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Abstract

Submodular maximization has found extensive applications in various domains within
the field of artificial intelligence, including but not limited to machine learning, computer
vision, and natural language processing. With the increasing size of datasets in these
domains, there is a pressing need to develop efficient and parallelizable algorithms for sub-
modular maximization. One measure of the parallelizability of a submodular maximization
algorithm is its adaptive complexity, which indicates the number of sequential rounds where
a polynomial number of queries to the objective function can be executed in parallel. In
this paper, we study the problem of non-monotone submodular maximization subject to
a knapsack constraint, and propose a low-adaptivity algorithm achieving an (1/8 − ϵ)-
approximation with practical Õ(n) query complexity. Moreover, we also propose the first
algorithm with both provable approximation ratio and sublinear adaptive complexity for
the problem of non-monotone submodular maximization subject to a k-system constraint.
As a by-product, we show that our two algorithms can also be applied to the special case
of submodular maximization subject to a cardinality constraint, and achieve performance
bounds comparable with those of state-of-the-art algorithms. Finally, the effectiveness of
our algorithms is demonstrated by extensive experiments on real-world applications.

1. Introduction

Submodular maximization algorithms have played a critical role in advancing the field of
artificial intelligence, particularly in the areas of machine learning (e.g., non-parametric
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learning (Qian et al., 2019; Kulesza & Taskar, 2012; Lawrence et al., 2002), active learn-
ing (Golovin & Krause, 2010; Wei et al., 2015; Golovin & Krause, 2011), data summariza-
tion (Balkanski et al., 2018; Mirzasoleiman et al., 2018; Mitrovic et al., 2018; Amanatidis
et al., 2022)), computer vision (e.g., object detection (Angelova & Zhu, 2013; Zhu et al.,
2014), image segmentation (Kim et al., 2011)), and natural language processing (e.g., text
classification (Lei et al., 2019), document summarization (Lin & Bilmes, 2012; Kulesza &
Taskar, 2012)). As a result, submodular maximization has been widely studied under var-
ious constraints such as cardinality, knapsack, matroid, and k-system constraints. Many
algorithms in this area adopt the greedy search strategy (e.g., continuous greedy algorithms
in (Calinescu et al., 2011)), but may have large query complexity to achieve a good approx-
imation ratio, where query complexity refers to the number of evaluations to the objective
function. In practice, evaluating the objective function may be time-consuming (Dueck &
Frey, 2007; Das & Kempe, 2008; Kazemi et al., 2018), and this situation is further exac-
erbated by the proliferation of “big data”, for which simply reducing query complexity is
often insufficient to get efficient algorithms. Thus, parallelization has received increased
attention for submodular maximization.

Unfortunately, traditional greedy algorithms for submodular maximization are inher-
ently sequential and adaptive, which makes them unsuitable for being parallelized. Some
efforts have been devoted to designing distributed submodular maximization algorithms
using parallel models such as MapReduce (Mirzasoleiman et al., 2013; Kumar et al., 2013;
Barbosa et al., 2015; Mirzasoleiman et al., 2016; Epasto et al., 2017; Kazemi et al., 2021),
but these algorithms can still be highly adaptive, as they usually run sequential greedy algo-
rithms on each of the machines. Recently, (Balkanski & Singer, 2018) proposed submodular
maximization algorithms with low adaptive complexity (a.k.a. “adaptivity”), where only a
sub-linear number of adaptive rounds are incurred and polynomially-many queries can be
executed in parallel in each adaptive round. Subsequently, a lot of studies have appeared to
design low-adaptivity algorithms; many of them concentrate on the submodular maximiza-
tion with a cardinality constraint (SMC) problem (e.g., (Kazemi et al., 2019; Fahrbach
et al., 2019b; Balkanski et al., 2019a)).

Besides the SMC, one of the most fundamental problems in submodular optimizations
is the problem of submodular maximization subject to a knapsack constraint (SKP), which
has many applications both for monotone and non-monotone submodular functions (Kulik
et al., 2009; Lee et al., 2010; Badanidiyuru & Vondrák, 2014). Surprisingly, although the
SKP has been extensively studied since the 1980s (Wolsey, 1982), there exist only few
studies on designing low-adaptivity algorithms for it. In particular, (Chekuri & Quanrud,
2019b) provides a (1 − 1/e − ϵ)-approximation in O(log n) adaptive rounds for monotone
SKP, while (Ene et al., 2019) presents a (e− ϵ)-approximation in O(log2 n) adaptive rounds
for non-monotone SKP. However, both (Chekuri & Quanrud, 2019b) and (Ene et al., 2019)
assume oracle access to the multilinear extension of a submodular function and its gradient,
which incurs high query complexity for estimating multilinear extensions accurately, making
their algorithms impractical in real applications (Amanatidis et al., 2021). Very recently,
(Amanatidis et al., 2021) study the non-monotone SKP problem and present a parallelizable
algorithm dubbed ParKnapsack with Õ(n)1 query complexity and an approximation ratio

1. Throughout the paper, we use the Õ notation to suppress poly-logarithmic factors.
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pointed out by our conference version of this paper (Cui et al., 2023a), the performance
analysis of (Amanatidis et al., 2021) contains critical errors and hence their performance
bounds do not hold. Thus, our work is the first to provide a low-adaptivity algorithm that
can achieve a provable approximation ratio with practical query complexity for the non-
monotone SKP. After the publication of our conference version (Cui et al., 2023a, 2023b),
(Amanatidis et al., 2023) (which is the full version of (Amanatidis et al., 2021)) provided a
revised algorithm achieving the same 0.106−Θ(ϵ) ratio as that in (Amanatidis et al., 2021),
but this ratio is still worse than the 0.125− ϵ ratio provided by this paper.

Another fundamental problem in submodular optimizations is the problem of submodu-
lar maximization subject to a k-system constraint (SSP), as k-system constraints capture a
wide variety of constraints, including matroid constraints, intersection of matroids, spanning
trees, graph matchings, scheduling, and even planar subgraphs. Since the 1970s, significant
efforts have been devoted to solving the SSP. The state-of-the-art approximation ratios are
1/(k+1) (Fisher et al., 1978) and (1+ϵ)−1(

√
k+1)−2 (Cui et al., 2021) for monotone submod-

ular functions and non-monotone submodular functions, respectively. Recently, (Quinzan
et al., 2021) proposes the first low-adaptivity algorithm for the non-monotone SSP. Their
algorithm can achieve an approximation ratio of (1 + ϵ)−1(1− ϵ)2(k + 2

√
2(k + 1) +5)−1

under the adaptive complexity of O(
√
k log2 n log n

k ) and the query complexity of Õ(
√
kn).

Regrettably, as demonstrated in Appendix B, their analysis contains serious errors that
invalidated their algorithm’s approximation ratio. Therefore, it remains an open question
whether there exists a low-adaptivity algorithm that can achieve a provable approximation
ratio for the non-monotone SSP.
Contributions. In this paper, we present two practical low-adaptivity algorithms named
ParSKP and ParSSP that provide confirmative answers to the open problem mentioned
above and significantly improve the existing results. Our contributions include:

• For the non-monotone SKP, we propose ParSKP algorithm that uses O(log2 n) adap-
tivity and practical Õ(n) query complexity (or uses near-optimal O(log n) adaptivity
and Õ(n2) query complexity) to achieve an approximation ratio of 1/8 − ϵ which is
best among the existing practical parallel algorithms for the SKP problem.

• For the non-monotone SSP, we propose ParSSP algorithm that uses O(
√
k log3 n)

adaptivity and practical Õ(
√
kn) query complexity (or uses O(

√
klog2n) adaptivity

and Õ(
√
kn2) query complexity) to achieve an approximation ratio of (1−ϵ)5(

√
k + 1+

1)−2. To the best of our knowledge, our ParSSP is the first low-adaptivity algorithm
that can achieve a provable approximation ratio for the non-monotone SSP.

• As a by-product, our two algorithms can be directly used to address the non-monotone
SMC, where the approximation ratio of ParSSP can be tightened to 1/4− ϵ under the
same complexities listed above. That is to say, our ParSSP algorithm achieves the
best approximation ratio among existing practical low-adaptivity algorithms for the
SMC problem.

• We conduct extensive experiments using several applications including revenue maxi-
mization, movie recommendation and image summarization. The experimental results
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demonstrate that our algorithms can achieve comparable utility using significantly
fewer adaptive rounds than existing non-parallel algorithms, while also achieving sig-
nificantly better utility than existing low-adaptivity algorithms.

Challenges and Techniques. Naively, it seems that slightly adjusting the low-adaptivity
algorithms for the monotone submodular maximization problems can address their non-
monotone variants. However, we find that the techniques developed under the monotone
setting heavily rely on monotonicity, which may incur subtle issues when applying to the
non-monotone scenarios. For instance, as pointed out in Appendix B and (Chen & Kuhnle,
2022), the approximation claims in some recent work (Fahrbach et al., 2019a; Quinzan et al.,
2021) are flawed by the abuse of existing techniques developed for monotone functions.
Moreover, (Amanatidis et al., 2021) proposes the ParKnapsack algorithm sophisticatedly
tailored to non-montone functions, which again gives flawed analysis on approximation
guarantees as pointed in our conference version. As can be seen, designing approximation
parallel algorithms for non-monotone SKP/SSP achieving both low-adaptivity and low-
complexity is challenging. To overcome this challenge, our ParSKP algorithm adopts a
novel method using a more sophisticated filtering procedure dubbed Probe where multiple
solutions are created in different ways given an ideal threshold, which can provide theoretical
guarantees correctly. Moreover, our ParSSP algorithm adopts another method where there
is no need to guess an ideal threshold, but we use decreasing thresholds and introduce a
“random batch selection” operation to bypass the difficulties caused by non-monotonicity.

This manuscript provides an expanded and refined presentation of the research that was
initially introduced in a preliminary conference paper at AAAI-2023 (Cui et al., 2023a). The
main revisions can be summarized as follows:

• We present the ParSSP algorithm (Section 4.3), which is a modification of an algorithm
previously introduced in the conference version. Our ParSSP algorithm is the first to
achieve both a provable approximation ratio and sublinear adaptive complexity for
the non-monotone SSP. Moreover, we perform a set of comparative experiments to
validate the performance of our ParSSP algorithm for this problem (Section 6.4).

