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Abstract

The graphical structure of Probabilistic Graphical Models (PGMs) represents the condi-
tional independence (CI) relations that hold in the modeled distribution. Every separator
in the graph represents a conditional independence relation in the distribution, making
them the vehicle through which new conditional independence relations are inferred and
verified. The notion of separation in graphs depends on whether the graph is directed (i.e.,
a Bayesian Network), or undirected (i.e., a Markov Network).

The premise of all current systems-of-inference for deriving CIs in PGMs, is that the
set of CIs used for the construction of the PGM hold exactly. In practice, algorithms for
extracting the structure of PGMs from data discover approximate CIs that do not hold
exactly in the distribution. In this paper, we ask how the error in this set propagates to
the inferred CIs read off the graphical structure. More precisely, what guarantee can we
provide on the inferred CI when the set of CIs that entailed it hold only approximately?
It has recently been shown that in the general case, no such guarantee can be provided.

In this work, we prove new negative and positive results concerning this problem.
We prove that separators in undirected PGMs do not necessarily represent approximate
CIs. In other words, no guarantee can be provided for CIs inferred from the structure
of undirected graphs. We prove that such a guarantee exists for the set of CIs inferred in
directed graphical models, making the d-separation algorithm a sound and complete system
for inferring approximate CIs. We also establish improved approximation guarantees for
independence relations derived from marginal and saturated CIs.

1. Introduction

Conditional independencies (CI) are assertions of the form X⊥Y |Z, stating that the ran-
dom variables (RVs) X and Y are independent when conditioned on Z. The concept of
conditional independence is at the core of Probabilistic Graphical Models (PGMs) that
include Bayesian and Markov networks. The CI relations between the random variables
enable the modular and low-dimensional representations of high-dimensional, multivariate
distributions, and tame the complexity of inference and learning, which would otherwise be
very inefficient (Koller & Friedman, 2009; Pearl, 1989).

The implication problem is the task of determining whether a set of CIs termed an-
tecedents logically entail another CI, called the consequent, and it has received considerable
attention from both the AI and Database communities (Pearl & Paz, 1986; Geiger, Verma,
& Pearl, 1989; Geiger, Paz, & Pearl, 1991a; Sayrafi, Van Gucht, & Gyssens, 2008; Kenig
& Suciu, 2020; Kenig, Mundra, Prasaad, Salimi, & Suciu, 2020). Known algorithms for
deriving CIs from the topological structure of the graphical model are, in fact, an instance
of implication. The Directed Acyclic Graph (DAG) structure of Bayesian Networks is gen-
erated based on a set of CIs termed the recursive basis (Geiger, Verma, & Pearl, 1990),
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and the d-separation algorithm is used to derive additional CIs, implied by this set. In
undirected PGMs, also called Markov networks or Markov Random Fields (MRFs), every
pair of non-adjacent vertices u and v signify that u and v are conditionally independent
given the rest of the vertices in the graph. If the underlying distribution is strictly positive,
then this set of CIs (i.e., corresponding to the pairs of non-adjacent vertices) imply a much
larger set of CIs associated with the separators of the graph (Studený, 2018). A separator in
an undirected graph G(V,E) is a subset of vertices C ⊆ V whose removal breaks the graph
into two or more connected components. Specifically, if C is a separator in the undirected
PGM G(V,E), then the vertex set V \C can be partitioned into two disjoint sets A,B ⊆ V ,
where every path between a vertex a ∈ A and b ∈ B passes through a vertex in C. This
partitioning corresponds to the conditional independence relation A⊥B|C.

The d-separation algorithm is a sound and complete method for deriving CIs in proba-
bility distributions represented by DAGs (Geiger et al., 1989, 1990). In undirected PGMs,
graph-separation completely characterizes the conditional independence statements that can
be derived from the conditional independence statements associated with the non-adjacent
vertex pairs of the graph (Pearl, Geiger, & Verma, 1989; Geiger & Pearl, 1993; Studený,
2018). The foundation of deriving CIs in directed and undirected models is the semigraphoid
axioms and the graphoid axioms, respectively (Dawid, 1979; Geiger, Paz, & Pearl, 1991b;
Geiger & Pearl, 1993).

Current systems for inferring CIs, and the graphoid axioms in particular, assume that
both antecedents and consequent hold exactly, hence we refer to these as an exact implication
(EI). However, almost all known approaches for learning the structure of a PGM rely on CIs
extracted from data, which hold to a large degree, but cannot be expected to hold exactly.
Of these, structure-learning approaches based on information theory have been shown to
be particularly successful, and thus widely used to infer networks in many fields (Cheng,
Greiner, Kelly, Bell, & Liu, 2002; de Campos, 2006; Chen, Anantha, & Lin, 2008; Zhao,
Zhou, Zhang, & Chen, 2016; Kenig et al., 2020).

In this paper, we drop the assumption that the CIs hold exactly, and consider the
relaxation problem: if an exact implication holds, does an approximate implication hold
too? That is, if the antecedents approximately hold in the distribution, does the consequent
approximately hold as well? What guarantees can we give for the approximation? In other
words, the relaxation problem asks whether, and under what conditions, we can convert
an exact implication to an approximate one. When relaxation holds, then the error to the
consequent can be bounded, and any system-of-inference for deriving exact implications
(e.g., the semigraphoid axioms, d-separation, graph-separation), can be used to infer an
approximate implication.

To study the relaxation problem we need to measure the degree of satisfaction of a
CI. In line with previous work, we use Information Theory. This is the natural semantics
for modeling CIs because X⊥Y |Z if and only if I(X;Y |Z) = 0, where I is the conditional
mutual information. A CI is called a conditional if it has the formX → Y and Y is a function
of X. In this case, X → Y if and only if h(Y |X) = 0, where h is the conditional entropy. An
exact implication (EI) σ1, · · · , σk ⇒ τ is an assertion of the form (h(σ1)=0∧· · ·∧h(σk)=0)⇒
h(τ)=0, where τ, σ1, σ2, . . . are either triples (X;Y |Z) or pairs (Y |X) representing CIs and

conditionals respectively. If σ = (X;Y |Z), then h(σ)
def
= I(X;Y |Z) is the mutual information

measure; if σ = (Y |X), then h(σ)
def
= h(Y |X) is the conditional entropy measure. An
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approximate implication (AI) is a linear inequality h(τ) ≤ λh(Σ), where h(Σ)
def
=

∑k
i=1 h(σi),

and λ ≥ 0 is the approximation factor. We say that a class of CIs λ-relaxes if every exact
implication (EI) from the class can be transformed to an approximate implication (AI) with
an approximation factor λ. We observe that an approximate implication always implies
an exact implication because the mutual information I(·; ·|·) ≥ 0 and conditional entropy
h(·|·) are nonnegative measures. Therefore, if 0 ≤ h(τ) ≤ λh(Σ) for some λ ≥ 0, then
h(Σ) = 0⇒ h(τ) = 0.

Results. A conditional independence assertion (A;B|C) is called saturated if it men-
tions all of the random variables in the joint distribution, and it is called marginal if C = ∅.
The exact variant of implication was extensively studied (Geiger et al., 1989; Geiger &
Pearl, 1993, 1988; Geiger et al., 1991a, 1990) (see below the related work). In this paper,
we study approximate implication. Our results are summarized in Table 1.

We first consider exact implications Σ⇒ τ , where the set of antecedents Σ is comprised
of saturated CIs and conditionals, and no assumption is made on the consequent CI τ . The
syntactic fragment of exact implication from saturated and conditional antecedents was also
studied in the database community (where saturated CIs are called MVDs - Multivalued
Dependencies, and conditionals are called FDs - Functional Dependencies) (Beeri, Fagin, &
Howard, 1977; Beeri, 1980). In an undirected PGM G(V,E), every separator Z corresponds
to a saturated CI statement (X;Y |Z), where every path from a vertex x ∈ X to a vertex
y ∈ Y passes through a vertex in Z. Hence, Σ can be viewed as a set of CIs that hold in a
probability distribution represented by a Markov Network. We show that if τ can be derived
from Σ by applying the semigraphoid axioms, then the implication relaxes. Specifically, if
τ = (A;B|C), then h(τ) ≤ min {|A|, |B|}h(Σ) (i.e., where |A| denotes the number of RVs
in the set A). For n jointly-distributed random variables, this leads to a relaxation bound
of min {|A|, |B|} ≤ n/2. In previous work, it was shown that h(τ) ≤ |A|·|B|·h(Σ), leading
to a relaxation bound of n2/4 (Kenig & Suciu, 2022). This work (Theorem 4.3) tightens the
relaxation bound by an order of magnitude.

We also prove a negative result. If the implication involves the application of the inter-
section axiom (i.e., that is one of the graphoid axioms (Pearl, 1989)), then no relaxation
exists. We present a strictly positive probability distribution in which the intersection ax-
iom does not relax. Consequently, no relaxation exists for implications derived using the
intersection axiom, or more broadly, the graphoid axioms. Inferring CIs in Markov Net-
works relies on the intersection axiom (Pearl, 1989; Studený, 2018). This negative result
essentially establishes that if the CI relations associated with the non-adjacent vertex pairs
in the graph do not hold exactly, then no guarantee can be made regarding the CI relations
associated with the separators of the graph.

We show that every conditional independence relation (A;B|C) read off a Directed
Acyclic Graph (DAG) by the d-separation algorithm (Geiger et al., 1989), admits a 1-
approximation (Theorem 4.4). In other words, if Σ is the recursive basis of CIs used to
build the Bayesian network (Geiger et al., 1989), then it is guaranteed that I(A;B|C) ≤∑

i∈Σ h(σi). Furthermore, we present a family of implications for which our 1-approximation
is tight (i.e., I(A;B|C) =

∑
i∈Σ h(σi)). This result first appeared in Kenig (2021). In this

paper, we simplify the proof, and relate it to the d-separation algorithm.

We prove that every CI (A;B|C) implied by a set of marginal CIs admits a min {|A|, |B|}-
approximation. For n jointly-distributed random variables, this leads to a relaxation bound
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of min {|A|, |B|} ≤ n/2. In previous work, it was shown that h(τ) ≤ |A|·|B|·h(Σ), leading
to a relaxation bound of n2/4 (Kenig, 2021). The relaxation bound established in this work
(Theorem 4.5) is smaller by an order of magnitude.

Of independent interest is the technique used for proving the approximation guarantees.
The I-Measure (Yeung, 1991) is a theory which establishes a one-to-one correspondence
between information theoretic measures such as entropy and mutual information (defined
in Section 2) and set theory.

Related Work. The AI community has extensively studied the exact implication
problem for Conditional Independencies (CI). In a series of papers, Geiger et al. showed
that the semigraphoid axioms (Pearl & Paz, 1986) are sound and complete for deriving CI
statements that are implied by marginal CIs (Geiger & Pearl, 1993), and recursive CIs that
are used in Bayesian networks (Geiger et al., 1990; Geiger & Pearl, 1988). In the same
paper, they also showed that, when restricted to the set of strictly positive probability
distributions, the graphoid axioms are sound and complete for deriving CI statements from
saturated CIs (Geiger & Pearl, 1993). The completeness of d-separation follows from the
fact that the set of CIs derived by d-separation is precisely the closure of the recursive
basis under the semigraphoid axioms (Verma & Pearl, 1990). Studený proved that in the
general case, when no assumptions are made on the antecendents, no finite axiomatization
exists (Studený, 1990). That is, there does not exist a finite set of axioms (deductive rules)
from which all general conditional independence implications can be deduced. Recently,
Li (2023) has shown that the CI implication problem is, in general, undecidable.

The database community has studied the implication problem for integrity constraints
(Armstrong & Delobel, 1980; Beeri et al., 1977; Kontinen, Link, & Väänänen, 2013; Maier,
1983), and showed that the implication problem is decidable and axiomatizable when the
antecedents are Functional Dependencies (FDs) or Multivalued Dependencies (which corre-
spond to saturated CIs (Lee, 1987; Kenig & Suciu, 2020)), and undecidable for Embedded
Multivalued Dependencies (Herrmann, 1995).

The relaxation problem was first studied by Kenig and Suciu in the context of database
dependencies (2020), where they showed that CIs derived from a set of saturated an-
tecedents, admit an approximate implication. Importantly, they also showed that not all
exact implications relax, and presented a family of 4-variable distributions along with an
exact implication that does not admit an approximation (see Theorem 16 in Kenig and
Suciu (2020)). Consequently, it is not straightforward that exact implication necessarily
implies its approximation counterpart, and arriving at meaningful approximation guaran-
tees requires making certain assumptions on the antecedents, consequent, derivation rules,
or combination thereof.

Organization. We start in Section 2 with preliminaries. In Section 3 we describe the
role exact implication has played in probabilistic graphical models, and introduce the notion
of approximate implication. We formally state the results, and their practical implications
in Section 4. We prove that the intersection axiom does not relax in Section 5. In Section 6
we establish, through a series of lemmas, properties of exact implication that will be used
for proving our results. In Sections 7, 8, and 9, we prove the relaxation bounds for exact
implications from the set of saturated CIs, the recursive basis, and marginal CIs respectively,
(see Table 1). We conclude in Section 10.
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Type of EI
Relaxation Bounds

General
Saturated+FDs Recursive Basis Marginals
⇒ any ⇒ any ⇒ any

Semigraphoid (2n)! n/2 1 n/2
(Kenig & Suciu, 2022) (Thm. 4.3) (Thm. 4.4) (Thm. 4.5)

Graphoid ∞ (Thm. 4.1)

Table 1: Summary of results. The relaxation bounds for the implication Σ ⇒ τ under
various restrictions. (1) General ; derivation rules are the semigraphoid axioms, and no
restrictions are placed on Σ. (2) Σ is a set of saturated CIs and conditionals, and τ is any
CI or conditional. (3) Σ is the recursive basis used to generate the Bayesian network, and
τ is any CI. (4) Σ is a set of marginal CIs, and τ is any CI or conditional. (5) When the
set of derivation rules include the intersection axiom (e.g., the graphoid axioms), then no
finite relaxation bound exists.

