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Abstract

To obtain a near-optimal policy with fewer interactions in Reinforcement Learning
(RL), a promising approach involves the combination of offline RL, which enhances sample
efficiency by leveraging offline datasets, and online RL, which explores informative transi-
tions by interacting with the environment. Offline-to-Online RL provides a paradigm for
improving an offline-trained agent within limited online interactions. However, due to the
significant distribution shift between online experiences and offline data, most offline RL
algorithms suffer from performance drops and fail to achieve stable policy improvement
in offline-to-online adaptation. To address this problem, we propose the Robust Offline-
to-Online (RO2O) algorithm, designed to enhance offline policies through uncertainty and
smoothness, and to mitigate the performance drop in online adaptation. Specifically, RO2O
incorporates Q-ensemble for uncertainty penalty and adversarial samples for policy and
value smoothness, which enable RO2O to maintain a consistent learning procedure in on-
line adaptation without requiring special changes to the learning objective. Theoretical
analyses in linear MDPs demonstrate that the uncertainty and smoothness lead to tighter
optimality bound in offline-to-online against distribution shift. Experimental results illus-
trate the superiority of RO2O in facilitating stable offline-to-online learning and achieving
significant improvement with limited online interactions.

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.
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1. Introduction

Reinforcement learning (RL) has demonstrated remarkable success in tackling complex
tasks, such as playing games (Hessel et al., 2018; Silver et al., 2018; Berner et al., 2019)
and controlling robots (Schulman et al., 2015, 2017; Haarnoja et al., 2018) in recent years.
Nonetheless, persistent critiques point to its limited adaptability in real-world scenarios.
The efficacy of RL critically hinges upon access to an unbiased interactive environment and
millions of unrestricted trial-and-error attempts (Mnih et al., 2015). However, domains such
as healthcare (Yu et al., 2021) and autonomous driving (Kiran et al., 2021) often present
challenges in online data collection due to safety, feasibility, and financial reasons.

Offline RL presents a distinctive advantage over online RL, as it enables the learning
of policies directly from a fixed dataset collected by a behavior policy (Lange et al., 2012;
Fujimoto et al., 2019; Wu et al., 2019). These datasets can be sourced from historical logs,
demonstrations, or expert knowledge, furnishing valuable information to facilitate learning
without the need for costly online data collection. However, the performance of current
offline RL methods heavily relies on the coverage of the state-action space and the quality
of stored trajectories (Schweighofer et al., 2022). Furthermore, the lack of exploration
hampers the agent’s ability to discover superior policies (Lambert et al., 2022). To address
this issue, numerous studies focus on enhancing pre-trained offline agents through limited
online interactions, known as Offline-to-Online RL (Nair et al., 2020; Lee et al., 2022;
Kostrikov et al., 2022). This paradigm aims to rectify estimation bias, which remains
unaddressed during offline training, and leads to further policy improvement through several
online fine-tuning steps.

Despite the potential to integrate offline datasets and online experiences to optimize the
agent, existing offline-to-online learning methods suffer from performance drops and strug-
gle to efficiently improve policies, which hinders their applicability in real-world scenarios.
At the initial stage of online fine-tuning, the agent’s performance may heavily decline due
to the distributional shift between offline datasets and online transitions (Nair et al., 2020;
Uchendu et al., 2023). Moreover, the inclusion of low-quality data can have detrimental
effects on performance and lead to skewed optimization. Prior efforts to address this issue
involve altering the policy extraction procedure (Nair et al., 2020; Kostrikov et al., 2022),
incorporating behavior cloning regularization (Zhao et al., 2022), modifying data sampling
methods (Lee et al., 2022; Swazinna et al., 2021), or proposing policy expansion sets (Zhang
et al., 2023). While these methods have made progress in mitigating performance drops,
they still suffer form limited performance improvement due to the lack of effective mecha-
nisms to enhance performance during the fine-tuning phase.

In this paper, we propose the Robust Offline-to-Online (RO2O) algorithm for RL, de-
signed to address the distribution shift in the offline-to-online process and achieve effi-
cient policy improvement during the fine-tuning phase. To achieve this, RO2O utilizes
Q-ensembles to learn robust value functions, resulting in no performance drop during the
initial stage of online fine-tuning. Additionally, RO2O incorporates the smoothness regu-
larization of policies and value functions on out-of-distribution (OOD) states and actions
ensuring robust performance even when the interacting trajectories in the training buffer
deviate significantly from offline policies. Notably, RO2O offers the advantage of not requir-
ing the transformation of the learning algorithm (Zhao et al., 2023) or policy composition
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(Zhang et al., 2023) throughout the process. From a theoretical perspective, we prove that
under the linear MDP assumption, the uncertainty and smoothness lead to a tighter op-
timality bound in offline-to-online against distribution shift. Empirical results showcase
the favorable performance of RO2O during both offline pre-training and online fine-tuning.
Compared to baseline algorithms, RO2O achieves efficient policy improvement without the
need for specific explorations or modifications to the learning architecture. The code is
available in this repository (https://github.com/BattleWen/RO2O).

2. Related Work

Offline-to-Online RL A key challenge in offline-to-online process is the performance
drop experienced at the initial stage, attributed to the distributional shift between offline
data and online experiences. Previous approaches have attempted to address this issue
by altering policy extraction (Nair et al., 2020; Kostrikov et al., 2022), adjusting sam-
pling methods (Lee et al., 2022), expanding policy sets (Zhang et al., 2023), and modifying
Q-function learning targets (Nakamoto et al., 2023). However, these methods cannot consis-
tently achieve effective policy improvement within the limited fine-tuning steps. Recently,
ensembles have been incorporated for both pessimistic learning during offline training and
optimistic exploration during online learning (Zhao et al., 2023). While such an ensem-
ble method improves the Offline-to-Online performance, it requires careful modifications of
learning objectives when transferring the policy from offline to online. In contrast, our work
handles offline training and online fine-tuning in a consistent manner without algorithmic
modifications. The proposed approach not only achieves better offline performance but also
enables efficient policy improvement during online fine-tuning.

Ensembles in RL Ensemble methods in RL have emerged as a powerful approach to
improve the stability and performance of learning algorithms. In online RL, ensembles are
utilized to capture epistemic uncertainty and improve exploration (Osband et al., 2016;
Chen et al., 2017). Recent methods also employ ensembles to mitigate estimation bias dur-
ing Bellman updates (Fujimoto et al., 2018; Lan et al., 2020) or enhance sample efficiency
(Chen et al., 2021). In the context of offline RL, ensembles are employed in both model-free
methods (Bai et al., 2022; An et al., 2021) and model-based methods (Yu et al., 2020;
Swazinna et al., 2021) to characterize the uncertainty of Q-values or dynamics models. No-
tably, several works (An et al., 2021; Ghasemipour et al., 2022) estimate lower confidence
bounds of Q-functions using ensembles, where EDAC (An et al., 2021) primarily focuses on
improving sample efficiency with gradient diversity and MSG (Ghasemipour et al., 2022)
mainly emphasizes the importance of ensemble independence for effectively estimating un-
certainty. Our approach extends upon these methodologies by incorporating a perturbed
sample set, which differs from solely estimating uncertainty within the existing state-action
space of the dataset. We primarily use ensembles to penalize the Q-values of the OOD sam-
ples and apply smooth regularization to ensure that the policies and Q-values of in-sample
data and perturbed samples do not deviate too much. In this way, we can smooth them out
within a small range beyond the dataset’s state space, resulting in more robust estimates.

Robustness in RL Robustness has gained paramount importance in RL to ensure the
reliability and stability of RL agents in diverse and challenging environments. In online
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RL, previous research has explored techniques such as domain randomization (Tobin et al.,
2017), policy smoothing (Shen et al., 2020), and data augmentation methods (Sinha et al.,
2022) to improve performance. Recently, an offline RL algorithm (Yang et al., 2022) in-
corporates policy and value smoothing for OOD states, highlighting the significance of
robustness in offline RL agents. These approaches typically focus on enhancing robustness
against adversarial perturbations on observations or actions and validate their effectiveness
through the synthesis of noisy data. In contrast, our focus is on the robustness of models
to handle the distributional shift specifically in the Offline-to-Online RL setting.

3. Preliminaries

Offline-to-Online RL The RL problem is typically formulated as Markov Decision Pro-
cess (MDP), represented by the tuple M = (S,A, P,R, γ). In this framework, the agent’s
decision-making process is guided by a policy denoted as π, which maps environmental
states s ∈ S to actions a ∈ A. The agent’s objective is to find an optimal policy, de-
noted as π∗, that maximizes the expected cumulative reward over time. For a policy π, the
state-action value function, denoted as Qπ(s, a), represents the expected cumulative reward
starting from state s, taking action a, and following policy π thereafter. The learning tar-
get for the value function in online RL, also referred to as the Bellman operator, can be
expressed as:

T Q(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∈π(·|s′)Q(s′, a′).

In offline RL, learning is performed using a fixed dataset D = {si, ai, ri, s′i}ni=1 of
historical interactions sampled from a behavior policy µ. A key challenge in offline RL
is the bootstrapped error caused by the distributional shift between behavior policies
and learned policies. To mitigate the distributional shift, previous methods (Schneegass
et al., 2008; Bai et al., 2022; Yang et al., 2022) leverage Q-ensembles to capture epis-
temic uncertainty and penalize Q-values with large uncertainties. When we estimate the
empirical expectation from the dataset D, the Bellman operator becomes T̂ Q(s, a) =
r(s, a) + γÊs′∼P (·|s,a),a′∼π(·|s′)(Q(s′, a′) − αU(s′, a′)), where U(s′, a′) denotes the estimated
uncertainties, and α is used to adjust the degree of pessimism. Additionally, RORL (Yang
et al., 2022) employs smooth regularization on the policy and the value function for states
near the dataset.

