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Abstract
Dealing with aleatoric uncertainty is key in many domains involving sequential decision

making, e.g., planning in AI, network protocols, and symbolic program synthesis. This
paper presents a general-purpose model-based framework to obtain policies operating in
uncertain environments in a fully automated manner. The new concept of coloured Markov
Decision Processes (MDPs) enables a succinct representation of a wide range of synthesis
problems. A coloured MDP describes a collection of possible policy configurations with their
structural dependencies. The framework covers the synthesis of (a) programmatic policies
from probabilistic program sketches and (b) finite-state controllers representing policies
for partially observable MDPs (POMDPs), including decentralised POMDPs as well as
constrained POMDPs. We show that all these synthesis problems can be cast as exploring
memoryless policies in the corresponding coloured MDP. This exploration uses a symbiosis of
two orthogonal techniques: abstraction refinement—using a novel refinement method—and
counter-example generalisation. Our approach outperforms dedicated synthesis techniques
on some problems and significantly improves an earlier version of this framework.

1. Introduction

Markov decision processes (MDPs) are a prominent model for sequential decision making
under aleatoric uncertainty. For a given MDP, a standard task is the computation of a
policy1 that optimises some (un)discounted reward over an (in)finite horizon (Puterman,
1994). These tasks can easily be extended to consider undiscounted rewards over an indefinite
horizon, i.e., to maximise the reward obtained until reaching a goal state or maximising
the probability that some temporal logic specification is satisfied (Baier et al., 2018). A
range of well-known results ensure that these policies can be efficiently computed (both in
theory and in practice). A practical concern is that in sequential decision making there are
multiple, potentially competing objectives (Hayes et al., 2023; de Nijs et al., 2021). A popular
research direction is therefore to consider constrained MDPs (Altman, 1999). Here, a second
objective is imposed: The expected secondary reward (often the cost) must be above (or
below) some value. These models can be further generalised towards finding Pareto optimal

1. We sometimes refer to the policies as controllers since we usually represent them as finite-state controllers.
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policies (Forejt, Kwiatkowska, & Parker, 2012) at the expense of a significant computational
cost.

In this paper, we extend the perspective of constrained MDP policies: in addition to
imposing constraints on the collected reward, we also constrain the shape or structure of the
(finite-state) controller representing the policy, i.e., of the policy space. These constraints
can encode aspects that are often captured by using partially observable MDPs, e.g., that
specific features of the state space is not available to the agent, but also encode that an agent
must explicitly communicate to obtain specific information (which requires decentralised
partially observable MDPs).

The constraints are more flexible than what is expressible with the extensions of MDPs
mentioned above. By explicitly formulating the constraints, we can consider algorithms that
find provably (almost) optimal policies within the constrained policy space. Constraining
the shape of controllers may also be used to restrict the policies’ complexity, e.g., in terms of
memory used. This option is helpful if the policy must be explained—or even executed—by
a human. The latter observation has motivated work that limits the number of α-vectors in
partially observable MDP (POMDP) policies (Ferrer-Mestres et al., 2021) or searches for
decision-tree shaped policies (Vos & Verwer, 2023)2. We can encode symmetries that ensure
that an agent behaves similarly in various settings, or that a specific costly action is not
taken too frequently. In a similar spirit, we may already know that a good policy is best
explained using some (potentially unobservable) statistics of the current system state that
can be easily memorised, e.g., that a pong player must remember the direction of a ball,
even if that is not immediately observable, or that a user should remember the password for
the repeat-password check.

To integrate these kinds of “controller shape” constraints, we propose a generic framework
for the policy synthesis problem for MDPs given a (symbolic description of) the entire policy
design space. The analysis of any fixed policy within this design space is straightforward:
The main challenge is to handle large design spaces, i.e., design spaces with lots of flexibility
and options. Our approach is inspired by the syntax-guided program synthesis (Alur et al.,
2015) paradigm in which the design space (of programs) is represented by a program sketch
describing syntactic constraints on candidate programs. The oracle-guided inductive synthesis
approach (Jha et al., 2010; Solar-Lezama et al., 2005) to program synthesis uses a learner to
select a candidate program from the design space. An oracle answers whether the candidate
meets the specification and crucially provides additional information if it does not. Various
instances of inductive synthesis exist, including counter-example guided synthesis (Solar-
Lezama et al., 2006), synthesis from input-output examples (Osera & Zdancewic, 2015) and
inductive logical programming (Cropper & Dumančić, 2022). These approaches seek for
a program that adequately generalises training examples. In this paper, we replace the
training examples (i.e. data) with a formal specification describing the desired behaviour of
a program.

1.1 Problem Statement

We consider the following feasibility problem: given an MDP, a specification, and a—possibly
huge but finite—design space of policies, find a policy (if any) such that the induced Markov

2. Note that in deep RL, the policy definition is also restricted to a fixed architecture.
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chain (MC) satisfies the specification and all imposed constraints that are used to define the
design space. These constraints can limit the size of the policy or encode domain-specific
knowledge as in program sketching (Solar-Lezama, 2013). Such satisficing policies meet
the specification while fulfilling all given constraints. The optimal feasibility problem aims
at finding a policy that satisfies the specification under all given constraints in an optimal
manner. Evidently, this is a more challenging problem. Finally, we consider relaxed optimal
feasibility. The almost optimal feasibility problem aims to find a policy that is almost optimal,
achieving a result that is 5%, say, away from the optimal value.

1.2 Motivating Examples

We sketch three related but quite different synthesis problems. As we will show, all these
problems can be rather efficiently solved using the techniques presented in this paper.

1.2.1 Herman’s Protocol

Herman’s protocol (Herman, 1990) is a well-studied randomised distributed algorithm for
token passing among network stations. The key idea is that the algorithm is self-stabilizing:
for any initial situation, it converges (fast) to a situation where all participating stations
agree on who has the token. In particular, the algorithm considers a unidirectional ring
of an odd number of network stations where all stations have to behave similarly—it is
an anonymous network. Each station stores a single bit and can read the internal bit of
one (say, counter-clockwise) neighbour. A station has the token if the two legible bits are
both one. All stations execute an action in a lock-step fashion: Stations for which the two
legible bits coincide update their bit based on the outcome of a coin flip. Other stations
copy the bit of their neighbour. In the context of this paper, we can say that this is a
partially specified policy that runs on every station: It remains open how to pick the bias of
the coin flip and how to use memory to e.g. minimise the expected time until stabilisation.
Kwiatkowska et al. (Kwiatkowska, Norman, & Parker, 2012) used a collection M of Markov
chains (MCs) modelling different policies for the stations. Their analysis considered each
instance separately and revealed which memoryless policies for Herman’s protocol performs
best. In a setting where the probabilities range over 0.1, 0.2, . . . , 0.9, this results in the
analysis of nine different MCs. However, the policy space may also include finite state
controllers that are not memoryless. Does the expected time until stabilisation reduce if we
optimise over this extended policy space? We remark that the policy space quickly grows
when allowing that the station policy accesses some internal memory: in every step, there are
now 9·9 strategies for selecting the coin flip, and for each memory cell and coin flip outcome,
the memory can be updated, yielding 2·2·2 possibilities. All in all, this one-bit extension
results in 648 candidates. Indeed, if one allows stations to make decisions depending on the
token bits, both the coin flips and the memory updates are multiplied by a factor 4, yielding
10, 368 different policies. We consider an improved variant of this protocol that leads to over
3 million different policies.

1.2.2 Dynamic Power Management

Dynamic Power Management (DPM) is a widely studied problem in the literature, see
e.g. (Benini et al., 1999; Gerasimou et al., 2015). It processes requests that are generated
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externally in random intervals and are stored in a request queue of limited capacity—if the
queue is full, the incoming requests are lost. A service provider processes the requests from
the queue. A power manager (PM) observes the queue size and selects an operating mode for
the service provider. The modes have a different power consumption and there is a random
latency before the mode is changed. Requests can only be processed in active mode and
due to random errors, this processing is not successful with a small probability. The aim
of this case study is to synthesise the PM that minimises the power consumption during
the operation time (that is finite but random) while ensuring that the expected number of
lost requests is below a given threshold. We do not synthesise the PM from scratch but
assume a skeleton of the PM to be at our disposal. This blueprint represents the a-priori
knowledge about the PM policy, such as its main control flow. It is modelled as a program
sketch (Solar-Lezama, 2013) describing the high-level control flow while omitting certain
details of the PM such as the observable size of the request queue to the PM, the mode
that needs to take on a given (observable) queue size, and the queue capacity. We also
consider a more complicated variant of the DPM problem that distinguishes low and high
priority requests (and puts these in two separate queues). The sketch describes over 43
million candidate programs.

1.2.3 Meeting in a Grid Dec-POMDP

Finally, we consider finding a pair of agent policies, one for each of the two agents in a
decentralised POMDP modelling a meeting-grid problem. This is a classical but challenging,
decentralised planning problem (Dibangoye, Amato, & Doniec, 2012). Two agents, A and
B, move on a grid with obstacles and the goal is to meet at some arbitrary cell in the grid.
The agents only have partial information about their current position and as there is no
communication between the agents, each agent solely relies on its own observation history.
We consider each agent’s policy to be represented as a finite-state deterministic controller
with k memory nodes (k-FSCs) (Hansen, 1998). The goal is to find a pair of k-FSCs that
minimises the expected number of steps until the agents meet. We consider different variants
of the problem including a slippery grid (there is a probability that the agent fails to move)
and different observation modes.

1.3 Algorithmic Approach

We now give an overview of our approach that is capable of tackling these synthesis problems.

1.3.1 Representation of the Problem

How do we represent these different synthesis problems in a uniform way? We coin the
concept of coloured MDPs as succinct representations of the above synthesis problems. A
coloured MDP describes a finite collection of possible finite policy configurations with their
structural dependencies. This covers, amongst others, the synthesis of (a) programmatic
policies from probabilistic program sketches, (b) possibly randomised finite-state controllers
for (decentralised) partially observable MDPs (POMDPs), as well as (c) optimal finite-state
controllers for constrained (PO)MDPs. Coloured MDPs can be seen as a symbolic manner
of describing synthesis problems of various kinds in which a finite set of possible policies is
given. We show that the synthesis problems (a) through (c) can be formulated as exploring
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Figure 1: Illustration of the main search strategies.

memoryless policies in their coloured MDP representation. More formally, the design space
is assumed to be parameterised by a set K of discrete parameters. The design space then
corresponds to a set of assignments K → V mapping parameters onto concrete values in
V . Intuitively, these parameters can, e.g., encode what action to take on observing a green
light. Applying a parameter assignment to a coloured MDP resolves all nondeterminism,
thus yielding a finite-state Markov chain (MC). An analysis of this MC suffices to determine
whether the parameter assignment—the corresponding policy—is satisficing. This can be
done using off-the-shelf model-checking methods (Kwiatkowska, Norman, & Parker, 2011;
Dehnert, Junges, Katoen, & Volk, 2017). The search for a satisficing policy can thus be
considered as the search for a suitable parameter assignment. This view naturally fits within
the realm of syntax-guided synthesis (Alur et al., 2015).