2. Preliminaries

We denote by [n] the set {1, 2, . . . , n}. If Ω = {X1, . . . , Xn} denotes a set of variables and
U, V ⊆ Ω, then we abbreviate the union U ∪ V with UV .

2.1 Conditional Independence

Recall that two discrete random variables X,Y are called independent if p(X = x, Y =
y) = p(X = x) · p(Y = y) for all outcomes x, y. We denote by D(X) the domain of
the random variable X. Fix Ω = {X1, . . . , Xn}, a set of n jointly distributed discrete
random variables with finite domains D1, . . . ,Dn, respectively; let p be the probability
mass. For α ⊆ [n], denote by Xα the joint random variable (Xi : i ∈ α) with domain

Dα
def
=

∏
i∈αDi. We write p |= Xβ ⊥ Xγ |Xα when Xβ, Xγ are conditionally independent

given Xα; in the special case that Xα functionally determines Xβ, we write p |= Xα → Xβ.
We say that a set of random variables {X1, . . . , Xk} are mutually independent given Z if
p(X1 = x1, . . . , Xk = xk|Z) = p(X1 = x1|Z) · · · p(Xk = xk|Z). If Z = ∅, then we say that
{X1, . . . , Xk} are mutually independent.

An assertion X⊥Y |Z is called a Conditional Independence statement, or a CI; this
includes Z → Y as a special case (see Section 2.2). When XY Z = Ω we call it saturated,
and when Z = ∅ we call it marginal. A set of CIs Σ implies a CI τ , in notation Σ ⇒ τ , if
every probability distribution that satisfies Σ also satisfies τ .

2.2 Background on Information Theory

We adopt required notation from the literature on information theory (Yeung, 2008). For
n > 0, we identify the functions 2[n] → R with the vectors in R2n . All logarithms are taken
in base 2.
Polymatroids. A function h ∈ R2n is called a polymatroid if h(∅) = 0 and satisfies the
following inequalities, called Shannon inequalities:

1. Monotonicity: h(A) ≤ h(B) for A ⊆ B.
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2. Submodularity: h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for all A,B ⊆ [n].

The set of polymatroids is denoted Γn ⊆ R2n . For any polymatroid h and subsetsA,B,C,D ⊆
[n], we define1

h(B|A) def
= h(AB)− h(A), and (1)

Ih(B;C|A) def
= h(AB) + h(AC)− h(ABC)− h(A). (2)

We denote Ih(B;C|∅) by Ih(B;C). Then, ∀h ∈ Γn, Ih(B;C|A) ≥ 0 by submodularity,
and h(B|A) ≥ 0 by monotonicity. When h is clear from the context we sometimes write
I(·; ·|·) instead of Ih(·; ·|·). We say that A functionally determines B, in notation A→ B if
h(B|A) = 0. The chain rule is the identity:

Ih(B;CD|A) = Ih(B;C|A) + Ih(B;D|AC). (3)

We call the triple (B;C|A) elemental if |B| = |C| = 1; h(B|A) is a special case of Ih,
because h(B|A) = Ih(B;B|A). By the chain rule, it follows that every CI (B;C|A) can be
written as a sum of at most |B| · |C| ≤ n2/4 elemental CIs.
Entropy. If X is a random variable with a finite domain D and probability mass p, then
H(X) denotes its entropy

H(X)
def
=

∑
x∈D

p(x) log
1

p(x)
. (4)

For a set of jointly distributed random variables Ω = {X1, . . . , Xn} we define the function

h : 2[n] → R as h(α)
def
= H(Xα); h is called an entropic function, or, with some abuse,

an entropy. It is easily verified that the entropy H satisfies the Shannon inequalities, and
is thus a polymatroid. The quantities h(B|A) and Ih(B;C|A) are called the conditional
entropy and conditional mutual information respectively. The conditional independence
p |= B ⊥ C | A holds if and only if Ih(B;C|A) = 0, and similarly p |= A → B if and
only if h(B|A) = 0, where h is the entropic vector of p. Thus, entropy provides us with an
alternative characterization of CIs.

The following identity holds for conditional entropy (Yeung, 2008):

h(X1 · · ·Xk|Z) = h(X1|Z) + h(X2|X1Z) + · · ·+ h(Xk|X1 · · ·Xk−1Z). (5)

If the RVs X1, . . . , Xk are mutually independent given Z, then

h(X1 · · ·Xk|Z) = h(X1|Z) + h(X2|Z) + · · ·+ h(Xk|Z). (6)

Axioms for Conditional Independence. A dependency model M is a subset of triplets
(X;Y |Z) for which the CI X⊥Y |Z holds. For example, we say that M is a dependency
model of a joint-distribution p if the CI X⊥Y |Z holds in p for every triple (X;Y |Z) ∈M .
A semigraphoid is a dependency model that is closed under the following four axioms:

1. Symmetry: X⊥Y |Z ⇔ Y⊥X|Z.
2. Decomposition: X⊥YW |Z ⇒ X⊥Y |Z.

1. Recall that AB denotes A ∪B.
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3. Weak Union: X⊥YW |Z ⇒ X⊥Y |WZ.
4. Contraction: X⊥Y |Z and X⊥W |Y Z ⇒ X⊥YW |Z.

If, in addition, the dependency model is closed under the intersection axiom:

X⊥Y |ZW and X⊥W |ZY ⇒ X⊥YW |Z, (7)

then the dependency model is called a graphoid. The closure of a set of CIs Σ with respect
to the semigraphoid (graphoid) axioms, is a set of CIs Σ′ ⊇ Σ that can be derived from Σ
by repeated application of the semigraphoid (graphoid) axioms.

Let p be a joint probability distribution over the random variables Ω = {X1, . . . , Xn},
and let h be its entropy function. Since p |= X⊥Y |Z iff Ih(X;Y |Z) = 0, and since
Ih(X;Y |Z) ≥ 0, it follows that the semigraphoid axioms are corollaries of the chain
rule (see (3)). Since the chain rule, and the non-negativity of If (X;Y |Z) hold for all
polymatroids f ∈ Γn, it follows that the semigraphoid axioms hold for all polymatroids
f ∈ Γn. Therefore, all polymatroids are semigraphoids. By applying the chain-rule, the
semigraphoid axioms can be generalized to the following information inequalities:

1. Symmetry: Ih(X;Y |Z) = Ih(Y ;X|Z).
2. Decomposition: Ih(X;YW |Z) ≥ Ih(X;Y |Z).
3. Weak Union: Ih(X;YW |Z) ≥ Ih(X;Y |WZ).
4. Contraction: Ih(X;Y |Z) + Ih(X;W |Y Z) = Ih(X;YW |Z).

This is not the case for the intersection axiom (see (7)), which holds only for a strict
subset of the probability distributions.A sufficient condition for the intersection axiom to
hold is that the distribution is strictly positive. In Section 5, we show that contrary to
the semigraphoid axioms, the intersection axiom does not correspond to any information
inequality.

2.2.1 Representing Information Measures

In what follows we consider two information measures, CIs represented by triples (A;B|C)
whose information measure is I(A;B|C), and conditionals A→ B whose information mea-
sure is h(B|A). In this section, we show that we can make certain assumptions about
the sets A,B, and C. First, we may assume that for every triple (A;B|C) it holds that
A,B ⊃ ∅. If not, then from (2), it immediately follows that I(A;B|C) = 0, or that the CI
A⊥B|C trivially holds. Likewise, for every conditional A→ B, we may assume that B ⊃ ∅.
Otherwise, by (1), we get that h(B|A) = 0, which means that the functional dependency
A→ B trivially holds.

Lemma 2.1. Let A,B,C, and X be pairwise disjoint sets of jointly distributed random
variables, then

I(AX;BX|CX) = I(AX;B|CX) = I(A;B|CX).

Proof. By definition (see (2)), it holds that

I(AX;BX|CX) = h(ACXX) + h(BCXX)− h(ABCXXX)− h(CX)

= h(ACX) + h(BCX)− h(ABCX)− h(CX)

= I(A;B|CX).
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Lemma 2.1 implies that we may assume w.l.o.g. that in every triple (A;B|C) considered,
it holds that A ∩ C = ∅ and B ∩ C = ∅.

The following identity will be useful. It follows immediately from (1) and (2).

h(A→ B) = h(B|A) = I(B;B|A). (8)

Lemma 2.2. Let Ω be a set of jointly distributed RVs, and let A,B,X ⊆ Ω be pairwise
disjoint, jointly distributed RVs. Then

h(AX → BX) = h(AX → B) = I(B; Ω\(ABX)|AX) + I(B;B|Ω\B).

Proof. We first show that h(AX → BX) = h(AX → B). By definition (see (1)), we have
that

h(AX → BX) = h(AXBX)− h(AX) = h(ABX)− h(AX) = h(B|AX) = h(AX → B).

We now prove that h(AX → B) = I(B; Ω\(ABX)|AX) + I(B;B|Ω\B).

I(B; Ω\(ABX)|AX) + I(B;B|Ω\B)

= h(ABX) + h(Ω\B)− h(AX)− h(Ω) + 2h(Ω)− h(Ω\B)− h(Ω)

= h(ABX)− h(AX)
def
= h(B|AX)

def
= h(AX → B).

Lemma 2.2 implies that for every conditional A→ B, we may assume that A ∩ B = ∅.
Furthermore, lemma 2.2 establishes that every conditional A→ B can be expressed as the
sum of two saturated CIs. That is, h(A → B) = I(B; Ω\(AB)|A) + I(B;B|Ω\B). This
will be important for establishing our result on relaxation of implications from the set of
saturated CIs and conditionals.

3. Exact Implication and its Role in PGMs

In this section, we formally define the notions of exact and approximate implication, and
their role in undirected and directed PGMs. This provides the appropriate context for which
to present our results on approximate implication in later sections. We fix a set of variables
Ω = {X1, . . . , Xn}, and consider triples of the form σ = (X;Y |Z), where X,Y, Z ⊆ Ω,
which we call a conditional independence, CI. An implication is a formula Σ ⇒ τ , where
Σ is a set of CIs called antecedents and τ is a CI called consequent. For an n-dimensional
polymatroid h ∈ Γn, and a CI σ = (X;Y |Z), we define h(σ)

def
= Ih(X;Y |Z) (see (2)), for a

set of CIs Σ, we define h(Σ)
def
=

∑
σ∈Σ h(σ). We denote by var(σ) the set of RVs mentioned

in σ (e.g., if σ = (X1X2;X3|X4) then var(σ) = {X1, X2, X3, X4}). Fix a set K s.t. K ⊆ Γn.

Definition 3.1. The exact implication (EI) Σ ⇒ τ holds in K, denoted K |=EI Σ ⇒ τ
if, for all h ∈ K, h(Σ) = 0 implies h(τ) = 0. The λ-approximate implication (λ-AI) holds
in K, in notation K |= λ · h(Σ) ≥ h(τ), if ∀h ∈ K, λ · h(Σ) ≥ h(τ). The approximate
implication holds, in notation K |=AI (Σ ⇒ τ), if there exist a finite λ ≥ 0 such that the
λ-AI holds.
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Notice that both exact (EI) and approximate (AI) implications are preserved under
subsets of K: if K1 ⊆ K2 and K2 |=x Σ⇒ τ , then K1 |=x Σ⇒ τ , for x ∈ {EI,AI}.

Approximate implication always implies its exact counterpart. Indeed, if h(τ) ≤ λ ·h(Σ)
and h(Σ) = 0, then h(τ) ≤ 0, which further implies that h(τ) = 0, because h(τ) ≥ 0 for
every triple τ , and every polymatroid h. In this paper we study the reverse.

Definition 3.2. Let L be a syntactically-defined class of implication statements (Σ ⇒ τ),
and let K ⊆ Γn. We say that L admits a λ-relaxation in K, if every exact implication
statement (Σ⇒ τ) in L has a λ-approximation:

K |=EI Σ⇒ τ if and only if K |= λ · h(Σ) ≥ h(τ).

Example 3.3. Let Σ = {(A;B), (A;C|B)}, and τ = (A;C). Since Ih(A;C) ≤ Ih(A;BC),
and since Ih(A;BC) = Ih(A;B) + Ih(A;C|B) by the chain rule (3), then the exact impli-
cation Γn |= Σ⇒ τ admits an approximate implication with λ = 1 (i.e., a 1-AI).

In this paper, we focus on λ-relaxation in different subsets of Γn, and three syntactically-
defined classes: 1) Where Σ is a set of saturated CIs and conditionals (Section 3.1), 2) Where
Σ is the recursive basis of a Bayesian network (Section 3.2), and 3) Where Σ is a set of
marginal CIs. In what follows, we will use K |= Σ⇒ τ as shorthand for K |=EI Σ⇒ τ for
any subset of polymatroids K ⊆ Γn. If, in addition, K is clear from the context, we will
just use Σ⇒ τ . Also, we will use λ · h(Σ) ≥ h(τ) as shorthand for Γn |= λ · h(Σ) ≥ h(τ).

3.1 Markov Networks and Implication from Saturated CIs and Conditionals

Recall that a CI (X;Y |Z) is saturated if XY Z = Ω, and that conditionals are a special
case of saturated CIs (Lemma 2.2).