Despite the advantage of leveraging large-scale offline data, the performance of pre-
trained agents is often limited by the optimality and coverage of the datasets. Overesti-
mation of value functions cannot be substantially corrected without interactions with the
environment. To address this limitation, our work focuses on offline-to-online learning,
aiming to improve agents by incorporating limited online interactions.

Linear MDPs Our theoretical derivations build on top of linear MDP assumptions. Least
Squares Value Iteration (LSVI) (Jin et al., 2020) is a classic method frequently used in the
linear MDPs to calculate the closed-form solution. In linear MDPs (Jin et al., 2020), the
transition dynamics and reward function take the following form, as

Pt(st+1 | st, at) = ⟨φ(st+1), ϕ(st, at)⟩, r(st, at) = υ⊤ϕ(st, at), ∀(st+1, at, st) ∈ S ×A× S,

where the feature embedding ϕ : S ×A 7→ Rd is known and φ is an unknown measures over
S. We further assume that the reward function r : S × A 7→ [0, 1] is bounded, the feature
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is bounded by ∥ϕ∥2 ≤ 1 and v is an unknown vector. We consider the settings of γ = 1 in
the following. Then for any policy π, the state-action value function is also linear to ϕ, as

Qπ(st, at) = w⊤ϕ(st, at).

Given data Dm = {sit, ait, rit, sit+1}i∈[m], the parameter of the w can be solved via LSVI
algorithm, as

ŵt = min
w∈Rd

m∑
i=1

(
ϕ(sit, a

i
t)
⊤w − r(sit, a

i
t)− Vt+1(s

i
t+1)

)2
(1)

where Vt+1 is the estimated value function in the (t + 1)-th step. Following LSVI, the
explicit solution to Equation (1) takes the form of

ŵt = Λ−1
t

m∑
i=1

ϕ(sit, a
i
t)y

i
t, where Λt =

m∑
i=1

ϕ(sit, a
i
t)ϕ(s

i
t, a

i
t)
⊤

is the feature covariance matrix of the state-action pairs in the offline dataset, and yit =
r(sit, a

i
t) + Vt+1(s

i
t+1) is the Bellman target in regression.

4. Methodology

In this section, we present our methodology for addressing the challenges posed by the
Offline-to-Online RL setting. The most significant challenge in this context is effectively
transferring knowledge from the static dataset to cope with distributional shift in the dy-
namic online environment. To tackle this crucial issue, we propose the RO2O algorithm,
a novel approach that combines Q-ensembles and robustness regularization. We begin by
providing a motivating example to illustrate that current methods struggle to handle a large
distributional shift effectively. Subsequently, we introduce our algorithm, which maintains a
consistent architecture in both offline and online learning phases. Furthermore, we establish
theoretical support for our approach.

4.1 Motivating Example

Offline-to-Online RL methods face challenges arising from distribution shift not only be-
tween learned policies and behavior policies but also between offline data and online transi-
tions during the fine-tuning process. Robust performance is expected from offline algorithms
despite the presence of online trajectories that deviate from the learned offline policies. To
investigate this, we evaluate two state-of-the-art offline methods, i.e., CQL and IQL, with
distinct distribution shifts to simulate the offline-to-online process. Specifically, we pre-train
the agents using the halfcheetah-expert dataset from D4RL (Fu et al., 2020) benchmark,
and inject synthetic distributional shift similar to that in online fine-tuning process to assess
their robustness. The synthetic distributional shift is incorporated by adding samples from
a different offline dataset, such as the halfcheetah-medium dataset. As depicted in the left
panel of Figure 1, noticeable discrepancies in the trajectory distribution exist between the
two datasets, indicating the presence of distributional shift.

We compare the performance of CQL, IQL, and our method to figure out whether the
state-of-the-art methods can handle the synthetic distributional shift during fine-tuning.
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Figure 1: Illustration for the motivating example. In the left panel, we visualize the trajec-
tory distribution of two datasets, by mapping the trajectories into two-dimensional points
using T-SNE (Van der Maaten & Hinton, 2008). The right panel presents the fine-tuning
performance.

The experimental results are shown in the right panel of Figure 1. Our findings reveal
that all methods experience a performance drop at the initial stage due to the significant
distributional shift. However, in comparison to CQL and IQL, our method exhibits a milder
degradation in performance. Moreover, CQL and IQL fail to recover from the deviation
during the fine-tuning phase with a new dataset. This inability is attributed to the presence
of samples that deviate significantly from the region covered by the current policies, which
affects the learning of policies and value functions. In contrast, our method demonstrates
superior robustness, enabling effective policy improvement even in the presence of significant
distributional shifts. As previously mentioned, it is expected to correct estimation bias and
improve pre-trained policies within limited online interactions, while traditional methods
struggle to accomplish this.

4.2 Algorithm

Offline buffer
𝒟 offline

{(s, a, r, s’)} 

Sample  𝑠 ~ 𝐵𝑑(𝑠, 𝜀)

Sample  𝑎 ~ 𝜋𝜃(  𝑠)
(  𝑠,  𝑎) (s, 𝑎)

𝐿Qsmooth
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(  𝑠, 𝑎) (s, 𝑎)

𝐿policy

…
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Offline RL Training
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Online RL Fine-tuning
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Figure 2: Overall framework of RO2O. RO2O employs the same off-policy RL algo-
rithms during the offline-to-online training phase. By using OOD sampling, we incorporate
Lood and LQsmooth into the training process for the gradient update, while also calculating
Lpolicy to constrain the policy πζ(ŝ) as close as possible to the current policy πζ(s).
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Based on the motivating example, we suggest that it is important to design a robust al-
gorithm capable of ensuring stable policy improvement with online interactions. To this end,
we propose the RO2O method, which incorporates ensembles and robustness regularization
into the offline-to-online learning process. Notably, our method stands out from other ex-
isting approaches, such as PEX (Zhang et al., 2023) and E2O (Zhao et al., 2023), due to its
unique characteristics. Unlike these methods, our approach does not require any changes to
the learning algorithm or the need to conduct policy expansion when transitioning to the
fine-tuning phase.

4.2.1 Ensemble-based Learning

In our method, we adopt Q-ensemble with N networks in both offline pre-training and on-
line fine-tuning, employing the same update procedure. These ensemble networks possess
identical architecture and are initialized independently. While prior studies (Chen et al.,
2021; Zhao et al., 2023) suggest that randomly selecting two of the N ensembles is effec-
tive during the online learning phase, our findings indicate that choosing the minimum of
ensemble Q-functions is sufficient to achieve favorable performance. Moreover, this choice
remains consistent with the offline learning process, where pessimism is necessary to coun-
teract overestimation bias. Formally, the TD target when using the minimum of ensemble
Q-functions can be expressed as:

T̂ Qθi(s, a) = r(s, a) + γÊs′ min
i

Qθ−i
(s′, a′), i ∈ [1, N ], (2)

where θi and θ−i are parameters for i-th Q-network and target Q-network, respectively, and
a′ ∼ π(s′). Additionally, we notice that the results reported in (Ghasemipour et al., 2022;
An et al., 2021) demonstrate that using shared targets has a prior performance in Mujoco
tasks but fails in more challenging domains such as AntMaze. Because shared targets
on AntMaze tend to be overly pessimistic, it’s harder to explore new out-of-distribution
samples, making it more difficult to learn better policies. Thus, for the challenging AntMaze
environments, we adhere to previous work and utilize independent Bellman targets (refer to
Appendix D for more details about the theoretical evaluation) without altering the network
architecture. Similarly, independent targets can be formulated as:

T̂ Qθi(s, a) = r(s, a) + γÊs′Qθ−i
(s′, a′), i ∈ [1, N ]. (3)

During offline training, the Q-ensembles are utilized to learn the value function and
update the policy. In online fine-tuning, the learned Q-ensembles and policies continue
to be updated with online experiences, as shown in Figure 2. Several online RL methods
(Chen et al., 2021; Lee et al., 2021) also employ Q-ensembles and suggest maximizing the
average Q-values for policy optimization. In our study, we have found that maximizing the
minimum Q-values, consistent with the objective in the offline phase, is also highly effective
in obtaining the optimal policy during online fine-tuning.

4.2.2 Robustness Regularization

Similar to previous studies (Sinha et al., 2022; Shen et al., 2020) that consider robustness
in RL, our goal is to enhance the robustness of offline-trained value function and policy,
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which can have large estimation bias caused by the distribution shift in the fine-tuning
phase. Different from previous offline RL approaches that mainly mitigate the effect of
perturbed actions (Zhao et al., 2022; Nakamoto et al., 2023), we adopt a different robustness
perspective by suggesting that the distributional shift in offline-to-online process brings both
OOD states and actions.

Intuitively, the offline pre-trained policy inevitably encounters OOD samples during the
offline-to-online process. Since the process of online exploration is based on the rollout of the
offline policy, these OOD samples tend to be distributed around the offline data. In order to
deal with the problem of distribution shift, we attempt to introduce additional adversarial
samples for smoothness and uncertainty estimation. In this way, we can guarantee that the
policies and Q-values of in-sample data and perturbed samples do not deviate too much and
smooth out them within a small range beyond the dataset’s state space, thereby leading
to smooth value function and policy that are robust to distribution shift. To this end, we
follow a similar approach as in RORL (Yang et al., 2022) to construct adversarial samples
for regularization in the offline-to-online process.