1.3.2 The Approach: Oracle-guided Synthesis

Tackling these synthesis problems consists of exploring the design space and evaluating the
sets of candidate solutions. The efficiency of the exploration phase relies on a compact
symbolic representation of the design space. The core of our approach consists of two
orthogonal search strategies, each leveraging a different oracle: Abstraction Refinement (AR)
and CounterExample Generalisation (CEG). These two approaches synergise through a tight
integration.

Abstraction Refinement (AR) (illustrated in Fig. 1a (page 437) and described in
detail in Sec. 3) starts off by representing the design space—consisting of all candidates—by
a single coloured MDP. Action choices are used to model the various options in the design
space. Only action choice combinations are allowed that result in an admissible candidate.
As finding such consistent policies directly is practically infeasible, we use an abstraction of
the design space to bound the possible values of the MCs in it. This is similar to the Q-MDP
abstraction for finding bounds on POMDP policies (Littman, Cassandra, & Kaelbling, 1995).
As refinement gives rise to multiple such abstract MDPs, it is convenient to consider a set
of abstract sub-design spaces. One now selects an abstract sub-space ∆i, creates an MDP
M∆i and sends it to an MDP verifier. Evaluating this abstract MDP serves as an oracle
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yielding under- and over-approximations of the extremal probabilities in ∆i w.r.t. satisfying
the specification Φ. This oracle can be an MDP model checker (Kwiatkowska et al., 2011;
Dehnert et al., 2017). If the under-approximation result satisfies Φ, AR finishes: all solutions
in ∆i comply with the specification. On the other hand, if the over-approximation result
does not satisfy Φ, we can discard the sub-space ∆i. In all other cases, the model-checking
result is inconclusive, which means that it is possible that some candidates represented by
∆i fulfill Φ, while others do not. That is, the abstraction is too coarse. Then a refinement
splits ∆i into appropriate sub-spaces. These sub-spaces are finer abstractions and thus more
precise. The splitting strategy of candidate sets predominantly influences AR’s efficiency.
Thanks to the unifying representation using coloured MDPs, we can exploit (selection and)
splitting strategies that apply to all our synthesis domains (i.e., (decentralised) POMDPs,
sketches of probabilistic programs, . . .).

The orthogonal search strategy Counterexample Generalisation (CEG) (illustrated
in Fig. 1b on page 437 and described in detail in Sec. 4) operates on individual solutions.
It thus considers MCs rather than (abstract) MDPs. From the (symbolically represented)
set of individual solutions, it selects policy δ ∈ ∆, and discharges the induced MC M δ to
an off-the-shelf MC model checker. (Note that AR exploits analysing MDPs, whereas CEG
uses MC model checking.) If the verification is affirmative, CEG stops and returns the found
solution. Otherwise, for MC M δ violating the specification Φ, it uses a counterexample (CE)
obtained from the model checker. This CE is a critical sub-MC of M δ that suffices to refute
Φ. It is used to generalise δ to a set G(δ) of sub-designs that can be safely removed from
the set of candidate solutions to be explored. The MC model checker, together with the
CE generator, thus provides the alternative oracle. The smaller the CE, the larger the set
of sub-designs that can be pruned. CEG thus attempts to find minimal CEs in the MC
M δ induced by δ. Phrased differently, a CE is preferably a minimal subset of parameter
assignments in the coloured MDP.

The tight integration between AR and CEG (described in Sec.5) is key to the success
of our approach. It builds on a refined notion of CEs defined for a given (sub-)space ∆
using bounds on reachability probabilities over all MC M δ with δ ∈ ∆. AR provides these
bounds for particular sub-spaces and allows us to obtain smaller CEs, leading to better
generalisation in the(sub-)space ∆. The integration is controlled by a manager that monitors
the performance of the synthesis and adaptively switches between AR and CEG. The manager
is also responsible for the result interpretation and reporting of the synthesis results.

1.3.3 Putting it Together

We briefly provide a high-level overview of the proposed approach (see Fig. 2). Our approach
takes as input a concrete instance from the synthesis domain (upper left). This instance can
either be a program sketch or (decentralised) POMDP given in the PRISM (Kwiatkowska
et al., 2011) or Cassandra3 format and automatically translates them into a coloured MDP.
Other inputs include a specification—typically given as an optimisation objective—as well as
some optional additional constraints, such as, e.g., an upper bound on the memory of the
controller (lower left).

3. https://pomdp.org/code/pomdp-file-spec.html
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. . .

Figure 2: The overview of the proposed framework implemented in the tool PAYNT. The
overview of abstraction refinement (AR) and counter-example generalisation (CEG) is
showcased in Fig. 1a and Fig. 1b respectively.

Let us briefly illustrate the key steps of our approach on the two of the case studies from
Sec. 1.2. We apply AR to the meeting-grid problem. In this case, the colouring of the MDP
representation ensures that the partial observations of the agents are taken into consideration.
The resulting policies are observation-based and decentralised, i.e., observations of one agent
are not available to the other agent. When ignoring the colouring, AR yields policies that
fully observe the state of both agents. A policy σ is inconsistent if it selects two different
actions in states with the same observation. If σ is a maximising policy, our refinement
strategy estimates which inconsistent selection has the highest impact on the upper bound
and uses this to split the design space into two (or more) sub-problems.

Let us apply CEG on the DPM case study. Here, the MDP colouring ensures that the
observations and the maximal queue size do not change and that the same service provider
state is selected for equal occupancy levels. Assume CEG picks a solution where the queue
capacity is 1. The CE obtained from model checking reveals that this decision already suffices
to violate the upper bound on the expected number of lost requests. This means that even
using the most energy-consuming power profile (no sleeping or idling) violates the given
bound (basically, the queue is too small). This insight enables us to prune the design space
significantly using the analysis of a single candidate solution only.

1.4 Main Contributions and Paper Structure

This paper presents:

• The concept of coloured MDPs to succinctly represent a range of different synthesis
problems, including synthesising (a) programmatic policies from probabilistic program
sketches, (b) finite-state controllers for (decentralised) partially observable MDPs
(POMDPs), and (c) optimal controllers for constrained POMDPs.
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• A symbiotic approach to synthesise policies, consisting of a deductive abstraction-
refinement algorithm that uses a novel refinement strategy and an inductive counterex-
ample generalisation technique.

• An implementation in the software tool PAYNT (Andriushchenko et al., 2021) that
can handle uncertainty models with thousands of states and billions of possible policies
in a fully automated manner.

• An extensive experimental evaluation using a wide set of benchmarks that cover the
aforementioned synthesis problems. Our experiments reveal that PAYNT sometimes
outperforms state-of-the-art, dedicated synthesis techniques and significantly improves
upon (Andriushchenko et al., 2021).

We demonstrate that constraining the shape of the controllers representing the policies is
essential in many problems relevant to both the model-checking and the planning community.
Our approach builds on classical model-checking techniques such as abstraction-refinement
and counterexample generalisation. The generic formulation presented in this paper, however,
makes it straightforward to apply the approach to a wide range of planning and synthesis
problems. Our empirical results show that this is competitive. As such, our work establishes
further connections between probabilistic model-checking and probabilistic planning (Klauck
et al., 2020).

This paper is based on the conference papers (Češka et al., 2019a; Andriushchenko et al.,
2021, 2021) and unifies the presentation of those results. New ingredients are: the model of
coloured MDPs to uniformly represent various synthesis problems, the refinement strategy
in the abstraction-refinement oracle, a number of new heuristics, and improvement of the
search strategy. Altogether, this yields significant improvements in PAYNT’s performance,
up to two to three orders of magnitude. Furthermore, the enriched experimental evaluation
on a larger benchmark collection now also contains classical constrained POMDPs and
Dec-POMDPs problems from the literature as well as a comparison with dedicated tools for
those classical problems.

1.4.1 Structure of the Paper

Section 2 introduces coloured MDPs and formalises the problem statements. Section 3
and 4 present synthesis based on abstraction refinement and counterexample generalisation,
respectively. Section 5 describes their symbiosis. Section 6 presents an experimental
evaluation: i) it first demonstrates the capabilities of the proposed approach on three case
studies from different application domains, ii) it compares the performance of our approach
with state-of-the-art methods, and iii) it demonstrates the performance improvements with
respect to the previous variants of the synthesis algorithms.

2. Problem Statement

This section presents the necessary preliminaries, introduces coloured MDPs, and formulates
our problem statement(s).
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2.1 Preliminaries

2.1.1 Distributions

A (discrete) probability distribution over a countable set A is a function µ : A → [0, 1]
s.t.

∑
a µ(a)=1. The set supp(µ) := {a ∈ A | µ(a) > 0} is the support of µ. The set Distr(A)

contains all distributions over A. We use Iverson bracket notation, where [x] = 1 if the
Boolean expression x evaluates to true and [x] = 0 otherwise.

2.1.2 Markov Decision Processes (MDPs)

An MDP is a tuple M = (S, s0, Act,P) with a countable set S of states, an initial state
s0 ∈ S, a finite set Act of actions, and a partial transition function P : S ×Act ↛ Distr(S).

Let Act(s) := {α ∈ Act | P(s, α) ̸= ⊥} denote the set of actions available in state s ∈ S.
We assume Act(s) ̸= ∅ for each s ∈ S (no deadlocks). An MDP with |Act(s)| = 1 for each
s ∈ S is a Markov chain (MC). We denote P(s, α, s′) := P(s, α)(s′). State s is absorbing if
supp(P(s, α)) = {s} for all α ∈ Act.

A (finite) path of an MDP M is a sequence π = s0α0s1α1 . . . sn where P(si, αi, si+1) > 0
for 0 ≤ i < n. We use last(π) to denote the last state sn of path π. Let PathsM denote the
set of all finite paths of M .

A (deterministic, memoryless) policy (aka: scheduler) is a function σ : S → Act. Let ΣM

denote the set of policies for MDP M . A policy σ ∈ ΣM induces the MC Mσ = (S,Pσ)
where Pσ(s) = P(s, σ(s)).

2.1.3 Specifications

We primarily consider indefinite-horizon reachability or expected total reward properties (Put-
erman, 1994). Formally, let M = (S, s0, Act,P) be an MC, and let T ⊆ S be a set of target
states. Let PM [s |= ♢T ] denote the probability of reaching (some state in) T from state
s ∈ S. If PM [s |= ♢T ] = 1, then EM [s |= ♢T ] denotes the expected reward accumulated
from s before reaching T . Let PM [♢T ] and EM [♢T ] denote PM [s0 |= ♢T ] and EM [s0 |= ♢T ],
respectively. The superscript M is omitted if the MC is clear from the context. For MDPs,
specifications are taken over the best and worst possible resolution of the non-determinism.
Let MDP M = (S, s0, Act,P). The maximal reachability probability of T for state s ∈ S in
M is PM

max [s |= ♢T ] := supσ∈ΣM PMσ
[s |= ♢T ]. The maximum reward (EM

max) specification
and the minimum variants (PM

min and EM
min) are defined analogously. Formal definitions can

be found e.g. in (Baier et al., 2018).
Furthermore, we are interested in comparing the performance of our approach to existing

methods for discounted (infinite-horizon) total reward objectives. Let γ ∈ [0, 1) be the
discount factor. For a discounted total reward objective, we are interested in rewards
collected along all infinite paths, i.e. we do not consider targets. In every step along a
path, γ is multiplied to all future rewards as discounting: EM

[∑∞
t=0 γ

trt
]

is the expected
discounted total reward for state s0 in MC M with discount factor γ where random variable
rt denotes the reward collected at the t-th step t M . With discounting, the immediate reward
is favoured over rewards collected later on a path.