• We have added a set of comparative experiments on a small dataset to compare
our ParSKP algorithm with a parallel algorithm that has a theoretically optimal ap-
proximation ratio but impractical query complexity (Section 6.3). Additionally, we
also add experiments for the SMC problem (Section 6.5). These experiments further
demonstrate the superiority of our algorithm in terms of efficiency and effectiveness.

• Due to page limitations, the complete theoretical analysis of our algorithms and the
discussions of theoretical analysis errors in (Quinzan et al., 2021; Amanatidis et al.,
2021) were not included in the conference version. However, we provide all of the
complete theoretical analysis (Sections 4-5) and discussion mentioned above in this
journal version (Appendix A-B).

• We have restructured all sections to provide a clearer and more comprehensive expla-
nation of our research objectives and findings.

The rest of our paper is organized as follows. The related studies are reviewed in Sec-
tion 2 and our problem definitions are presented in Section 3. Our proposed approximation
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Table 1: Low-adaptivity algorithms for non-monotone submodular maximization.

Constraint Reference Ratio Adaptivity Queries

Knapsack (Ene et al., 2019) 1/e− ϵ O(log2 n) Õ(n3)

(Amanatidis et al., 2023) (3−
√
3)/12−Θ(ϵ) O(logn) || O(log2 n) Õ(n2) || Õ(n)

ParSKP(Alg. 3) 1/8− ϵ O(logn) || O(log2 n) Õ(n2) || Õ(n)

k-System (Quinzan et al., 2021) (1 + ϵ)−1(1− ϵ)2(k + 2
√
2(k + 1) + 5)−1# O(

√
k log2 n log n

k ) Õ(
√
kn)

ParSSP(Alg. 5) (1 − ϵ)5(
√
k + 1 + 1)−2 O(

√
klog2n) || O(

√
k log3 n) O(

√
kn2) || Õ(

√
kn)

Cardinality (Chekuri & Quanrud, 2019a) 3− 2
√
2− ϵ O(log2 n) Õ(nr4)

(Balkanski et al., 2018) 1/2e− ϵ O(log2 n) Õ(nr2)
(Ene & Nguyen, 2020) 1/e− ϵ O(logn) Õ(nr2)
(Chen & Kuhnle, 2022) 1/6− ϵ || 0.193− ϵ O(logn) || O(log n log r) Õ(n)

ParSKP(Alg. 3) 1/8− ϵ O(logn) || O(log n log r) Õ(nr) || Õ(n)

ParSSP(Alg. 5) 1/4− ϵ O(log2 n) || O(log2 n log r) Õ(nr) || Õ(n)

1 Bold font indicates the best result(s) in each setting, r is the largest cardinality of any feasible solution.
# The approximation ratio is derived from flawed analysis as explained in Appendix B.

algorithms and their theoretical analysis are introduced in Section 4. In Section 5, we ana-
lyze the performance bounds of our algorithms when applied to the SMC. We present the
experimental results in Section 6 before concluding our work in Section 7. Discussion on
the theoretical analysis error in relevant literature has been relegated to Appendix A-B.

2. Related Work

In the following, we review several lines of related studies, and list the performance bounds
of some representative ones in Table 1.

2.1 Algorithms for the SKP

The traditional SKP has been extensively studied, both for monotone and non-monotone
submodular functions (e.g., (Sviridenko, 2004; Kulik et al., 2013; Gupta et al., 2010; Ene
& Nguyen, 2019a; Yaroslavtsev et al., 2020)). For non-monotone SKP, (Buchbinder &
Feldman, 2019) achieves the best-known approximation ratio of 0.385, while some other
studies (Mirzasoleiman et al., 2016; Amanatidis et al., 2022; Han et al., 2021; Cui et al.,
2024) provide faster algorithms with weaker approximation ratios. However, all these al-
gorithms have super-linear adaptive complexity unsuitable for parallelization. In terms of
low-adaptivity algorithms for SKP, (Chekuri & Quanrud, 2019b) provides a (1− 1/e− ϵ)-
approximation in O(log n) adaptive rounds for monotone SKP. For the non-monotone SKP,
(Ene et al., 2019) provides an (1/e − ϵ)-approximation with O(log2 n) adaptivity, based
on a continuous optimization approach using multi-linear extension. However, an exces-
sively large and impractical number of Ω(nr2 log2 n) function valuations are needed in
(Ene et al., 2019) for simulating a query to the multilinear extension of a submodular
function or its gradient with sufficient accuracy, as described in (Fahrbach et al., 2019a).
Observing this, (Amanatidis et al., 2021) provides a combinatorial algorithm that uses
O(log2 n) adaptivity and practical Õ(n) query complexity to achieve an approximation ra-
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their approximation ratio is derived from flawed analysis as explained in our conference
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version (Cui et al., 2023a). The work of (Amanatidis et al., 2023) (which is the full version
of (Amanatidis et al., 2021)) has adopted a more complex sampling procedure to achieve
an approximation ratio of 0.106−Θ(ϵ), but this ratio is still worse than the 0.125− ϵ ratio
provided by this paper.

2.2 Algorithms for the SSP

Since the 1970s, the SSP has been a topic of widespread interest among the academic
community. Research related to the SSP has included (Fisher et al., 1978; Gupta et al.,
2010; Calinescu et al., 2011; Mirzasoleiman et al., 2016; Feldman et al., 2017, 2023; Cui
et al., 2021). Among the existing proposals, (Cui et al., 2021) achieves the best-known
approximation ratio of (1 + ϵ)−1(k + 2

√
k + 1)−1 under O(nϵ log

r
ϵ ) time complexity. How-

ever, all the studies mentioned above only provide algorithms with super-linear adaptive
complexity unsuitable for parallelization. In terms of parallelizable algorithms, to the best
of our knowledge, only (Quinzan et al., 2021) has proposed a low-adaptivity algorithm for
the SSP that achieves an approximation ratio of (1 + ϵ)−1(1− ϵ)2(k + 2

√
2(k + 1) + 5)−1

under the adaptive complexity of O(
√
k log2 n log n

k ) and the query complexity of Õ(
√
kn).

Unfortunately, their approximation ratio is derived from flawed analysis as pointed in our
conference version.

2.3 Algorithms for the SMC

For the monotone SMC, several parallelizable algorithms have been proposed such as (Ene
& Nguyen, 2019b; Balkanski et al., 2019b; Chekuri & Quanrud, 2019a; Breuer et al., 2020;
Chen et al., 2021). For the non-monotone SMC, (Chekuri & Quanrud, 2019a) and (Balka-
nski et al., 2018) propose parallelizable algorithms with 3 − 2

√
2 − ϵ and 1/(2e) − ϵ ap-

proximation ratios, respectively, both under O(log2 n) adaptivity, while (Ene & Nguyen,
2020) achieve an improved ratio of 1/e − ϵ under O(log n) adaptivity. However, all these
studies use multilinear extensions and have high query complexity (larger than Ω(nr2)).
Another study in this line (Fahrbach et al., 2019a) aims to reduce both adaptivity and
query complexity, but achieving a relatively large ratio of 0.039− ϵ. Subsequently, (Kuhnle,
2021) claims a (0.193 − ϵ)-approximation with O(log2 n) adaptivity. However, (Chen &
Kuhnle, 2022) identifies non-trivial errors in both (Fahrbach et al., 2019a) and (Kuhnle,
2021), and propose a new adaptive algorithm to fix the (0.193− ϵ)-approximation. Despite
these efforts, our ParSSP algorithm still achieves a superior (1/4− ϵ)-approximation for the
non-monotone SMC.

3. Preliminaries

We provide the some basic definitions in the following:

Definition 1 (Submodular Function, defined by (Fisher et al., 1978)). Given a finite ground
set N with |N | = n, a set function f : 2N 7→ R is submodular if for all sets X,Y ⊆
N : f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

In this paper, we allow f(· ) to be non-monotone, i.e., ∃X ⊆ Y ⊆ N : f(X) > f(Y ), and
we assume that f(· ) is non-negative, i.e., f(X) ≥ 0 for all X ⊆ N .
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Definition 2 (Independence System). Given a finite ground set N and a collection of sets
I ⊆ 2N , the pair (N , I) is called an independence system if it satisfies: (1) ∅ ∈ I; (2) if
X ⊆ Y ⊆ N and Y ∈ I, then X ∈ I.

Given an independence system (N , I) and any two sets X ⊆ Y ⊆ N , X is called a base
of Y if X ∈ I and X ∪ {u} /∈ I for all u ∈ Y \ X. A k-system is a special independence
system defined as:

Definition 3 (k-system). An independence system (N , I) is called a k-system (k ≥ 1) if
|X1| ≤ k|X2| holds for any two bases X1 and X2 of any set Y ⊆ N .

We assume that each element u ∈ N has a cost c(u) > 0 and there is a budget B > 0.
Without loss of generality, we also assume ∀u ∈ N : c(u) ≤ B. Then a knapsack constraint
can be modeled as an independence system as follows:

Definition 4 (Knapsack Constraint). An independence system (N , I) capturing a knapsack
constraint is defined as the collection of sets X ⊆ N obeying c(X) ≤ B for some non-
negative modular function c(X) =

∑
u∈X c(u).

Based on the above definitions, the SKP, SMC and SSP can be written as:

• SKP: max{f(S) : S ∈ I}, where (N , I) is a knapsack constraint

• SMC: max{f(S) : S ∈ I}, where (N , I) is a knapsack constraint and ∀u ∈ N : c(u) = 1

• SSP: max{f(S) : S ∈ I}, where (N , I) is a k-system and ∀u ∈ N : c(u) = 1

For convenience, we denote by OPT = f(O) the optimal value of the objective function
for the SKP/SSP/SMC, where O is an optimal solution, and use w to denote an element
with maximum cost in O. Moreover, we let r denote the maximum cardinality of any
feasible solution to the same problem. For any u ∈ N and any X ⊆ N , we use fX(·) to
denote the function defined as fX(Y ) = f(X ∪ Y ) for any Y ⊆ N ; and we use f(u | X) to
denote the “marginal gain” of u with respect to X, i.e., f(u | X) = f(X ∪ {u})− f(X); we
also call f(u | X)/c(u) as the “marginal density” of u with respect to X.