Theorem 3.4. (Geiger & Pearl, 1993; Beeri et al., 1977) Let Σ be a set of saturated CIs

over the set Ω
def
= {X1, . . . , Xn} of random variables, and let Σ+ denote the closure of Σ with

respect to the semigraphoid axioms. Let τ be a saturated CI over Ω. Then

Γn |= Σ⇒ τ if and only if τ ∈ Σ+.

Theorem 3.4 establishes that the semigraphoid axioms are sound and complete for infer-
ring saturated CIs from a set of saturated CIs (and conditionals). Gyssens et al. (Gyssens,
Niepert, & Gucht, 2014) improve this result by dropping any restrictions on the consequent
τ . In Section 7, we prove that if Σ is a set of saturated CIs and conditionals, then the
exact implication Γn |= Σ⇒ τ has an n/2-relaxation for any implied CI τ . In other words,
Γn |= n/2·h(Σ) ≥ h(τ).

When restricted to polymatroids that are also graphoids, then CI relations can be rep-
resented by an undirected graph. Let G(V,E) be an undirected graph, and let u, v ∈ V .
We say that u and v are adjacent if (u, v) ∈ E. A path t = (v1, . . . , vn) is a sequence of
vertices (v1, . . . , vn) such that (vi, vi+1) ∈ E for every i ∈ {1, . . . , n− 1}. We say that u
and v are connected if there is a path (u = v1, . . . , vn = v) starting at u and ending at v;
otherwise, we say that u and v are disconnected. Let X,Y ⊆ V be disjoint sets of vertices.
We say that X and Y are disconnected if x and y are disconnected for every x ∈ X and
y ∈ Y . Let V ′ ⊆ V . The graph induced by V ′ denoted G[V ′] is the graph G′(V ′, E′) where

9
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E′ def
= {(u, v) ∈ E | u, v ∈ V ′}. We say that Z ⊆ V is an X,Y -separator if, in the graph

G[V \Z], that results from G by removing the vertex-set Z and the edges adjacent to Z, X
and Y are disconnected. For an undirected graph G(V,E), we denote by X⊥GY |Z the fact
that Z is an X,Y -separator.

Let p be a joint probability distribution over the random variables Ω = {X1, . . . , Xn}.
We define Σpair

def
= {(u; v|Ω\uv) : p |= u⊥v|Ω\uv}. That is, Σpair is the set of vertex-pairs

that are conditionally independent given the rest of the variables. Observe that every CI
in Σpair is, by definition, a saturated CI. We define the independence graph G(Ω, E), where

E
def
= {(u, v) : (u; v|Ω\uv) /∈ Σpair}. That is, the edges of the independence graph are between

vertices that are not independent given the rest of the variables.

Theorem 3.5. (Geiger & Pearl, 1993) Let p be a joint probability distribution over the
random variables Ω = {X1, . . . , Xn}, with entropy function hp. Let G(Ω, E) be the inde-

pendence graph generated from Σpair
def
= {(u; v|Ω\uv) : p |= u⊥v|Ω\uv}. Let Σ+

pair denote the
closure of Σpair with respect to the graphoid axioms. If hp is a graphoid (e.g., p is strictly
positive), then for any three disjoint sets X,Y, Z ⊆ Ω, where XY Z = Ω, it holds that

(X;Y |Z) ∈ Σ+
pair if and only if X⊥GY |Z.

Theorem 3.5 establishes that the graphoid axioms are sound and complete for inferring
saturated CIs from Σpair which, in turn, correspond to graph-separation in the independence
graph. In Section 5, we show that the intersection axiom does not relax. An immediate
consequence is that no relaxation exists for exact implications whose derivation includes the
intersection axiom. Specifically, if an implication of the form Σpair ⇒ (X;Y |Z) requires the
application of the intersection axiom, then it does not translate to an inequality I(X;Y |Z) ≤
λh(Σpair) that holds for all positive distributions, and where λ is finite. Practically, this
means that the current method of inferring CIs in Markov Networks does not extend to the
case where the CIs in Σpair do not hold exactly; we illustrate in Example 3.6.

Example 3.6. Let p(A,B,C,D) be a strictly positive joint probability distribution over the

RVs A,B,C, and D. That is, p is a graphoid. Let Σpair
def
= {A⊥C|BD,A⊥D|BC}. The

independence graph associated with Σpair is presented in Figure 1. Since p is a graphoid,
then by Theorem 3.5, it holds that p |= A⊥CD|B because B is an A,CD-separator in
the independence graph. In fact, the CI A⊥CD|B is derived from the intersection axiom
(see (7)): A⊥C|BD,A⊥D|BC ⇒ A⊥CD|B.

Let ε > 0 be a small constant. In Section 5, we show that even if I(A;C|BD) ≤ ε and
I(A;D|BC) ≤ ε, there is no guaranteed upper bound on the value of I(A;CD|B) which
holds for all strictly positive distributions.

3.2 Bayesian Networks

Let G(V,E) be a Directed Acyclic Graph (DAG), and let u, v ∈ V . We say that u is
a parent of v, and v a child of u if (u → v) ∈ E. A directed path t = (v1, v2, . . . , vn)
is a sequence of vertices (v1, v2, . . . , vn) such that there is an edge (vi → vi+1) ∈ E for
every i ∈ {1, . . . , n− 1}. We say that v is a descendant of u, and u an ancestor of v if
there is a directed path from u to v. A trail t = (v1, v2, . . . , vn) is a sequence of vertices

10
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A B C

D

Figure 1: Example 3.6 of implication from Σpair.

(v1, v2, . . . , vn) such that there is an edge between vi and vi+1 for every i ∈ {1, . . . , n− 1}.
That is, (vi → vi+1) ∈ E or (vi ← vi+1) ∈ E for every i ∈ {1, . . . , n− 1}. A vertex vi
is said to be head-to-head with respect to t if (vi−1 → vi) ∈ E and (vi ← vi+1) ∈ E. A
trail t = (v1, v2, . . . , vn) is active given Z ⊆ V if (1) every vi that is a head-to-head vertex
with respect to t either belongs to Z or has a descendant in Z, and (2) every vi that is
not a head-to-head vertex with respect to t does not belong to Z. If a trail t is not active
given Z, then it is blocked given Z. Let X,Y, Z ⊆ V be pairwise disjoint. We say that
Z d-separates X from Y if every trail between x ∈ X and y ∈ Y is blocked given Z. We
denote by X⊥dsepY |Z that Z d-separates X from Y in G.

A Bayesian network encodes the CIs of a probability distribution using a DAG. Each
node Xi in a Bayesian network corresponds to the variable Xi ∈ Ω, a set of nodes α
correspond to the set of variables Xα, and xi ∈ Di is a value from the domain of Xi. Each
node Xi in the network represents the distribution p(Xi | Xπ(i)) where Xπ(i) is a set of
variables that correspond to the parent nodes π(i) of i. The distribution represented by a
Bayesian network is

p(x1, . . . , xn) =

n∏
i=1

p(xi|xπ(i)). (9)

(when i has no parents then Xπ(i) = ∅).
Equation 9 implicitly encodes a set of n conditional independence statements, called the

recursive basis for the network:

ΣRB
def
= {(Xi;X1 . . . Xi−1\π(Xi) | π(Xi)) : i ∈ [n]}. (10)

The implication problem associated with Bayesian Networks is to determine whether Γn |=
ΣRB ⇒ τ for a CI τ . Let G(Ω, E) be a DAG generated by the recursive basis ΣRB. That
is, the vertices of G are the RVs Ω, and its edges are E = {Xi → Xj |Xi ∈ π(Xj)}. Given a
CI τ = (A;B|C), the d-separation algorithm efficiently determines whether C d-separates
A from B in G. It has been shown that Γn |= ΣRB ⇒ τ if and only if C d-separates A from
B (Geiger et al., 1990).

Theorem 3.7. (Geiger et al., 1990; Geiger & Pearl, 1988; Verma & Pearl, 1988) Let f ∈ Γn

be a polymatroid, and G(Ω, E) be the DAG generated by the recursive basis ΣRB (see (10)).
Let Σ+

RB denote the closure of ΣRB with respect to the semigraphoid axioms. The following
holds for every three disjoint sets A,B,C ⊆ Ω:

Γn |= ΣRB ⇒ (A;B|C) iff (A;B|C) ∈ Σ+
RB iff A⊥dsepB|C.

11
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Theorem 3.7 establishes that both the semigraphoid axioms, and the d-separation cri-
terion, are sound and complete for inferring CI statements from the recursive basis. Since
the semigraphoid axioms follow from the Shannon inequalities ((1) and (2)), Theorem 3.7
estsablishes that the Shannon inequalities are both sound and complete for inferring CI
statements from the recursive basis. In Section 8, we show that the exact implication
Γn |= ΣRB ⇒ (A;B|C) admits a 1-relaxation.

4. Formal Statement of Results and Practical Implications

In this section, we formally state the results proved in the paper. We begin by establishing
a negative result concerning the intersection axiom (see (7)).

Theorem 4.1 (The intersection axiom does not relax). For any finite λ > 0, there exists
a strictly positive probability distribution pλ(A,B,C), such that

λ
(
Ihpλ

(A;B|C) + Ihpλ
(A;C|B)

)
< Ihpλ

(A;BC),

where hpλ is the entropy function of pλ.

Theorem 4.1 establishes that the intersection axiom (see (7)) does not relax, even when
restricted to strictly positive distributions! This result has the following practical impli-
cation. Recall from Theorem 3.5 that every X,Y -separator Z in the independence graph
G(V,E), generated using the saturated set of CIs Σpair

def
= {(u; v|V \uv) : Ih(u; v|V \uv) = 0},

corresponds to the CI Ih(X;Y |Z) = 0. In other words, by Theorem 3.5, the exact im-
plication Σpair ⇒ (X;Y |Z) holds for all graphoids. We ask whether the implication
Σpair ⇒ (X;Y |Z), derived using the graphoid axioms, and the intersection axiom in par-
ticular, translates to an inequality of the form λ · h(Σpair) ≥ I(X;Y |Z), where λ is finite
and holds for all strictly positive probability distributions. Theorem 4.1 establishes that
the answer is negative. In other words, approximate CIs cannot be derived from Σpair.

Colollary 4.2. There exist Σpair, τ with three RVs, such that Σpair ⇒ τ holds for all
graphoids, but it does not relax.

Proof. Let Σpair
def
= {A⊥B|C,A⊥C|B}. By the intersection axiom, Σpair ⇒ A⊥BC holds

for all graphoids. By Theorem 4.1, the implication Σpair ⇒ A⊥BC does not relax.

In stark contrast to the negative result of Theorem 4.1, we show that approximate CIs
can be derived using the semigraphoid axioms, and the d-separation algorithm in Bayesian
networks.

We recall that a conditional is a statement of the form A → B, which holds in a
probability distribution p if and only if h(B|A) = 0.

Theorem 4.3. Let Σ be a set of saturated CIs and conditionals over the set of variables
Ω

def
= {X1, . . . , Xn}, and let τ

def
= (A;B|C) be any CI. Then

Γn |= Σ⇒ τ if and only if Γn |= Ih(A;B|C) ≤ min {|A|, |B|}h(Σ).

12
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Theorem 4.3 generalizes Theorem 3.4 by establishing that every exact implication from
a set of saturated CIs and conditionals relaxes to the inequality Γn |= Ih(A;B|C) ≤
min {|A|, |B|}h(Σ). In other words, the implication is derived from the inequality. Note
that the only-if direction of Theorem 4.3 is immediate, and follows from the non-negativity
of Shannon’s information measures. In previous work (Kenig & Suciu, 2022), it was shown
that Γn |= Σ⇒ τ if and only if Γn |= Ih(A;B|C) ≤ |A|·|B|·h(Σ) ≤ n2/4 · h(Σ). Noting that
min {|A|, |B|} ≤ n/2, the result of Theorem 4.3 tightens the bound by an order of magnitude.

Theorem 4.4. Let Σ be a recursive set of CIs (see (10)), and let τ = (A;B|C). Then

Γn |= Σ⇒ τ if and only if Γn |= h(Σ) ≥ h(τ). (11)

The result of Theorem 4.4 has the following practical implication. Theorem 3.7 estab-
lishes that if X and Y are d-separated given Z in the DAG G(V,E), generated by the recur-
sive basis ΣRB (see (10)), then Ih(X;Y |Z) = 0. Now, let ε > 0, and suppose that for every
(Xi;X1 . . . Xi−1|π(Xi)) ∈ ΣRB, it holds that Ih(Xi;X1 . . . Xi−1|π(Xi)) ≤ ε. We ask whether
we can bound the value of Ih(X;Y |Z). Theorem 4.4 establishes that Ih(X;Y |Z) ≤ h(ΣRB).
Theorem 4.4 was first proved in Kenig (Kenig, 2021). In this paper, we simplify the proof,
and relate it to d-separation.

Finally, we consider implications from the set of marginal CIs.

Theorem 4.5. Let Σ be a set of marginal CIs, and τ = (A;B|C) be any CI. Then

Γn |= Σ⇒ τ if and only if Γn |= Ih(A;B|C) ≤ min {|A|, |B|}h(Σ). (12)

Theorem 4.5 generalizes the result of (Geiger et al., 1991b), which proved that the semi-
graphoid axioms are sound and complete for deriving marginal CIs. In previous work (Kenig,
2021), it was shown that Γn |= Σ ⇒ τ if and only if Γn |= Ih(A;B|C) ≤ |A|·|B|·h(Σ) ≤
n2/4 · h(Σ). Noting that min {|A|, |B|} ≤ n/2, the result of Theorem 4.5 tightens the bound
by an order of magnitude.