Note that, under the assumption PM
max [s |= ♢T ] = 1, the undiscounted reachability reward

specification is colloquially known as the stochastic shortest path (SSP) problem (Bertsekas,
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2005). The discounting can be reduced to an SSP problem by introducing a fresh target
state reachable via any action with probability 1 − γ. Generalised SSP (GSSP) extends
SSP with reachability probability and other specifications, e.g. undiscounted total reward
without target states (Kolobov et al., 2011). Our framework can be directly extended to
GSSP problems.

2.2 Coloured MDPs

In this section, we introduce the concept of coloured MDPs which allows us to succinctly
reason about different types of synthesis problems.

2.2.1 Parameter Assignments

We assume that the synthesis problem is given as an MDP equipped with a finite set H of
parameters with D(h) ⊂ N denoting the finite domain of parameter h ∈ H. The parameters
represent the design choices to be made. A total assignment δ of parameters maps each
parameter to an element of its domain: δ : H → N where δ(h) ∈ D(h). It is assumed that δ
induces an MC M δ, i.e., (the behaviour of) the candidate solution given by δ is described by
the MC M δ.

Let ∆ denote the set of all possible total assignments δ. This represents the design space.
The assignments in ∆ induce a set of MCs with the same state space but distinct topologies;
i.e., certain states may be unreachable under one assignment but not under another.

See Fig. 3 (left) on page 443 illustrates such a set. The goal of the synthesis is then to
find a specific total assignment δ ∈ ∆ of parameters such that M δ satisfies the specification.

Assignment δ is partial if δ is a partial mapping, i.e., ∃h ∈ H : δ(h) = ⊥ /∈ D(h). Let ∆
denote the set of all (partial and total) assignments. Assignments δ, δ′ ∈ ∆ are compatible,
denoted δ ∼ δ′, if they agree on all parameters that are defined in both assignments: δ ∼ δ′

iff ∀h ∈ H : (δ(h) ̸= ⊥ ∧ δ′(h) ̸= ⊥)⇒ δ(h) = δ′(h).

2.2.2 Coloured MDPs

We now define coloured MDPs to compactly represent the set of induced MCs M δ for each
δ ∈ ∆.

Definition 1 (Coloured MDP) A coloured MDP is a tuple M = (M,∆, κ) with MDP
M , design space ∆ of assignments of parameters H, and a colouring κ : S × Act → ∆
satisfying ∀δ ∈ ∆ ∀s ∈ S ∃!α ∈ Act(s) : κ(s, α) ∼ δ.

The colouring κ assigns to each action α in state s ∈ S a (partial) parameter assignment
κ(s, α) that this action is associated with. Given assignment δ ∈ ∆, let Mδ denote the
induced MDP containing only actions that are compatible with δ, i.e.,Mδ := (S, s0, Act,Pδ)
where Pδ(s, α) = P(s, α) if κ(s, α) ∼ δ and Pδ(s, α) = ⊥ otherwise. The condition on the
colouring in Def. 1 ensures that if δ is total, then in each state s ∈ S there is exactly one
action available, i.e.Mδ is an MC that equals M δ. If δ is partial, in each state of MDPMδ,
at least one action is available, i.e.,Mδ contains no deadlocks.

Example 1 Fig. 3 illustrates the concept of coloured MDPs. Assume a synthesis problem
given by parameters h1 and h2 with domains D(h1) = D(h2) = {0, 1}. The design space thus
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Figure 3: Left: An example of a synthesis problem given by two binary parameters (i.e., the
size of the design space is four) inducing three different Markov chains. Right: The coloured
MDPM with colouring κ encoding the synthesis problem.

includes four parameter assignments inducing three MCs (the assignments δ3 and δ4 induce
the same MC). Note that transitions emanating from state 0 depend on the assignment of
both parameters, while the transitions for other states are determined by a single parameter.
The right part of the figure shows the resulting coloured MDP M with colouring κ. (The
action names are chosen arbitrarily.) The colour code in the MDP illustrates the parameter
dependencies given by κ. For example, action α0 in state 0 is coloured by h1 = 0 (orange)
and h2 = 0 (blue).

Coloured MDPs enable the (compact) encoding of various synthesis problems. In this
paper, we focus on the synthesis of probabilistic programs from program sketches and the
synthesis of finite-state controllers (FSCs) for various partially observable domains. We
consider deterministic FSCs represented as Mealy machines that decide what action to make
based on the current memory node and the current observation (Amato, Bonet, & Zilberstein,
2010b) (for a formal definition, see Appendix B). In the appendix, we provide the details of
how to encode these synthesis problems either given as sketches of probabilistic programs (see
Appendix A) or as synthesis problems of FSCs for (decentralised) POMDPs (see Appendix B)
as coloured MDPs.

Remark 1 (Coloured MDP vs. POMDPs) Let us clarify the relation between coloured
MDPs and POMDPs, i.e., MDPs in which each state is associated with a (set of) observations.
POMDP policies can select an action based on an observation history, i.e., a finite sequence
of observations and actions. In contrast to MDPs, such policies can thus not use the
sequence of precise states visited (and actions executed) so far. Although there are certain
similarities between coloured MDPs and POMDPs, coloured MDPs can encode synthesis
problems that cannot be interpreted as POMDPs. In particular, the finite design space ∆ of
parameter assignments does not correspond to the infinite set of observation-based policies of
a POMDP. On the other hand, a POMDP and a template of an observation-based policy
(e.g. a parameterised finite-state controller with a finite number of instantiations) can be
encoded as a coloured MDP.
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2.3 Synthesis Problems

We consider a constrained single objective synthesis problem. The constraints are given
by the formula Φ =

∧
i∈I ϕi where I is a finite set of indices and ϕi ≡ P [♢Ti] ▷◁i λi or

ϕi ≡ E [♢Ti] ▷◁i ρi for target set Ti ⊆ S. Here, binary comparison operator ▷◁i ∈ {<,≤, >,≥},
probability threshold λi ∈ [0, 1], and reward threshold ρi ∈ R. The main synthesis objective
is to minimise (or, dually, maximise) a reachability probability (or expected total reward)
for a given target set To. We provide the formal statement for maximising reachability
probabilities below; the dual problem and the variants for expected rewards are defined
similarly.

Maximal reach-probability synthesis: Given a coloured MDP M = (M,∆, κ),
constraints Φ =

∧
i∈I ϕi, and target set To, find a parameter assignment δ∗ ∈ ∆ with

δ∗ ∈ argmax
{δ∈∆}

{
PMδ

[♢T ] | Mδ |= Φ
}
.

Note that MCMδ |= Φ iff M |= ϕi for all i ∈ I. HereMδ |= P [♢Ti] ▷◁i λi iff PMδ
[♢Ti] ▷◁i λi

and analogously for E [♢Ti] ▷◁i ρi.
We also consider a simplified synthesis problem variant, called (existentially) feasibility

synthesis: For the constraints Φ, find a parameter assignment δ ∈ ∆ such that Mδ |= Φ.
Our framework also supports a universal variant of feasibility synthesis, which requires a
finding of all assignments δ ∈ ∆ satisfying Φ.

The considered synthesis problems are a true challenge; e.g., the (existential) feasibility
synthesis for families of MCs is already NP-hard (Junges, 2020). This result can be naturally
lifted to the feasibility synthesis over coloured MDPs.

To simplify the exposition, we will present our approach only for reachability properties,
but it can be naturally extended towards reward properties.

3. Abstraction Refinement

In order to effectively solve the aforementioned parameter synthesis problems, we introduce
an abstraction-refinement (AR) scheme over the coloured MDP M that leverages as the
oracle the model-checking of the underlying MDP M providing an abstraction ofM. This
section restates our earlier versions of AR presented in (Andriushchenko et al., 2021, 2022)
in the context of coloured MDPs and presents two major extensions: (a) a new splitting
strategy for the refinement and (b) explicit support for multi-constrained specifications.

3.1 MDP Abstraction

We first define the notion of policy consistency that captures the compatibility of a policy σ
in MDP M w.r.t. colouring κ.

Definition 2 (Consistent policies and relevant parameters) Let M = (M,∆, κ) be
a coloured MDP and σ be a policy of M . Let Kσ(h) := {κ(s, σ(s))(h) | s ∈ S}\{⊥} be the
values of parameter h used by σ. The policy σ is consistent if no parameter is assigned
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distinct values, i.e., |Kσ(h)| ≤ 1 for all h ∈ H. Furthermore, Parameter h ∈ H is relevant
for σ if Kσ(h) ̸= ∅; otherwise it is irrelevant (for σ).

Example 2 Consider the coloured MDP from Fig. 3 (right) and the policy σ1 with σ1(s0) =
α0, σ1(s1) = α1. The policy σ1 is inconsistent as Kσ1(h1) = {0, 1}, i.e., |Kσ1(h1)| > 1.

A consistent policy σ induces a (partial) parameter assignment δ ∈ ∆ with δ(h) ∈ Kσ(h)
if h is relevant and δ(h) = ⊥ otherwise. Irrelevant parameter h can be assigned an arbitrary
value from D(h), obtaining a total assignment δ that induces the same MC: Mδ = Mδ.
Conversely, from Def. 1 it follows that each total assignment δ ∈ ∆ corresponds to a consistent
policy σ that picks in state s ∈ S the unique action σ(s) for which κ(s, σ(s)) ∼ δ. Distinct
total assignments can correspond to the same consistent policy as some parameters can be
irrelevant for σ.

The following theorem shows that the set of all (possibly inconsistent) schedulers (in
an uncoloured MDP) yields sound bounds for the maximum (or minimum) reachability
probability over the consistent policies. This statement allows us to use the uncoloured MDP
as a proper abstraction.

Theorem 1 Let M = (M,∆, κ) be a coloured MDP and T ⊆ S be a set of target states in
the underlying MDP M . Then

PM
min [♢T ] ≤ min

δ∈∆
PMδ

[♢T ] ≤ max
δ∈∆

PMδ
[♢T ] ≤ PM

max [♢T ] .

Proof 1 Let σδ denote the (consistent) policy that corresponds to assignment δ ∈ ∆ and let
ΣM
∆ := {σδ | δ ∈ ∆} be the set of all such policies. Since ΣM

∆ ⊆ ΣM , it holds that

PM
min [♢T ] = min

σ∈ΣM
PMσ

[♢T ] ≤ min
σ∈ΣM

∆

PMσ
[♢T ]

= min
δ∈∆

PMδ
[♢T ] ,

and similarly for Pmax.