Suppose that f(S) can be returned by an oracle query for any given S ⊆ N , the query
complexity of any algorithm ALG denotes the number of oracle queries to f(·) incurred in
ALG , and its adaptive complexity denotes the number of adaptive rounds of ALG , where
O(poly(n)) oracle queries are allowed in each adaptive round, but all these queries can only
depend on the results of previous adaptive rounds. We assume that there exists an algo-
rithm USM(X) addressing the unconstrained submodular maximization (USM) problem of
max{f(Y ) : Y ⊆ X} for any X ⊆ N , and assume that it achieves the following performance
bounds:

Theorem 1 (Theorem A.1 in the full version of (Chen et al., 2019)). For every constant
ϵ > 0, there is an algorithm without using multi-linear extension that achieves a (1/2− ϵ)-
approximation for the unconstrained submodular maximization problem using O(1ϵ log

1
ϵ )

adaptive rounds with O( n
ϵ4
log3 1

ϵ ) query complexity.
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4. Approximation Algorithms

In this section, we propose our ParSKP and ParSSP algorithms. Both of them call a sub-
module RandBatch based on the “adaptive sequencing” technique, which was originally
proposed by (Balkanski et al., 2019b). It is worth noting that the “adaptive sequencing”
technique alone is far from sufficient to achieve approximation ratios for any submodu-
lar maximization problem, thus numerous studies such as (Amanatidis et al., 2021, 2023;
Breuer et al., 2020; Quinzan et al., 2021; Gong et al., 2024) built upon this technique to
develop low-adaptivity algorithms for submodular maximization under different constraints
as we have done. In contrast to the original technique of (Balkanski et al., 2019b) and
its variants such as that in (Amanatidis et al., 2021, 2023), our RandBatch introduces a
“random batch selection” method to allow for a more flexible adaptive sequencing. This
enhancement expands the applicability of our algorithm to a wider range of constraints and
objective functions. More importantly, our methods for generating candidate solutions (i.e.,
ParSKP and ParSSP) differ from existing work, which allows us to avoid the issues encoun-
tered in (Amanatidis et al., 2021; Quinzan et al., 2021) and achieve better performance
bounds than their algorithm.

For clarity, we first introduce RandBatch (Sec. 4.1), then introduce ParSKP (Sec. 4.2)
and ParSSP (Sec. 4.3), respectively.

4.1 The RandBatch Procedure

The RandBatch procedure (Algorithm 1) takes as input a threshold ρ, candidate element set
I, submodular function f(·), cost function c(·), a number M to control the adaptivity, and
p, ϵ ∈ (0, 1]. It runs in iterations to find a solution set A and uses U to store all elements
considered for addition to A. Besides, it maintains a set L of “valuable elements” in I that
have not been considered throughout the procedure, where any element is called a valuable
element w.r.t. A if it can be added into A with marginal density no less than ρ under
the budget constraint (Line 2). In each iteration, RandBatch first neglects f(·) and calls a
simple function GetSEQ (Algorithm 2) to get a random sequence of elements (v1, . . . , vd)
from L without violating the constraint (Line 4), and then finds a subsequence Vt∗ =
(v1, . . . , vt∗) with “good quality” by considering f(·) (Lines 5–11), where t∗ = min{t1, t2}
will be explained shortly. After that, it invokes a “random batch selection” operation by
adding Vt∗ into A with probability of p and abandoning Vt∗ with probability of 1−p (Line 12).
All the elements in Vt∗ are recorded into U no matter they are accepted or abandoned. Then
RandBatch enters a new iteration and repeats the above process with an updated L (Line 15).
RandBatch uses a variable count to control its adaptive complexity (Line 14), and returns
(A,U,L) either when L = ∅ or count = M . Note that RandBatch returns L ̸= ∅ only when
count = M .

As mentioned above, RandBatch uses t∗ = min{t1, t2} to control the quality of the ele-
ments in Vt∗ , where t1, t2 depend on E+

i (elements in L with enough density), E−
i (elements

in L with negative marginal gain) and Di (elements in Vi with negative marginal gain)
defined in Lines 7-9. Intuitively, the setting of t1 (Line 10) ensures that the total cost of
valuable elements w.r.t. A ∪ Vt1 (i.e., elements in E+

t1
) is sufficiently small, and the setting

of t2 (Line 10) ensures that the total marginal gain of valuable elements w.r.t. A ∪ Vt1

(i.e., elements in E+
t2
) is sufficiently small. Through the selection of Vt∗ , RandBatch strikes
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Algorithm 1: RandBatch(ρ, I,M, p, ϵ, f(·), c(·))
Input: density threshold ρ, set I, maximum number of iterations M ∈ Z>0,

probability p, precision ϵ ∈ (0, 1), submodular function f(·), and cost
function c(·);

1 A← ∅; U ← ∅; count← 0;

2 L← {u ∈ I : f(u|A)
c(u) ≥ ρ ∧A ∪ {u} ∈ I};

3 while L ̸= ∅ ∧ count < M do
4 {v1, v2, . . . , vd} ← GetSEQ(A,L, c(·));
5 foreach i ∈ {0, 1, . . . , d} do
6 Vi ← {v1, v2, . . . , vi}; Gi ← A ∪ Vi;

7 E+
i ← {u ∈ L : f(u|Gi)

c(u) ≥ ρ ∧Gi ∪ {u} ∈ I};
8 E−

i ← {u ∈ L : f(u | Gi) < 0};
9 Di ← {vj : j ∈ [i] ∧ f(vj | A ∪ Vj−1) < 0};

10 Find t1 ← mini≤d{c(E+
i ) ≤ (1− ϵ)c(L)} and t2 ← mini≤d{ϵ

∑
u∈E+

i
f(u | Gi) ≤∑

u∈E−
i
|f(u | Gi)|+

∑
vj∈Di

|f(vj | A ∪ Vj−1)|};
11 t∗ ← min{t1, t2}; U ← U ∪ {Vt∗};
12 with probability p do
13 A← A ∪ Vt∗ ;
14 if t2 < t1 then count← count+ 1;

15 L← {u : u ∈ L \ U ∧ f(u|A)
c(u) ≥ ρ ∧A ∪ {u} ∈ I};

16 return (A,U,L);

Algorithm 2: GetSEQ(A, I)

Input: sets A and I;
1 V ← ∅;
2 while I ̸= ∅ do
3 Randomly permute I into {v1, . . . , v|I|};
4 s← max{i ∈ [|I|] : A ∪ V ∪ {v1, . . . , vi} ∈ I};
5 V ← V ∪ {v1, . . . , vs};
6 I ← {u : u ∈ I \ V ∧A ∪ V ∪ {u} ∈ I};
7 return V ;

a balance between solution quality and adaptive complexity, as shown by the following
lemma:

Lemma 1. The sets A and L output by RandBatch(ρ, I,M, f(·), c(·), p, ϵ) satisfy (1) A ∈ I,
(2) E[f(A)] ≥ (1− ϵ)2ρ · E[c(A)] and (3) ϵ ·M ·

∑
u∈L f(u | A) ≤ OPT for any I ⊆ N .

It can be readily observed that property 1 of Lemma 1 holds as GetSEQ always returns
feasible sequences. However, the proof of properties 2 and 3 of Lemma 1 are a bit com-
plex due to the randomness introduced in GetSEQ function and in Line 12 of RandBatch.
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To overcome this challenge, we first introduce Lemma 2, which shows that the expected
marginal density of each element that RandBatch attempts to add to the candidate solution
is sufficiently large. We then use Lemma 2 to prove Lemma 1. The proof is inspired by
(Balkanski et al., 2019b; Amanatidis et al., 2021), but is more involved due to the random-
ness introduced by Line 12 of Algorithm 1.

Lemma 2. For any Vt∗ found in Lines 10–11 of RandBatch and any u ∈ Vt∗, let λ(u)
denote the set of elements in Vt∗ selected before u (note that Vt∗ is an ordered list ac-
cording to Line 6), and λ(u) does not include u. Let A and U denote the sets returned
by RandBatch(ρ, I,M, p, ϵ, f(·), c(·)), where the elements in U are {u1, u2, . . . , us} (listed
according to the order they are added into U). Let uj be a “dummy element” with zero
marginal gain and zero cost for all s < j ≤ |I|. Then we have:

∀j ∈ [|I|] : E[f(uj | {u1 . . . , uj−1} ∩A ∪ λ(uj)) | Fj−1] ≥ (1− ϵ)2ρ · E[c(uj) | Fj−1],

where Fj−1 denotes the filtration capturing all the random choices made until the moment
right before selecting uj.

Proof of Lemma 2. Note that Fj−1 determines whether uj ∈ U , so the lemma trivially
follows for all j > s. In the sequel, we consider the case of j ≤ s. Recall that RandBatch runs
in iterations and adds a batch of elements Vt∗ into U in each iteration (Line 11). Consider
the specific iteration in which uj is added into U and the sets Gq, E

+
q , E

−
q defined by Lines 6–

8 of RandBatch in that iteration, where q = |λ(uj)|; and let H = {v : v ∈ L \ Gq ∧ Gq ∪
{v} ∈ I}, where L is the set considered at the beginning of that iteration. So we have
{u1, . . . , uj−1} ∩ A ∪ λ(uj) = Gq. Note that both Gq and H are deterministic given Fj−1,
and that uj is drawn uniformly at random from H. So we have

E
[
f(uj | {u1, . . . , uj−1} ∩A ∪ λ(uj)) | Fj−1

]
− (1− ϵ)2ρ · E

[
c(uj) | Fj−1

]
=

∑
v∈H

Pr[uj = v | Fj−1]f(v | Gq)− (1− ϵ)2ρ
∑

v∈H
Pr[uj = v | Fj−1]c(v)

≥ |H|−1 ·
(∑

v∈E+
q

f(v | Gq) +
∑

v∈E−
q

f(v | Gq)− (1− ϵ)2ρ ·
∑

v∈H
c(v)

)
= |H|−1 ·

(
ϵ
∑

v∈E+
q

f(v | Gq)−
∑

v∈E−
q

|f(v | Gq)|
)

(1)

+ |H|−1 · (1− ϵ) ·
∑

v∈E+
q

(f(v | Gq)− ρ · c(v)) (2)

+ |H|−1 · (1− ϵ) · ρ ·
(∑

v∈E+
q

c(v)− (1− ϵ)
∑

v∈H
c(v)

)
, (3)

where the first inequality is due to E+
q ∪ E−

q ⊆ H. Note that Eqn. (2) is non-negative due
to the definition of E+

q . According to the definition of t∗ in Lines 10–11 of Algorithm 1, we
have c(E+

q ) > (1−ϵ)c(L) due to q ≤ t∗−1, so Eqn. (3) is non-negative as H ⊆ L. Similarly,
Eqn. (1) is also non-negative due to the definition of t∗. Combining these completes the
proof.