5. Intersection Axiom Does Not Relax

It is well-known that the intersection axiom (7) does not hold for all probability distribu-
tions. From this, we can immediately conclude that the intersection axiom does not relax
for all polymatroids. This follows from the fact that the entropic function associated with
any probability distribution is a polymatroid, and that approximate implication generalizes
exact implication. In this section, we prove Theorem 4.1, establishing that the intersection
axiom does not relax even for strictly positive probability distributions. In other words, we
prove the (surprising) result that even for the class of distributions in which the intersection
axiom holds, it does not relax.

Let p(A,B,C) be a strictly positive probability distribution, where Ih(A;B|C) = 0 and
Ih(A;C|B) = 0. According to the intersection axiom (7), it holds that Ih(A;BC) = 0.

To prove the Theorem, we describe the following “helper” distribution. Let A1, . . . , A7

denote mutually independent, random variables. The random variable A7 is defined
A7

def
= (A7,1, A7,2, A7,3), where A7,j is a binary RV for all j ∈ {1, 2, 3}. For i ∈ {4, 5, 6},
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Figure 2: The information diagram for the joint probability p(A,B,C) where A,B and C
are defined in (13)–(15).

Ai
def
= (Ai,1, Ai,2), where Ai,1 and Ai,2 are binary RVs. The joint distributions of A7

def
=

(A7,1, A7,2, A7,3), and Ai
def
= (Ai,1, Ai,2) for i ∈ {4, 5, 6}, are defined as follows:

A7,1 A7,2 A7,3 P

0 0 0 1
2 − 3y

0 0 1 y
0 1 0 y
0 1 1 y
1 0 0 y
1 0 1 y
1 1 0 y
1 1 1 1

2 − 3y

Table 2: Joint distribution of A7
def
=

(A7,1, A7,2, A7,3), where y ∈ (0, 16).

Ai,1 Ai,2 P

0 0 1− 3x
0 1 x
1 0 x
1 1 x

Table 3: Joint distribution of Ai
def
=

(Ai,1, Ai,2) for i ∈ {4, 5, 6}, where x ∈
(0, 13).

Finally, for A1, A2, A3 we have that P (Ai = 1) = P (Ai = 0) = 1
2 .

We define the RVs A,B, and C as follows:

A
def
= (A2, A6,1, A7,1, A5,1), (13)

B
def
= (A3, A6,2, A7,2, A4,1), and (14)

C
def
= (A1, A5,2, A7,3, A4,2). (15)

The information diagram corresponding to P (A,B,C) is presented in Figure 2.

Lemma 5.1. The joint distribution P : D(A)×D(B)×D(C)→ (0, 1) is strictly positive.

Proof. Take any assignment d ∈ D(A)×D(B)×D(C). Since A, B, and C have no common
RVs, then d uniquely maps to an assignment to the binary RVs A1,A2,A3,A4,1,A4,2,A5,1,
etc. In particular, d maps to a unique assignment to A1, A2, A3, A4, A5, A6, and A7. For all
i ∈ {1, . . . , 7}, denote by di the assignment to Ai induced by d. By definition, these RVs
are mutually independent. Hence

P (d) = P (A1 = d1, A2 = d2, A3 = d3, A4 = d4, A5 = d5, A6 = d6, A7 = d7)

= P (A1 = d1) · · ·P (A7 = d7).

14
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By definition, for every Ai it holds that p(Ai) is strictly positive (see Tables 2 and 3). This
proves the claim.

We define the following functions where x ∈ (0, 13) and y ∈ (0, 16):

δ1(x)
def
= −

(
(1− 3x) log(1− 3x) + 3x log x

)
where x ∈ (0,

1

3
), (16)

δ2(x)
def
= −

(
(1− 2x) log(1− 2x) + 2x log 2x

)
where x ∈ (0,

1

3
), (17)

f1(y)
def
= −

(
2(
1

2
− 3y) log(

1

2
− 3y) + 6y log y

)
where y ∈ (0,

1

6
), and (18)

f2(y)
def
= −

(
2(
1

2
− 2y) log(

1

2
− 2y) + 4y log 2y

)
where y ∈ (0,

1

6
). (19)

By definition of δ1(x), δ2(x), f1(y), and f2(y) (see (16)–(19)), it easily follows that

lim
x→0

δ1(x) = lim
x→0

δ2(x) = 0 and (20)

lim
y→0

f1(y) = lim
y→0

f2(x) = 1. (21)

Lemma 5.2. The following holds for any x ∈ (0, 13), and y ∈ (0, 16).

1. H(Ai) = 1 for i ∈ {1, 2, 3}.

2. H(Ai) = H(Ai,1, Ai,2) = δ1(x) for i ∈ {4, 5, 6}.

3. H(Ai,1) = H(Ai,2) = δ2(x) for i ∈ {4, 5, 6}.

4. H(A7,j) = 1 for j ∈ {1, 2, 3}.

5. H(A7,j , A7,k) = f2(y) for j ̸= k and j, k ∈ {1, 2, 3}.

6. H(A7) = H(A7,1, A7,2, A7,3) = f1(y).

where δ1, δ2, f1, and f2 are defined in (16)–(19).

Proof Overview. The proof follows from the definition of the RVs A1, A2, . . . , A7 in Tables 2,
and 3. The complete technical details are deferred to Section A in the Appendix.

Lemma 5.3. The following holds:

1. H(A) = H(B) = H(C) = 2 + 2δ2(x).

2. H(AC) = H(AB) = H(BC) = 2 + δ1(x) + 2δ2(x) + f2(y).

3. H(ABC) = 3 + 3δ1(x) + f1(y).

Proof Overview. The proof follows from the definition of the RVs A1, A2, . . . , A7 (see Ta-
bles 2, and 3), the fact that they are mutually independent, the definition of RVs A, B,
and C (see (13)–(15)), and the application of Lemma 5.2. The complete technical details
are deferred Section A in the Appendix.

15



Kenig

An immediate consequence from Lemma 5.3 is that

I(A;B|C) = H(AC) +H(BC)−H(C)−H(ABC)

= 2(δ1(x) + f2(y) + 2 + 2δ2(x))− (2 + 2δ2(x))− (3 + 3δ1(x) + f1(y))

= 2δ2(x)− δ1(x) + 2f2(y)− f1(y)− 1. (22)

By symmetry, I(A;C|B) = I(B;C|A) = 2δ2(x)− δ1(x) + 2f2(y)− f1(y)− 1 as well. And,

I(A;B) = H(A) +H(B)−H(AB)

= 2(2 + 2δ2(x))− (2 + δ1(x) + 2δ2(x) + f2(y))

= 4 + 4δ2(x)− 2− δ1(x)− 2δ2(x)− f2(y)

= 2δ2(x)− δ1(x)− f2(y) + 2. (23)

By symmetry, I(A;C) = I(B;C) = 2δ2(x)− δ1(x)− f2(y) + 2 as well.

Theorem 4.1. For any finite λ > 0, there exists a strictly positive probability distribu-
tion pλ(A,B,C), such that

λ
(
Ihpλ

(A;B|C) + Ihpλ
(A;C|B)

)
< Ihpλ

(A;BC),

where hpλ is the entropy function of pλ.

Proof. Suppose otherwise, and consider the joint probability distribution p : D(A)×D(B)×
D(C) → (0, 1), where A, B and C are defined in (13)–(15). By Lemma 5.1, p is a strictly
positive distribution for all x ∈ (0, 13), and y ∈ (0, 16). Then there exists a fixed, finite λ
such that for all x ∈ (0, 13), and all y ∈ (0, 16) it holds that

λ(I(A;B|C) + I(A;C|B)) ≥ I(A;B).

From (22) and (23), it means that for all x ∈ (0, 13), and all y ∈ (0, 16) it holds that

2λ(2δ2(x)− δ1(x) + 2f2(y)− f1(y)− 1) ≥ 2δ2(x)− δ1(x)− f2(y) + 2. (24)

By the assumption, (24) holds for all x ∈ (0, 13), and all y ∈ (0, 16). In particular, it holds in
the limits x→ 0 and y → 0. That is,

lim
x→0,
y→0

(
2λ(2δ2(x)− δ1(x) + 2f2(y)− f1(y)− 1)

)
≥︸︷︷︸
(24)

lim
x→0,
y→0

(
2δ2(x)− δ1(x)− f2(y) + 2

)
.

(25)

From (20) and (21), we have that limx→0 δ1(x) = limx→0 δ2(x) = 0, and limy→0 f1(y) =
limy→0 f2(x) = 1. Substituting into (25), we get that

2λ (2 · 0− 0 + 2− 1− 1) ≥ (2 · 0− 0− 1 + 2) , and thus

2λ · 0 ≥ 1.

Hence, no such finite λ exists, and the intersection axiom does not relax.
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Information
µ∗

Measures
H(X) µ∗(m(X))
H(XY ) µ∗ (m(X) ∪m(Y )

)
H(X|Y ) µ∗ (m(X) ∩mc(Y )

)
IH(X;Y ) µ∗ (m(X) ∩m(Y )

)
IH(X;Y |Z) µ∗ (m(X) ∩m(Y ) ∩mc(Z)

)
Table 4: Information measures and associated I-Measure.

6. Properties of Exact Implication

This section proves various technical lemmas that establish some general properties of exact
implication in the set Γn of n-dimensional polymatroids, and a certain subset of polyma-
troids called positive polymatroids, to be defined later. The lemmas in this section will be
used for proving the approximate implication guarantees presented in Section 4. A central
tool in our analysis of exact and approximate implication is the I-Measure theory (Yeung,
1991, 2008). We present the required background on the I-Measure theory in Section 6.1.

In what follows, Ω
def
= {X1, . . . , Xn} is a set of n jointly-dstributed RVs, Σ denotes a

set of triples (A;B|C), and τ denotes a single triple. We denote by var(σ) the set of RVs
mentioned in σ (e.g., if σ = (X1X2;X3|X4) then var(σ) = {X1, X2, X3, X4}).

6.1 The I-Measure

The I-Measure (Yeung, 1991, 2008) is a theory which establishes a one-to-one correspon-
dence between Shannon’s information measures and set theory. Let h ∈ Γn denote a poly-
matroid defined over the variables {X1, . . . , Xn}. Every variable Xi is associated with a set

m(Xi), and its complement mc(Xi). The universal set is Λ
def
=

⋃n
i=1m(Xi). Let α ⊆ [n]. We

denote by Xα
def
= {Xj | j ∈ α}. For the variable-set Xα, we define

m(Xα)
def
=

⋃
i∈α

m(Xi) and mc(Xα)
def
=

⋂
i∈α

mc(Xi). (26)

Definition 6.1. (Yeung, 1991, 2008) The field Fn generated by sets m(X1), . . . ,m(Xn) is
the collection of sets which can be obtained by any sequence of usual set operations (union,
intersection, complement, and difference) on m(X1), . . . ,m(Xn).

The atoms of Fn are sets of the form
⋂n

i=1 Yi, where Yi is either m(Xi) or m
c(Xi). We

denote by A the atoms of Fn. We consider only atoms in which at least one set appears in
positive form (i.e., the atom

⋂n
i=1m

c(Xi)
def
= ∅ is empty). There are 2n−1 non-empty atoms

and 22
n−1 sets in Fn expressed as the union of its atoms. A function µ : Fn → R is set

additive if, for every pair of disjoint sets A and B, it holds that µ(A∪B) = µ(A)+µ(B). A
real function µ defined on Fn is called a signed measure if it is set additive, and µ(∅) = 0.

The I-Measure µ∗ on Fn is defined by µ∗(m(Xα))
def
= H(Xα) for all nonempty subsets

α ⊆ {1, . . . , n}, where H is the entropy (4). Table 4 summarizes the extension of this
definition to the rest of the Shannon measures. Yeung’s I-Measure Theorem establishes the
one-to-one correspondence between Shannon’s information measures and µ∗.
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Theorem 6.2. (Yeung, 1991, 2008) [I-Measure Theorem] µ∗ is the unique signed mea-
sure on Fn which is consistent with all Shannon’s information measures (i.e., entropies,
conditional entropies, mutual information, and conditional mutual information).

Let σ = (X;Y |Z). We denote by m(σ)
def
= m(X)∩m(Y )∩mc(Z) the set associated with

σ (see Table 4). For a set of triples Σ, we define

m(Σ)
def
=

⋃
σ∈Σ

m(σ). (27)

Example 6.3. Let A, B, and C be three disjoint sets of RVs defined as follows: A=A1A2A3,
B=B1B2 and C=C1C2. By Theorem 6.2:

H(A) = µ∗(m(A)) = µ∗(m(A1)∪m(A2)∪m(A3)),

H(B) = µ∗(m(B)) = µ∗(m(B1)∪m(B2)), and

µ∗(mc(C)) = µ∗(mc(C1)∩mc(C2)).

By Table 4, I(A;B|C)=µ∗(m(A) ∩m(B) ∩mc(C)).

Theorem 6.2 establishes that every polymatroid h ∈ R2n is associated with a unique
signed measure µ∗ : Fn → R, termed I-Measure. The I-Measure is not necessarily positive
for entropic functions, as illustrated in the following example.

Example 6.4. Let A,B,C be binary RVs, we define the parity distribution as follows:

p(a, b, c) =

{
1
4 if a+ b+ c mod 2 = 0

0 otherwise

The entropy function h associated with p is h(A) = h(B) = h(C) = 1, and h(AB) =
h(AC) = h(BC) = h(ABC) = 2. Therefore

Ih(A;B) = h(A) + h(B)− h(AB) = 1 + 1− 2 = 0 and

Ih(A;B|C) = h(AC) + h(BC)− h(C)− h(ABC) = 2 + 2− 1− 2 = 1.