Remark 2 The correspondence between consistent policies and total assignments gives us an
alternative approach for the considered synthesis problems: instead of enumerating all δ ∈ ∆
and analysing the induced M δ, one can enumerate and analyse all consistent policies in the
coloured MDP M. However, iterating over exponentially many consistent schedulers remains
ineffective in general. Another approach is to employ solving techniques for NP-complete
problems, like satisfiability modulo linear real arithmetic. As we showed in our previous
work (Češka et al., 2019b), this approach provides an inferior performance.

3.2 AR for Feasibility Synthesis with a Single Constraint

We first explain AR for the setting of (existential) feasibility. Let coloured MDP M =
(M,∆, κ) and, without loss of generality, constraint ϕ ≡ P [♢T ] < λ. Verifying the underlying
MDP M yields an upper bound ub and a lower bound lb, respectively, together with their
corresponding policies σmax and σmin. As (the set of) consistent policies is subsumed by (the
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set of) all policies, lb and ub are also (conservative) safe bounds for any consistent policy
in M. These bounds can now be used as follows. If ub ≤ λ, then no policy, and thus no
consistent policy, will exceed λ. Thus, all δ ∈ ∆ satisfy ϕ. Analogously, if λ ≤ lb, then all
δ ∈ ∆ violate ϕ and we can discard the whole ∆. If lb ≤ λ ≤ ub and σmin is consistent, then
the abstraction is too coarse. In the latter case, one cannot draw any conclusion about the
entire ∆, but σmin represents a satisfiable δ ∈ ∆. Otherwise, the abstraction needs to be
refined.

We thus refine if lb ≤ λ ≤ ub and σmin is inconsistent. Refinement partitions the domain
D(h) for a selected parameter h ∈ H into sub-domains D1(h), D2(h), thus decomposing ∆
into sub-spaces ∆1 and ∆2. The goal is to obtain a more precise abstraction. We thus focus
on splitting some parameter h in which σmin is inconsistent: let H̃ = {h ∈ H | |Kσ(h)| > 1}
be the set of such parameters. Assume h ∈ H̃ where a, b ∈ Kσ(h). Observe that if we
split D(h) into Da(h) and Db(h) where a ∈ Da(h) and b ∈ Db(h), then policy σmin is no
longer available in the sub-abstractions. If |H̃| > 1, we employ the following heuristic to
select h. The idea is to assign to each parameter h ∈ H̃ a score v(h) that, roughly speaking,
corresponds to the expected variance of outcomes of different actions that are associated
with inconsistent assignments Kσ(h). In other words, a high value of v(h) indicates that
different options of h (may) have a high impact on the reachability probability P [♢T ]. We
then split on the parameter with the highest score. Having obtained the refined sub-space
∆i ⊂ ∆, the refined abstraction is a sub-MDP that contains only actions that are compatible
with ∆i: M∆i := (S, s0, Act,P ′) for which P ′(s, α) = P(s, α) if ∃δ ∈ ∆i : κ(s, α) ∼ δ and
P ′(s, α) = ⊥ otherwise.

How do we compute the scores? For state s and enabled action α ∈ Act(s), let the score
v(s, α) :=

∑
s′∈S P(s, α, s′) · Pmin(s

′ |= ♢T ) where Pmin is obtained from model-checking the
MDP abstraction M . Let Actσ(s, h) := {α ∈ Act(s) | κ(s, α)(h) ∈ Kσ(h)} be the set of
enabled actions in s associated with the inconsistent assignments Kσ(h) of parameter h. The
score of parameter h in state s is:

v(s, h) := max
α∈Actσ(s,h)

v(s, α)− min
α∈Actσ(s,h)

v(s, α).

The overall score of parameter h is v(h) :=
∑

s∈S EV (s) · v(s, h) where EV (s) denotes the
expected number of visits of state s in the induced DTMC Mσmin(Puterman, 1994). We
thus weigh the scores for h in a state with the expected visiting time of s. These expected
visiting times can be efficiently computed for all states by solving a single linear equation
system (Mertens, Katoen, Quatmann, & Winkler, 2024).

3.3 AR for Feasibility Synthesis with Multiple Constraints

Feasibility synthesis for multiple constraints Φ =
∧

i∈I ϕi is done by adapting the usage of
the abstraction as well as the splitting strategy during refinement. For each ϕi, we apply the
MDP abstraction and model-check the resulting MDP M . If all policies in M violate some
ϕi, we can conclude that all δ ∈ ∆ violate Φ. In the absence of any such ϕi, we simplify Φ:
if all policies in M satisfy ϕi, we remove ϕi from Φ in the consequent synthesis process. For
the remaining ϕi, we collect δi ∈ ∆ that satisfy ϕi and analyse their incompatibility. We can
quantify the level of incompatibility by analysing the differences between the assignments.
For each parameter h ∈ H, let L(h) = |{δi(h) | i ∈ I}| denote the level of incompatibility.
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When dealing with multiple constraints, we use the level of incompatibility L(h) instead of
the overall score v(h). For the refinement, a high L(h) indicates that different constraints
rely on different options of h, and therefore, restricting the options of h might have a high
impact on the feasibility of these constraints. Splitting according to the maximal level of
incompatibility ensures that we will find different policies (compared to the currently found
policies) for some of the constraints in the sub-domains and their respective sub-spaces.
Assume that we chose h ∈ H with L(h) = 2 where δ1(h) = {a} and δ2(h) = {b}. Observe
that by splitting D(h) into Da(h) and Db(h) where a ∈ Da(h) and b ∈ Db(h), we obtain
sub-space ∆a and ∆b such that δ1 /∈ ∆b and δ2 /∈ ∆a.

3.4 AR for Maximal Reach-probability Synthesis

The maximal reachability probability synthesis wrt. a target T can be formulated as a chain
of feasibility synthesis queries where the constraint P[♢T ] > λ is iteratively strengthened.
Note that each time the constraint is strengthened, we do not need to check parts of the
design space that were pruned before, as we already proved they are unfeasible for weaker
constraints. Initially, we put λ = 0. If a solution δ ∈ ∆ is found such that PMδ

[♢T ] > 0,
we store δ as a new running optimal solution and update the threshold λ = PMδ

[♢T ]. This
process continues for the new threshold λ, which is updated every time a new running optimal
solution is found. The synthesis terminates if the entire design space ∆ is explored and
pruned. When the synthesis terminates, the running optimal solution is the actual optimal
solution and is the output of the synthesis.

4. Counterexample-Guided Synthesis

The AR algorithm described in the previous section allows us to explore large design spaces.
However, the MDP abstractions built during the exploration are sometimes significantly
larger (in terms of the reachable underlying state space) and numerically harder to solve than
any of the candidate solutions M δ, rendering the analysis of the MDP too expensive. This
motivates an orthogonal approach using a cheaper oracle in the form of a counter-example
generator over candidate solutions. The key idea is to generalise a candidate solution δ ∈ ∆
that refutes the specification Φ to a set of structurally similar candidates G(δ) ⊆ ∆ that
all refute Φ. The main advantage is that while exploring the design space, all candidate
solutions in G(δ) can be safely ignored once one finds out that δ refutes Φ. In contrast to
the top-bottom AR approach – by analysing sets of candidates (modelled as MDPs), this set
is gradually refined – the generalisation G provides a bottom-up approach – by analysing
single candidates (Markov chains), sets of candidates are ruled out. This section summarises
the key concepts from our earlier work (Češka et al., 2021; Andriushchenko et al., 2021) and
lifts them into coloured MDPs.

4.1 Counterexamples for Probabilistic Systems

Let ϕ be a single constraint. Intuitively, a counterexample for MC D ̸|= ϕ is a sub-MC D′ of
D that refutes ϕ and it is minimal w.r.t. refuting ϕ if any extension of D′ refutes ϕ (Wimmer
et al., 2014).
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Definition 3 (Counterexample) The sub-MC of MC D = (S, s0,P) induced by the set
C ⊆ S of states is the MC D↓C = (S ∪ {s⊥}, s0,P ′) where s⊥ ̸∈ S and

P ′(s) =

{
P(s) if s ∈ C,

[s⊥ 7→ 1] otherwise.

The sub-MC D↓C is a counterexample (CE) for (safety) constraint ϕ ≡ P[♢T ] < λ if
D↓C |= P[♢T ] ≥ λ. The sub-MC D↓C is a CE for (liveness) constraint P[♢T ] > λ if
D↓C |= P[♢T⊥] ≤ λ where T⊥ = T∪{s⊥}.

The notion of CE can be lifted to total expected reward objectives in a natural manner,
see (Quatmann et al., 2015). A critical sub-MC serves as important diagnostic information
about the source of the violation in probabilistic systems (Ábrahám et al., 2014). The CE
is used to construct the generalisation function G. Let δ ∈ ∆ be a violating parameter
assignment w.r.t. the coloured MDP M and constraint ϕ, i.e., Mδ ̸|= ϕ. To compute
the generalisation G(δ) that includes other assignments violating ϕ, we identify the set
Hδ

C ⊆ H of relevant parameters (called conflict) for the CE Mδ↓C. Let H(s, α) := {h ∈
H | κ(s, α)(h) ̸= ⊥} denote the set of parameters defined for action α in state s and
A(s, δ) = α ⇐⇒ κ(s, α) ∼ δ, i.e., A(s, δ) denotes the enabled action in s in the MC M δ.

Definition 4 (Conflict and CE generalisation) Let coloured MDP M = (M,∆, κ), vi-
olating assignment δ ∈ ∆ and CE Mδ↓C. The conflict is Hδ

C :=
⋃

s∈C H(s,A(s, δ)). The
generalisation of δ w.r.t. the CE Mδ↓C is defined as GC(δ) := {δ′ ∈ ∆ | ∀h ∈ Hδ

C :
δ(h) = δ′(h)}.

Each δ′ ∈ GC(δ) can be safely removed from ∆, as it is guaranteed that δ′ violates ϕ. The
next section describes how GC(δ) is used in the synthesis algorithm.

The size |Hδ
C | of a conflict is crucial. Small conflicts lead to generalising δ to a larger set

of assignments. It is thus important that the CEs contain a minimal number of parameterised
transitions. Note that the size of a CE in terms of its number of states is not relevant.

The CE generalisation can be straightforwardly lifted to more involved specifications. For
multiple constraints Φ =

∧
i∈I ϕi, we can compute and generalise the CE for each ϕi that is

violated by the candidate M δ. Having multiple CEs for a single M δ is indeed beneficial for
pruning but requires more computation; for details, see (Češka et al., 2021). The (constrained)
optimisation is handled similarly as in AR, i.e., as a chain of feasibility queries.

4.2 Counterexamples Modulo Bounds

The conflict size can be further reduced by CE modulo bounds (Andriushchenko et al.,
2021). Assume ϕ ≡ P[♢T ] < λ. For a given sub-space ∆, the abstraction provides upper
bounds ub∆ϕ such that ∀δ ∈ ∆, s ∈ S : ub∆ϕ (s) ≥ PMδ

[s |= ♢T ]. Intuitively, using ub∆ϕ in the
CE construction can lead to smaller CEs since they provide less conservative bounds on
reachability probabilities for states s ∈ S\C.