Proof of Lemma 1. We first prove E[f(A)] ≥ (1 − ϵ)2ρ · E[c(A)]. Consider the sequence
{u1, . . . , us, us+1, . . . , u|I|} defined in Lemma 2. For each j ∈ [|I|], define a random variable
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δ1(uj) = f(uj | {u1, . . . , uj−1}∩A∪λ(uj)) if uj ∈ A and δ1(uj) = 0 otherwise, and also define

δ2(uj) = c(uj) if uj ∈ A and δ2(uj) = 0 otherwise. So we have f(A) ≥
∑|I|

j=1 δ1(uj) and

c(A) =
∑|I|

j=1 δ2(uj). Due to the linearity of expectation and the law of total expectation,
we only need to prove

∀j ∈ [|I|], ∀Fj−1 : E[δ1(uj) | Fj−1] ≥ (1− ϵ)2ρ · E[δ2(uj) | Fj−1], (4)

where Fj−1 is the filtration defined in Lemma 2. This trivially holds for j > s. For any
j ≤ s, we have

E[δ1(uj)|Fj−1] = E[E[δ1(uj)|Fj−1, uj ] | Fj−1]

= pE[f(uj | {u1, . . . , uj−1} ∩A ∪ λ(uj)) | Fj−1],

where the second equality is due to the reason that, each uj ∈ U is added into A with
probability of p, which is independent of the selection of uj . Similarly, we can prove
E[δ2(uj) | Fj−1] = p · E[c(uj) | Fj−1]. Combining these results with Lemma 2 proves
Eqn. (4) and hence E[f(A)] ≥ (1− ϵ)2ρ · E[c(A)].

Next, we prove ϵ ·M ·
∑

u∈L f(u | A) ≤ f(O). This trivially holds if L = ∅, otherwise we
must have count = M when Algorithm 1 returns (A,U,L) due to Line 3. Note that count is
increased by 1 only in Line 14 of the while-loop in Algorithm 1. Consider the i-th iteration
among the specific M iterations of the while-loop in which count gets increased, and let
E+

[i], E
−
[i], D[i] denote the sets E+

t∗ , E
−
t∗ , Dt∗ in that iteration, and let A[i] denote the set of

elements already added into A at the end of that iteration. Besides, let A<(u) denote the
elements in A that are selected before u for any u ∈ A, and let A+ = {u ∈ A : f(u | A<(u)) ≥
0} and A− = {u ∈ A : f(u | A<(u)) < 0}. As the sets in {E−

[i], D[i] : i ∈ [M ]} are mutually

disjoint according to their definitions and
⋃M

i=1E
−
[i] ∩ A = ∅, we can use submodularity of

f(·) to get

f(
⋃M

i=1
E−

[i] ∪A)

≤ f(A) +
∑M

i=1

∑
u∈E−

[i]

f(u | A)

≤
∑

u∈A+
f(u | A<(u)) +

∑
u∈A−

f(u | A<(u)) +
∑M

i=1

∑
u∈E−

[i]

f(u | A[i])

≤
∑

u∈A+
f(u | A<(u)) +

∑M

i=1

∑
u∈D[i]

f(u | A<(u))

+
∑M

i=1

∑
u∈E−

[i]

f(u | A[i]), (5)

where the last inequality follows from the fact that ∪i∈[M ]D[i] ⊆ A−. Combining Eqn. (5)

with
∑

u∈A+ f(u | A<(u)) ≤ f(A+) (due to submodularity) and f(
⋃M

i=1E
−
[i] ∪ A) ≥ 0, we

can get
M∑
i=1

( ∑
u∈D[i]

|f(u | A<(u))|+
∑

u∈E−
[i]

|f(u | A[i])|
)
≤ f(A+) ≤ OPT. (6)
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Besides, according to Lines 10,11,14 of Algorithm 1, we must have

∀i ∈ [M ] : ϵ
∑

u∈E+
[i]

f(u | A[i]) ≤
∑

u∈E−
[i]

|f(u | A[i])|+
∑

u∈D[i]

|f(u | A<(u))|. (7)

Moreover, we have
∑M

i=1

∑
u∈E+

[i]
f(u | A[i]) ≥ M ·

∑
u∈E+

[M ]
f(u | A) due to submodularity

of f(·) and E+
[M ] ⊆ E+

[M−1] ⊆ · · · ⊆ E+
[1]. Combining this with Eqn. (6) and Eqn. (7)

yields OPT ≥ ϵ ·M ·
∑

u∈E+
[M ]

f(u | A), which completes the proof due to E+
[M ] = L when

Algorithm 1 returns a non-empty L.

The complexity of RandBatch (shown in Lemma 3) can be proved by using the fact
that, when A enlarges, either c(L) is decreased by a 1− ϵ factor, or count is increased by 1
(Line 14).

Lemma 3. RandBatch has O((1ϵ log(|I| ·β(I))+M)/p) adaptivity, and its query complexity

is O(|I| · r) times of its adaptive complexity, where β(I) ≜ maxu,v∈I
c(u)
c(v) . If we use binary

search in Line 10, then RandBatch has O((1ϵ log(|I| · β(I)) +M) · (log r)/p) adaptivity, and
its query complexity is O(|I|) times of its adaptivity.

Proof. First, we analyze the number of while-loops in RandBatch. Note that RandBatch needs
O(1/p) while-loops (in expectation) to trigger Lines 13–14 once. Each time when Lines 13–
14 are executed, either c(L) is decreased by at least a 1 − ϵ factor, or count is increased
by 1. Besides, note that RandBatch terminates either when L = ∅ or count = M . At the
beginning of the algorithm, we have c(L) ≤ cmax · |I| where cmax = maxu∈I c(u), while we
need c(L) < minu∈I c(u) to ensure L = ∅. Based on the above discussions, it can be seen
that the total number of while-loops in RandBatch is at most O((1ϵ log(|I| · β(I)) +M)/p)
in expectation.

Second, we explain why binary search can be used in Line 10 of Algorithm 1. Recall
that Line 10 need to find the smallest i ∈ [d] satisfying Eqn. (8) to determine t1, and to
find the smallest i ∈ [d] satisfying Eqn. (9) to determine t2:

c(E+
i ) ≤ (1− ϵ)c(L), (8)

ϵ
∑

u∈E+
i

f(u | Gi) ≤
∑

u∈E−
i

|f(u | Gi)|+
∑

vj∈Di

|f(vj | A ∪ Vj−1)|. (9)

By submodularity and the definitions of E+
i , E

−
i , Di, it can be verified that the LHS of

Eqn. (8) or Eqn. (9) decreases when i increases, and the RHS of Eqn. (9) increases with i.
This makes it possible to use binary search.

Third, we analyze the adaptive complexity and query complexity caused by each while-
loop in RandBatch. Note that the GetSEQ function causes zero adaptive complexity. There-
fore, if binary search is not used in Line 10, then the seeking of t∗ in Lines 10–11 of
RandBatch can be fully parallelized and hence causes O(1) adaptive complexity, but under
O(|I| ·r) query complexity because O(|I|) oracle queries are needed to calculate E+

i , E
−
i for

each i ≤ d ≤ r. On the other side, if binary search is used, then we need O(log r) adaptive
rounds to find t∗ due to t∗ ≤ d ≤ r, causing O(|I| log r) oracle queries. The lemma then
follows by synthesizing all the above discussions.
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Algorithm 3: ParSKP(α, ϵ,B, f(·), c(·))
Input: parameter α ∈ (0, 1), precision ϵ ∈ (0, 1), budget B, submodular function

f(·), and cost function c(·);
1 N1 ← {u ∈ N : c(u) > ϵBn }; N2 ← N \N1;
2 u∗ ← argmaxu∈N f(u); S ← USM(N2);
3 S ← argmaxX∈{S,{u∗}} f(X);

4 ρmin ← αf(u∗)
B ; ρmax ← n2·αf(u∗)

ϵB ;
5 Z ← {(1− ϵ)−z : z ∈ Z ∧ (1− ϵ)−z ∈ [ρmin, ρmax]};
6 foreach ρ ∈ Z in parallel do
7 for i← 1 to ⌈log1−ϵ ϵ⌉ in parallel do
8 T ← Probe(ρ,N1,N2, ϵ, B, f(·), c(·));
9 S ← argmaxX∈{S,T} f(X);

10 return S;

Algorithm 4: Probe(ρ,N1,N2, ϵ, B, f(·), c(·))
Input: density threshold ρ, two disjoint partitions of the ground set N1 and N2,

precision ϵ ∈ (0, 1), budget B, submodular function f(·), and cost function
c(·);

1 T ← ∅; M ← ⌈ϵ−2⌉; p← 1; I ← N1;
2 (A1, U1, L1)← RandBatch(ρ, I,M, p, ϵ, f(·), c(·));
3 I ← N1 \A1;
4 (A2, U2, L2)← RandBatch(ρ, I,M, p, ϵ, f(·), c(·));
5 for i← 1 to 2 do
6 ei ← argmaxu∈N1∧c(Ai∪{u})≤B f(Ai ∪ {u});
7 T ← argmaxX∈{T,Ai,Ai∪{ei}} f(X);

8 if c(N2 ∪A1) ≤ B then
9 A3 ← USM(N2 ∪A1);

10 T ← argmaxX∈{T,A3} f(X);

11 return T ;

4.2 The Algorithm for the SKP

Our ParSKP algorithm is shown in Algorithm 3. In ParSKP, the ground set N is partitioned
into two disjoint subsetsN1 andN2, whereN1 contains every element inN with a sufficiently
large cost (i.e., larger than ϵ · B/n). So we have c(N2) ≤ ϵ · B. A major building block
of ParSKP is the function Probe (shown in Algorithm 4). For clarity, we first elaborate
Probe in the following.