Consequently, for the I-Measure µ∗ associated with h it holds that

µ∗(m(A) ∩m(B) ∩m(C)) = µ∗(m(A) ∩m(B))− µ∗(m(A) ∩m(B) ∩mc(C))

=︸︷︷︸
Table 4

Ih(A;B)− Ih(A;B|C)

= 0− 1 = −1.

By Theorem 6.2, every polymatroid (and hence every entropic function) is associated
with a unique signed measure µ∗. The following Theorem characterizes I-Measures that
correspond to a specific subset of entropic functions.

Theorem 6.5. (Yeung, 2008) If there is no constraint on X1, . . . , Xn, then µ∗ can take
any set of nonnegative values on the nonempty atoms of Fn. In other words, if there
is no constraint on X1, . . . , Xn, and µ∗ : Fn → R≥0, then the vector h ∈ R2n

≥0 where

h(U)
def
= µ∗(m(U)) for all subsets U ⊆ {X1, . . . , Xn} is entropic.
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We say that an I-Measure µ∗ : Fn → R is positive if µ∗(a) ≥ 0 for every a ∈ Fn.
Theorem 6.5 implies that every positive I-Measure µ∗ corresponds to an entropic function
h ∈ R2n

≥0. We denote by ∆n the set of n-dimensional entropic functions that have a positive
I-Measure. Since every entropic function is a polymatroid, then ∆n ⊂ Γn. We refer to ∆n

as the set of n-dimensional positive polymatroids.

6.2 Exact Implication in the Set of Positive Polymatroids

Lemma 6.6. The following holds:

∆n |= Σ⇒ τ if and only if m(Σ) ⊇ m(τ).

Proof. Suppose that m(τ) ̸⊆ m(Σ), and let b ∈ Fn be an atom such that b ∈ m(τ)\m(Σ).
By Theorem 6.5, there exists a positive polymatroid in ∆n with an I-Measure µ∗ that
takes the following non-negative values on its atoms: µ∗(b) = 1, and µ∗(a) = 0 for any atom
a ∈ Fn where a ̸= b. Since b /∈ m(Σ), then µ∗(Σ) = 0 while µ∗(τ) = 1. Hence, ∆n ̸|= Σ⇒ τ .

Now, suppose that m(Σ) ⊇ m(τ). Then for any positive I-Measure µ∗ : Fn→R≥0, we
have that µ∗(m(Σ)) ≥ µ∗(m(τ)). By Theorem 6.2, µ∗ is the unique signed measure on Fn

that is consistent with all of Shannon’s information measures. Therefore, h(Σ) ≥ h(τ). The
result follows from the non-negativity of the Shannon information measures.

An immediate consequence of Lemma 6.6 is that m(Σ) ⊇ m(τ) is a necessary condition
for implication between polymatroids.

Colollary 6.7. If Γn |= Σ⇒ τ then m(Σ) ⊇ m(τ).

Proof. If Γn |= Σ⇒ τ then it must hold for any subset of polymatroids, and in particular,
∆n |= Σ⇒ τ . The result follows from Lemma 6.6.

Lemma 6.8. Let ∆n |= Σ ⇒ τ , and let σ ∈ Σ such that m(σ) ∩ m(τ) = ∅. Then ∆n |=
Σ\{σ} ⇒ τ .

Proof. Let Σ′ = Σ\{σ}, and suppose that ∆n ̸|= Σ′ ⇒ τ . By Lemma 6.6, we have that
m(Σ′) ̸⊇ m(τ). In other words, there is an atom a ∈ Fn such that a ∈ m(τ)\m(Σ′). In
particular, a /∈ m(σ)∪m(Σ′) = m(Σ). Hence, m(τ) ̸⊆ m(Σ), and by Lemma 6.6 we get that
∆n ̸|= Σ⇒ τ .

Colollary 6.9. Let ∆n |= Σ ⇒ τ where τ = (A;B|C), and let σ = (X;Y |Z) ∈ Σ. If
A ⊆ Z, B ⊆ Z, X ⊆ C, or Y ⊆ C, then ∆n |= Σ\{σ} ⇒ τ .

Proof. By definition, it holds that m(τ) = m(A) ∩ m(B) ∩ mc(C) = (∪a∈Am(a)) ∩
(∪b∈Bm(b)) ∩ (∩c∈Cmc(c)), and likewise m(σ) = (∪x∈Xm(x)) ∩ (∪y∈Y m(y)) ∩ (∩z∈Zmc(z)).
If A ⊆ Z, then m(σ) ⊆ mc(Z) ⊆ mc(A), while m(τ) ⊆ m(A). Therefore, m(τ) ∩m(σ) = ∅.
Similarly, if B ⊆ Z, then m(σ) ⊆ mc(Z) ⊆ mc(B), while m(τ) ⊆ m(B), and hence
m(τ) ∩m(σ) = ∅. Similarly, it is shown that if X ⊆ C or Y ⊆ C, then m(τ) ∩m(σ) = ∅.
The corollary then directly follows from Lemma 6.8.

Lemma 6.10. Let ∆n |= Σ ⇒ τ = (A;B|C). There exists a CI σ = (X;Y |Z) ∈ Σ such
that X ̸⊆ C, Y ̸⊆ C, and Z ⊆ C.
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Proof. Let Σ′ def
= {(X;Y |Z) ∈ Σ | X ̸⊆ C and Y ̸⊆ C}. By Corollary 6.9, if ∆n |= Σ ⇒ τ ,

then ∆n |= Σ′ ⇒ τ . Suppose, by way of contradiction, that for every σ = (X;Y |Z) ∈ Σ′,

it holds that Z ̸⊆ C. Consider the atom t
def
=

⋂
a∈Ω\C m(a) ∩ mc(C). Clearly, t ∈ m(τ).

Now, take any σ = (X;Y |Z) ∈ Σ′. Since Z ̸⊆ C, then there exists a variable a ∈ Z\C,
and m(σ) ⊆ mc(Z) ⊆ mc(a). On the other hand, since a /∈ C, then t ∈ m(a), and hence
t /∈ m(σ). Since this is the case for all σ ∈ Σ′, then t /∈ m(Σ′), and thus m(τ) ̸⊆ m(Σ′). By
Lemma 6.6, it holds that ∆n ̸|= Σ′ ⇒ τ , and this brings us to a contradiction.

6.3 Exact Implication in the Set of Polymatroids

The main technical result of this section is Lemma 6.12, that establishes an essential char-
acterization of exact implication in the set of of polymatroids (and entropic functions). We
start with a short technical lemma.

Lemma 6.11. Let σ = (X;Y |Z) and τ = (A;B|C) be CIs such that A ⊆ X, B ⊆ Y ,
Z ⊆ C, and C ⊆ XY Z. Then, Γn |= h(τ) ≤ h(σ).

Proof. By Lemma 2.1, we may assume that C ∩ AB = ∅, and that Z ∩ XY = ∅. Since
Z ⊆ C ⊆ XY Z, then C = CXCY Z, where CX

def
= X ∩C, and CY

def
= Y ∩C. Also, denote by

X ′ def
= X\(CX ∪A), Y ′ def

= Y \(CY ∪B). So, we have that I(X;Y |Z) = I(X ′CXA;Y ′CY B|Z).
By the chain rule (see (3)), and submodularity (i.e., I(·; ·|·) ≥ 0), we have that

I(X ′CXA;Y ′CY B|Z) = I(X ′CXA;CY |Z) + I(X ′CXA;Y ′B|CY Z) see (3)

≥ I(X ′CXA;Y ′B|CY Z)

= I(CXA;Y ′B|CY Z) + I(X ′;Y ′B|CY CXZA) see (3)

≥ I(CXA;Y ′B|CY Z)

= I(CX ;Y ′B|CY Z) + I(A;Y ′B|CY CXZ) see (3)

≥ I(A;Y ′B|CY CXZ)

= I(A;B|CXCY Z) + I(A;Y ′|CXCY BZ) see (3)

≥ I(A;B|CXCY Z)

= I(A;B|C).

The final step follows from the fact that C = ZCXCY . Hence, we get that I(A;B|C) ≤
I(X;Y |Z) as required.

Lemma 6.12. Let τ = (A;B|C). If Γn |= Σ⇒ τ then there exists a triple σ = (X;Y |Z) ∈
Σ such that

1. XY Z ⊇ ABC, and
2. ABC ∩X ̸= ∅ and ABC ∩ Y ̸= ∅.

Proof. Let τ = (A;B|C), where A = a1 . . . am, B\A = b1 . . . bℓ, C = c1 . . . ck, and U
def
=

Ω\ABC. By Lemma 2.1, we assume that AB ∩ C = ∅. Following (Geiger et al., 1991a),
we construct the parity distribution P (Ω) as follows. We let all the RVs, except a1, be
independent binary RVs with probability 1/2 for each of their two values, and let a1 be
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determined from ABC\{a1} as follows:

a1 =
m∑
i=2

ai +
ℓ∑

i=1

bi +
k∑

i=1

ci (mod 2). (28)

Let D ⊆ Ω and d ∈ D(D). We denote by DABC
def
= D ∩ABC, and by dABC the assignment

d restricted to the RVs DABC . We show that if DABC ⊊ ABC then the RVs in D are
mutually independent. By the definition of P we have that

P (D = d) =

(
1

2

)|D∩U |
P (DABC = dABC).

There are two cases with respect to D. If a1 /∈ D then, by definition, P (DABC =

dABC) =
(
1
2

)|DABC |
, and overall we get that P (D = d) =

(
1
2

)|D|
, proving that the RVs

in D are mutually independent. If a1 ∈ D, then since DABC ⊊ ABC it holds that
P (a1|DABC\{a1})=P (a1). To see this, observe that

P (a1 = 1|DABC\{a1}) =

1
2 if

∑
y∈DABC\{a1} y (mod 2)=0

1
2 if

∑
y∈DABC\{a1} y (mod 2)=1

because if, w.l.o.g.,
∑

y∈DABC\{a1} y (mod 2) = 0, then a1 = 1 implies that∑
y∈ABC\D y (mod 2) = 1, and this is the case for precisely half of the assignments

ABC\D→{0, 1}|ABC\D|. Hence, for any D ⊆ Ω such that D ∩ var(τ) ⊊ ABC, it holds

that P (D = d) =
∏

y∈D P (y = dy) =
(
1
2

)|D|
, and therefore the RVs in D are mutually

independent.
By definition of entropy (see (4)) we have that H(Xi) = 1 for every binary RV in

Ω. Since the RVs in D are mutually independent, then H(D) =
∑

y∈D H(y) = |D| (see
Section 2.2). Furthermore, for any (X;Y |Z) ∈ Σ such that XY Z ̸⊇ ABC we have that

I(X;Y |Z) = H(XZ) +H(Y Z)−H(Z)−H(XY Z)

= |XZ|+ |Y Z| − |Z| − |XY Z|
= |X|+ |Y |+ |Z| − |XY Z|
= 0.

On the other hand, letting A′def=A\{a1}, then by chain rule for entropies (see (5)), and noting
that, by (28), ABC\a1 → a1, then

H(var(τ)) = H(ABC) = H(a1A
′BC)

= H(a1|A′BC) +H(A′BC)

= 0 + |ABC| − 1 = |ABC| − 1.

Therefore,

I(A;B|C) = H(AC) +H(BC)−H(C)−H(ABC)

= |AC|+ |BC| − |C| − (|ABC| − 1) (29)

= 1.
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In other words, the parity distribution P of (28) has an entropic function hP ∈ Γn, such that
hP (σ) = 0 for all σ ∈ Σ where var(σ) ̸⊇ ABC, while hP (τ) = 1. Hence, if Γn |= Σ ⇒ τ ,
then there must be a triple σ = (X;Y |Z) ∈ Σ such that XY Z ⊇ ABC.

Now, suppose that ABC ⊆ XY Z and that ABC ∩Y = ∅. In other words, ABC ⊆ XZ.
We denote XABC

def
= X ∩ABC and ZABC

def
= Z ∩ABC. Therefore, we can write I(X;Y |Z)

as I(XABCX
′;Y |ZABCZ

′) where X ′ def
= X\XABC and Z ′ def

= Z\ZABC . Since XABCZABC =
ABC, and due to the properties of the parity distribution, we get

I(XABCX
′;Y |ZABCZ

′) =

H(XABCZABCX
′Z ′) +H(Y ZABCZ

′)−H(ZABCZ
′)−H(XABCZABCX

′Z ′Y ) =

H(ABCX ′Z ′) +H(Y ZABCZ
′)−H(ZABCZ

′)−H(ABCX ′Z ′Y ) =

H(ABC) +H(X ′Z ′) +H(Y ) +H(ZABCZ
′)−H(ZABCZ

′)−H(ABC)−H(X ′Z ′Y ) = 0.

Symmetrically, if ABC ⊆ Y Z, then I(X;Y |Z) = 0.
Overall, we showed that for all triples (X;Y |Z) ∈ Σ that do not meet the conditions

of the lemma, it holds that IhP
(X;Y |Z) = 0, while IhP

(A;B|C) = 1 (see (29)) where hP
is the entropic function associated with the parity function P in (28). Therefore, there
must be a triple σ ∈ Σ that meets the conditions of the lemma. Otherwise, we arrive at a
contradiction to the assumption that Γn |= Σ⇒ τ .

7. Approximate Implication For Saturated CIs

In this section we prove Theorem 4.3. In fact, we prove the following stronger statement.