Definition 5 (Counterexample modulo bounds) Assume MC D = (S, s0,P) and let
ub∆ϕ be the upper bounds as above. The sub-MC of D induced by C ⊆ S and ub∆ϕ is
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D↓C(ub∆ϕ ) = (S ∪ {s⊥, s⊤}, s0,P ′) where s⊤, s⊥ ̸∈ S and

P ′(s) =


P(s) if s ∈ C,

[s⊤ 7→ ub∆ϕ (s), s⊥ 7→ (1−ub∆ϕ (s))] if s ∈ S\C,
[s 7→ 1] otherwise .

The sub-MC D↓C(ub∆ϕ ) is called a counterexample (CE) for ϕ, if D↓C(ub∆ϕ ) ̸|= P[♢T ] < λ.

CE generalisation using the CE modulo bounds is safe, i.e., it includes only the violating
assignments. Formally:

Theorem 2 Let δ be an assignment such that M δ ̸|= ϕ, M δ↓C(ub∆ϕ ) be a CE modulo bounds,
and GC(δ) be the corresponding generalisation. For each δ′ ∈ GC(δ), M δ′ ̸|= ϕ.

Proof 2 Assume arbitrary δ′ ∈ GC(δ). We argue that M δ′↓C(ub∆ϕ ) = M δ↓C(ub∆ϕ ): if
s ∈ C, then Pδ(s) = Pδ′(s) follows from the definition of GC(δ), otherwise the equality
of both transition probability distributions in s is trivial. Thus, M δ′↓C(ub∆ϕ ) ̸|= ϕ ⇐⇒
M δ↓C(ub∆ϕ ) ̸|= ϕ. Since ub∆ϕ are the upper bounds for δ as well as δ′, then M δ′↓C(ub∆ϕ ) must
be a valid counterexample (modulo bounds) for M δ′ , i.e. M δ′ ̸|= ϕ.

4.3 Greedy Algorithm for CE Generation

Finding CEs of minimal size is NP-complete (Funke, Jantsch, & Baier, 2020). Existing CE
procedures (Ábrahám et al., 2014; Dehnert et al., 2014; Wimmer et al., 2015) do not provide
good trade-offs between the conflict size and their construction time. We, therefore, employ
a greedy algorithm (Andriushchenko et al., 2021) and adapt it to coloured MDPs. Assume
MC Mδ refutes constraint ϕ. A greedy approach to construct the conflict set Hδ

C computes
a sequence of gradually increasing candidate conflict sets Hi. We conservatively start with
H0 = ∅. At the i-th iteration, we consider C(Hi) := {s ∈ S | H(s,Act(s, δ)) ⊆ Hi}, the set
of states for which the colouring of the selected action Act(·, δ) includes only parameters
from Hi. If C(Hi) induces a CEMδ↓C(Hi) for ϕ, then Hi is the corresponding conflict set.
Otherwise, we enlarge Hi as follows: Hi+1 := Hi ∪H(si, Act(si, δ)) for some arbitrary state
si ∈ S\C(Hi) that is reachable inMδ↓C(Hi). This iterative approach is continued until the
set C(Hi) induces a CE for ϕ, for some i. AsMδ ̸|= ϕ, this procedure terminates.

5. Synthesis Algorithm

This section summarises the overall architecture and workflow of the synthesis algorithm.
Fig. 2 illustrates the main components and their interaction. The algorithm builds on two
synthesis engines repeatedly invoking the respective oracles: AR (described Sect. 3) and
CEG (described in Sect. 4). The workflow consists of three main parts: manager, explorer
and evaluator. The manager encodes the given synthesis problem into a coloured MDP
M = (M,∆, κ) (see Def. 1). It also controls the synthesis process, collects and interprets the
results from the engines, and produces the final results.

The explorer maintains the parts of the design space ∆ that have to be explored. These
parts are independently stored using a stack of sub-spaces and an SMT formula φ encoding
the unexplored parameter assignments.
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In every AR iteration, a sub-space ∆i is processed by the evaluator that constructs the
corresponding MDP abstraction M (see Sect. 3.1) and performs a MDP model-checking for
each constraint ϕi ∈ Φ. The sub-space ∆i is discarded if it violates any ϕi, or is further
analysed w.r.t. consistency and compatibility (see Sect. 3.3). If the analysis is inconclusive
(i.e., the abstraction is too coarse), ∆i is refined into a set of sub-spaces that are pushed on
the stack.

In every CEG iteration, an SMT solver (we use Z3 (de Moura & Bjørner, 2008) or
CVC5 (Barbosa et al., 2022)) is asked to produce an assignment δ satisfying φ, i.e., an
unexplored assignment. The evaluator then constructs the corresponding MC M δ and checks
whether it satisfies each ϕi ∈ Φ. Otherwise, for each violated ϕi, the evaluator constructs
the CE using the bounds for δ (see Def. 5) and the corresponding generalisations G(δ) (see
Def. 4). The resulting set of generalisations is encoded as a set of clauses describing new
constraints on the unexplored assignments and passed to the explorer that updates the SMT
formula φ.

PAYNT further supports the so-called hybrid engine (Andriushchenko et al., 2021) that
effectively combines AR and CEG. This engine leverages CE modulo bounds (see Section 4B),
where the bounds on the probabilities/rewards computed in AR for particular sub-spaces are
used in CEG. This enables obtaining better, i.e., larger generalisations of CEs and thus prunes
design sub-spaces more aggressively. The manager distributes the workload and switches
between the AR and CEG engines. It facilitates refining during the AR phase and using the
obtained refined bounds during CEG. Additionally, it exploits an efficiency measure of the
two methods and dynamically allocates more time to the method with superior performance.

Algorithm 1 summarises the key steps of the hybrid synthesis algorithm for the maximal
reach-probability problem (see Section 2.3). We start (l.1) by creating the sub-space stack
(initially containing only ∆) and construct the formula φ describing each unexplored parameter
assignment from ∆. In each iteration of the main loop, we explore exactly one sub-space
∆i. We first run one iteration of AR (l.4), which may update the current optimum δ∗. This
call also yields probability reachability bounds for ∆i. If this one iteration proves that the
sub-space does not contain a better solution than (updated) δ∗, we continue with the next
sub-space. Otherwise, we set the time limit for CEG (l.6) based on the previous performance
of AR and CEG. When exploring ∆i, CEG uses boundsi to construct counterexamples
modulo bounds. CEG terminates either by exploring all assignments from ∆i or by reaching
the allocated time limit. In the latter case (l.9), we split ∆i into sub-families to be analysed
in subsequent iterations.

To balance AR vs. CEG reasoning, we track the number ηAR and ηCEG of assignments
pruned per time unit by AR and CEG, respectively. Let τAR and τCEG denote the current
total run-times of AR and CEG; then, on l.6 we allocate τAR · ηCEGηAR

− τCEG time units to CEG
to explore ∆i. The idea is to let AR and CEG run for equal portions of time when both are
equally successful and to allocate more time to CEG when it outpaces AR in terms of the
number of pruned assignments, and vice versa.

Theorem 3 Algorithm 1 terminates and returns assignment δ∗ ∈ ∆ satisfying the given
constraints and attaining the maximal reach-probability as defined in Section 2.3.

Proof 3 Assume an iteration of the algorithm in which sub-space ∆i is investigated and
assume it contains an optimal assignment δ∗ satisfying the constraints. Assume that δ∗ has
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Algorithm 1: Hybrid synthesis
Global :A coloured MDPM = (M,∆, κ), constraints Φ =

∧
i∈I ϕi, and

target set To

Output : δ∗ ∈ ∆ as defined in Section 2.3

1 stack.new(∆), φ← encode(∆), δ∗ ← ∅;
2 while not stack.empty() do
3 ∆i ← stack.pop();
4 boundsi, δ∗ ← AR.run(∆i, δ

∗);
5 if AR.done() then continue;
6 CEG.setTimeLimit();
7 φ, δ∗ ← CEG.run(φ,∆i, boundsi, δ∗);
8 if CEG.done() then continue;
9 stack.push(AR.split(∆i))

10 end while
11 return δ∗

value v∗ and that v ≤ v∗ is the value of the running optimum. To show correctness, we argue
that ∆i cannot be pruned by AR or CEG without first identifying δ∗.

Generalising Theorem 1 to the given set of reach-probability constraints (see Sections 3.3
and 3.4), AR call on l.4 can prune ∆i by one of two ways: i) all δ ∈ ∆i violate some ϕ ∈ Φ,
or ii) it holds that PM∆i

max [♢To] < v, i.e. v∗ = PMδ∗
[♢To] < v – both cases contradict the fact

that δ∗ is the optimal assignment satisfying the constraints.
Now assume the CEG phase that currently investigates an assignment δ ∈ ∆i, δ ̸= δ∗. If

δ violates some ϕ ∈ Φ, a conflict GC(δ) is constructed and from Theorem 2 we know that
if δ∗ ∈ GC(δ), then M δ∗ ̸|= ϕ, which is a contradiction. Otherwise, if all constraints are
satisfied, a counterexample is constructed wrt. PMδ

[♢To] ≤ v, and the corresponding conflict
again cannot contain δ∗ unless v = v∗, i.e. an assignment with the same value has already
been found.

To show termination, observe that the CEG reasoning is always bound by a time limit
and that without lines 6-8 the algorithm is a standard AR loop in which every sub-space ∆i

is either pruned or split into strictly smaller sub-spaces. Since the design space ∆ is finite,
the smallest possible sub-space ∆i contains a single parameter assignment, for which AR
reasoning on l.4 is guaranteed to be conclusive.

6. Experimental Evaluation

This section presents an experimental evaluation of our approach. It mainly focuses on three
questions:

Q1 Is our approach able to solve interesting problems from different planning and decision-
making domains? To answer this, we consider three case studies: i) synthesising a
power manager from a rough sketch, ii) constrained planning in a maze POMDP and
iii) solving a meeting-grid Dec-POMDP. We discuss and interpret the resulting policies.
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Figure 4: (a) Overview of the DPM system. (b) Constrained Maze problem and the considered
slipping factors for this problem. (c) The considered instance of the 8x8 meeting grid Dec-
POMDP problem with two agents and their starting positions.

Q2 Is our approach competitive with respect to dedicated methods for the aforementioned
planning and decision-making problems? To answer this, we compare the performance
of our approach with the state-of-the-art methods to synthesise FSCs for i) constrained
POMDPs and ii) Dec-POMDPs.

Q3 How do the synthesis engines (i.e., AR, CEG, and their symbiosis) perform and how do
the proposed enhancements (namely the splitting strategy for the coloured MDPs) improve
the performance with respect to the previous version of PAYNT (Andriushchenko et al.,
2021), a state-of-the-art tool to synthesise finite-state probabilistic programs.

Hardware: All experiments are run on a single core of a machine equipped with an Intel
i5-12600KF @4.9GHz CPU with 64GB RAM.

Availability: The version of PAYNT used for the evaluation, as well as all benchmarks,
are publicly available (Andriushchenko, Češka, Junges, Katoen, & Macák, 2024).

