucial drawback for a ToM-based agent to succeed in real-life scenarios that demands more
complex ways of (social) interaction because it is not possible for such an agent to use high-level
decision-making heuristics, like abstractions, to properly realize the full potential of ToM reasoning
and hence, accomplish their tasks more effectively. In this paper, we introduce a medical domain
setting, which is rich in information and reflective of real-life situations (e.g., conflict resolution) to
illustrate how a computational agent capable of doing ToM reasoning in a variety of ways can thrive
in collaboration, particularly when leveraging abstractions.

When considering the potential implementation of our abstraction-based computational ToM
design, it is crucial to carefully consider the characteristics of deductive and inductive reasoning
that would guide agents in managing abstractions. In the context of creating abstractions, deductive
reasoning may be utilized to derive general conclusions from given premises. The “role-induced
trust” example formalized in Section 5 illustrates this point. Inductive reasoning, on the other hand,
involves inferring general principles or patterns from specific observations. In the context of updat-
ing abstractions, inductive reasoning may be used to generalize from new beliefs and knowledge to
revise existing abstractions (e.g., when “trust” transitions into “no trust”, as illustrated in the same
section). Of course, the scope of both of these reasoning mechanisms extends beyond these specific
considerations. A comprehensive understanding of their roles in managing abstractions is crucial
for a robust implementation, which should result in a more systematic formalization of the abstrac-
tion dynamics and the effective integration of both types of reasoning mechanisms into a unified
system.

Epistemic reasoning tools like eclingo (Cabalar et al., 2020), EP-ASP (Son et al., 2017), and
other epistemic extensions of Answer Set Programming (Brewka et al., 2011), can be useful for
handling basic epistemic reasoning in our framework. These tools can represent agents’ knowledge
and beliefs and evaluate action decision rules accordingly. However, such systems may face lim-
itations in managing the dynamic aspects of our framework, particularly the updating of complex
abstractions such as trust, which may evolve over time. Additionally, handling continuous, real-
time updates during agent interactions can be difficult for current epistemic reasoning tools, as they
often require manual adjustments. Machine learning models offer potential here, as they provide
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flexibility for real-time adaptation, by either creating new beliefs or updating existing ones with
new information in a timely manner, thus complementing logic-based reasoning approaches. Con-
sequently, a hybrid approach that combines the strengths of both methods may provide an effective
solution.

7.2 Future Research Directions

It is important to keep in mind that the hypothetical agent-human collaboration example that we
have worked with throughout the paper is primarily meant to demonstrate the potential functionality
of our formal, abstraction-based, computational ToM design. The applicability of our approach is
based on the assumption that healthcare professionals will be open to embracing a computational
agent as their collaborator. Given the increasing demand for more efficient clinical decision-support
systems in which the design arises from a collaborative and multidisciplinary perspective (Sarkar &
Samal, 2020), our model’s potential application in the future seems promising. However, its success
will depend on its ability to address other issues that medical professionals may face when closely
and continuously working together with computational agents (e.g., alert fatigue, physician burnout,
etc.).

Note that the abstractions that we work with in this body of work can emerge through different
means. Argumentation schemes (Walton et al., 2008), which are stereotypical patterns of reasoning
with a corresponding set of critical questions, represent one of these sophisticated ways that can
be used to reason about abstractions such as trust (Parsons et al., 2012). Employing argumentation
schemes can also be advantageous for the agent doctor in assessing a patient’s trust level by ana-
lyzing responses to critical questions associated with these schemes. Such an approach can offer
additional support for the agent’s subsequent actions.

In addition to social norms and roles, there are other human concepts that hold relevance for our
abstraction-based computational ToM design. Within the social sciences, values denote a person’s
set of preferences that determine appropriate courses of action in their lives. These values exert
a considerable influence on social behavior (Bardi & Schwartz, 2003) and can serve as guiding
principles in our lives (Schwartz et al., 2012), shaping our choices and influencing how we interact
with the world around us. While human values can vary across cultures, religions, and individuals,
certain core values such as honesty, kindness, fairness, and responsibility are universally recognized
and prized. Similar to roles and norms, these values can also be seen as valuable abstract concepts
that could be incorporated into our framework. Although not elaborated on in this paper, we propose
that they could offer additional guidance to ToM-using computational agents in interpreting human
behavioral patterns.

Since 2022, large language models (LLMs) such as chatGPT and GPT4 have received a lot of
attention. One research question is to which extent LLMs can perform standardized ToM tasks that
are usually used to test children, such as first-order (“Where will Sally look for her marble”) and
second-order (“Where does Anne think that Sally will look for her marble?”) false belief tasks.
Initial results appeared to be positive, with LLMs passing the standard first-order false belief tasks
as they appear in the psychological literature, as well as slight reformulations (Kosinski, 2023).
However, it soon appeared that the LLMs had a relatively low accuracy when they were not tested
on the standard tests but on new variations of first-order false belief tasks; the LLMs did even worse
when solving second-order false belief tasks (Ullman, 2023; van Duijn et al., 2023). Performance
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of LLMs on large benchmark suites of ToM tasks was shown to be mixed at best (Sap et al., 2022;
Shapira et al., 2023).

Recently, there have been interesting reflections that propose to view the question “Do LLMs
have ToM?” with more nuance than as a “yes—no” question, namely, as a continuum (van Dijk
et al., 2023). For example, they propose to look at an LLM’s intermediate reasoning steps and to
check whether sophisticated prompting may improve the LLM’s accuracy on ToM tasks. Another
line of work accepts the fact that LLMs are not yet capable of fully autonomous ToM in a range
of applications, and propose to combine an existing ToM system with LLMs’ impressive grasp
of language use, for example, Bayesian Inverse Planning Accelerated by Language Models (BIP-
ALM) (Jin et al., 2024). This appears to point to an appealing way forward for our proposal as
well, namely, to combine the symbolic ToM reasoning and abstraction capabilities of TOMA with
the subsymbolic language capabilities of a LLM in order to create a system that can reason about
human mental states and communicate well with human users.

As a follow-up work, we aim for a more complete abstraction model that captures the ways hu-
mans abstract their beliefs and knowledge. Since we intend to build an interactive reasoning system
which should be well-versed in the ways of social cognition, we plan to benefit from various meth-
ods and tools in logic, artificial intelligence, and cognitive sciences (e.g., ontologies, argumentation
schemes, belief-desire-intention (BDI) models (Rao & Georgeff, 1998), etc.). Another research
direction can be to further investigate the role of human-agent communication in recursive ToM
reasoning. For that purpose, “mind perception theory” (Gray et al., 2007; Lee et al., 2021) can be
beneficial when designing higher-order ToM-using agents that can accurately infer how their own
artificial minds are perceived and modeled by humans. With a more comprehensive computational
ToM model, which is also equipped with mind abstraction abilities, we will further test our agents
in human-agent settings in order to evaluate their collaborative skills in dynamic environments.
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