Theorem 7.1. Let τ = (A;B|C), and let Σ be a set of saturated CIs and conditionals.
Then

∆n |= Σ⇒ τ if and only if Γn |= h(τ) ≤ min {|A|, |B|} · h(Σ). (30)

Since ∆n ⊂ Γn, then if Γn |= Σ⇒ τ , then clearly ∆n |= Σ⇒ τ . Theorem 7.1 establishes
that if Σ is a set of saturated CIs and conditionals, then ∆n |= Σ⇒ τ implies the (stronger!)
statement that Γn |= Σ ⇒ τ . Previously, it was shown that if Σ is a set of saturated CIs,
and ∆n |= Σ ⇒ τ , then Γn |= h(τ) ≤ |A|·|B|·h(Σ) (Kenig & Suciu, 2022). In particular,
h(τ) ≤ n2/4·h(Σ). Since |A ∪ B| ≤ n, then min {|A|, |B|} ≤ n/2, leading to the significantly
tighter bound of h(τ) ≤ n/2 · h(Σ).

Before proceeding, we show that w.l.o.g. we can assume that Σ consists of only saturated
CIs. If Σ contains a non-saturated term, then it must be a conditional X → Y . By
Lemma 2.2, it holds that

h(X → Y ) = h(Y |X) = Ih(Y ; Ω\(XY )|X) + Ih(Y ;Y |Ω\Y ). (31)

We create a new set of CIs by replacing every conditionalX → Y ∈ Σ with the two saturated
CIs (Y ; Ω\(XY )|X) and (Y ;Y |Ω\Y ). Denoting by Σ′ the new set of CIs, it follows from (31)
that h(Σ) = h(Σ′). Therefore, we assume w.l.o.g. that Σ contains only saturated CIs. The
proof of Theorem 7.1 relies on the following Lemma, proved in Section 7.1.

Lemma 7.2. Let τ = (a;B|C) where a ∈ Ω is a singleton, and B,C ⊆ Ω, and let Σ be a
set of saturated CIs. Then

∆n |= Σ⇒ τ if and only if Γn |= h(τ) ≤ h(Σ). (32)
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Proof of Theorem 7.1

If Γn |= h(τ) ≤ h(Σ), then whenever h(Σ) = 0, it holds that h(τ) ≤ h(Σ) = 0. By the non-
negativity of the Shannon information measures, we have that Γn |= 0 ≤ h(τ). Therefore,
if h(Σ) = 0, then h(τ) = 0; or Γn |= Σ⇒ τ . Since ∆n ⊆ Γn, then ∆n |= Σ⇒ τ .

Consider the consequent τ = (A;B|C). By Lemma 2.1, we may assume that AB∩C = ∅.
We do not assume that A∩B = ∅. Suppose, without loss of generality, that |A| ≤ |B|, and
that A = a1 . . . aK . By the chain rule of mutual information (see (3)), we have that

h(τ) = Ih(a1 . . . aK ;B|C) = Ih(a1;B|C) + Ih(a2;B|a1C) + · · ·+ Ih(aK ;B|a1 . . . aK−1C).

By Lemma 7.2, we have that Ih(ai;B|a1 . . . ai−1C) ≤ h(Σ) for every i ∈ {1, . . . ,K}. Hence,
we get that h(τ) ≤ |A| ·h(Σ). We remark that Lemma 7.2 holds also if ai ∈ B. Hence, the
theorem holds also if A∩B ̸= ∅. In particular, the theorem holds if τ = (A;A|C), in which
case τ = (C → A).

7.1 Proof of Lemma 7.2

If Γn |= h(τ) ≤ h(Σ), then whenever h(Σ) = 0, it holds that h(τ) ≤ h(Σ) = 0. By the
non-negativity of the Shannon information measures, we have Γn |= 0 ≤ h(τ). Therefore, if
h(Σ) = 0, then h(τ) = 0; or Γn |= Σ⇒ τ . Since ∆n ⊆ Γn, then ∆n |= Σ⇒ τ .

Now, suppose that ∆n |= Σ⇒ τ , and |Ω| = n. We prove the claim by reverse induction
on |C|.

Base. There are two base cases, where |C| = n − 1, and |C| = n − 2. If |C| = n − 1,
then τ = (a; a|C) where a ∈ Ω. That is, τ = (C → a) is a conditional, and aC = Ω. By
Lemma 6.10, there exists a CI σ = (X;Y |Z) ∈ Σ such that Z ⊆ C, X ̸⊆ C, and Y ̸⊆ C.
Since X ̸⊆ C, then X ∩ (Ω\C) = X ∩ {a} ≠ ∅, and hence a ∈ X. Likewise, we get that

a ∈ Y . We denote by XC
def
= X ∩ C, and YC

def
= Y ∩ C. By Lemma 6.11, we have that

h(σ) = Ih(aXC ; aYC |Z) ≥︸︷︷︸
Lemma 6.11

Ih(a; a|ZXCYC) =︸︷︷︸
Z⊆C⊆XY Z

Ih(a; a|C) = h(τ).

Since σ ∈ Σ, we get that Γn |= h(τ) ≤ h(Σ).

Now, assume that |C| = n − 2. This means that τ = (a; b|C) where a, b ∈ Ω are
singletons, and that |abC| = n. Therefore, abC = Ω. By Lemma 6.10, it holds that there
exists a CI σ = (X;Y |Z) ∈ Σ such that Z ⊆ C, X ̸⊆ C, and Y ̸⊆ C. Since X ̸⊆ C, then
X ∩ (Ω\C) ̸= ∅, and hence X ∩ ab ̸= ∅. Similarly, since Y ̸⊆ C, then Y ∩ ab ̸= ∅. Since
Z ⊆ C, then ab ∩ Z = ∅, and since Σ is saturated, then ab ⊆ XY Z, and ab ⊆ XY . So, we
may assume w.l.o.g. that a ∈ X and b ∈ Y . We denote by XC

def
= X ∩ C, and YC

def
= Y ∩ C.

By Lemma 6.11, we have that

h(σ) = Ih(aXC ; bYC |Z) ≥︸︷︷︸
Lemma 6.11

Ih(a; b|ZXCYC) =︸︷︷︸
Z⊆C⊆XY Z

Ih(a; b|C) = h(τ).

Since σ ∈ Σ, we get that Γn |= h(τ) ≤ h(Σ).
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Step. We now assume that the claim holds for all C ⊆ Ω, where |C| ≥ k + 1, and we
prove the claim for the case where |C| = k. By Lemma 6.10, it holds that there exists a
CI σ = (X;Y |Z) ∈ Σ such that Z ⊆ C, X ̸⊆ C, and Y ̸⊆ C. Since XY Z ⊇ aBC, and
Z ⊆ C, then XY ⊇ aB. So, we may assume w.l.o.g. that a ∈ X. As before, we denote by
XC

def
= X∩C, XB

def
= X∩B, X ′ def

= X \aXBXC , YC
def
= Y ∩C, YB

def
= Y ∩B, and Y ′ def

= Y \YCYB.
We write h(σ) = Ih(aXBXCX

′;YBYCY
′|Z) as follows.

Ih(aXBXCX
′;YBYCY

′|Z) = Ih (aXBXCX
′;YC |Z)︸ ︷︷ ︸

def
=α1

+Ih(aXBXCX
′;YBY

′|YCZ) (33)

=︸︷︷︸
(3)

h(α1) + Ih (aXBXCX
′;YB|YCZ)︸ ︷︷ ︸

def
=σ1

+Ih (aXBXCX
′;Y ′|YBYCZ)︸ ︷︷ ︸

def
=σ2

. (34)

Now, we consider two options for σ: (1) YB ̸= ∅, and (2) YB = ∅.
We first consider the case where YB ̸= ∅. In that case, we express h(τ) as

h(τ) = Ih(a;B|C) = Ih(a;XBYB|C) =︸︷︷︸
(3)

Ih (a;YB|C)︸ ︷︷ ︸
τ1

+Ih (a;XB|YBC)︸ ︷︷ ︸
τ2

. (35)

Since var(σ1) ⊇ var(τ1), and YCZ ⊆ C, then by Lemma 6.11, it holds that h(τ1) ≤ h(σ1).

We define Σ2
def
= (Σ\{σ}) ∪ {σ2}. Since var(σ2) = var(σ) = Ω, then σ2 is saturated, and

hence Σ2 is a set of saturated CIs. We claim that ∆n |= Σ2 ⇒ τ2. This completes the
proof for the case where YB ̸= ∅, because |YBC| > |C| = k. By the induction hypothesis
Γn |= h(τ2) ≤ h(Σ2). Therefore,

h(τ) = h(τ1) + h(τ2) ≤ h(σ1) + h(Σ2) ≤ h(α1) + h(σ1) + h(Σ2) = h(Σ).

So, we show that ∆n |= Σ2 ⇒ τ2. Since ∆n |= Σ ⇒ τ , then by (35), it holds that
∆n |= Σ ⇒ τ2. Observe that Σ = Σ2 ∪ {σ1, α1}. Since YB belongs to the conditioned
part in τ2 (i.e., m(τ2) ⊆ mc(YB)), and since YC ⊆ C, then by Corollary 6.9, it holds that
∆n |= Σ2 ⇒ τ2, as required.

We now consider the case where YB = ∅. Since Z ⊆ C, and XY Z ⊇ aBC, this means
that B ⊆ X. In this case, by repeated application of the chain rule for mutual information
(see (3)), we can express h(σ) as

h(σ) = Ih(aBXCX
′;YCY

′|Z) = Ih (aBXCX
′;YC |Z)︸ ︷︷ ︸

def
=α1

+Ih(aBXCX
′;Y ′|YCZ)

= h(α1) + Ih (XC ;Y
′|YCZ)︸ ︷︷ ︸

def
=α2

+Ih(aBX ′;Y ′|XCYCZ)

= h(α1) + h(α2) + Ih (a;Y
′|C)︸ ︷︷ ︸

def
=σ1

+Ih (B;Y ′|aC)︸ ︷︷ ︸
def
=σ2

+Ih (X
′;Y ′|aBC)︸ ︷︷ ︸

def
=α3

. (36)

where σ1
def
= (a;Y ′|C), σ2

def
= (B;Y ′|aC), and α3

def
= (X ′;Y ′|aBC). Since Y ̸⊆ C, then Y ′ ̸= ∅.

In particular, we have that ∆n |= Σ ⇒ σ2, and ∆n |= Σ ⇒ τ . By the chain rule (see (3)),
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we have that

h(τ) + h(σ2) = Ih(a;B|C) + Ih(B;Y ′|aC) = Ih (aY
′;B|C)︸ ︷︷ ︸
τ ′

,

where we denote τ ′
def
= (aY ′;B|C). Hence, it holds that ∆n |= Σ⇒ τ ′. We express h(τ ′) as

h(τ ′) = Ih(aY
′;B|C) = Ih (B;Y ′|C)︸ ︷︷ ︸

τ1

+Ih (a;B|Y ′C)︸ ︷︷ ︸
τ2

,

where we denote τ1
def
= (B;Y ′|C), and τ2

def
= (a;B|Y ′C). Since ∆n |= Σ ⇒ τ ′, then ∆n |=

Σ⇒ τ2. Since YCY
′ ⊆ Y ′C, then by Corollary 6.9, it holds that ∆n |= Σ\{σ} ⇒ τ2. Letting

Σ2
def
= Σ\{σ}, we get that ∆n |= Σ2 ⇒ τ2.
Since Σ2 ⊆ Σ, then all CIs in Σ2 are saturated. Since τ2 = (a;B|Y ′C) where Y ′ ̸= ∅, then

|Y ′C| > |C| = k. Hence, by the induction hypothesis, we have that Γn |= h(τ2) ≤ h(Σ2).
Also, by Lemma 6.11, we have that h(τ1) = Ih(B;Y ′|C) ≤ h(σ). Overall, we get that

h(τ) ≤ h(τ ′) = h(τ1) + h(τ2) ≤ h(σ) + h(Σ2) = h(Σ).

This completes the proof.

8. Approximate Implication for Recursive CIs

In this section, w e prove Theorem 4.4. Let Σ be the recursive basis (see (10)) over the
variable set Ω={X1, . . . , Xn}, and let G be the DAG generated by the recursive set Σ.
By definition, X1, . . . , Xn correspond to a topological order of the vertices in G. Let σ =
(A;B|C) where A,B,C ⊆ Ω are pairwise disjoint. We denote by IG(A;B|C) or IG(σ) the
fact that A is d-separated from B given C in G (see Section 3.2). Theorem 3.7 establishes
that d-separation is sound and complete for inferring CIs from the recursive basis. This
means that IG(A;B|C) if and only if Γn |= Σ ⇒ (A;B|C). In our proof, we will make use
of the following.

Lemma 8.1. (Pearl, 1989) Let X,Y, Z ⊆ Ω be pairwise disjoint, and let γ ∈ Ω\(XY Z).

If IG(X;Y |Z) and IG(X;Y |Zγ), then IG(X; γ|Z) or IG(Y ; γ|Z).

We prove Theorem 4.4 by induction on the highest RV-index mentioned in any triple of
Σ. The claim vacuously holds for n = 1 (since no conditional independence statements are
implied), so we assume correctness when the highest RV-index mentioned in Σ is ≤ n− 1,
and prove for n.