Q1: Case Studies from Different Planning and Decision-making Domains

Synthesising a power manager from a rough sketch

Recall the Dynamic Power Management (DPM) problem described in Section 1.2. We
first consider a simple variant with a single queue, see Fig. 4a, and a service provider
with three power modes: sleep, idle and active with increasing power consumption that
depends on the queue size, random switching latency, and random error of request processing
(only the active mode allows for request processing). In each step, the system terminates
with a probability of 0.001 which amounts to 648.5 requests to be processed on average.
The objective—the specification Φ—is to minimise the power consumption during the
operation time while ensuring that the expected number of lost requests is at most one. The
specification is supplemented by a sketch describing the set of candidate solutions. We use a
sketch for a finite-state probabilistic program represented in the PRISM guarded-command
language (Kwiatkowska et al., 2011). (Such sketches are not new; they were proposed for
programs with uncertainty (Češka et al., 2021).) Holes in the program sketch represent
the program’s unknown parts. Each hole is associated with a finite domain representing
the possible options (i.e., program snippets) that can fill in the hole. The goal of the PM
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synthesis is to find a hole assignment for its sketch such that the resulting completed program
satisfies specification Φ.

The PM cannot fully observe the request queue. Instead, it can only distinguish four
occupancy levels determined by the threshold parameters T1 ∈ {0, 0.1, 0.2, 0.3, 0.4}, T3

∈ {0.6, 0.7, 0.8, 0.9}, and a fixed threshold T2=0.54. As the power consumption depends
on the queue size, we aim to obtain the best power mode for each occupancy level. This
is represented by parameter Pi (for occupancy level i) whose domain is {sleep, idle, active}.
The maximal capacity QMAX ranges over {1, 2, . . . , 10}. As power consumption depends on
the queue size, choosing QMAX=10 is not trivially optimal.

The design space consists of 5× 4× 34 × 10 = 16, 200 candidate programs, i.e., policies.
Every candidate program is a probabilistic program, which corresponds to an MC (of about
230 states on average). Within about 3 minutes, our approach finds the following optimal
solution: QMAX = 6, T1 = 0.1, T3 = 0.9, P1 = idle, P2=P3=P4=active. This policy induces
a power consumption of 95,531 Watt. The expected number of lost requests is 0.617 during
operation. The trivial "safe" policy using a maximal queue size (QMAX=10) and setting
the power mode to be always active increases the power consumption by about 7%.

Let us now consider the more complicated variant of the DPM problem that distinguishes
low and high priority requests (and puts these in two separate queues) and a longer expected
runtime. The design space of this variant contains over 43 million candidate solutions.
Compared to the single-queue setting, the average size of the underlying Markov chain is
more than one order of magnitude larger.

Our approach needs about 6.5 hours to explore all candidates, while the trivial (one-
by-one) checking of all candidate solutions would take over a month. The optimal solution
improves the power consumption of the system by 30% compared to the trivial “always active”
solution. Allowing a bit of tolerance in the optimality of the policy-to-be-synthesised speeds
up the synthesis significantly. To that end, our approach supports ϵ-optimal policy synthesis.
This returns a sub–optimal policy that is optimal with respect to the specification Φ up to a
factor ϵ. Within 7 minutes, our approach finds an 0.002-optimal policy for the DPM variant
with two request queues i.e. the obtained power consumption is within 0.2% of the optimal
solution. Being just a bit liberal with respect to the quality of the policy thus can speed up
the synthesis process enormously.

Constrained planning in a maze POMDP

The previous case study demonstrated that our approach can effectively handle constrained
optimisation in coloured MDPs describing sketches of probabilistic programs. We now show
that our approach can also handle constrained optimisation in POMDPs. Solving constrained
POMDPs (CPOMDPs) is a notoriously difficult problem that naturally arises in many
applications (Isom, Meyn, & Braatz, 2008; Wray & Czuprynski, 2022).

We consider the synthesis of an optimal FSC for a CPOMDP variant of the classical
maze problem (Hauskrecht, 1997); see Fig. 4b (left). The maze has goal state G and two trap
states (denoted by F , for forbidden) where the agent gets stuck. The agent only observes
the walls directly next to its current position. Initially, the agent is uniformly placed onto
one of the cells (neither F nor G). In every step, the agent selects one out of four directions

4. This ensures that T1 < T2 < T3.
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(north, east, west, south). Although the agent cannot decide to stay in the current cell, it
may remain where it is, as the grid is slippery, and a selected move may fail by a slipping
factor, see Fig. 4b (right).

For fixed k, the goal ϕ0 is to find the k-FSC (finite state deterministic controller with
k memory nodes; see the formal definition in App. B) that maximises the reachability
probability to G. Additionally, we impose two antagonistic constraints: ϕ1 := the expected
number of visits of the yellow cells with ’coins’ (denoted Ey) is at least 10, and ϕ2 := the
expected number of visits of the "danger" red cells (denoted Er) is below 7. Although the
CPOMDP is relatively small, the synthesis problem is challenging due to some trade-offs.
The constraint ϕ1 is incompatible with the objective to maximise reaching G. In addition,
to minimise reaching F , the agent intends to stay close to the middle column of the maze.
However, this conflicts with constraint ϕ2.

PAYNT proves within 1 sec that neither a memoryless controller (1-FSC) nor a 2-FSC
can achieve the objective under the given constraints. PAYNT finds the best 3-FSC in 42s
and requires two and a half minutes to determine that there is no better 3-FSC by exploring
the design space consisting of all 4.1 · 1011 candidates. The obtained controller reaches the
target G with probability 0.943 while Ey = 10.84 and Er = 6.

The design space for k=4 consists of 1.8·1016 candidates. In about 9 minutes, PAYNT
finds a 4-FSC that improves the reachability probability to 0.946 and satisfies both constraints
with Ey = 10.002 and Er = 6.02. In the given 30-minute deadline, PAYNT explores 8% of
all 4-FSCs, while not improving. The 4-FSC aims to reach one of the top (yellow) corners
as fast as possible, and once a corner is reached – corners have unique observations – the
controller tries to go back and forth in the top cells. The memory is needed to determine
when the agent can switch its focus to reaching G. The controller uses the slipping factor
to its advantage by going back and forth as there is around a 20% chance of reaching the
middle cell. This gives the FSC enough time to satisfy the constraint on visiting the yellow
states before reaching G.

Solving a meeting-grid Dec-POMDP

Recall the meeting-grid Dec-POMDP problem described in Section 1.2 where the goal is to
synthesise a pair of strategies, one for each of the two agents. The agents must meet at some
arbitrary cell in the grid5 while each agent has only limited information about its position
and there is no communication between the agents. This is a classical but challenging,
decentralised planning problem already for 8x8 grids with obstacles (Dibangoye et al., 2012).
We consider a variant that is illustrated in Fig. 4c6. There are 48 possible positions for each
agent, resulting in 482 = 2,304 states – this is already a very large Dec-POMDP compared
to the classical Dec-POMDP benchmarks (see the comparison with state-of-the-art methods
presented in Q3, namely Table 2).

We consider each agent’s policy to be represented as a finite-state deterministic controller
with k memory nodes (k-FSCs) (Hansen, 1998), a common idea for POMDPs. The synthesis
problem is then to derive two k-FSCs, one for each agent, that jointly establish the specification
Φ: to minimise the expected number of steps until the agents meet.

5. Both agents move within one discrete step, and therefore, they can jump over each other.
6. The boundaries of the grid are treated as obstacles.
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We first consider a scenario in which both agents observe all obstacles within distance one
(north, south, east and west). Within one second, our approach yields that it is impossible
to steer the agents such that they almost surely meet using a pair of memoryless controllers,
i.e., FSCs with k = 1. For k=2, there are 1018 candidates7, and our approach (exploring all
pairs of 2-FSCs) finds the optimal solution in 15 seconds.

The problem becomes more challenging for a slippery grid in which, with probability
0.1, an agent fails to move if it wants to. Our approach now requires 10 minutes to find an
optimal pair of 2-FSCs. As for the perfect non-slippery grid, the agents find the shortest
path to the other agent’s starting location while meeting somewhere on the way.

Finally, we consider an even more challenging setting in which the grid is slippery and
the observability is further limited: agent A only sees the obstacle directly to the east while
agent B only sees the obstacle directly to the west. Again, the impossibility of a pair of
memoryless FSCs is found within a second. We find the optimal controller for k=2 within 17
minutes. In contrast to the case above, the agents are now not able to find the shortest path
to the other agent’s starting location. Instead, they “agree” on the best meeting location that
both agents can reach. The optimal 2-FSC controller is shown in Fig. 4c and requires an
average of 9.77 steps. (The value of the optimal policy in the setting with better observability
is 6.76). Surprisingly, agent A does not take the fastest route to the “agreed” location, but
it alternates between staying at the current position and moving. This is caused by the
fact that agent A would get there much quicker than agent B. However, in this grid, it is
beneficial to meet on the way to the agreed location.

Q2: Comparison with State-of-the-art Controller-based Methods

In this section, we provide a comparison with other state-of-the-art controller-based ap-
proaches for the domains of i) constrained POMDP and ii) Dec-POMDPs. Our methods
are focused on the synthesis of FSCs for these problems, and therefore, the comparisons
are aimed at determining the performance capabilities of our approach compared to other
approaches that also produce FSCs. We note that our FSCs are deterministic Mealy machines
where the next action is chosen based on the memory node and the current observation. For
completeness of the corresponding sections, we also mention other approaches, most notably
belief-based methods (Poupart et al., 2015; Helmeczi et al., 2023; Dibangoye et al., 2016).
These methods can provide good scaling but lack in terms of explainability of their output
compared to methods that produce FSCs. The comparison with belief-based methods is
beyond the scope of this paper.

Synthesising FSCs for constrained POMDPs

The constrained maze POMDP case study showcased our approach is able to tackle con-
strained POMDPs (CPOMDPs). As far as we are aware, our approach is the first one
to handle indefinite-horizon (undiscounted) specifications in CPOMDPs. To provide a
comparison to state-of-the-art, we consider specifications with discounting. Infinite-horizon
CPOMDPs are a challenging planning problem, and current state-of-the-art algorithms
struggle to scale mainly because of optimisation complexities that are related to ensuring
that the constraints are satisfied. Our approach tries to find optimal FSCs strictly satisfying

7. The size of the underlying MCs ranges from 4 to 9216 states.
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CNLP PGA PAYNT

Benchmark |S| |A| |Ω| β ADR/ADC time ADR/ADC time ADR/ADC time

milos-97 20 6 8 10 23.2/10.0 741s 16.9/10.0 564s 31.6/10.0 7s
tiger-grid 36 5 17 18 −0.25/19.4 5685s −0.76/19.9 735s 0.0/0.0 1s
query-s3 27 3 3 53 261.2/14.6 3s 344.1/8.7 166s 509.5/15.7 1453s
query-s4 81 4 3 60 - TO 342.4/8.8 336s 456.9/18.4 791s

Table 1: Performance comparison of PAYNT with constrained linear programming (CNLP)
and projected gradient ascent (PGA) on CPOMDPs. The table indicates the number |S|
of states, the number |A| of actions, the number |Ω| of observations and the cost threshold
β. For each approach, the table lists the average discounted reward (ADR) and average
discounted cost (ADC) for the best found policy and the time to find this policy. Numbers
for CNLP and PGA were taken from (Wray & Czuprynski, 2022).

the given constraints. The notable controller-based approaches we consider in our experi-
mental comparison are constrained non-linear programming (CNLP) (Amato, Bernstein, &
Zilberstein, 2010a) and projected gradient ascent (PGA) (Wray & Czuprynski, 2022) which
produce stochastic FSCs. In Section 7, we discuss alternative approaches for constrained
POMDPs.