Smoothness Regularization We employ regularization on both policy and Q-function
by minimizing the difference between estimations obtained from in-sample data and per-
turbed samples. Specifically, we synthesize perturbed samples by constructing a perturba-
tion set Bd(s, ϵ) = {ŝ : d(s, ŝ) ≤ ϵ} for state s, which is an ϵ-radius ball with a distance
metric d(·, ·). By sampling from this set ŝ ∈ Bd(s, ϵ), the proposed RO2O minimizes the
difference between Qθi(s, a) and Qθi(ŝ, a), as

Li
Qsmooth = L (Qθi(s, a), Qθi(ŝ, a)) ,

which enforces value smoothness to adversarial state ŝ, and L can be a L2 distance. The
smooth loss should be applied to each network in the ensemble. To simplify the optimiza-
tion, we choose to minimize the maximal smooth loss maxi Li

Qsmooth among the ensem-
ble. Similarly, we can minimize the difference between π(a|s) and π(a|ŝ), which is real-
ized by minimizing the Jensen-Shannon divergence DJS(π(·|s)∥π(·|ŝ)). The JS divergence
DJS(π(·|s)|π(·|ŝ)) is defined as: DJS(π(·|s)||π(·|ŝ)) = 1

2DKL(π(·|s)||M) + 1
2DKL(π(·|ŝ)||M),

where M is the mixture distribution of π(·|s) and π(·|ŝ), given by M = 1
2(π(·|ŝ) + π(·|s)).

Overestimation Penalty Meanwhile, since the Q-values for OOD states and actions
can be overestimated, we penalize their value estimation with uncertainty quantification
following prior works (Bai et al., 2022; Yang et al., 2022). For OOD states ŝ ∈ Bd(s, ϵ) and
OOD actions â ∼ π(ŝ), their pseudo Bellman targets can be expressed as T̂ oodQ(ŝ, â) =
Q(ŝ, â)−αU(ŝ, â). Here, θi denotes the parameters of the i-th Q-function. We define a loss
function to constrain the value of OOD samples as:

Li
ood = Eŝ∈Bd(s,ϵ),â∼π(ŝ)(T̂ oodQθi(ŝ, â)−Qθi(ŝ, â))

2.

Specifically, we define the uncertainty function U(ŝ, â) as follows:

U(ŝ, â) =

√√√√ 1

K

K∑
k=1

(Qθi(ŝ, â)− Q̄θi(ŝ, â))
2,

where K is the number of the ensemble networks and Q̄θi(ŝ, â) means the mean Q-value of
the ensemble networks.
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Algorithm 1 Robust Offline-to-Online RL algorithm

Require: ensemble Q-networks {Qθi}ni=1, target networks {Qθ−i
}ni=1, and policy network

πϕ

1: // Offline Pre-training
2: while t ≤ T1 do
3: Sample mini batches from D.
4: Calculate robustness regularization Li

Qsmooth,Li
ood.

5: Update Q-functions with Equation (4) and update target networks softly.
6: Update the policy with Equation (5).
7: end while
8: // Online Fine-tuning
9: while t ≤ T2 do

10: Interact with the online environment with πϕ.
11: Collect transitions into new buffer B.
12: Sample batches from buffer B.
13: Update Q-functions and the policy with Li

Q,Lπ.
14: end while

4.2.3 Algorithm Description

As outlined in Algorithm 1, the learning process encompasses two phases: offline pre-
training and online fine-tuning. We adopt the SAC (Haarnoja et al., 2018) algorithm as
our backbone. For Q-value functions, RO2O has the following loss function:

Li
Q = E(s,a,r,s′)∼D

[
Li
TD + η1Li

Qsmooth + η2Li
ood

]
, (4)

where D = Doffline in the offline training phase and D = Doffline ∪ Donline in the online fine-
tuning phase. Li

TD = (T Qθi(s, a)−Qθi(s, a))
2 represents the TD error, where T Qθi = r +

γ
(
minQθ−i

(s′, a′)− β log π(a′|s′)
)
when taking shared targets in Equation (2) for Mujoco

tasks, and T Qθi = r + γ
(
Qθ−i

(s′, a′)− β log π(a′|s′)
)

when using independent targets in

Equation (3) for AntMaze tasks. The policy is learned by optimizing the following loss
function:

Lπ = E(s,a)∼D
[
min
i

Qθi(s, a) + β log πζ(a|s)+η3DJS(πζ(·|s)∥πζ(·|ŝ))
]
, (5)

where ϕ represents the parameters of the policy network. In Equation (5), the first term
maximizes the minimum of the ensemble Q-functions to obtain a conservative policy, the
second term is the entropy regularization, and the third term is the smooth constraint. We
remark that we maintain the same loss function throughout the offline-to-online process,
which is more elegant than previous offline-to-online methods. The difference between the
pre-training and the fine-tuning phase lies in the data sampled to estimate of the expecta-
tions in Equation (4) and Equation (5). In implementation, we also apply normalization to
states, which is widely used in previous work (Fujimoto & Gu, 2021; Raffin et al., 2021).
This also helps to deal with the variations of states in the fine-tuning phase.
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4.3 Theoretical Analysis

Our analyses are conducted in linear MDP assumption (Jin et al., 2020, 2021), where the
transition kernel and the reward function are linear in a given state-action feature ϕ(s, a).
We estimate the value function by Q(s, a) ≈ ŵ⊤ϕ(s, a). See the appendix for the details.

We start by considering the offline training phase where the value function is learned
from Doffline. According to the loss in Equation (4), the parameter ŵ can be solved by

w̃offline = min
w∈Rd

[ m∑
i=1

(
yit −Qw(s

i
t, a

i
t)
)2

+
∑

(ŝ,â,ŷ)∼Dood

(
ŷ −Qw(ŝ, â)

)2
+

m∑
i=1

1

|Bd(s
i
t, ϵ)|

∑
(ŝit,s

i
t,a

i
t)∈Drobust

(
Qw(s

i
t, a

i
t)−Qw(ŝ

i
t, a

i
t)
)2]

,

(6)

where we denote y = T̂ Q and ŷ = T̂ oodQ as the learning targets for simplicity. The three
terms in Equation (6) correspond to TD-loss, OOD penalty, and smoothness constraints,
respectively. For the clarity of notations, we explicitly define a dataset Dood for OOD
sampling, and an adversarial dataset Drobust for the smoothness term. Following Least-
Squares Value Iteration (LSVI) (Jin et al., 2020), the solution of Equation (6) takes the
following form as

w̃t = Λ̃−1
t

( m∑
i=1

ϕ(sit, a
i
t)y

i
t +

∑
(ŝ,â,ŷ)∼Dood

ϕ(ŝ, â)ŷ
)
, (7)

and the covariance matrix Λ̃t is

Λ̃t = Λ̃in
t + Λ̃ood

t + Λ̃robust
t , (8)

where the first term Λ̃in
t =

∑m
i=1 ϕ(s

i
t, a

i
t)ϕ(s

i
t, a

i
t)
⊤ is calculated on in-distribution (i.e., in

Doffline) data, the second term is Λ̃ood
t =

∑
Dood

ϕ(ŝt, ât)ϕ(ŝt, ât)
⊤ is calculated on OOD

samples (i.e., in Dood), and the third term is calculated on adversarial samples (i.e., in

Drobust), as Λ̃
robust
t =

∑m
i=1

1
|Bd|

∑
Drobust

[
ϕ(ŝ, a)− ϕ(s, a)

][
ϕ(ŝ, a)− ϕ(s, a)

]⊤
.

For comparison, we consider a variant of RO2O without smoothness regularization.
Following LSVI, the solution of this variant takes a similar form as Equation (7), but with
a different covariance matrix as Λ̃in

t +Λ̃ood
t . The difference in covariance matrices originates

from the additional adversarial samples in RO2O. We denote the dataset for RO2O as
DRO2O = Doffline ∪ Dood ∪ Drobust, and for this variant as Dvariant = Doffline ∪ Dood without
smoothness constraints.

Following the theoretical framework in PEVI (Jin et al., 2021), the sub-optimality gap
of offline RL algorithms with uncertainty penalty is upper-bounded by the lower-confidence-
bound (LCB) term, defined by

Γlcb(st, at;D) = βt
[
ϕ(st, at)

⊤Λ−1
t ϕ(st, at)

]1/2
,

where the form of Λt depends on the learned dataset (e.g., DRO2O or Dvariant), and βt is a
factor. Then the following theorem shows our smoothness regularization leads to smaller
uncertainties for arbitrary state-action pairs, especially for OOD samples (e.g., from online
interactions).
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Theorem 1. Assuming that the size of adversarial samples Bd(s
i
t, ϵ) is sufficient and the

Jacobian matrix of ϕ(s, a) has full rank, the smoothness constraint leads to smaller uncer-
tainty for ∀(s⋆, a⋆) ∈ S ×A, as

Γlcb(s⋆, a⋆;DRO2O) < Γlcb(s⋆, a⋆;Dvariant),

where the covariance matrices for these two LCB terms are Λ̃t in Equation (8) and Λ̃in
t +

Λ̃ood
t , respectively.