Given an input threshold ρ and N1,N2, Probe first calls RandBatch with p = 1 using N1

as the ground set to find a candidate solution A1 (Line 2), and then calls RandBatch again
using N1 \A1 as the ground set to find another candidate solution A2 (Line 4). So A1 and
A2 are disjoint subsets of N1. The reason for calling RandBatch with only the elements in
N1 is that the adaptive complexity of RandBatch can be bounded only when the costs of
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considered elements have a lower bound (due to Lemma 3). Then, Probe tries to “boost”
the utilities of A1 and A2 by augmenting them with a single element in N1, neglecting the
threshold ρ (Line 6). After that, another candidate solution set A3 is found by calling an
unconstrained submodular maximization algorithm if c(N2 ∪ A1) ≤ B (Line 9). Finally,
Probe returns the candidate solution with maximum function value found so far.

In Lemma 4, we show Probe can achieve a provable approximation ratio under some
special cases:

Lemma 4. If the threshold ρ input into Algorithm 4 is no more than ρ∗ ≜ αf(O)
B−c(w) and

Algorithm 4 finds A1 and A2 satisfying ∀i ∈ {1, 2} : c(Ai) < B−max{ϵB, c(w)}, where w is
the element in O with the maximum cost, then Algorithm 4 returns a solution T satisfying
f(T ) ≥ (1−2ϵ)(1−2α−2ϵ)

4−4ϵ ·OPT.

Proof. According to the assumption of the lemma, we must have c(A1 ∪ N2) ≤ B due to
c(N2) ≤ ϵ ·B, so Line 9 of Probe must be executed. If w /∈ N1, then we must have O ⊆ N2

and hence 2f(T ) ≥ 2f(A3) ≥ (1−2ϵ)f(O) due to Line 9 of Algorithm 4 (Theorem 1), which
completes the proof. Therefore, we assume w ∈ N1 in the following.

Note that N1 ∩N2 = ∅, A1 ∩A2 = ∅ and A1, A2 ⊆ N1. So we can use submodularity of
f(·) to get:

f(O) ≤ f(O ∩N1 \A1) + f((O ∩A1) ∪ (O ∩N2))

≤ f(A2 ∪ (O ∩N1 \A1)) + f(A1 ∪ (O ∩N1)) + f((O ∩A1) ∪ (O ∩N2)). (10)

Next, we try to bound the three additive factors in the RHS of Eqn. (10). For the third
additive factor, we have

(1− 2ϵ)f((O ∩A1) ∪ (O ∩N2)) ≤ 2f(A3) ≤ 2f(T ), (11)

due to Line 9 of Algorithm 4. Besides, we can get

f(A1 ∪ (O ∩N1)) ≤ f(A1 ∪ {w}) +
∑

u∈Q
f(u | A1 ∪ {w}) ≤ f(T ) +

∑
u∈Q

f(u | A1)

≤ f(T ) +
∑

u∈L1

f(u | A1) +
∑

u∈Q\L1

f(u | A1), (12)

where Q = O ∩ N1 \ (A1 ∪ {w}), and L1 is the set returned by RandBatch in Line 2 of
Probe, and the second inequality is due to the the submodularity of f(·) and Lines 5–7 of
Algorithm 4. Furthermore, note that each u ∈ Q\L1 satisfies c(A1∪{u}) ≤ B according to

the assumption of current lemma, so we should have f(u|A1)
c(u) < ρ, because otherwise u should

be in either A1 or L1 due to the design of RandBatch. Using this and c(Q) ≤ B − c(w), we
get ∑

u∈Q\L1

f(u | A1) ≤ ρ · c(Q) ≤ ρ∗ · c(Q) ≤ α · f(O). (13)

Besides, we can use Lemma 1 to get
∑

u∈L1
f(u | A1) ≤ ϵ · f(O) due to M = ⌈ϵ−2⌉.

Combining this with Eqn. (12) and Eqn. (13) yields

f(A1 ∪ (O ∩N1)) ≤ f(T ) + (α+ ϵ) · f(O). (14)
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Using similar reasoning as above, we can also get

f(A2 ∪ (O ∩N1 \A1)) ≤ f(T ) + (α+ ϵ) · f(O). (15)

The lemma then follows by combining Eqns. (10)–(15).

There are still two obstacles for using Lemma 4 to find the approximation ratio of
ParSKP: the first problem is that ρ∗ is unknown, and the second problem is that c(A1) and
c(A2) may not satisfy the condition in Lemma 4. In the following, we roughly explain how
ParSKP is designed to overcome these hurdles.

For the first problem mentioned above, it can be proved that ρ∗ ∈ [ρmin, ρmax] if
B − c(w) > ϵB/n, where ρmin and ρmax are defined in Line 4 of ParSKP. Therefore,
ParSKP tests multiple values of ρ in Z (Line 5) to ensure that one of them lies in [(1−ϵ)ρ∗, ρ∗].
One the other side, if B − c(w) ≤ ϵB/n, then we have O \ {w} ⊆ N2 and hence USM(N2)
in Line 2 of ParSKP can be used to find a ratio. To address the second problem mentioned
above, ParSKP repeatedly runs Probe for a sufficiently large number of times (Lines 7–9).
Therefore, if both E[c(A1)] and E[c(A2)] are sufficiently small, then it can be proved that
at least one run of Probe satisfies the condition in Lemma 4 with high probability. On
the other side, if either E[c(A1)] or E[c(A2)] is sufficiently large, then we can directly use
Lemma 1 to prove that Probe also satisfies a desired approximation ratio (in expectation).
By choosing an appropriate α that can maximize our approximation ratio and combining
all above ideas, we get:

Theorem 2. For the non-monotone SKP, ParSKP can return a solution S satisfying
E[f(S)] ≥ (18 − ϵ)OPT by setting α = 1

4 .

Proof. If c(O \ {w}) ≤ ϵBn , then it follows that O \ {w} ⊆ N2. As a result, Line 2 of
Algorithm 3 guarantees f(S) ≥ (1/2− ϵ)f(O \ {w}), which implies

f(O) ≤ f(w) + f(O \ {w}) ≤ f({u∗}) + 2

1− 2ϵ
f(S) ≤

(
1 +

2

1− 2ϵ

)
f(S)

where the second inequality is due to Line 3 of Algorithm 3. Thus, we have f(S) ≥(
1 + 2

1−2ϵ

)−1
f(O) ≥ (1/3 − ϵ)f(O) when ϵ < 5/6, which implies the theorem holds in this

case.

Then we only need to consider the case that c(O \ {w}) > ϵBn in the follwing analysis.
In this case, we have B − c(w) ≥ c(O)− c(w) > ϵBn and hence

ρmin=
αf(u∗)

B
≤ αf(O)

B − c(w)
=ρ∗≤ n · αf(u∗)

B − c(w)
≤ n · αf(u∗)

ϵBn
≤ n2 · αf(u∗)

ϵB
=ρmax

which implies that there exists a threshold ρ ∈ Z for the Probe algorithm such that (1 −
ϵ)ρ∗ ≤ ρ ≤ ρ∗, as per the definition of Z. With this threshold established, we can proceed
with the following discussion:

• Case 1: The Probe algorithms finds {A1, A2} such that there exists A ∈ {A1, A2}
satisfying E

[
c(A)

]
≥ (1 − ϵ)(B − max{ϵB, c(w)})/2. Under this case, we can use
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Lemma 1 to get

E
[
f(S)

]
≥ E

[
f(A)

]
≥ (1− ϵ)2ρ · E

[
c(A)

]
≥ (1− ϵ)4

αf(O)

B − c(w)
· B −max{ϵB, c(w)}

2

= (1− ϵ)4
αf(O)

2
· B −max{ϵB, c(w)}

B − c(w)
. (16)

When ϵB ≥ c(w), we have

B −max{ϵB, c(w)}
B − c(w)

=
B − ϵB

B − c(w)
≥1− ϵB

B − c(w)
≥1− ϵB

B − ϵB
=
1− 2ϵ

1− ϵ
, (17)

and hence E[f(S)] ≥ (1− ϵ)3(1−2ϵ)α2 f(O) ≥ (1/8− ϵ)f(O) when α = 1/4. Similarly,
we can prove E[f(S)] ≥ (1/8− ϵ)f(O) when ϵB < c(w).

• Case 2: The Probe algorithms finds A1 and A2 satisfying E
[
c(Ai)

]
< (1 − ϵ)(B −

max{ϵB, c(w)})/2 for all i ∈ {1, 2}. Under this case, define an event E = {max{c(A1),
c(A2)} ≥ B −max{ϵB, c(w)}}, then we have

(1− ϵ)(B −max{ϵB, c(w)}) > E
[
c(A1) + c(A2)

]
≥ E[c(A1) + c(A2) | E ] · Pr[E ] ≥ (B −max{ϵB, c(w)}) · Pr[E ]. (18)

and hence Pr[E ] < 1 − ϵ. Recall that ParSKP calls Probe for ⌈log1−ϵ ϵ⌉ times in
parallel, so the probability of at least one run of Probe finds A1 and A2 satisfying
max{c(A1), c(A2)} < B − max{ϵB, c(w)} is no less than 1 − (1 − ϵ)log1−ϵ ϵ = 1 − ϵ.

Using Lemma 4, we have E[f(S)] ≥ (1−ϵ)(1−2ϵ)(1−2α−2ϵ)
4(1−ϵ) f(O) ≥ (1/8 − ϵ)f(O) when

α = 1/4.

According to the above discussion, the theorem follows.

Note that the complexity of ParSKP is dominated by Lines 6–9, where Probe is run for
multiple times in parallel. Therefore, leveraging Lemma 3, we can also get:

Theorem 3. The adaptive complexity and query complexity of ParSKP are O(log n) and
O(nr log2 n) respectively, or O(log n log r) and O(n log2 n log r) respectively.

Proof. Note that Probe calls RandBatch using M = ⌈ϵ−2⌉ and I ⊆ N1, and we have

maxu,v∈N1

c(u)
c(v) ≤

n
ϵ due to the definition of N1. Therefore, according to Lemma 3, each

call of RandBatch incurs adaptive complexity of O(1ϵ log
n
ϵ + 1

ϵ2
) and query complexity of

O(nrϵ log n
ϵ +

nr
ϵ2
) if binary search is not used in RandBatch, or incurs adaptive complexity of

O((1ϵ log
n
ϵ+

1
ϵ2
)·log r) and query complexity ofO((nϵ log

n
ϵ+

n
ϵ2
)·log r) if binary search is used.