Benchmarks and setup. We evaluate our approach on traditional CPOMDP benchmarks.
We use single-objective POMDPs that are augmented with costs for low-reward actions taken
from (Poupart et al., 2015). The timeout for each experiment was 2 hours. We report the
values for the policy that achieved the best average discounted reward (ADR) within this
timeout. Our baselines are CNLP and PGA, where the values were taken from (Wray &
Czuprynski, 2022).

Results. The results are presented in Tab. 1. Our approach produces controllers that
achieve better rewards while respecting the cost constraint. In fact, our approach produces
better controllers compared to CNLP and PGA in under one second for all considered models
and gradually finds even better solutions. Moreover, our approach guarantees that the
constraint will be satisfied meanwhile, both CNLP and PGA fail to do so on the tiger-grid
benchmark (note that ADC > β in the table). Paper (Wray & Czuprynski, 2022) considers
controller sizes of 5 and 10 nodes. From the results in Tab. 1, all CNLP values are for
controllers with 5 nodes and for PGA it is controllers with 10 nodes for all but the query-s4
model. For PAYNT the sizes are as follows: 1 node for tiger-grid, 2 nodes for milos-97
and query-s4, and 3 nodes for query-s3. From this, we observe that PAYNT is capable of
producing better controllers that are smaller or at least comparable in size.

Synthesising FSCs for Dec-POMDPs.

The meeting-grid case study showcased that our framework can be used to solve Dec-
POMDPs. Solving Dec-POMDPs is a notoriously difficult problem. Many state-of-the-art
approaches support infinite-horizon specifications. However, we believe our approach is the
first one to solve and produce FSCs for indefinite-horizon (i.e. undiscounted) expected reward
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specifications in Dec-POMDPs. The most notable algorithm that produces FSC policies for
discounted infinite-horizon specifications is InfJESP (You, Thomas, Colas, & Buffet, 2021).
In Section 7, we discuss alternative approaches for Dec-POMDPs.

Benchmarks and setup. To showcase that our approach is competitive for Dec-POMDP
solving, we compare PAYNT with InfJESP on traditional Dec-POMDP benchmarks taken
from http://masplan.org/problem_domains (Recycling, Grid3x3, DecTiger, BoxPushing)
as well as on the already mentioned meeting-grid Dec-POMDP. In all models, the goal is to
maximise the expected discounted reward. InfJESP searches for joint equilibria and uses
random initialisation. Therefore, its performance can differ dramatically between runs. We
run three InfJESP attempts with 100 restarts each and report the numbers for the best
attempt. In PAYNT, we iteratively explore bigger FSC spaces, starting with 1× 1 FSCs and
continuing to 2× 2 and so on. We keep the value of the best-found FSC from each previous
computation to serve as bounds for FSC pruning.

Results. The comparison with InfJESP is shown in Tab. 2. The results show that PAYNT
is competitive for solving infinite-horizon Dec-POMDPs while providing compact, explainable
and easy-to-verify solutions. On the models Recycling and Box-pushing, our approach finds
better FSCs compared to InfJESP while needing significantly less time (6-10× less). The
DecTiger benchmark is a problem where our approach struggles due to the complexity of
the abstraction and because a good FSC requires a lot of memory nodes. The complexity
of the abstraction stems from the facts that 1) PAYNT does not work with probabilistic
observations and therefore needs to unfold them into the state space8 2) in DecTiger nearly
every action contains transitions to all of the (unfolded) states meaning the abstraction
contains a lot of transitions. The abstraction gets even more complex with the addition
of memory, as such, this is a known limitation of our synthesis loop that we encounter on
domains requiring a lot of memory. On the other hand, our approach is able to quickly find
compact FSCs that provide values comparable or even better compared to the state-of-the-art
for most of the traditional benchmarks as shown, in particular, for the Box-pushing problem,
our approach finds compact 2-state FSCs that improve the previously best-known value for
this model. For the Grid3x3 model, PAYNT finds a pair of memoryless FSCs9 that are
enough to match the best-known value on the model.

Q3: Comparison of the Synthesis Engines and Improvements to PAYNT

Finally, we showcase the different pros and cons of the individual synthesis engines in PAYNT
presented in Sections 3, 4, and 5. We also show the improvements in terms of synthesis
performance compared to our previous version of PAYNT (Andriushchenko et al., 2021).

Benchmarks and Setup

We evaluate the synthesis engines of PAYNT on various synthesis problems from the literature,
extensions thereof, and a few new problems (e.g., the meeting-grid Dec-POMDP (Dibangoye
et al., 2012) synthesis problem). Our benchmark suite includes some of the models (indicated
by †) considered in the experimental evaluation of the previous version of PAYNT (An-

8. From our benchmark set only DecTiger uses probabilistic observations.
9. Recall we represent FSCs as Mealy machines.
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InfJESP PAYNT

Benchmark |I| |S| |Ai| |Ωi| γ value FSC size time value FSC size time

Recycling 2 4 3 2 0.9 31.5 2× 2 6s 31.9 2× 2 <1s
Grid3x3 2 81 5 9 0.9 5.82 8× 8 270s 5.82 1× 1 21s
DecTiger 2 2 3 2 0.9 8.22 43× 48 4160s -2.28 3× 3 1900s
Box-pushing 2 100 4 5 0.9 219.2 85× 89 654s 224.7 2× 2 46s
Meeting-grid 2 4096 4 2 0.99 −6 11× 13 12488s −7.52 3× 3 450s

Table 2: Performance comparison of PAYNT with InfJESP on infinite-horizon Dec-POMDPs.
The table lists the number |I| of agents, the number |S| of states, the number |Ai| of actions
per agent, the number |Ωi| of observations per agent and the discount factor γ. We report
the value of the best-found FSC, its corresponding size as the number of memory nodes
for each agent and the time it took to find this FSC. Note that InfJESP produces different
type of FSCs (more akin to Moore machines), so the FSC sizes reported here are not easily
comparable.

Benchmark |S| |Act| |∆|

DPM 1,752 144,000 1.6 · 104
Grid † 11,535 45,345 6.5 · 104
Grid-10-4fsc 2,405 9,605 6.5 · 104
Herman † 18,753 663,489 3.1 · 106
Maze † 183 257 9.4 · 106
Maze-5-3fsc 424 1,348 7.9 · 1025
Meet-grid-2fsc 9,216 577,000 108

Pole 9,241 13,000 1.1 · 1015
Refuel-06-2fsc 877 1,524 1.1 · 1041

Table 3: Statistics of the considered benchmarks for Q3: the model, the size of the underlying
coloured MDP, and the size |∆| of the design space. † denotes that the model is taken
from (Andriushchenko et al., 2021).

driushchenko et al., 2021). Statistics of the benchmarks are listed in Table 3. This includes
the size of the underlying coloured MDP and the size of the design space. Some of the models
are parameterised; this includes the scalability of the model as well as the memory size of
the FSC (if any).

The timeout for the evaluation of the engines was 30 minutes. On model Pole, there is a
maximising expected reward specification which is not supported by the CEG engine (and
therefore by the Hybrid engine), so their times are missing. The timeout for the previous
implementation of PAYNT was set to 2 hours.
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Comparison of the synthesis engines

Table 4 shows the performance of the synthesis approaches on selected benchmarks that
demonstrate weak and strong features of the engines. It shows that CEG-based reasoning is
very beneficial for the grid-world benchmarks (e.g. Grid-10-4fsc) primarily as this approach
avoids computations on the (very large) MDP abstraction. Additionally, CEG is able to find
small conflicts. On the remaining models, however, the CEG engine in isolation performs
poorly and often times outs. A closer inspection shows that a large part of the design space
is pruned using small conflicts, but in the remaining parts, the approach fails to find small
conflicts, and thus, the later iterations are ineffective.

The AR engine with the new splitting strategy (its effect being evaluated later) performs
well over the whole benchmark set. Its performance can be improved in some cases: the
hybrid engine using the CE modulo bounds reduces the number of AR iterations significantly
using only a small number of CEG iterations. For the Refuel-06-2fsc problem, the CEG
integration is essential: 76k AR iterations are reduced to 61 AR and 2 CEG iterations, and
thus, the runtime is reduced by about a factor of 500. We emphasise that although the hybrid
engine is not always the fastest, it provides a robust synthesis method that is applicable
without prior knowledge of the synthesis problem at hand.

Improvements to PAYNT

The new splitting strategy used in refinement leverages the scores estimating the impact of a
given parameter assignment on the quality of the abstraction, see Section 3. Additionally,
we implemented various optimisations to manipulate the design space and the CEs. Our
experiments demonstrate that these enhancements significantly improve the performance
of the previous version of PAYNT (Andriushchenko et al., 2021). The Old Best column
in Table 4 lists the synthesis time for the best-performing synthesis engine in the previous
version of PAYNT. The evaluation confirms that the improvements pay off in all considered
benchmarks, and in some cases, they are essential for solving the synthesis problem. For
benchmark Maze, e.g., it reduces the number of AR iterations by about three orders of
magnitude, resulting in a speedup of over a factor of 3,000. The optimisations in CEG are
beneficial for, e.g., the grid-based problems where the performance of AR is limited due to
the large size of the MDP abstraction. These experiments clearly show that the presented
improvements significantly accelerate the synthesis and enable to solve more complicated
synthesis problems.