According to Theorem 1, with the additional term Λ̃robust
t =

∑m
i=1

1
|Bd|

∑
Drobust

[
ϕ(ŝ, a)−

ϕ(s, a)
][
ϕ(ŝ, a)− ϕ(s, a)

]⊤
in the covariance matrix Λ̃t of DRO2O, the uncertainty of OOD

samples measured by UCB will be reduced. As an extreme example in tabular case, the
uncertainty for a purely OOD (s⋆, a⋆) pair can be large as Γlcb(s⋆, a⋆;Dvariant) → ∞ without
the smoothness term, while Γlcb(s⋆, a⋆;DRO2O) ≤ βt/

√
λ with λ > 0. As a result, RO2O is

more robust to significant distribution shift theoretically. See appendix for the proof.
Then, for online fine-tuning with new data from Donline, the following theorem shows

RO2O can consistently reduce the sub-optimality gap with online fine-tuning, as

Theorem 2. Under the same conditions as Theorem 1, with additional online experience
in the fine-tuning phase, the sub-optimality gap holds for RO2O in linear MDPs, as

SubOpt(π∗, π̃) ≤
∑T

t=1
Eπ∗

[
Γlcb
i (st, at;DRO2O ∪ Donline)

]
≤

∑T

t=1
Eπ∗

[
Γlcb
i (st, at;DRO2O)

]
,

where π̃ and π∗ are the learned policy and the optimal policy in DRO2O∪Donline, respectively.

Theorem 2 shows that the optimality gap shrinks if the data coverage of π∗ is better.
See appendix for the proof. Considering a sub-optimal dataset is used in offline training, via
interacting and learning in online fine-tuning, the agent is potential to obtain high-quality
data to consistently reduce the sub-optimality and result in a near-optimal policy.

5. Experiments

We present a comprehensive evaluation of RO2O in the context of the Offline-to-Online RL
setting. Specifically, we investigate whether RO2O can perform favorable offline training and
further policy improvement given limited interactions. We compare RO2O to existing offline
RL algorithms in offline pre-training and also compare it to offline-to-online algorithms in
online adaptation. We also conduct ablation studies and visualizations to illustrate the
effectiveness of our method.

5.1 Setups and Baselines

Our experiments are conducted on challenging environments from the D4RL (Fu et al., 2020)
benchmark, specifically focusing on the Mujoco and AntMaze tasks. These environments are
carefully selected to simulate real-world scenarios with limited data availability. We compare
RO2O with the following RL algorithms: (i) PEX (Zhang et al., 2023): A recent offline-to-
online method that performs policy expansion has shown promising results in longer online
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interaction steps. (ii) AWAC (Nair et al., 2020): An efficient algorithm that employs an
advantage-weighted actor-critic framework, which is one of the earlier methods to achieve
policy improvement during the online fine-tuning phase. (iii) IQL (Kostrikov et al., 2022):
A state-of-art offline algorithm that attempts to conduct in-sample learning and expected
regression. (iv) Cal-QL (Nakamoto et al., 2023): An efficient algorithm calibrates Q-values
within a reasonable range to improve policy performance. (v) SPOT (Wu et al., 2022): An
algorithm utilizes density regularization to limit the difference between the learning policy
and the current policy. (vi) SAC (Haarnoja et al., 2018): A SAC agent trained from scratch
which highlights the benefit of Offline-to-Online RL, as opposed to fully online RL, in terms
of learning efficiency.

5.2 Performance Comparisons

We conducted our comparisons using multiple offline datasets and tasks. In this study, we
exclude the random datasets, as in typical real-world scenarios, we rarely use a random
policy for system control. For the Mujoco locomotion tasks, we conducted 2.5M training
steps over all datasets during the offline pre-training phase. Then, we proceeded with
online fine-tuning, involving an additional 250K environment interactions. For the AntMaze
navigation tasks, we performed 1M training steps on six types of datasets with different
complexities and qualities, followed by 250K additional online interactions. It is worth
noting that we all use an ensemble size of 10 for training in both tasks. More details about
experiments and implementations are introduced in the Appendix B and C.

Offline performance on MuJoCo locomotion tasks First of all, we evaluate the
performance of each method on Mujoco locomotion tasks, which include three environments:
Halfcheetah, Walker2d, and Hopper. Different types of datasets are selected for offline pre-
training, including medium, medium-replay, medium-expert, and expert datasets. Table 1
reports the offline performance of the average normalized score across five seeds. Compared
to other algorithms, RO2O has certain superiority in the offline training phase.

Table 1: Offline performance on MuJoCo locomotion tasks.

Environment PEX AWAC IQL SPOT Cal-QL RO2O
halfcheetah-medium 48.67 ± 0.15 50.00 ± 0.27 48.33 ± 0.35 46.78 ± 0.50 47.75 ± 0.38 66.08 ± 0.45
halfcheetah-medium-replay 44.57 ± 0.47 45.28 ± 0.31 43.75 ± 0.97 43.29 ± 0.47 46.26 ± 0.57 60.89 ± 1.01
halfcheetah-medium-expert 78.9 ± 11.77 94.73 ± 0.64 94.19 ± 0.30 94.70 ± 1.02 67.14 ± 7.40 104.73 ± 2.07
halfcheetah-expert 91.2 ± 4.43 97.57 ± 0.94 97.11 ± 0.19 95.21 ± 0.93 96.5 ± 0.66 104.08 ± 1.66
walker2d-medium 61.87 ± 2.06 84.24 ± 1.15 83.96 ± 2.68 56.81 ± 3.96 64.07 ± 7.61 103.25 ± 1.67
walker2d-medium-replay 38.4 ± 13.36 80.92 ± 1.70 77.28 ± 7.45 70.49 ± 22.57 94.48 ± 6.44 93.05 ± 4.74
walker2d-medium-expert 98.8 ± 4.78 112.62 ± 0.66 111.24 ± 0.92 77.58 ± 8.49 108.26 ± 5.56 120.01 ± 0.70
walker2d-expert 103.13 ± 6.69 91.66 ± 35.78 112.67 ± 0.21 105.13 ± 13.03 111.93 ± 0.24 112.84 ± 3.42
hopper-medium 51.3 ± 5.07 71.33 ± 8.80 56.33 ± 2.83 82.25 ± 2.16 83.34 ± 0.91 104.95 ± 0.03
hopper-medium-replay 77.9 ± 5.77 96.56 ± 2.23 82.55 ± 17.57 70.37 ± 12.51 85.59 ± 1.85 103.77 ± 0.47
hopper-medium-expert 46.73 ± 48.88 108.36 ± 3.12 85.21 ± 39.43 96.52 ± 12.03 108.82 ± 0.21 112.69 ± 0.02
hopper-expert 102.27 ± 6.11 103.88 ± 8.98 100.36 ± 9.96 110.00 ± 0.41 107.29 ± 3.50 112.31 ± 0.01

Fine-tuning performance on Mujoco locomotion tasks Figure 3 illustrates the fine-
tuning performance of different methods on Mujoco locomotion tasks. Compared with pure
online RL methods such as SAC, other methods almostly reflect the advantages of offline
pre-training. Within limited online interactions, IQL, AWAC and SPOT fail to achieve
effective policy improvement, while PEX suffers from the performance drop. For PEX,
we speculate that it is due to the randomness of strategies expanded in the online phase,
which could lead to a poor initial strategy and requires lots of interactions to improve its
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Figure 3: Fine-tuning performance curves of different methods across five seeds on MuJoCo
locomotion tasks. The mean and standard deviation are shown by the solid lines and the
shaded areas, respectively.

performance. For Cal-QL, it can achieve effective performance improvement in most tasks,
but the improvement is still relatively limited. In contrast, RO2O exhibits a significant
improvement in performance during the fine-tuning process and requires fewer steps to
achieve the highest score. Compared with them, RO2O showcases comparable or better
performance with 250K fine-tuning steps, indicating the efficiency and superiority.

Offline performance on AntMaze navigation tasks We also perform evaluations on
the challenging AntMaze navigation tasks, where agents must learn to control the robot
and stick trajectories together given sparse rewards. Agents are pre-trained on six types
of datasets with different complexity and quality. Considering the poor performance of
AWAC and SAC in this task, we have opted not to compare our approach with them.
Table 2 reports the normalized scores using different methods across five seeds. We observe
that RO2O achieves the best performance on almost all tasks.

Fine-tuning performance on AntMaze navigation tasks Figure 4 demonstrates the
fine-tuning performance on AntMaze tasks. In the fine-tuning phase, IQL and SPOT achieve
stable learning but limited improvement, while PEX suffers from a performance drop. Cal-
QL rapidly enhances its performance from a poor initial policy, but cannot perform well
in large scenarios. Different from these baselines, RO2O achieves significant improvement
over all tasks within limited interactions. It provides good initial performance for online
fine-tuning within limited interaction steps, demonstrating considerable advantages. In
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Table 2: Offline performance on the challenging AntMaze environment.

Environments PEX IQL SPOT Cal-QL RO2O

antmaze-umaze 87.33 ± 4.04 77.0 ± 6.38 89 ± 5.29 65.75 ± 4.03 93.67 ± 5.77
antmaze-umaze-diverse 58.67 ± 9.07 65.24 ± 6.40 42.75 ± 5.32 48.75 ± 4.43 63.67 ± 8.02
antmaze-medium-diverse 72.33 ± 5.13 73.75 ± 6.30 74.25 ± 4.99 1.25 ± 0.96 91.67 ± 5.13
antmaze-medium-play 68 ± 6.56 66 ± 7.55 71.5 ± 8.43 0.0 ± 0.0 86.67 ± 3.06
antmaze-large-diverse 45.67 ± 4.16 30.25 ± 4.20 36.5 ± 17.62 0.0 ± 0.0 65.33 ± 5.71
antmaze-large-play 51 ± 17.69 42.0 ± 5.23 30.25 ± 17.91 0.25 ± 0.5 61.33 ± 9.82

summary, RO2O achieves robust and state-of-the-art performance in comparison to all
baseline methods in almost all tasks.
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Figure 4: Fine-tuning performance curves of different methods across five seeds on Antmaze
navigation tasks. The mean and standard deviation are shown by the solid lines and the
shaded areas, respectively.