Besides, note that ParSKP calls Probe for O(1ϵ log
1
ϵ ) times for every ρ ∈ Z in parallel, and we

have |Z| = O(1ϵ log
n
ϵ ). The USM algorithm called in Line 2 of ParSKP or Line 9 of Probe in-

curs adaptive complexity of O(1ϵ log
1
ϵ ) and query complexity of O( n

ϵ4
log3 1

ϵ ). Combining all
the above results, we know that the adaptive complexity and query complexity of ParSKP are
O(1ϵ log

n
ϵ + 1

ϵ2
) = O(log n) and O( 1

ϵ2
log 1

ϵ log
n
ϵ (

nr
ϵ log n

ϵ + nr
ϵ2

+ n
ϵ4
log3 1

ϵ )) = O(nr log2 n)
respectively, or O((1ϵ log

n
ϵ +

1
ϵ2
)·log r) and O( 1

ϵ2
log 1

ϵ log
n
ϵ ((

n
ϵ log

n
ϵ +

n
ϵ2
)·log r+ n

ϵ4
log3 1

ϵ )) =

O(n log2 n log r) respectively.
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Algorithm 5: ParSSP(p, ϵ, f(·))
Input: probability p, precision ϵ ∈ (0, 1), and submodular function f(·);

1 T ← ∅; I ← N ; M ←
⌈ log1−ϵ

ϵ
r
+2

ϵ2

⌉
; ℓ←

⌈
log1−ϵ

ϵ
r

⌉
+ 1;

2 u∗ ← argmaxu∈N f(u); ρmax ← f(u∗);
3 for i← 1 to ℓ do
4 ρi ← ρmax · (1− ϵ)i−1;
5 (Ai, Ui, Li)← RandBatch(ρi, I,M, p, ϵ, fT (·));
6 T ← T ∪Ai; I ← I \ (Ui ∪ Li);

7 return S ← argmaxX∈{T,{u∗}} f(X);

4.3 The Algorithm for the SSP

In this section, we introduce ParSSP (as shown in Algorithm 5), which calls RandBatch using
ℓ non-increasing thresholds ρ1, . . . , ρℓ to find ℓ sequences of elements (i.e., A1, . . . , Aℓ), and
then splices them together to get T (Lines 3–6). Note that the elements in Uj and Lj

returned by RandBatch (for every j ∈ [i]) are all neglected when seeking for Ai+1 (Line 6),
which is useful for the performance analysis presented shortly. The final solution S returned
by ParSSP is the best one among T and the single element in N with maximum objective
function value (Line 7).

Now we begin to show the performance analysis of ParSSP, which is more involved than
those of ParSKP, as ParSSP calls RandBatch with p < 1 to introduce additional randomness.
We first introduce some definitions useful in our analysis. When ParSSP finishes, let U =
∪ℓi=1Ui,L = ∪ℓi=1Li, Osmall = {u : u ∈ O \ (U ∪L)∧ f(u | T ) ≤ ρℓ} and Obig = O \ (Osmall ∪
U ∪ L). So each element u ∈ Obig must satisfy f(u | T ) > ρℓ and T ∪ {u} /∈ I.

Based on the definitions given above, we introduce a mapping Υ(·) for performance
analysis in Lemma 5. The intuition of this mapping is to map the elements in Obig to those
in T , so that the utility loss resulting from excluding Obig from T can be bounded (as shown
by Lemma 6).

Lemma 5. There exists a mapping Υ : Obig 7→ T satisfying:

1. Each v ∈ Obig can be added into T without violating the k-system constraint at the
moment that Υ(v) is added into T .

2. Let Υ−1(u) = {v ∈ Obig : Υ(v) = y} for any u ∈ T . Then we have |Υ−1(u)| ≤ k.

Lemma 6. For any u ∈ U , let ρ(u) denote the threshold used by ParSSP when u is considered
to be added into T and define ρ(u) = 0 for other u ∈ N . For any u ∈ U , we have

1. f(u | T ) ≤ ρ(u)/(1− ϵ);

2. and if u ∈ T ∧Υ−1(u) ̸= ∅, we can get ∀v ∈ Υ−1(u) : f(v | T ) ≤ ρ(u)/(1− ϵ).

Proof of Lemma 5. Let T = {u1, · · · , us} be a set where elements are ordered according
to the order that they are added into T . Let Zs = Obig and construct the mapping by
executing the following iterations from t = s to t = 0. In iteration t, we first compute a set
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Qt = {x ∈ Zt \ {u1, · · · , ut−1} : {u1, · · · , ut−1, x} ∈ I}. If |Qt| ≤ k, then we set Rt =Qt;
otherwise, we select a subset Rt ⊆ Qt such that |Rt| = k. Next, we assign Υ(u) = ut for
each u ∈ Rt and update Zt−1 = Zt \Rt. Then we proceed to iteration (t− 1).

It is clear that the Υ(·) constructed by the above process satisfies Conditions 1-2. There-
fore, we only need to show that every u ∈ Obig is mapped to an element in T , which is
equivalent to showing Z0 = ∅ since each u ∈ Zs \ Z0 is mapped to an element in T by the
above process. To prove Z0 = ∅, we use induction and show that |Zt| ≤ k ·t for all 0 ≤ t ≤ s.

1. For t = s, let M = T ∪ Obig. It is obvious that every element u ∈ Obig satisfies
T ∪ {u} /∈ I by the definition of Obig. Hence, we infer that T is a base of M . Since
Obig ∈ I, we obtain |Zs| = |Obig| ≤ k|T | = k · s by the definition of k-system.

2. For 0 ≤ t < s, assume that |Zt| ≤ k · t for some t. If |Qt| > k, then we set |Rt| = k
and thus |Zt−1| = |Zt| − k ≤ k(t − 1). If |Qt| ≤ k, then we observe that no element
u ∈ Zt−1 \ {u1, · · · , ut−1} satisfies {u1, · · · , ut−1} ∪ {u} ∈ I due to the above process
for constructing Υ(· ). Now consider the set M ′ = {u1, · · · , ut−1} ∪ Zt−1, we see that
{u1, · · · , ut−1} is a base of M ′ and Zt−1 ∈ I, which implies |Zt−1| ≤ k(t − 1) by the
definition of k-system.

By induction, we have shown that Zt ≤ k · t for all 0 ≤ t ≤ s, which implies Z0 = ∅.
Therefore, the lemma is proved.

Proof of Lemma 6. The lemma is trivial for u ∈ U1 since ρ(u) = ρmax. Next, suppose
that u ∈ Ui (i > 1) and there exists v ∈ Υ−1(u) such that f(v | T ) > ρ(u)/(1 − ϵ) (for
a contradiction). Let T ′ be the set of elements in T when u is considered to be added to
T . Then we get T \ ∪ℓt=iUt ⊆ T ′ ⊆ T , which implies that v can be added to T \ ∪ℓt=iUt

without violating the k-system constraint by Lemma 5 and the hereditary property of k-
system. By submodularity, we obtain f(v | T \∪ℓt=iUt) > ρ(u)/(1− ϵ), and thus v ∈ L. But
this contradicts the fact that v ∈ Obig. A similar line of reasoning can demonstrate that
f(u | T ) ≤ ρ(u)/(1− ϵ). Combining all of the above completes the proof.

By applying submodularity and Lemma 6, we obtain the following lemma:

Lemma 7. For any u ∈ N , let Xu = 1 if u ∈ T and Xu = 0 otherwise; let Yu = 1 if
u ∈ O ∩ U \ T and Yu = 0 otherwise. When ParSSP finishes, we have

f(T ∪O) ≤ f(T ) + f(Osmall | T ) + f(Obig | T ) + f(L ∩O | T )

+ f(O ∩ U \ T | T ) ≤ (1 + ϵ)f(S) + ϵf(O) + k
∑
u∈N

Xu · ρ(u)
1− ϵ

+
∑
u∈N

Yu · ρ(u)
1− ϵ

.

Proof. When ParSSP finishes, the set O \T can be partitioned into several disjoint subsets:
Osmall , L ∩O, Obig and O ∩ U \ T . By submodularity, we have

f(O ∪ T )− f(T ) ≤ f(Osmall | T ) + f(Obig | T ) + f(L ∩O | T ) + f(O ∩ U \ T | T ). (19)

Besides, using Lemma 1 and submodularity, we have

f(L ∩O | T ) ≤
∑ℓ

i=1
f(Li ∩O | ∪i−1

j=1Ai) ≤ ϵ−1 · ℓf(O)/M ≤ ϵf(O), (20)

56



Practical Parallel Algorithms for Submodular Maximization

where the last inequality is due to ℓ ≤ log1−ϵ
ϵ
r + 2 and M ≥ log1−ϵ

ϵ
r
+2

ϵ2
according to Line 1

of Algorithm 5. According to the definition of Osmall , we have

f(Osmall | T ) ≤
∑

u∈Osmall

f(u | T ) ≤ r · ρℓ ≤ ϵ · ρmax ≤ ϵf(S). (21)

By Lemma 6 and submodularity, we have

f(O ∩ U \ T | T ) ≤
∑

u∈O∩U\T

f(u | T ) =
∑

u∈O∩U\T

ρ(u)/(1− ϵ) =
∑
u∈N

Yu · ρ(u)/(1− ϵ). (22)

and

f(Obig | T ) ≤
∑

u∈Obig

f(u | T ) =
∑
u∈T

∑
v∈Υ−1(u)

f(v | T )

≤
∑
u∈T

∑
v∈Υ−1(u)

ρ(u)/(1− ϵ) ≤
∑
u∈T

k · ρ(u)/(1− ϵ) = k
∑
u∈N

Xu · ρ(u)/(1− ϵ).

Combining all of the above completes the proof.