7. Related Work

7.1 Policy Synthesis for Models with Uncertainty

MDPs are important in both the model-checking community and the planning commu-
nity (Klauck et al., 2020). To accommodate the different types of constraints on MDP
policies, a plethora of extensions have been studied. Most prominently, POMDPs limit the
information that a policy has access to, and decentralised (PO)MDPs address the aspect
that a policy may be distributed over (independent) agents. Constrained MDPs (Altman,
1999) or multi-objective MDPs (Delgrange et al., 2020) allow expressing that policies must
trade-off several specifications. All these models sacrifice the computational tractability of
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PAYNT

Hybrid AR CEG

Benchmark time #iters time #iters time #iters Old Best

DPM 138s (3.5k, 781) 110s 3.7k 757s 15k 353s
Grid 3s (35, 2.8k) 12s 7.5k 1s 1.2k 11s
Grid-10-4fsc 22s (181, 7.6k) 64s 6.9k 22s 7.4k 3851s
Herman 18s (11, 709) 61s 223 TO - 48s
Maze <1s (139, 4) <1s 143 TO - 3028s
Maze-5-3fsc 38s (12k, 25) 37s 12k TO - TO
Meet-grid-2fsc 640s (11k, 23k) 532s 15k TO - TO
Pole - - 3s 146 - - 5540s
Refuel-06-2fsc <1s (61, 2) 104s 76k TO - TO

Table 4: Performance comparison of synthesis engines Hybrid, AR, and CEG. Hybrid is
the symbiosis of abstraction refinement (AR) and counterexample generalisation (CEG).
Hybrid iterations are tuples (AR iters, CEG iters). The maximising reward specification of
benchmark Pole is not supported by CEG. Old Best refers to the time achieved by the best
engine in the previous version of PAYNT (Andriushchenko et al., 2021).

the policy synthesis problem in MDPs in favour of expressivity. In our spirit, computing a
policy from a large set of flexibly definable design spaces. Systems may be decentralised,
policies may not be able to observe the complete system state, cost constraints may apply,
and so forth. Adequate operational models for these systems exist in the form of decentralised
partially-observable MDPs (DEC-POMDPs) (Oliehoek & Amato, 2016). The policy synthesis
problem for these models is undecidable (Madani, Hanks, & Condon, 1999), and tool support
to extract policies is scarce.

7.2 Parameter and Topology Synthesis

Parameter synthesis considers models with a fixed topology but with uncertain transition
probabilities. The aim is to analyse how the behaviour of the given MC or MDP depends on
the parameter values. Scalable approximate parameter synthesis treats identical parameters
in different transitions independently (Češka et al., 2017; Quatmann et al., 2016) and has been
implemented in the tools Storm (Dehnert et al., 2017) and PRISM (Kwiatkowska et al., 2011).
Exact approaches construct rational functions for symbolic reachability probabilities (Daws,
2004; Hahn et al., 2011; Dehnert et al., 2015). Topology synthesis considers parameters that
affect the topology of MCs akin to coloured MDPs. Finding a satisfying realisation w.r.t.
some reachability property is NP-complete in the number of parameters (Chonev, 2019).
The ProFeat (Chrszon et al., 2018) and QFLan (Vandin et al., 2018) tools model the MC
family as an MDP and use off-the-shelf MDP model-checking algorithms for the analysis.
The need for topology synthesis arises, e.g., while designing software product lines (Classen
et al., 2012; Lanna et al., 2018). Search-based techniques that do not ensure complete
exploration of the parameter space can be used to handle both these synthesis problems.
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These include evolutionary techniques (Harman et al., 2012; Martens et al., 2010) and genetic
algorithms (Gerasimou, Calinescu, & Tamburrelli, 2018).

7.3 Policy Synthesis for (Dec-)POMDPs

Widely used approaches for solving POMDPs build on the notion of beliefs (Smallwood
& Sondik, 1973) that keep track of the probabilities of equally observable POMDP states.
HSVI (Horak, Bosansky, & Chatterjee, 2018) and SARSOP (Kurniawati, Hsu, & Lee, 2008)
are prominent belief-based policy synthesis approaches typically used for discounted proper-
ties. These approaches represent policies as a set of α-vectors. For policy search, alternatives
are to search for randomised policies via gradient descent (Heck et al., 2022) or via convex
optimisation (Junges et al., 2018; Cubuktepe et al., 2021). Recent approaches extract
FSCs via deep reinforcement learning (Carr, Jansen, & Topcu, 2021). However, randomised
policies limit predictability, which hampers testing and explainability. Deterministic FSCs
are beneficial in this sense. Belief-based approaches for indefinite-horizon specification in-
clude (Norman, Parker, & Zou, 2017; Bork, Katoen, & Quatmann, 2022). Approaches based
on mixed-integer linear programming (MILP) optimisation have also been proposed (Amato
et al., 2010b; Kumar & Zilberstein, 2015). Finding policies for Dec-POMDPs is even more
difficult problem due to scalability issues. Point-based algorithms such as FB-HSVI (Diban-
goye et al., 2016) and PBVI-BB (MacDermed & Isbell, 2013) provide reasonable performance
and scalability, but the deployment of the resulting policies is limited due to the lack of
explainability compared to FSCs. Algorithms based on non-linear programming, such as
MealyNLP (Amato et al., 2010b), struggle to scale to larger problems. Policy iteration
producing randomised FSCs has also been proposed (Bernstein et al., 2009). Recent work
on Dec-POMDPs includes: an extension of the multi-agent A* by introducing small steps
in the search tree with recursive heuristics (Koops et al., 2023), Joint Equilibrium-based
Search for Policies (JESP) with finding the best response policy for an agent when strategies
of other agents are fixed called Inf-JESP (You et al., 2021) and Monte-Carlo search for
equilibrium (You et al., 2023).

7.4 Constrained Optimisation for POMDPs

The need for optimisation in CPOMDPs arises naturally in many areas, and the task of finding
near-optimal policies for these models is difficult (Wray & Czuprynski, 2022). The use of linear
programs has been proposed as MILP formulations with dynamic programming updates (Isom
et al., 2008), approximate linear programming (Poupart et al., 2015), iterative transition-based
linear programming (Helmeczi et al., 2023) or ILP over constant-horizons (Khonji, Jasour,
& Williams, 2019). Other proposed approaches include projected gradient ascent (Wray
& Czuprynski, 2022) and point-based value iteration (Kim et al., 2011). Recent work in
this area showed that solutions for CPOMDPs may have non-intuitive behaviour, which
is not desirable for safety-critical applications. Recursively-constrained POMDPs, which
impose history-based constraints, have been proposed as an alternative (Ho et al., 2023).
Another alternative is considering multiple reward functions with preference ordering (Wray &
Zilberstein, 2015). In this work, we address two problems related to constrained optimisation
raised in (de Nijs et al., 2021): Firstly, our approach is able to provide formal guarantees on
the given constraints even in the partially observable setting. Secondly, our approach can
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const int Xmax = 6;
const int Xmin = 2;

hole int H1 in {3,4};
hole int H2 in {1,2};

module counter
    x : [2..6] init 3;

    x <= H1 -> 0.2: true + 0.8: (x'=min(x+H2, Xmax));
    x > H1  -> 1  : (x'=max(x-H2, Xmin));
endmodule

...

Figure 5: Part of a coloured MDP encoding for the given program sketch. The states describe
the value of variable x.

handle even undiscounted specifications while keeping good performance, dropping the usage
of often impractical discounted constraints.

8. Conclusions

We presented a novel synthesis framework for systems operating in uncertain environments
and limited observability. In contrast to dedicated synthesis methods, it supports a wide range
of synthesis domains, including sketching of probabilistic programs and solving (decentralised)
POMDPs. It also supports complex (undiscounted) indefinite-horizon specifications as well
as constrained optimisation objectives. The framework is implemented in the tool PAYNT.
Experiments provide promising results; for some synthesis problems, it outperforms existing,
dedicated synthesis techniques. The modular framework can further benefit from other
synthesis methods such as belief-based exploration (Andriushchenko et al., 2023).
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Appendix A. Translating Program Sketches into Coloured MDP

A PRISM program sketch contains a finite set of holes, each hole with a finite domain. The
holes can be either in guards or updates of commands. A single command can include several
holes, and a single hole can be used in several commands. The left part of Fig. 5 illustrates a
simple PRISM sketch.

A sketch realisation r is a complete mapping from holes onto their domains. It defines
a complete program with the semantics given by a finite-state MC M r. The goal is to
find a realisation r such that M r satisfies the specification. In (Češka et al., 2021), we
formalised the sketches of probabilistic programs using families of MCs over a finite state of
parameters H where each parameter has a finite domain. Intuitively, states are tuples that
encode program-variable valuations and transitions are given by a parameterised transition
probability function B : S1×S2× . . . Sn 7→ Distr((S1∪H)×(S2∪H)× . . . (Sn∪H)) together
with domain constraints ensuring that each family member is well-formed.

Such families can be compactly represented by a coloured M. Intuitively, the underlying
MDP encodes the state space and each action available in the state (s1, s2, . . . , sn) encodes
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one parametrisation of the transition function B. The colouring κ(s, α) coincides with the
valuation of the parameters given by the action α. The right part of Fig. 5 illustrates a part
of the coloured MDP for the sketch on the left.

Appendix B. Translating POMDPs into Coloured MDP

POMDPs extend MDP with a finite set Z of observations and an observation function O.
For simplicity, we assume POMDPs with a deterministic observation function O : S → Z
that maps each state to an observation z ∈ Z10 A memoryless policy σ is observation based
if O(s) = O(s′) =⇒ σ(s) = σ(s′) for all s, s′ ∈ S. For a given specification, the synthesis of
memoryless observation-based policies can be encoded usingM where H = {hz | z ∈ Z} and
κ(s, α)(hz) = α if z = O(s), ⊥ otherwise.

Memoryless policies are typically insufficient for POMDPs; thus, a more general class of
observation-based policies mapping a sequence of observations to an action is considered (Kael-
bling, Littman, & Cassandra, 1998). Using finite-state controllers (FSCs) (Hansen, 1998)
is one of the prominent approaches to represent such policies. There exist various variants
of the FSCs. We focus on deterministic Mealy machines given by a tuple F = (N,n0, γ, δ),
where N is a finite set of nodes, n0 ∈ N is the initial node, γ(n, z) determines the action when
the agent is in node n and observes z, while δ updates the memory node to δ(n, z), when
being in n and observing z. For |N | = k, we call an FSC a k-FSC. Imposing k-FSC F onto
POMDP M = (S, s0, Act,P) with observation function O yields the induced Markov chain
MF = (S ×N, (s0, n0),PF ) where PF ((s, n), (s′, n′)) = P(s, γ(n, z), s′) · [δ(n, z) = n′]11 for
z = O(s).

For a fixed k, the goal is to find a FSC F such that MF satisfies the given spec-
ification. Such synthesis problem can be encoded using M = (M,∆, κ) where M =
(S×N, (s0, n0), Act × N,P) with P((s, n), (α, n′), (s′, n′)) = P(s, α, s′) for all n, n′ ∈ N .
The design space ∆ is given by the parameters H = {(hz, n) | z ∈ Z, n ∈ N} and do-
mains D((hz, n)) = Act(s)×N for z = O(s). To encode the dependencies in H, we define
κ((s, n), (α, n′))(hz, n) = (α, n′) if z = O(s), ⊥ otherwise.

This construction can be straightforwardly extended to capture the synthesis of FSCs in
decentralised POMDPs where the goal is to synthesise a set of independent local FSCs that
together supply the joint controller. Note that each local FSC chooses an action based purely
on its local observation and memory. For two agents, the synthesis of two k-FSCs F1 and
F2 can be encoded using a colouredM defined over the state space S ×N ×N , the action
space Act×Act×N ×N , where parameters H = H1 ∪H2 corresponding to the parameters
in F1 and F2 respectively, and for i ∈ {1, 2}, κ((s, n1, n2), (α1, α2, n

′
1, n

′
2))(hz, ni) = (αi, n

′
i)

if (hz, ni) ∈ Hi and z = Oi(s) (agent i observes z in s), ⊥ otherwise.
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