Robustness Analysis RO2O demonstrates robust performance in all environments ex-
cept for some scenarios, such as AntMaze-large-play and AntMaze-large-diverse. The per-
formance curves seem to exhibit more fluctuating behaviors, albeit with increasing steps, the
performances are superior. We believe there are several reasons: (i) Antmaze tasks provide
binary rewards, so that similar policies could obtain largely different returns, thus leading
to fluctuated performance. While the regularization terms in RO2O aim to present smooth
Q-functions and policies, their effects can be limited when the environment is complex, as
in a large maze. (ii) In Antmaze tasks, RO2O utilizes independent TD targets instead of
shared TD targets in the Bellman update of Q-values, which in some degree increases the
diversity of Q-value estimation for OOD actions. During online fine-tuning phase, RO2O
leverages the maximum of ensemble estimation of Q-values as the TD target to encourage
the exploration of policies. This causes that agents tend to choose OOD actions, which may
not perform well and also lead to fluctuated performance.
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5.3 Ablation Study and Visualization

We analyze the effects of the smoothness regularization and OOD sampling terms on the
learning process. Specifically, we consider variants of RO2O without policy smoothing, Q-
smoothing, or OOD penalty. We conduct the ablation studies on walker2d-medium and
hopper-medium tasks. Figure 5 demonstrates the experimental results over three random
seeds. In the offline process, we observe that OOD penalty is indispensable to prevent
divergence caused by OOD actions. However, it becomes trivial in the online phase since
new states or actions may lead to high values and better policies. We also find that policy
smoothing and Q-smoothing are useful in the offline-to-online process to obtain an effective
improvement and mitigate the variance of performance.
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Figure 5: Offline (left column) and online performance (right column) when eliminating
OOD penalty, policy smoothing, or Q-smoothing.

Additional, we employ various coefficients of the different losses η1, η2, η3 and the radius
of the perturbation set ϵ to investigate the algorithm’s sensitivity to the hyperparameter,
where η1 maintains a constant value of 0.0001, η2 is tuned within {0.0, 0.1, 0.5}, η3 is
searched in {0.1, 1.0} and ϵ is tuned within {0.0, 0.005, 0.01}. The results shown in
Figure 6 demonstrate that the coefficients of the different losses are a critical factor for
both offline and online. We observed that the algorithm is relatively sensitive to the choice
of parameters, especially η3, where even small changes can lead to significant performance
degradation. Constraints on the perturbation set behavior policy may have a greater impact
compared to other coefficients. Moreover, in addition to adjusting the coefficients of the
different loss functions, we can also modify the radius of the perturbation set to avoid
excessive pessimism. Additionally, we notice that

To better understand the effectiveness of RO2O in the offline-to-online process, we
compare the distribution of the offline states and the visited states in online interactions, as
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Figure 6: Sensitivity analysis of the various coefficients η1, η2, η3 and the radius of the
perturbation set ϵ.

shown in Figure 7 (left). The states are visualized via T-SNE. Meanwhile, we use brightness
to represent the corresponding reward for each state, as shown in Figure 7 (right). We
find that, with consistent policy improvement in online fine-tuning, the agent can obtain
high-quality (i.e., with high reward) online experiences that are different from the offline
data. Such a phenomenon verifies our theoretical analysis in Theorem 2, where RO2O can
consistently reduce the sub-optimality gap and improve the policy via online fine-tuning.

Online(RO2O) Offline

0

2

4

6

Figure 7: Visualization of the distribution of states (left) and rewards (right) from offline
data and online experiences.

6. Computational Cost Comparison

We compare the computational cost of RO2O against baselines. All methods are run on a
single machine with one GPU (NVIDIA GeForce RTX 3090). For each method, we measure
the average epoch time (i.e., 1 × 103 training steps) and the GPU memory usage on the
walker2d-medium-v2 task. The results in Table 3 show that although RO2O includes the
OOD state-action sampling and the robust training procedure, it does not significantly lag
behind other baselines in terms of runtime. And we implemented these procedures efficiently
based on the parallelization of Q networks.
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Table 3: The computational cost of various algorithms on walker2d-medium-v2.

Runtime (s/epoch) GPU Memory (GB)

PEX 5.18 2.17
AWAC 8.44 5.20
IQL 6.31 2.38

SAC-10 7.82 2.23
SPOT 5.24 5.20
Cal-QL 15.7 2.69
RO2O 21.8 2.85

7. Conclusion

In this paper, we propose RO2O for Offline-to-Online RL by incorporating Q-ensembles
and smoothness regularization. By regularizing the smoothness of value and policy, RO2O
achieves stable offline learning and effective policy improvement in online fine-tuning. More-
over, RO2O maintains the same architecture in the offline-to-online process without specific
modifications. Empirical results on Mujoco and AntMaze tasks demonstrate the effective-
ness and superiority of RO2O. Future work may explore ways to perform offline-to-online
learning with domain gaps, including dynamics or reward differences.
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Appendix A. Theoretical Analysis

A.1 RO2O Algorithm in Linear MDPs

We consider the loss function of RO2O algorithm in offline learning, which contains temporal-
difference (TD) error, smoothness loss, and OOD penalty. Converting the loss function in
linear MDPs, the parameter ŵ in RO2O can be solved by

w̃offline = min
w∈Rd

[ m∑
i=1

(
yit −Qw(s

i
t, a

i
t)
)2

+
∑

(ŝ,â,ŷ)∼Dood

(
ŷ −Qw(ŝ, â)

)2
+

m∑
i=1

1

|Bd(s
i
t, ϵ)|

∑
(ŝit,s

i
t,a

i
t)∈Drobust

(
Qw(s

i
t, a

i
t)−Qw(ŝ

i
t, a

i
t)
)2]

,

(9)

where y = T̂ Q and ŷ = T̂ oodQ denote the learning targets for simplicity and |Bd(s
i
t, ϵ)|

means the size of adversarial samples. The three terms in Equation (9) correspond to TD-
loss, OOD penalty, and smoothness constraints, respectively. For the clarity of notations,
we explicitly define a dataset Dood for OOD sampling, and an adversarial dataset Drobust for
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the smoothness constraint. Following LSVI (Jin et al., 2020), the solution of Equation (9)
takes the following form as

w̃t = Λ̃−1
t

( m∑
i=1

ϕ(sit, a
i
t)y

i
t +

∑
(ŝ,â,ŷ)∼Dood

ϕ(ŝ, â)ŷ
)
, (10)

and the covariance matrix Λ̃t is

Λ̃t = Λ̃in
t + Λ̃ood

t + Λ̃robust
t

=
m∑
i=1

ϕ(sit, a
i
t)ϕ(s

i
t, a

i
t)
⊤ +

∑
Dood

ϕ(ŝt, ât)ϕ(ŝt, ât)
⊤

+
m∑
i=1

1

|Bd(s
i
t, ϵ)|

∑
Drobust

[
ϕ(ŝit, a

i
t)− ϕ(sit, a

i
t)
][
ϕ(ŝit, a

i
t)− ϕ(sit, a

i
t)
]⊤

,

(11)

where the first term Λ̃in
t is calculated on in-distribution (i.e., in Doffline) data, the second

term is Λ̃ood
t is calculated on OOD samples (i.e., in Dood), and the third term is calculated

on adversarial samples (i.e., in Drobust), .
For comparison, we consider a variant of RO2O without smoothness regularization, and

denote it as ‘variant’. The parameter of this variant can be solved by

w̃variant = min
w∈Rd

[ m∑
i=1

(
yit −Qw(s

i
t, a

i
t)
)2

+
∑

(ŝ,â,ŷ)∼Dood

(
ŷ −Qw(ŝ, â)

)2]
, (12)

Following LSVI, the solution of this variant takes a similar form as Equation (10), but
with a different covariance matrix as

Λ̃variant
t = Λ̃in

t + Λ̃ood
t .

We remark that the difference in covariance matrices between RO2O and this variant
originates from the additional adversarial samples from Drobust used in RO2O. We denote
the dataset for RO2O as

DRO2O = Doffline ∪ Dood ∪ Drobust,

and for this variant as
Dvariant = Doffline ∪ Dood

without smoothness constraints.

A.2 Effective of Smoothness with LCB

Following the theoretical framework in PEVI (Jin et al., 2021), the sub-optimality gap of
offline RL algorithms with uncertainty penalty is upper-bounded by the lower-confidence-
bound (LCB) term, defined by

Γlcb(st, at;D) = βt
[
ϕ(st, at)

⊤Λ−1
t ϕ(st, at)

]1/2
,
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which forms an uncertainty quantification with the covariance matrix Λ−1
i given the dataset

Di (Jin et al., 2020, 2021), and the form of Λt depends on the learned dataset (e.g., DRO2O

or Dvariant). βt is a factor. LCB measures the confidence interval of Q-function learned by
the given dataset. Intuitively, Γlcb

i (s, a) can be considered as a reciprocal pseudo-count of
the state-action pair in the representation space.

In the following, we aim to show the smoothness regularization leads to smaller un-
certainties for arbitrary state-action pairs, especially for OOD samples (e.g., from online
interactions). We start by building a Lemma to show the covariance matrix Λ̃robust

t intro-
duced by smoothness regularization calculated in Drobust is positive-definite.

Lemma 1. Assuming that the size of adversarial samples Bd(s
i
t, ϵ) is sufficient and the

Jacobian matrix of ϕ(s, a) has full rank, then the covariance matrix Λ̃robust
t is positive-

definite: Λ̃robust
t ⪰ λ · I where λ > 0.