Note that both ρ(u) and Υ−1(u) are random for any u ∈ N , and the randomness is
caused by both Line 12 of Algorithm 1 and the random selection in the GetSEQ function.
So we study their expectation and get the following lemma:

Lemma 8. We have

E[k
∑
u∈N

Xu · ρ(u) +
∑
u∈N

Yu · ρ(u)] ≤ (k +
1− p

p
)(1− ϵ)−2 · E[f(T )]

Proof. Recall that U = ∪ℓi=1Ui, where Ui is generated in Line 5 of Algorithm 5. Sup-
pose that |U| = h, so we can create a random sequence {u1, . . . , uh, uh+1, . . . , un}, where
{u1, u2, . . . , uh} are the elements in U listed according to the order that they are selected,
and {uh+1, . . . , un} are the elements in N \ U listed in an arbitrary order. For any i ∈ [n],
let δ(ui) = f(ui | {u1, . . . , ui−1} ∩ T ∪ λ(ui)) if ui ∈ T and otherwise δ(ui) = 0, where the
function λ(·) has been defined in Lemma 2. So f(T ) ≥

∑n
i=1 δ(ui), and hence we only need

to prove

∀i ∈ [n] : E[k ·Xui · ρ(ui) + Yui · ρ(ui)] ≤ (k +
1− p

p
)(1− ϵ)−2 · E[δ(ui)],

due to the linearity of expectation. Let Fi−1 be the filtration capturing all the random
choices made by ParSSP until the moment right before selecting ui. According to the law
of total expectation, it is sufficient to prove

∀i ∈ [n],∀Fi−1 : E[k ·Xui · ρ(ui) + Yui · ρ(ui) | Fi−1]

≤ (k +
1− p

p
)(1− ϵ)−2 · E[δ(ui) | Fi−1]. (23)

Note that Fi−1 determines whether ui ∈ U . Therefore, according to the definitions of ρ(·)
and δ(·), Eqn. (23) trivially holds under the case of ui /∈ U given Fi−1. So in the sequel, we
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only consider the case of ui ∈ U given Fi−1. By similar reasoning with that in Lemma 1,
we can get:

E[δ(ui) | Fi−1] = p · E[f(ui | {u1, . . . , ui−1} ∩ T ∪ λ(ui)) | Fi−1].

Note that ρ(ui) is deterministic given Fi−1, then we have

E[k ·Xui · ρ(ui) + Yui · ρ(ui) | Fi−1] = ρ(ui) · E[k ·Xui + Yui | Fi−1]

≤ ρ(ui)(k · p+ 1− p)

where the inequality is due to the reason that u is accepted with probability of p and
discarded with probability of 1 − p. Besides, by similar reasoning with that in Lemma 2,
we can get

E[f(ui | {u1, . . . , ui−1} ∩ T ∪ λ(ui)) | Fi−1] ≥ (1− ϵ)2ρ(ui).

The proof is now complete by combining the above.

Using Lemmas 7–8, we get the performance bounds of ParSSP as follows:

Theorem 4. For the non-monotone SSP, ParSSP algorithm can return a solution T satis-
fying E[f(T )] ≥ (1 − ϵ)5(

√
k + 1 + 1)−2f(O) by setting p = (1 +

√
k + 1)−1. The adaptive

complexity and query complexity of ParSSP are O(
√
k log2 n) and O(

√
knr log2 n) respec-

tively, or O(
√
k log2 n log r) and O(

√
kn log2 n log r) respectively.

Proof. We first quote the following lemma presented in (Buchbinder et al., 2014):

Lemma 9 ((Buchbinder et al., 2014)). Given a ground set N and any non-negative sub-
modular function g(·) defined on 2N , we have E[g(Y )] ≥ (1−p)g(∅) if Y is a random subset
of N such that each element in N appears in Y with probability of at most p (not necessarily
independently).

By combining Lemmas 7–8 and using the fact that f(T ) ≤ f(S), we can get

E[f(T ∪O)] ≤ (1 + ϵ)E[f(S)] + ϵf(O) + (k +
1− p

p
)(1− ϵ)−3 · E[f(S)].

Let g(·) = f(·∪O), then we can use Lemma 9 to get E[f(T ∪O)] ≥ (1−p)f(O). Combining
this with the above equation, and setting p = (1 +

√
k + 1)−1, we get

E[f(S)]
f(O)

≥ 1− p− ϵ

1 + ϵ+ (k + 1−p
p )(1− ϵ)−3

≥ (1− ϵ)5(
√
k + 1 + 1)−2

when ϵ ∈ [0, 0.4), which completes the proof on the approximation ratio.

In a manner similar to the proof of Theorem 3, we can employ Lemma 3 to analyze
and determine the complexity of ParSSP. Then combining all of the above completes the
proof.
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5. Extensions for Cardinality Constraint

As cardinality constraint is a special case of knapsack constraint and k-system constraint
(where k = 1), our ParSKP and ParSSP algorithms can be directly applied to the non-
monotone SMC, for which the performance bounds shown in Theorem 2 and Theorem 4
still hold. Interestingly, by a more careful analysis, we find that ParSSP actually achieves a
better approximation ratio for the SMC, while its complexities remain the same. This result
is shown in Theorem 5. We roughly explain the reason as follows. Since the cardinality
constraint is more restrictive than the k-system constraint, we can use a more effective
mapping to bound the utility loss caused by the elements in Obig by using only the elements
in T \ O instead of all the elements in T . This leads to stronger versions of Lemma 7 and
Lemma 8, as shown by Lemma 10 and Lemma 11.

Lemma 10. For any u ∈ N , let X ′
u = 1 if u ∈ T \ O and X ′

u = 0 otherwise; let Y ′
u = 1 if

u ∈ O ∩ U \ T and Y ′
u = 0 otherwise. When ParSSP finishes, we have

f(T ∪O) ≤ (1 + ϵ)f(S) + ϵf(O) +
∑
u∈N

X ′
u · ρ(u)
1− ϵ

+
∑
u∈N

Y ′
u · ρ(u)
1− ϵ

.

Proof. Using similar reasoning as Eqn. (19)-(22), we can get

f(T ∪O) ≤ (1 + ϵ)f(S) + ϵf(O) + f(Obig | T ) +
∑
u∈N

Y ′
u · ρ(u)
1− ϵ

.

Based on the cardinality constraint property, any element in Obig can be added to the
candidate solution T without violating the constraint, provided that it is added prior to
ulast, where ulast denotes the last added element in T . So according to the definition of Obig

and submodularity, we must have

1. if |T | < r, then |Obig| = 0;

2. if |T | = r, then ∀u ∈ Obig : f(u | T ) ≤ ρ(ulast)/(1 − ϵ) and |Obig| ≤ |O \ U| ≤
|O| − |O ∩ T | ≤ r − |O ∩ T | = |T | − |T ∩O| = |T \O|.

Thus, we can get

f(Obig | T ) ≤
∑

u∈Obig

f(u | T ) ≤
∑

u∈Obig

ρ(ulast)/(1− ϵ)

≤
∑

u∈T\O

ρ(ulast)/(1− ϵ) ≤
∑

u∈T\O

ρ(u)/(1− ϵ) =
∑
u∈N

X ′
u · ρ(u)/(1− ϵ)

The proof now completes by combining the above.

Lemma 11. We have

E[
∑
u∈N

X ′
u · ρ(u) +

∑
u∈N

Y ′
u · ρ(u)] ≤ (1− ϵ)−2 · max{p, 1− p}

p
· E[f(T )]
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Proof. By following a similar argument as in the proof of Lemma 8, we only need to prove

∀i ∈ [n], ∀Fi−1 : E[X ′
ui
· ρ(ui) + Y ′

ui
· ρ(ui) | Fi−1]

≤ (1− ϵ)−2 · max{p, 1− p}
p

· E[δ(ui) | Fi−1].

under the case of ui ∈ U given Fi−1 to prove this lemma. Consider the following two
scenarios.

1. ui ∈ O. In this case, we must have X ′
ui

= 0, and Y ′
ui

= 1 if ui is discarded by the
algorithm. Therefore, E[Xui + Yui | Fi−1] = 1− p.

2. u /∈ O: In this case, we must have Y ′
ui

= 0, and X ′
ui

= 1 if ui is not discarded by the
algorithm. Therefore, E[Xui + Yui | Fi−1] = p.

Since ρ(ui) is deterministic given Fi−1, we have

E[Xui · ρ(ui) + Yui · ρ(ui) | Fi−1] = ρ(ui) · E[Xui + Yui | Fi−1] ≤ ρ(ui) ·max{p, 1− p}.

Recall that

E[δ(ui) | Fi−1] = p · E[f(ui | {u1, . . . , ui−1} ∩ T ∪ λ(ui)) | Fi−1] ≥ (1− ϵ)2 · p · ρ(ui).

The proof now completes by combining the above.

Using Lemma 10 and Lemma 11, we can improve the approximation ratio of ParSSP for
the non-monotone SMC, as stated by Theorem 5.

Theorem 5. For the non-monotone SMC, ParSSP can return a solution S satisfying
E[f(S)] ≥ (1/4 − ϵ)OPT by setting p = 1/2, under the same adaptivity and query com-
plexity as those shown in Theorem 4 where k = 1.

Proof. By combining Lemmas 10–11 and Lemma 9 and using the fact that f(T ) ≤ f(S),
we get

(1− p)f(O) ≤ (1 + ϵ)E[f(S)] + ϵf(O) + (1− ϵ)−3 · max{p, 1− p}
p

· E[f(S)],

By setting p = 1/2 and rearranging the above inequality, we derive the approximation ratio
of ParSSP as

E[f(S)]
f(O)

≥ 1/2− ϵ

1 + ϵ+ (1− ϵ)−3
≥ 1

4
− ϵ.

Finally, the complexity analysis is the same with that in Theorem 4 where k = 1.