The recursive basis contains n CIs, Σ = {σ1, . . . , σn}, where σi = (Xi;Yi|Zi), where
YiZi = {X1, . . . , Xi−1}. In particular, only σn = (Xn;Yn|Zn) mentions the RV Xn, and it
is saturated (i.e., XnYnZn = Ω). By Lemma 2.1, we may assume that in the consequent
τ = (A;B|C), it holds that AB ∩ C = ∅. We claim that if Γn |= Σ ⇒ τ , then A ∩ B = ∅.
Suppose otherwise, and let d ∈ A ∩ B. By Lemma 6.11, we have that h(τ) ≥ I(d; d|C).
Therefore, if Γn |= Σ ⇒ τ , then Γn |= Σ ⇒ (d; d|C). By Lemma 6.12, we have that there
exists a triple (Xi;Yi|Zi) ∈ Σ, such that Xi ∩ {d} ≠ ∅ and Yi ∩ {d} ≠ ∅. But this means
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that d = Xi and d ∈ Yi. By definition of the recursive basis, we have that Xi /∈ Yi, which
brings us to a contradiction. Therefore, we may assume that A ∩ B = ∅. We denote by
Σ′ def

= Σ\{σn}, and note that Xn /∈ var(Σ′). The induction hypothesis states that

Γn |= Σ′ ⇒ τ ′ if and only if Γn |= h(Σ′) ≥ h(τ ′). (37)

Now, we consider τ = (A;B|C). We divide into three cases, and treat each one separately:

1. Xn /∈ ABC.

2. Xn ∈ A (or, symmetrically, Xn ∈ B).

3. Xn ∈ C.

Case 1: Xn /∈ ABC. By Theorem 3.7, it holds that the d-separation criterion is complete
with respect to the recursive basis. Therefore, if Γn |= Σ ⇒ (A;B|C), then IG(A;B|C).
That is, A and B are d-separated given C in G. Let G′ be the graph that results from G
by removing Xn an all edges adjacent to Xn. We claim that IG′(A;B|C). If not, then there
is an active trail P = (a, v1, . . . , vk, b) in G′ between a vertex a ∈ A and b ∈ B, given C.
Since all vertices and edges in P are included in G, and since the addition of vertices and
edges cannot block a trail (see Section 3.2), then P is an active trail given C between a and
b in G. By the completeness of d-separation, this implies that Γn ̸|= Σ⇒ τ , bringing us to
a contradiction. Therefore, it holds that IG′(A;B|C). Since the recursive basis associated

with G′ is Σ′ def
= Σ\{σn}, and since d-separation is sound, we get that Γn |= Σ′ ⇒ τ . Since

Xn /∈ var(Σ′), then by the induction hypothesis we get that Γn |= h(Σ′) ≥ h(τ).

Case 2: τ = (AXn;B|C). Recall that σn = (Xn;Yn|Zn). We claim that B ⊆ Yn. Suppose
otherwise, and let b ∈ B\Yn. Since σn is saturated, and b /∈ {Xn}∪Yn, then b ∈ Zn. Consider

the atom t
def
= m(Xn)∩m(b)∩mc(Ω\bXn). Clearly, t ∈ m(τ). On the other hand, t /∈ m(σn)

because Yn ⊆ Ω\bXn. For every σ = (Xi;Yi|Zi) ∈ Σ′ either Xi ∈ Ω\Xnb, or Yi ⊆ Ω\Xnb,
and hence t /∈ m(σ). Consequently, m(τ) ̸⊆ m(Σ′) ∪ m(σn) = m(Σ). From Corollary 6.7,
we get that Γn ̸|= Σ⇒ τ , which brings us to a contradiction. Therefore, B ⊆ Yn.

Since σn is saturated, then ABC ⊆ XnYnZn. We denote by AY
def
= A∩Yn, AZ

def
= A∩Zn,

and Y ′ def
= Yn\ABC. Similarly, we define CY , CZ , and Z ′. Since B ⊆ Yn, we can express

h(σn) as

h(σn) = Ih(Xn;BAY CY Y
′|AZCZZ

′) ≥ Ih(Xn;BY ′|AY CY AZCZZ
′)

= Ih(Xn;BY ′|ACZ ′)

≥ Ih(Xn;B|ACZ ′).

By the chain rule (see (3)), we express h(τ) as

h(τ) = Ih(AXn;B|C) = Ih (A;B|C)︸ ︷︷ ︸
τ1

+Ih (Xn;B|AC)︸ ︷︷ ︸
τ2

. (38)

Since Γn |= Σ⇒ τ then Γn |= Σ⇒ τ1, and Γn |= Σ⇒ τ2.
We claim that Γn |= Σ ⇒ (B;Z ′|AC). Suppose, by way of contradiction that Γn ̸|=

Σ ⇒ (B;Z ′|AC). By the soundness of the d-separation algorithm (Theorem 3.7), there is
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an active trail P from b ∈ B to z ∈ Z ′ given AC in G. By construction, G contains an
edge (z → Xn) for every z ∈ Zn. Since Z ′ ⊆ Zn, then G contains the edge (z → Xn),
where z ∈ Z ′. Therefore, the trail P can be augmented with the edge (z → Xn) to form
an active trail from b to Xn (given AC). Since the d-separation algorithm is complete,
this means that Γn ̸|= Σ ⇒ (Xn;B|AC). But then, Γn ̸|= Σ ⇒ τ , which brings us to a
contradiction. Therefore, Γn |= Σ ⇒ (B;Z ′|AC). Therefore, we have that Γn |= Σ ⇒
(B;Z ′|AC), (A;B|C). By the chain rule, we get that Γn |= Σ ⇒ (AZ ′;B|C). Since Xn /∈
ABCZ ′, then as in Case 1, we have that Γn |= Σ′ ⇒ (AZ ′;B|C), and by the induction
hypothesis that Γn |= h(Σ′) ≥ Ih(AZ ′;B|C).

Since Γn |= Σ′ ⇒ (AZ ′;B|C), and Γn |= h(σn) ≥ Ih(Xn;B|ACZ ′), we get that

h(τ) = Ih(AXn;B|C) ≤ I(AXnZ
′;B|C) = Ih(AZ

′;B|C) + Ih(Xn;B|ACZ ′)

≤ h(Σ′) + h(σn)

= h(Σ).

Case 3: τ = (A;B|CXn). We claim that Γn |= Σ ⇒ (A;B|C). Suppose, by way of
contradiction, that Γn ̸|= Σ⇒ (A;B|C). By the soundness of the d-separation algorithm, it
holds that A and B are not d-separated, given C, in the DAG G. By construction, Xn is a
sink vertex in G (i.e., it has only incoming edges). Consequently, this means that A and B
are not d-separated given CXn. But then, by the completeness of the d-separation algorithm
it holds that Γn ̸|= Σ ⇒ (A;B|CXn), which brings us to a contradiction. Therefore, it
holds that Γn |= Σ ⇒ (A;B|C), (A;B|CXn). By Lemma 8.1, this means that Γn |= Σ ⇒
(A;Xn|C), or Γn |= Σ ⇒ (B;Xn|C). We divide into cases accordingly. If Γn |= Σ ⇒
(A;Xn|C), then by the chain rule, we have that

Γn |= Σ⇒ (A;Xn|C), (A;B|CXn) =⇒ Γn |= Σ⇒ (A;BXn|C). (39)

If Γn |= Σ⇒ (B;Xn|C), then by the chain rule, we have that

Γn |= Σ⇒ (B;Xn|C), (A;B|CXn) =⇒ Γn |= Σ⇒ (AXn;B|C). (40)

Both cases (39) and (40) bring us back to case 2. Hence, we have that

h(Σ) ≥︸︷︷︸
(39)

Ih(A;BXn|C) ≥︸︷︷︸
Lemma 6.11

Ih(A;B|CXn) if (39) holds, and

h(Σ) ≥︸︷︷︸
(40)

Ih(AXn;B|C) ≥︸︷︷︸
Lemma 6.11

Ih(A;B|CXn) if (40) holds.

So, in both cases we get that h(Σ) ≥ h(τ) as required. This completes the proof.

8.1 Tightness of Bound

Consider a probability distribution P over Ω = {X1, . . . , Xn}, such that the following
recursive set of CIs holds in P :

Σ = {(X1;Xi|X2 . . . Xi−1) : i ∈ {2, . . . , n}}. (41)
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Let τ = (X1;X2X3 . . . Xn). It is not hard to see that by the chain rule

I(X1;X2X3 . . . Xn) =

n∑
i=2

I(X1;Xi|X2 . . . Xi−1) = h(Σ). (42)

Hence, Γn |= Σ⇒ τ , and the bound of (42) is tight.

9. Approximate Implication for Marginal CIs

In this section, we prove Theorem 4.5. Let Σ be a set of marginal mutual information
terms, and let τ = (A;B|C) such that Γn|=Σ⇒τ . By the chain rule (see (3)), we can write
τ = (a1 . . . aK ;B|C) as

h(τ) = Ih(a1 . . . aK ;B|C) = Ih(a1;B|C) + · · ·+ Ih(aK ;B|Ca1 . . . aK−1). (43)

We show, in Theorem 9.4, that if Γn |= Σ ⇒ (ai;B|Ca1 . . . ai−1), then Γn |= h(Σ) ≥
Ih(ai;B|Ca1 . . . ai−1), and thus Γn |= min {|A|, |B|} · h(Σ) ≥ h(τ), as required.

Let Σ be a set of marginal CIs defined over variables Ω, and let U ⊆ Ω. We denote by
Σ(U) the set of CIs projected onto the random variables U . Formally,

Σ(U)
def
= {(X ′;Y ′) : (X,Y ) ∈ Σ, X ′ = X ∩ U, Y ′ = Y ∩ U,X ′ ⊃ ∅, Y ′ ⊃ ∅}. (44)

Example 9.1. Suppose that Σ = {(abc; e), (def ; ac)}, then Σ(eac) = {(ac; e)}, while
Σ(def) = ∅.

Lemma 9.2. Let Σ be a set of marginal mutual information terms, and let τ = (a; b|C) be
an elemental mutual information term where a, b ∈ Ω, and C ⊆ Ω. The following holds:

Γn |= Σ⇒ τ if and only if Γn |= Σ(var(τ))⇒ τ. (45)

Proof. Since Σ is a set of marginal CIs, then by Lemma 6.11, it holds that h(Σ) ≥
h(Σ(var(τ))). Therefore, if Γn |= Σ(var(τ))⇒ τ , then clearly Γn |= Σ⇒ τ .

We prove the other direction by induction on |C|. When |C| = 0, then τ = (a; b).
By Lemma 6.12, it holds that there exists a CI σ = (X;Y ) such that (1) XY ⊇ ab, and

(2) ab ∩ X ̸= ∅ and ab ∩ Y ̸= ∅. In other words, σ = (aX ′; bY ′), where X ′ def
= X\{a}

and Y ′ def
= Y \{b}. Since σ(var(τ)) = (a; b), we get that Γn |= σ(var(τ)) ⇒ τ , and hence

Γn |= Σ(var(τ))⇒ τ . This proves the lemma for the case where |C| = 0.
So, we assume correctness for elemental terms (a; b|C) where |C|≤k, and prove for

|C| = k + 1. Since Γn |= Σ ⇒ τ , then by Lemma 6.12 there exists a mutual information
term σ = (X;Y ) ∈ Σ such that XY ⊇ abC, abC ∩ X ̸= ∅, and abC ∩ Y ̸= ∅. Hence, we

denote C = CXCY , where CX
def
= X∩C and CY

def
= Y ∩C. We also denote X ′ def

= X \ abC,

and Y ′ def
= Y \ abC. There are two cases. If σ = (aCXX ′; bCY Y

′), then σ(var(τ)) =
(aCX ; bCY ). By Lemma 6.11, it holds that Ih(aCX ; bCY ) ≥ Ih(a; b|C) = h(τ). Therefore,
Γn |= Σ(var(τ))⇒ τ .

Otherwise, w.l.o.g., σ = (abCXX ′;CY Y
′). Since abC ∩ Y ̸= ∅, then CY ̸= ∅. We define

α1
def
= (a;CY |CX) and α2

def
= (a;CY |bCX). (46)
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By Lemma 6.11, we have that h(σ) ≥ h(α1) and h(σ) ≥ h(α2). In particular, it holds that

h(σ(var(τ))) = Ih(abCX ;CY ) ≥ Ih(a;CY |bCX) = h(α2),

and thus Γn |= σ(var(τ))⇒ α2.

So, we have that Γn |= Σ ⇒ {α1, α2, τ}, where τ = (a; b|CXCY ). By the chain rule
(see (3)), it holds that (a;CY |CX), (a; b|CXCY )⇔ (a; bCY |CX). Therefore

Γn |= Σ⇒ (a;CY |CX), (a; b|CXCY )⇒ (a; bCY |CX)⇒ (a; b|CX)︸ ︷︷ ︸
def
=τ1

.

In other words, we have that Γn |= Σ ⇒ (a; b|CX). We have established that CY ̸= ∅,
and thus CX⊊C. Therefore, |CX | < |CXCY | = |C| = k + 1, and thus |CX | ≤ k. By the
induction hypothesis, it holds that Γn |= Σ(abCX) ⇒ τ1. In particular, this means that

Γn |= Σ\{σ} ⇒ τ1 because CY Y
′ ∩ abCX = ∅. Denoting Σ1

def
= Σ\{σ}, we have that

Γn |= Σ1(var(τ1))⇒ τ1 and Γn |= σ(var(τ))⇒ α2.

By the chain rule (see (3)), this means that

Γn |= Σ1(var(τ1)) ∪ σ(var(τ))⇒ (a; bCY |CX)⇒ (a; b|CXCY ) = (a; b|C) = τ. (47)

Since var(τ1) = abCX ⊂ var(τ), then by Lemma 6.11 it holds that h(Σ1(var(τ1))) ≤
h(Σ1(var(τ))). Since Γn |= Σ1(var(τ1)) ⇒ τ1, then Γn |= Σ1(var(τ)) ⇒ τ1. Since Γn |=
σ(var(τ))⇒ α2, then from (47), we get that

Γn |= Σ1(var(τ)) ∪ σ(var(τ))⇒ τ , and therefore

Γn |= Σ(var(τ))⇒ τ ,

as required. This completes the proof.