Proof. For the Λ̃robust
t matrix (i.e., the third part in Eq. (8)), we denote the covariance

matrix for a specific i as Φi
t. Then we have Λ̃ood diff

t =
∑m

i=1Φ
i
t. In the following, we discuss

the condition of positive-definiteness of Φi
t. For the simplicity of notation, we omit the

superscript and subscript of sit and ait for given i and t. Specifically, we define

Φi
t =

1

|Bd(s
i
t, ϵ)|

∑
ŝj∼Dood(s)

[
ϕ(ŝj , a)− ϕ(s, a)

][
ϕ(ŝj , a)− ϕ(s, a)

]⊤
,

where j ∈ {1, . . . , N} indicates we sample |Bd(s
i
t, ϵ)| = N perturbed states for each s. For

a nonzero vector y ∈ Rd, we have

y⊤Φi
ty = y⊤

 1

N

N∑
j=1

(
ϕ(ŝj , a)− ϕ(s, a)

)(
ϕ(ŝj , a)− ϕ(s, a)

)⊤ y

=
1

N

N∑
j=1

y⊤
(
ϕ(ŝj , a)− ϕ(s, a)

)(
ϕ(ŝj , a)− ϕ(s, a)

)⊤
y

=
1

N

N∑
j=1

((
ϕ(ŝj , a)− ϕ(s, a)

)⊤
y
)2

≥ 0,

(13)

where the last inequality follows from the observation that
(
ϕ(ŝj , a)−ϕ(s, a)

)⊤
y is a scalar.

Then Φi
t is always positive semi-definite. In the following, we denote zj = ϕ(ŝj , a)−ϕ(s, a).

Then we need to prove that the condition to make Φi
t positive definite is rank[z1, . . . , zN ] = d,

where d is the feature dimension. Our proof follows contradiction.
In Equation (13), when y⊤Φi

ty = 0 with a nonzero vector y, we have z⊤j y = 0 for

all j = 1, . . . , N . Suppose the set {z1, . . . , zN} spans Rd, then there exist real numbers
{α1, . . . , αN} such that y = α1z1+ · · ·+αNzN . But we have y⊤y = α1z

⊤
1 y+ · · ·+αNz⊤Ny =

α1 × 0 + . . .+ αN × 0 = 0, yielding that y = 0, which forms a contradiction. Hence, if the
set {z1, . . . , zN} spans Rd, which is equivalent to rank[z1, . . . , zN ] = d, then Φi

t is positive
definite.

Under the given conditions, since the size of samples Bd(s
i
t, ϵ) is sufficient and the neural

network maintains useful variability to make the Jacobian matrix of ϕ(s, a) have full rank, it
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ensures that ∃k ∈ [1,m], for any nonzero vector y ∈ Rd, y⊤Φk
t y > 0. We have y⊤Λ̃robust

t y =∑m
i=1 y

⊤Φi
ty ≥ y⊤Φk

t y > 0. Therefore, Λ̃robust
t is positive definite, which concludes our

proof.

Recall the covariance matrix of the variant algorithm without smoothness constraint is
Λ̃variant
t = Λ̃in

t +Λ̃ood
t , and RO2O has a covariance matrix as Λ̃t = Λ̃variant

t +Λ̃robust
t , we have

the following corollary based on Lemma 1.

Theorem 1 (restate). Assuming that the size of adversarial samples Bd(s
i
t, ϵ) is sufficient

and the Jacobian matrix of ϕ(s, a) has full rank, the smoothness constraint leads to smaller
uncertainty for ∀(s⋆, a⋆) ∈ S ×A, as

Γlcb(s⋆, a⋆;DRO2O) < Γlcb(s⋆, a⋆;Dvariant),

where the covariance matrices for these two LCB terms are Λ̃t in Equation (11) and Λ̃in
t +

Λ̃ood
t , respectively.

Proof. According to Lemma 1, since Λrobust
t is positive-definite, we have Λrobust

t ⪰ λI with a
factor λ > 0. Meanwhile, the factor λ can be large if we have sufficient adversarial samples
and also with large variability in adversarial samples. By assuming Λ̃in

t + Λ̃ood
t is positive

definite and leveraging the properties of generalized Rayleigh quotient, we have

ϕ⊤(Λ̃variant
t )−1ϕ

ϕ⊤(Λ̃variant
t + Λ̃robust

t )−1ϕ
≥ λmin

(
(Λ̃variant

t + Λ̃robust
t )(Λ̃variant

t )−1
)

= λmin

(
I + (Λ̃robust

t )(Λ̃variant
t )−1

)
= 1 + λmin

(
(Λ̃robust

t )(Λ̃variant
t )−1

)
.

Since Λ̃robust
t and (Λ̃variant

t )−1 are both positive definite, the eigenvalues of Λ̃robust
t (Λ̃variant

t )−1

are all positive: λmin

(
Λ̃robust
t (Λ̃variant

t )−1
)
> 0, where λmin(·) is the minimum eigenvalue.

Recall the uncertainty is calculated as Γlcb(st, at;D) = βt
[
ϕ(st, at)

⊤Λ−1
t ϕ(st, at)

]1/2
.

Then for ∀ϕ(s⋆, a⋆), we have

ϕ(s⋆, a⋆)⊤(Λ̃variant
t )−1ϕ(s⋆, a⋆) > ϕ(s⋆, a⋆)⊤(Λ̃variant

t + Λ̃robust
t )−1ϕ(s⋆, a⋆)

= ϕ(s⋆, a⋆)⊤(Λ̃t)
−1ϕ(s⋆, a⋆),

which means that Γlcb(s⋆, a⋆;Dvariant) > Γlcb(s⋆, a⋆;DRO2O) and concludes our proof.

As an extreme case in tabular MDPs where the states and actions are finite, the LCB-
penalty takes a simpler form. Specifically, we consider the joint state-action space D =
|S| × |A|. Then j-th state-action pair can be encoded as a one-hot vector as ϕ(s, a) ∈ RD,
where j ∈ [0, D − 1]. By considering the tabular MDP as a special case of the linear MDP
(Yang & Wang, 2019; Jin et al., 2020), we define

ϕ(sj , aj) =


0
...
1
...
0

 ∈ RD, ϕ(sj , aj)ϕ(sj , aj)
⊤ =


0 ··· 0 ··· 0
...
. . .

...
0 1 0
...

. . .
...

0 ··· 0 ··· 0

 ∈ RD×D,
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where the value of ϕ(sj , aj) is 1 at the j-th entry and 0 elsewhere. Then the matrix
Λj =

∑m
i=0 ϕ(s

i
j , a

i
j)ϕ(s

i
j , a

i
j)

⊤ is a specific covariance matrix based on the learned datasets.
It takes the form of

Λj =


n0 0 ··· 0
0 n1 ··· 0
...

. . .
...

0 ··· nj 0

...
. . .

...
0 ··· ··· nd−1

 ,

where the j-th diagonal element of Λj is the corresponding counts for state-action (sj , aj),
i.e.,

nj = Nsj ,aj .

It thus holds that [
ϕ(sj , aj)

⊤Λ−1
j ϕ(sj , aj)

]1/2
=

1√
Nsj ,aj

. (14)

For the variant algorithm of RO2O in Equation (12), since the value function is learned
from Dvariant, the counting function also counts from this dataset. However, without any
constraints, the count for a purely OOD state-action pair (s⋆, a⋆) can approach zero, and
thus Γlcb(s⋆, a⋆;Dvariant) → ∞ according to Equation (14). In contrast, as we proved
in Lemma 1, the covariance matrix Λ̃robust

t for smoothness constraints is positive-definite
as Λ̃robust

t ⪰ λ · I where λ > 0. Then the covariance matrix for RO2O as Λ̃t ⪰ λ · I
since Λ̃t = Λ̃variant

t + Λ̃robust
t . Then, we have

[
ϕ(sj , aj)

⊤Λ−1
j ϕ(sj , aj)

]1/2
< 1/

√
λ and thus

Γlcb(s⋆, a⋆;DRO2O) ≤ βt/
√
λ with λ > 0. As a result, RO2O is more robust to significant

distribution shift theoretically.

A.3 Sub-optimality Gap of RO2O

To quantify the sub-optimality gap, we start by the following lemma to show the ensemble
Q-networks used in RO2O can recover the LCB term in linear MDPs.

Lemma 2 (Equivalence between LCB-penalty and Ensemble Uncertainty). We assume that
the noise in linear regression follows the standard Gaussian, then it holds for the posterior
of w given Di that

Vŵ[Qi(s, a)] = Vŵ

(
ϕ(s, a)⊤ŵ

)
= ϕ(s, a)⊤Λ−1ϕ(s, a), ∀(s, a) ∈ S ×A.

Proof. We refer to the proof in Lemma 1 of (Bai et al., 2022).

In RO2O, we choose the minimum value among ensemble Q-networks (i.e., minQi) as
the learning target, which is equivalent to the uncertainty penalty as i.e., Q̄ − α

√
V(Qi)

with a specific α (An et al., 2021). The following theorem shows RO2O can consistently
reduce the sub-optimality gap with online fine-tuning.

Theorem 2. Under the same conditions as Theorem 1, with additional online experience
in the fine-tuning phase, the sub-optimality gap holds for RO2O in linear MDPs, as

SubOpt(π∗, π̃) ≤
∑T

t=1
Eπ∗

[
Γlcb(st, at;DRO2O ∪ Donline)

]
≤

∑T

t=1
Eπ∗

[
Γlcb(st, at;DRO2O)

]
,

(15)
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where π̃ and π∗ are the learned policy and the optimal policy in DRO2O∪Donline, respectively.

Proof. Based on the LSVI solution of w̃offline, we consider importing additional dataset
Dfinetune in online interactions. Following a similar solution procedure as in Equation (9)
via LSVI, we obtain the solution of RO2O with online dataset as

w̃R2O2
t = (Λ̃RO2O

t )−1
( ∑

(s,a,y)∼Doffline∪Dfinetune

ϕ(s, a)y +
∑

(ŝ,â,ŷ)∼D̂ood

ϕ(ŝ, â)ŷ
)
,

where D̂ood is a new OOD dataset that contains OOD samples of both the offline and online
data. The new covariance matrix Λ̃RO2O

t is calculated on samples in both online and offline
data,

Λ̃RO2O
t = Λ̃t + Λ̃online

t

=
∑

Doffline∪Dfinetune

ϕ(sit, a
i
t)ϕ(s

i
t, a

i
t)
⊤ +

∑
D̂ood

ϕ(ŝt, ât)ϕ(ŝt, ât)
⊤

+

m∑
i=1

1

|Bd(s
i
t, ϵ)|

∑
D̂robust

[
ϕ(ŝit, a

i
t)− ϕ(sit, a

i
t)
][
ϕ(ŝit, a

i
t)− ϕ(sit, a

i
t)
]⊤

,

(16)

where each term is calculated on both the offline dataset and online fine-tuning dataset since
the proposed RO2O algorithm does not change the learning objective in the offline-to-online
process. We denote the total data used in online fine-tuning as Donline, which contains the
Dfinetune collected in interacting with the environment, the additional adversarial samples,
and the OOD samples that are constructed based onDfinetune. Then, Λ̃

RO2O
t is the covariance

matrix of samples from both offline and online datasets, i.e., DRO2O ∪ Donline.
According to the theoretical framework of pessimistic value-iteration (Jin et al., 2021),

value iteration with LCB-based uncertainty penalty is provable efficient in offline RL. Based
on the covariance matrix of RO2O, the LCB-term of RO2O learning in offline pre-training
and online-fine-tuning are

Γlcb(st, at;DRO2O) = βt[ϕ(st, at)
⊤(Λ̃t)

−1ϕ(st, at)]
1/2, (17)

and Γlcb(st, at;DRO2O ∪ Donline) = βt[ϕ(st, at)
⊤(Λ̃RO2O

t )−1ϕ(st, at)]
1/2, (18)

respectively, where Λ̃RO2O
t is defined in Equation (16). According to the definition of ξ-

uncertainty quantifier (Jin et al., 2020), Γlcb(st, at;DRO2O ∪ Donline) also forms a valid
ξ-uncertainty quantifier under mild assumptions (Yang et al., 2022). According to (Jin
et al., 2021), since Γlcb(st, at;DRO2O) is a valid ξ-uncertainty quantifier, the first inequality
of Equation (15) holds in quantifying the sub-optimality gap. Further, since Λ̃RO2O

t ⪰ Λ̃t

according to Equation 16, we have Γlcb(st, at;DRO2O ∪ Donline) ≤ Γlcb(st, at;DRO2O) by
following Equation 18 and 17, which concludes our proof.

Definition 1 (ξ-Uncertainty Quantifier). The set of penalization {Γt}t∈[T ] forms a ξ-
Uncertainty Quantifier if it holds with probability at least 1− ξ that

|T̂ Vt+1(s, a)− T Vt+1(s, a)| ≤ Γt(s, a)
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for all (s, a) ∈ S × A, where T is the Bellman equation and T̂ is the empirical Bellman
equation that estimates T based on the offline data.

Following PBRL (Bai et al., 2022) and RORL (Yang et al., 2022) that adopt ensemble
disagreement as the uncertainty quantifier, in linear MDPs, the proposed ensemble uncer-
tainty βt · U(st, at) is an estimation to the LCB-penalty Γlcb(st, at) for an appropriately
selected tuning parameter βt. As a result, our method enjoys a similar form of optimality
gap in PEVI.

Further, since our method adopts additional OOD sampling and smooth constraints,
the covariance matrix in calculating Γlcb(st, at;DRO2O) for our method becomes

Γlcb(st, at;DRO2O) = βt[ϕ(st, at)
⊤(Λ̃t)

−1ϕ(st, at)]
1
2 ,

where
Λ̃t = Λ̃in

t + Λ̃ood
t + Λ̃robust

t ,

which also serves as a ξ-uncertainty quantifier. Then the uncertainty term for RO2O is
Γlcb
i (st, at;DRO2O) in offline setting, and in online exploration it becomes ΓLCB

i (st, at;DRO2O∪
Donline). Further, our theoretical analysis in Theorem 2 shows that

SubOpt(π∗, π̃) ≤
∑T

t=1
Eπ∗

[
Γlcb
i (st, at;DRO2O ∪Donline)

]
≤

∑T

t=1
Eπ∗

[
Γlcb
i (st, at;DRO2O)

]
,

which signifies the online exploration data can consistently reduce the sub-optimality gap
of our method with ξ-uncertainty quantification.

Appendix B. Environmental Settings

In this section, we introduce more details of the experimental environments.

MuJoCo Locomotion We conduct experiments on three MuJoCo locomotion tasks from
D4RL(Fu et al., 2020), namely HalfCheetah, Walker2d, and Hopper. The goal of each
task is to move forward as far as possible without falling, while keeping the control cost
minimal. For each task, we consider three types of datasets. The medium datasets contain
trajectories collected by medium-level policies. The medium-replay datasets encompass all
samples collected during the training of a medium-level agent from scratch. In the case of
the medium-expert datasets, half of the data comprises rollouts from medium-level policies,
while the other half consists of rollouts from expert-level policies. In this study, we exclude
the random datasets, as in typical real-world scenarios, we rarely use a random policy for
system control. We utilize the v2 version of each dataset. For offline phase, We train agents
for 2.5M gradient steps over all datasets with an ensemble size of N = 10. Then we run
online fine-tuning for an additional 250K environment interactions.

Antmaze Navigation We also evaluate our method on the Antmaze navigation tasks
that involve controlling an 8-DoF ant quadruped robot to navigate through mazes and reach
a desired goal. The agent receives binary rewards based on whether it successfully reaches
the goal or not. We study each method using the following datasets from D4RL (Fu et al.,
2020): large-diverse, large-play, medium-diverse, medium-play, umaze-diverse, and umaze.
The difference between diverse and play datasets is the optimality of the trajectories they
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contain. The diverse datasets consist of trajectories directed towards random goals from
random starting points, whereas the play datasets comprise trajectories directed towards
specific locations that may not necessarily correspond to the goal. We use the v2 version
of each dataset. For offline phase, We train agents for 1M gradient steps over all datasets
with an ensemble size of N = 10. Then we run online fine-tuning for an additional 250K
environment interactions.

Appendix C. Implementation Details

In this section, we introduce implementation details and hyper-parameters for each task.

MuJoCo Locomotion We select PEX, AWAC, SAC, SPOT, Cal-QL and IQL as our
baselines in mujoco locomotion tasks. For SAC, AWAC, SPOT, Cal-QL and IQL, we use
the implementation from CORL1 with default hyperparameters. For PEX, we use the open-
source code of the original paper2. To compare the fine-tuning performance of the algorithms
under limited online interactions, we reduce the number of online interaction steps from
the previous 1M to 250K. All the hyper-parameters used in RO2O for the benchmark
experiments are listed in Table 4. η1, η2, η3 indicate the coefficient of the Q-network
smoothing loss LQsmooth, ood loss Lood and the policy smoothing loss Lpolicy, respectively,
where η1 maintains a constant value of 0.0001, η2 is tuned within {0.0, 0.1, 0.5} and η3 is
searched in {0.1, 1.0}. Additionally, for the above three losses, we construct a perturbation
set Bd(s, ϵ) = {ŝ : d(s, ŝ) ≤ ϵ} by setting different epsilons ϵ. We denote the perturbation
scales for the Q value functions, the policy, and the OOD loss as ϵQ, ϵP , ϵood. τ is set
to control the weight of LQsmooth which maintains a constant value of 0.2. The number
of sampled perturbed observations n is set for tuning within {10, 20}. And α is set to
control the pessimistic degree of Lood during the pre-trained phase. Moreover, discarding
offline data buffer is adopted in RO2O, which exhibits benefits for stable transfer in our
experiments and mitigates the distributional shift.

Table 4: Hyperparameters of RO2O for the MuJoCo domains.