Colollary 9.3. Let Σ be a set of marginal mutual information terms, and let τ = (A;B|C).
It holds that

Γn |= Σ⇒ τ if and only if Γn |= Σ(var(τ))⇒ τ. (48)

Proof. By the chain rule of mutual information, Γn |= Σ ⇒ τ if and only if Γn |= Σ ⇒
(a; b|CA′B′) for every a ∈ A, b ∈ B, A′ ⊆ A\{a}, and B′ ⊆ B\{b}. By Lemma 9.2,
this holds only if Γn |= Σ(var(τ)) ⇒ τ . The other direction follows from the fact that
Γn |= h(Σ) ≥ h(Σ(var(τ))).

Theorem 9.4. Let Σ be a set of marginal CIs, and let τ = (a;B|C), where a ∈ Ω, and
BC ⊆ Ω. It holds that

Γn |= Σ⇒ τ if and only if Γn |= h(Σ) ≥ h(τ). (49)
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Proof. We make the assumption that Γn ̸|= Σ ⇒ (a;Bc|C\{c}), for every c ∈ C. This is

without loss of generality because otherwise, we prove the claim for τ ′
def
= (a;Bc|C\{c}). By

Lemma 6.11, it holds that h(τ ′) ≥ h(τ). Therefore, if Γn |= h(Σ) ≥ h(τ ′) then Γn |= h(Σ) ≥
h(τ).

By Corollary 9.3, it holds that Γn |= Σ⇒ τ if and only if Γn |= Σ(var(τ))⇒ τ . So, we
prove the claim for Σ(var(τ)). This gives us the desired result because, by Lemma 6.11,
it holds that h(Σ) ≥ h(Σ(var(τ))). By definition, for every σ ∈ Σ(var(τ)), it holds that
var(σ) ⊆ var(τ) = aBC.

We prove the claim by induction on |BC|. If |BC| = 1, then τ = (a; b). By Lemma 6.12,
there exists a CI σ = (X;Y ) ∈ Σ(ab), such that XY ⊇ ab. Since, var(Σ(ab)) ⊆ ab, we get
that ab ⊆ XY ⊆ ab, and hence XY = ab. Therefore, it must hold that (X;Y ) = (a; b), and
hence h(Σ) ≥ h(σ) = h(τ).

So, we assume that the claim holds for |BC| ≤ k, and prove the claim for the case
where |BC| = k + 1. Since Γn |= Σ(aBC) ⇒ τ , then by Lemma 6.12, there exists a CI
σ = (X;Y ) ∈ Σ(aBC), such that XY ⊇ aBC. Since, var(Σ(aBC)) ⊆ aBC, we get that
aBC ⊆ XY ⊆ aBC, and hence XY = aBC = var(τ). We denote by BX = B ∩X, CX =
C ∩X, BY = B ∩ Y , and CY = C ∩ Y . Since B = BXBY and C = CXCY , we can express
τ = (a;B|C) = (a;BXBY |CXCY ). There are three options: (1) σ = (X;Y ) = (aBCX ;CY )
(symmetrically σ = (CX ; aBCY )), (2) σ = (X;Y ) = (BCX ; aCY ) (or, symmetrically that
σ = (aCX ;BCY )), and (3) σ = (X;Y ) = (aBXCX ;BY CY ) where BY ̸= ∅ and BX ̸= ∅. We
prove the claim for each one of these options.

If σ = (X;Y ) = (aBCX ;CY ), then Γn |= Σ ⇒ (a;CY |CX), (a;B|CXCY ) because Γn |=
Σ ⇒ τ = (a;B|CXCY ), and by Lemma 6.11 it holds that σ ⇒ (a;CY |CX). By the chain
rule, this means that Γn |= Σ⇒ (a;BCY |CX). But this is a contradiction to our assumption
that Γn ̸|= Σ⇒ (a;Bc|C\{c}), for every c ∈ C.

If σ = (X;Y ) = (BCX ; aCY ), then the claim clearly follows from Lemma 6.11. So, we
consider the case where σ = (X;Y ) = (aBXCX ;BY CY ) where BX ̸= ∅ and BY ̸= ∅. Using
the chain rule (see (3)) we can write h(σ) = I(aBXCX ;BY CY ) as

I(aBXCX ;BY CY ) = I (CY ; aBXCX)︸ ︷︷ ︸
def
=σ1

+I (BY ; aBXCX |CY )︸ ︷︷ ︸
def
=σ2

≤︸︷︷︸
Lemma 6.11

I(CY ; aBXCX) + I (BY ; aBXC)︸ ︷︷ ︸
def
=σ3

. (50)

On the other hand, we can write

h(τ) = I(a;B|C) = I(a;BXBY |C) = I (a;BX |C)︸ ︷︷ ︸
def
=τ1

+I(a;BY |CBX).

Since Γn |= Σ⇒ τ , then Γn |= Σ⇒ τ1. By Corollary 9.3, we have that Γn |= Σ(aBXC)⇒
τ1.

Let Σ′ def
= Σ\{σ} ∪ {σ1, σ3}. By (50), we have that Σ′ is marginal, and since h(σ) ≤

h(σ1) + h(σ3), then Γn |= Σ′ ⇒ Σ, and h(Σ) ≤ h(Σ′). Therefore, Γn |= Σ′ ⇒ τ , and in
particular, Γn |= Σ′ ⇒ τ1. By Corollary 9.3, we have that Γn |= Σ′(aBXC)⇒ τ1. Since Σ′
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is marginal, and BY ∩ aBXC = ∅, then Γn |= Σ′(aBXC)\{σ3} ⇒ τ1. We observe that

h(Σ) ≥ h(Σ\{σ} ∪ {σ1}︸ ︷︷ ︸
def
=Σ1

) = h(Σ′\{σ3}) ≥ h(Σ′(aBXC)\{σ3}) = h(Σ′(aBXC)).

Hence, Γn |= Σ′(aBXC) ⇒ τ1, and Γn |= Σ1 ⇒ Σ′(aBXC). Consequently, we get that
Γn |= Σ1 ⇒ τ1, where Σ1 is marginal. From (50), we have that h(Σ1) = h(Σ)−h(σ2). Since
BY ̸= ∅, then |BXC| < |BC| = k + 1, and hence |BXC| ≤ k. Therefore, by the induction
hypothesis, we get that Γn |= h(τ1) ≤ h(Σ1). Now, we get that

h(τ) ≤ h(τ1) + h(σ2) ≤ h(Σ1) + h(σ2) = h(Σ)− h(σ2) + h(σ2) = h(Σ).

This completes the proof.

10. Conclusion and Future Work

We consider the problem of approximate implication for conditional independence. In the
general case, approximate implication does not hold (Kenig & Suciu, 2022). Therefore, we
establish results and approximation guarantees under various restrictions to the derivation
rules, and antecedents (our results are summarized in Table 1). We establish new and tighter
approximation bounds when the set of antecedents are saturated, or marginal. We also prove
a negative result showing that approximate CIs cannot be inferred from the independence
graph associated with a Markov network. The results in this paper characterize settings in
which approximate CIs can be used in place of exact CIs. This, for example, holds for the
important case of Bayesian Networks.

As part of future work, we intend to investigate restrictions to probability distributions
that allow the intersection axiom to relax. In addition, we intend to explore how our results
can be used to efficiently generate separating candidate sets that represent approximate
CIs, which can be used to synthesize decomposable models (de Campos & Huete, 1997), that
provide a good approximation of the underlying data or distribution (Kenig & Weinberger,
2023).
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APPENDIX

A. Missing Proofs from Section 5

Lemma 5.2. The following holds for any x ∈ (0, 13), and y ∈ (0, 16).

1. H(Ai) = 1 for i ∈ {1, 2, 3}.

2. H(Ai) = H(Ai,1, Ai,2) = δ1(x) for i ∈ {4, 5, 6}.
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3. H(Ai,1) = H(Ai,2) = δ2(x) for i ∈ {4, 5, 6}.

4. H(A7,j) = 1 for j ∈ {1, 2, 3}.

5. H(A7,j , A7,k) = f2(y) for j ̸= k and j, k ∈ {1, 2, 3}.

6. H(A7) = H(A7,1, A7,2, A7,3) = f1(y).

where δ1, δ2, f1, and f2 are defined in (16)–(19).

Proof. The proof is by definition, and we provide the technical details. For i ∈ {1, 2, 3}:

H(Ai) = 2 · 1
2
log 2 = 1

By the definition of A4 in Table 3, we have that

H(A4) = −
(
(1− 3x) log(1− 3x) + 3x log x

)
= δ1(x).

Proof is the same for H(A5) and H(A6).
We now computeH(A4,1). From Table 3, we have that P (A4,1 = 0) = 1−3x+x = 1−2x,

and P (A4,1 = 1) = 2x. Therefore,

H(A4,1) = −
(
(1− 2x) log(1− 2x) + 2x log 2x

)
= δ2(x).

For symmetry reasons, the same holds for H(A4,2) and H(Ai,j) for i ∈ {5, 6} and j ∈ {1, 2}.
From Table 2, we have that for all i ∈ {1, 2, 3}:

P (A7,i = 0) = P (A7,i = 1) =
1

2
.

Therefore, H(A7,i) = 1 for all i ∈ {1, 2, 3}.
Now, take any i, j ∈ {1, 2, 3} where i < j. Then, from Table 2, we have that

P (A7,i = a,A7,j = b) =

{
1
2 − 2y if a = b

2y otherwise

Therefore, we have that

H(A7,i, A7,j) = −
(
2(
1

2
− 2y) log(

1

2
− 2y) + 2 · 2y log 2y

)
= f2(y).

Finally, by Table 2, we have that

H(A7) = H(A7,1, A7,2, A7,3) = −
(
2(
1

2
− 3y) log(

1

2
− 3y) + 6y log y

)
= f1(y).

Lemma 5.3. The following holds:

1. H(A) = H(B) = H(C) = 2 + 2δ2(x).
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2. H(AC) = H(AB) = H(BC) = 2 + δ1(x) + 2δ2(x) + f2(y).

3. H(ABC) = 3 + 3δ1(x) + f1(y).

Proof.

H(A) =︸︷︷︸
(13)

H(A2, A6,1, A7,1, A5,1)

=︸︷︷︸
A1,...,A7 are

mutually-independent

H(A2) +H(A6,1) +H(A7,1) +H(A5,1)

=︸︷︷︸
Lemma 5.2

1 + δ2(x) + 1 + δ2(x)

= 2 + 2δ2(x)

By symmetry, we have that H(B) = H(C) = 2 + 2δ2(x) as well.

We now compute H(A|C).

H(A|C) =︸︷︷︸
(13),(15)

H(A2, A6,1, A7,1, A5,1|A1, A5,2, A7,3, A4,2)

=︸︷︷︸
chain rule
for entropy

H(A5,1, A7,1|A1, A5,2, A7,3, A4,2) +H(A2, A6,1|A1, A5,2, A7,3, A4,2, A5,1, A7,1)

=︸︷︷︸
independence

H(A5,1, A5,2, A7,1, A7,3, A1, A4,2)−H(A1, A5,2, A7,3, A4,2) +H(A2, A6,1)

= H(A5,1, A5,2) +H(A7,1, A7,3) +H(A1) +H(A4,2)

−H(A1)−H(A5,2)−H(A7,3)−H(A4,2) +H(A2) +H(A6,1)

= H(A5,1, A5,2) +H(A7,1, A7,3)−H(A5,2)−H(A7,3) +H(A2) +H(A6,1)

=︸︷︷︸
Lemma 5.2

δ1(x) + f2(y)− δ2(x)− 1 + 1 + δ2(x)

= δ1(x) + f2(y)

Now, since H(AC) = H(A|C) + H(C), then by the above, and the fact that H(C) =
2 + 2δ2(x), we get that

H(AC) = H(A|C) +H(C) = δ1(x) + f2(y) + 2 + 2δ2(x)

as required.
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Finally, we compute H(A|BC).

H(A|BC) =︸︷︷︸
(13),(14),(15)

H(A2, A6,1, A7,1, A5,1|A1, A5,2, A7,3, A4,2, A3, A6,2, A7,2, A4,1)

= H(A1, A2, A3, (A4,1, A4,2), (A6,1, A6,2), (A7,1, A7,2, A7,3), (A5,1, A5,2))

−H(A1, A3, (A4,1, A4,2), A5,2, A6,2, A7,2, A7,3)

= H(A1) +H(A2) +H(A3) +H(A4) +H(A5) +H(A6) +H(A7)

−H(A1)−H(A3)−H(A4)−H(A5,2)−H(A6,2)−H(A7,2, A7,3)

= H(A2) +H(A5) +H(A6) +H(A7)−H(A5,2)−H(A6,2)−H(A7,2, A7,3)

=︸︷︷︸
Lemma 5.2

1 + δ1(x) + δ1(x) + f1(y)− δ2(x)− δ2(x)− f2(y)

= 1 + 2δ1(x) + f1(y)− f2(y)− 2δ2(x)

Since H(ABC) = H(A|BC) +H(BC), we get that

H(ABC) = 1 + 2δ1(x) + f1(y)− f2(y)− 2δ2(x) + (δ1(x) + f2(y) + 2 + 2δ2(x))

= 3 + 3δ1(x) + f1(y).
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