Task Name η1 η2 η3 ϵQ ϵP ϵood τ n α
halfcheetah-medium

0.0001 0.0 0.1

0.001 0.001

0.00 0.2

10

0
halfcheetah-medium-replay 0.001 0.001 10
halfcheetah-medium-expert 0.001 0.001 10
halfcheetah-expert 0.005 0.005 10

hopper-medium

0.0001 0.5 0.1 0.005 0.005 0.01 0.2 20

2.0 → 0.1 (1e−6)

hopper-medium-replay 0.1 → 0.0 (1e−6)

hopper-medium-expert 3.0 → 1.0 (1e−6)

hopper-expert 4.0 → 1.0 (1e−6)

walker2d-medium

0.0001

0.1

1.0

0.01 0.01

0.01 0.2 20

1.0 → 0.1 (5e−7)
walker2d-medium-replay 0.1 0.01 0.01 0.1 → 0.1 (0.0)
walker2d-medium-expert 0.1 0.01 0.01 0.1 → 0.1 (0.0)

walker2d-expert 0.5 0.005 0.005 1.0 → 0.5 (1e−6)

Antmaze Navigation We select PEX, SPOT and Cal-QL as our baselines in antmaze
navigation tasks. For SPOT and Cal-QL, we use the implementation provided by CORL
with default hyperparameters. We directly used the experimental results provided by CORL

1. https://github.com/tinkoff-ai/CORL
2. https://github.com/Haichao-Zhang/PEX

504



Robust Offline-to-Online RL

in weight & bias for comparison. For PEX, we use the open-source code of the original
paper. To compare the fine-tuning performance of the algorithms under limited online
interactions, we reduce the number of online interaction steps from the previous 1M to
250K. We found that incorporating behavior cloning (BC) during the offline pre-training
phase of the AntMaze task can effectively improve model performance. Additionally, making
appropriate adjustments to BC during the online fine-tuning phase for certain tasks can also
enhance the algorithm’s performance and stability. And we transform AntMaze rewards
according to 4(r−0.5) as per MSG(Ghasemipour et al., 2022) or CQL(Kumar et al., 2020).
All the hyper-parameters used in RO2O for the benchmark experiments are listed in Table 5.
βBC, off and βBC, on indicate the weight of BC regularization on policy networks during offline
pre-training and online fine-tuning, respectively. The LCB policy objective and ‘Min’ policy
objective represent optimizing the policy network using Mean(Qθi(s, a))− Std(Qθi(s, a)) or
min
i

Qθi(s, a), respectively. And the meanings of other parameters remain consistent with

Table 4 under the Mujoco tasks.

Table 5: Hyper-parameters of RO2O for the AntMaze domains.

Task Name η2 η3 ϵP ϵood n policy objective βBC, off βBC, on α

umaze 0.3 LCB 5 5 1.0 → 1.0 (0.0)
umaze-diverse 0.3 LCB 10 20 2.0 → 2.0 (0.0)
medium-play

1.0
0.3

0.005 0.01 20
LCB 2 2 1.0 → 1.0 (0.0)

medium-diverse 0.3 LCB 4 4 2.0 → 1.0 (1e−6)

large-play 0.5 Min 2 8 2.0 → 1.0 (1e−6)
large-diverse 0.3 Min 2 8 1.0 → 1.0 (0.0)

Appendix D. More Discussion

Using different learning target for different tasks Most of the ensemble-based RL
algorithms use shared pessimistic target values when computing each ensemble member’s
Bellman error. However, the results reported in the reference (Ghasemipour et al., 2022;
Yang et al., 2022) and our experiments demonstrate that using independent target surpasses
highly well-tuned state-of-the-art methods by a wide margin on challenging domains such
as Antmaze. We believe there are several reasons: (i) Antmaze navigation tasks are more
complex than Mujoco locomotion tasks. Since there is significant distribution shift between
online interactions and offline data, it will be challenging to learn effective policies by rely-
ing solely on policies derived from offline data. Due to shared TD target is too pessimistic,
agents tend to avoid accessing a significant number of ODD samples, thereby limiting ex-
ploration to some extent. This also results in methods like PBRL (Bai et al., 2022) and
EDAC (An et al., 2021), which utilize shared TD targets, performing poorly on tasks such
as Antmaze. (ii) In contrast, the disparity between in-distribution and OOD policies is not
obvious in Mujoco tasks. Therefore, directly applying shared targets to achieve pessimistic
updates in Mujoco tasks ensures pessimism while also capturing the uncertainty near the
distribution. Therefore, we refer to the independent target used in the Q-value Bellman
update by MSG (Ghasemipour et al., 2022).

Comparison to RORL Here, we discuss the differences between RORL (Yang et al.,
2022) and our method from several perspectives. (i) Motivation. The motivation of ro-
bustness constraints in RORL is to improve the smoothness of policy and Q-functions in
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facing adversarial attacks. In contrast, our method focuses on offline-to-online settings,
where robustness regularization is used to prevent the distribution shift of OOD data in
online exploration. We highlight that both RORL and our method adopt the same smooth
value function/policy originally proposed in online exploration, while the motivations for in-
troducing robustness in our method and RORL are quite different. (ii) From a theoretical
perspective, we provide new theoretical results in Theorem 2, which analyzes the optimality
gap of the learned policy in online exploration with additional online datasets. With un-
certainty quantification and smoothness constraints, our method benefits from more online
exploration data without suffering from distribution shifts, which is crucial for offline-to-
online RL. Our theoretical result shows the optimality gap of our method shrinks if the
online exploration data increases the data coverage of the optimal policy, which is signifi-
cantly different from previous offline-to-online methods that should penalize OOD data in
online exploration. (iii) Empirically, our method obtains strong performance without a
specially designed online adaptation process. The offline-to-online performance does not
drop when interacting with the online environment, which is consistent with our theoretical
analysis. Benefiting from the theoretical result, our method can perform efficient policy im-
provement without specific modifications to the learning architecture in the offline-to-online
process.
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P. (2021). Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23 (6), 4909–4926.

Kostrikov, I., Nair, A., & Levine, S. (2022). Offline reinforcement learning with implicit
Q-learning. In ICLR. OpenReview.net.

Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33, 1179–
1191.

Lambert, N., Wulfmeier, M., Whitney, W., Byravan, A., Bloesch, M., Dasagi, V., Hertweck,
T., & Riedmiller, M. (2022). The challenges of exploration for offline reinforcement
learning. CoRR, abs/2201.11861.

Lan, Q., Pan, Y., Fyshe, A., & White, M. (2020). Maxmin Q-learning: Controlling the
estimation bias of Q-learning. CoRR, abs/2002.06487.

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, pp. 45–73. Springer.

Lee, K., Laskin, M., Srinivas, A., & Abbeel, P. (2021). Sunrise: A simple unified framework
for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR.

507



Wen, Yu, Yang, Chen, Bai & Wang

Lee, S., Seo, Y., Lee, K., Abbeel, P., & Shin, J. (2022). Offline-to-online reinforcement
learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature, 518 (7540), 529–533.

Nair, A., Gupta, A., Dalal, M., & Levine, S. (2020). AWAC: Accelerating online reinforce-
ment learning with offline datasets. CoRR, abs/2006.09359.

Nakamoto, M., Zhai, Y., Singh, A., Mark, M. S., Ma, Y., Finn, C., Kumar, A., & Levine,
S. (2023). Cal-QL: Calibrated offline RL pre-training for efficient online fine-tuning.
CoRR, abs/2303.05479.

Osband, I., Blundell, C., Pritzel, A., & Van Roy, B. (2016). Deep exploration via boot-
strapped DQN. Advances in neural information processing systems, 29.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Ma-
chine Learning Research, 22 (268), 1–8.

Schneegass, D., Udluft, S., & Martinetz, T. (2008). Uncertainty propagation for quality
assurance in reinforcement learning. In 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2588–
2595. IEEE.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Schweighofer, K., Dinu, M.-c., Radler, A., Hofmarcher, M., Patil, V. P., Bitto-Nemling, A.,
Eghbal-zadeh, H., & Hochreiter, S. (2022). A dataset perspective on offline reinforce-
ment learning. In Conference on Lifelong Learning Agents, pp. 470–517. PMLR.

Shen, Q., Li, Y., Jiang, H., Wang, Z., & Zhao, T. (2020). Deep reinforcement learning
with robust and smooth policy. In International Conference on Machine Learning,
pp. 8707–8718. PMLR.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362 (6419),
1140–1144.

Sinha, S., Mandlekar, A., & Garg, A. (2022). S4rl: Surprisingly simple self-supervision
for offline reinforcement learning in robotics. In Conference on Robot Learning, pp.
907–917. PMLR.

Swazinna, P., Udluft, S., & Runkler, T. (2021). Overcoming model bias for robust offline
deep reinforcement learning. Engineering Applications of Artificial Intelligence, 104,
104366.

508



Robust Offline-to-Online RL

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pp. 23–30. IEEE.

Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J., Bennice, M., Fu, C., Ma, C.,
Jiao, J., et al. (2023). Jump-start reinforcement learning. In International Conference
on Machine Learning, pp. 34556–34583. PMLR.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.. Journal of machine
learning research, 9 (11).

Wu, J., Wu, H., Qiu, Z., Wang, J., & Long, M. (2022). Supported policy optimization for
offline reinforcement learning. Advances in Neural Information Processing Systems,
35, 31278–31291.

Wu, Y., Tucker, G., & Nachum, O. (2019). Behavior regularized offline reinforcement learn-
ing. CoRR, abs/1911.11361.

Yang, L., & Wang, M. (2019). Sample-optimal parametric Q-learning using linearly additive
features. In International Conference on Machine Learning, pp. 6995–7004. PMLR.

Yang, R., Bai, C., Ma, X., Wang, Z., Zhang, C., & Han, L. (2022). RORL: Robust offline
reinforcement learning via conservative smoothing. Advances in Neural Information
Processing Systems, 35, 23851–23866.

Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55 (1), 1–36.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., & Ma, T. (2020).
MOPO: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33, 14129–14142.

Zhang, H., Xu, W., & Yu, H. (2023). Policy expansion for bridging offline-to-online rein-
forcement learning. In The Eleventh International Conference on Learning Represen-
tations.

Zhao, K., Ma, Y., Liu, J., Jianye, H., Zheng, Y., & Meng, Z. (2023). Improving offline-to-
online reinforcement learning with Q-ensembles. In ICML Workshop on New Frontiers
in Learning, Control, and Dynamical Systems.

Zhao, Y., Boney, R., Ilin, A., Kannala, J., & Pajarinen, J. (2022). Adaptive behavior cloning
regularization for stable offline-to-online reinforcement learning. In ESANN.

509