6. Performance Evaluation

In this section, we evaluate the performance of our algorithm ParSKP (resp. ParSSP) by
comparing it with state-of-the-art algorithms for the non-monotne SKP (resp. SSP). The
evaluation metrics include both the objective function value (i.e., utility) and the number
of oracle queries to the objective function. We conduct experiments on three real-world
applications, which are described in detail below.
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6.1 Applications

Revenue Maximization. This application is also considered in (Mirzasoleiman et al.,
2016; Balkanski et al., 2018; Fahrbach et al., 2019a; Han et al., 2021; Cui et al., 2021; Ama-
natidis et al., 2021, 2022). In this problem, we are given a social network G = (N , E) where
each node u ∈ N represents a user with a cost c(u), and each edge (u, v) ∈ E has a weight
wu,v denoting the influence of u on v. There are also t advertisers for different products;
each advertiser i ∈ [t] needs to select a subset Si ⊆ V of seed nodes and provide a sample
of product i to each user u ∈ Si (and also pay c(u) to u) for advertising product i. Follow-
ing (Mirzasoleiman et al., 2016; Balkanski et al., 2018; Fahrbach et al., 2019a; Amanatidis

et al., 2021, 2020), we define the revenue of advertiser i as fi(Si) =
∑

u∈N\Si

√∑
v∈Si

wv,u

(which measures the total influence of the seed nodes on the non-seed nodes) and define
the objective function of the application as

∑
i∈[t] fi(Si) (i.e., the total revenue of all adver-

tisers). This function has already been shown by (Mirzasoleiman et al., 2016; Amanatidis
et al., 2020; Balkanski et al., 2018; Fahrbach et al., 2019a; Amanatidis et al., 2021) to be
a non-monotone submodular function. We also follow the existing work to consider the
following constraints to better model the demands of real-world scenarios: 1) each node
can serve as a seed node for at most q products; 2) the total number of product samples
available for each product is at most m; and 3) the total seed cost is bounded by B (i.e.,∑

i∈[t]
∑

u∈Si
c(u) ≤ B). The first two constraints constitute a k-system constraint (where

k = 2), which has been demonstrated by (Mirzasoleiman et al., 2016; Cui et al., 2021).
The third constraint is a conventional knapsack constraint. The edge weights are randomly
sampled from the continuous uniform distribution U(0, 1), and the cost of any node u ∈ N
is defined as c(u) = g(

√∑
(u,v)∈E wu,v), where g(x) = 1−e−µ is the exponential cumulative

distribution function and µ is set to 0.2.
Image Summarization. This application is also considered in (Mirzasoleiman et al., 2016;
Balkanski et al., 2018; Fahrbach et al., 2019a; Han et al., 2021; Cui et al., 2024), the goal
is to select a representative set S of images from N . Following (Mirzasoleiman et al., 2016;
Balkanski et al., 2018; Fahrbach et al., 2019a), we use a non-monotone submodular function
f(·) that can capture both coverage and diversity of S to measure its quality:

f(S) =
∑

u∈N
max
v∈S

su,v −
1

|N |
∑

u∈S

∑
v∈S

su,v,

where su,v denotes the cosine similarity between image u and image v. Thus, this application
is in fact a non-monotone submodular maximization problem. Following (Mirzasoleiman
et al., 2016; Han et al., 2021), the cost c(u) of any image u is chosen in proportional to the
standard deviation of its pixel intensities, such that we assign higher costs to images with
higher contrast and lower costs to blurry images. The costs of all images are normalized
such that the average cost is 1. In addition, we restrict the number of images in S that
belong to each category to no more than q, and we limit the total number of images in
S to no more than m. It has been indicated in (Mirzasoleiman et al., 2016) that such a
constraint is a matroid (i.e., 1-system) constraint.
Movie Recommendation. This application is also considered in (Mirzasoleiman et al.,
2016; Feldman et al., 2017, 2023; Haba et al., 2020; Badanidiyuru et al., 2020; Amanatidis
et al., 2022; Cui et al., 2023). In this problem, we consider a set N of movies, each labeled
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by several genres chosen from a predefined set G, and aim to recommend a list of high-
quality and diverse movies to a user based on the ratings from similar users. Each movie
u ∈ N is associated with a 25-dimensional feature vector qu calculated from user ratings.
Following (Mirzasoleiman et al., 2016; Feldman et al., 2017; Haba et al., 2020; Amanatidis
et al., 2020; Balkanski et al., 2018; Fahrbach et al., 2019a), we define the utility of any
S ⊆ N as

f(S) =
∑

u∈S

∑
v∈N

su,v −
∑

u∈S

∑
v∈S

su,v,

where we use su,v = e−λdist(qu,qv) to measure the similarity between movies u and v.
Thus, this application is in fact a non-monotone submodular maximization problem. Here,
dist(qu, qv) is the Euclidean distance between qu and qv, and λ is set to 2. Following (Haba
et al., 2020), we define the cost c(u) of any movie u to be proportional to 10 − ru, where
ru denotes the rating of movie u (ranging from 0 to 10), and the costs of all movies are
normalized such that the average movie cost is 1. Thus, movies with higher ratings have
smaller costs, and we require

∑
u∈S c(u) ≤ B to ensure that the movies in S have high

ratings. Moreover, we also consider the constraint that the number of movies in S labeled
by genre g is no more than mg for all g ∈ G, and that |S| ≤ m, where mg : g ∈ G and m
are all predefined integers. It has been indicated in (Mirzasoleiman et al., 2016; Feldman
et al., 2017; Haba et al., 2020) that such a constraint is essentially a k-system constraint
with k = |G|.

6.2 Experiments for the SKP

In this section, we compare our ParSKP algorithm with several state-of-the-art practical
algorithms for the non-monotone SKP. Specifically, we implement four algorithms: (1)
ParSKP (Algorithm 3) using binary search; (2) ParKnapsack (Amanatidis et al., 2023) us-
ing binary search; (3) SampleGreedy (Amanatidis et al., 2022), which gives a (3 − 2

√
2 −

ϵ)-approximation using O(nϵ log
n
ϵ ) adaptive rounds and queries, implemented using lazy

evaluation (Minoux, 1978); (4) SmkRanAcc (Han et al., 2021), which gives a (0.25 − ϵ)-
approximation using O(nϵ log

r
ϵ ) adaptive rounds and queries. Note that both SampleGreedy

and SmkRanAcc are non-parallel algorithms with super-linear adaptivity, so we use these
two baselines only to see how other algorithms can approach them. For all the algorithms
tested, the accuracy parameter ϵ is set to 0.1. Each randomized algorithm is executed
independently for 10 times, and the average result is reported. For the fairness of compar-
ison, we follow (Amanatidis et al., 2023, 2021) to use the algorithm in (Feige et al., 2011)
achieving 1/4-approximation and O(1) adaptivity for the USM algorithm. All experiments
are run on a Linux server with Intel Xeon Gold 6126 @ 2.60GHz CPU and 256GB memory.
We transform the three real-world applications introduced in Section 6.1 into SKPs and
evaluate all implemented algorithms on these problems. The modifications we made and
additional experimental settings are as follows:

• Revenue Maximization. By setting t = 1 and q = m = ∞, we remove the k-system
constraint from this application and transform it into the SKP considered by (Amana-
tidis et al., 2021, 2022; Pham et al., 2023; Han et al., 2021). Following (Mirzasoleiman
et al., 2016), we use the top 5,000 communities of the YouTube network (Leskovec &
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Figure 1: The figure compares the implemented algorithms on utility and adaptivity, where
the plotted utilities are normalized by the largest utility achieved by all algo-
rithms.

Krevl, 2014) to construct the network G, which contains 39,841 nodes and 224,235
edges.

• Image Summarization. By setting q = m = ∞, we remove the k-system constraint
from this application and transform it into the SKP considered by (Pham et al.,
2023; Han et al., 2021; Cui et al., 2022). Following (Balkanski et al., 2018; Fahrbach
et al., 2019a; Han et al., 2021), we randomly select 1,000 images from the CIFAR-10
dataset (Krizhevsky & Hinton, 2009) to construct N .

• Movie Recommendation. By setting m = ∞ and ∀g ∈ G : mg = ∞, we remove the
k-system constraint from this application and transform it into the SKP considered by
(Amanatidis et al., 2022). In our experiments, We use the MovieLens dataset (Badani-
diyuru et al., 2020; Haba et al., 2020) which contains 1,793 movies from three genres
“Adventure”, “Animation” and “Fantasy”.

Experimental Results. In Fig. 1(a)–(c), we compare the implemented algorithms on
utility, and the results show ParSKP can even achieve better utility compared to non-
parallel algorithms SampleGreedy and SmkRanAcc, with the average performance gains of
5% and 3%, respectively. Besides, Fig. 1(a)–(c) also show that ParSKP achieves significantly
better utility than ParKnapsack (with the performance gains of up to 35.74%), which is the
only existing low-adaptivity algorithm for non-monotone SKP with sub-linear adaptivity
and practical query complexity. In Fig. 1(d)–(f), we compare the implemented algorithms
on adaptivity, and the results show that ParSKP generally outperforms all the baselines.
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Figure 2: Comparison of our algorithms with the ENE algorithm (Ene et al., 2019) on a
small instance of movie recommendation. Similar to Figure 1, the plotted utilities
are normalized by the best utility achieved by the implemented algorithms.

Specifically, ParSKP incurs 4–92 times fewer adaptive rounds than SmkRanAcc, and 3–54
times fewer adaptive rounds than SampleGreedy, which demonstrates the effectiveness of
our approach.

6.3 Additional Experiments for the SKP

Besides the algorithms mentioned in Section 6.2, we note that (Ene et al., 2019) also pro-
pose an algorithm (denoted by ENE for convenience) with O(log2 n) adaptivity. However,
as indicated by (Amanatidis et al., 2021; Fahrbach et al., 2019a), the ENE algorithm (based
on multi-linear extension) has large query complexity impractical for large datasets, so we
compare our ParSKP algorithm with ENE using a small instance of the movie recommen-
dation application, under the same settings as those described in Section 6.2 except that
the ground set size is smaller (n = 80). For the ENE algorithm, we use 5,000 samples to
simulate an oracle for F (·) or ∇F (·) (i.e., the multi-linear extension of f(·) and its gradient).

As shown by the experimental results in Fig. 2, our ParSKP algorithm outperforms ENE
significantly in terms of utility, adaptivity and the number of oracle queries to the objective
function, due to the reason that: ENE has a larger theoretical adaptivity of O(log2 n) than
ParSKP, and its practical performance is not much better than its worst-case theoretical
bound due to its design, while evaluating the multilinear extensions in ENE incurs signifi-
cantly larger number of oracle queries than our algorithms. Moreover, as the approximation
ratio of ENE (i.e., (1+ϵ)(e1+10ϵ)) deteriorates quickly with the increasing of ϵ, we have used
smaller values of ϵ (i.e., ϵ = 1/20; ϵ = 1/30) to further test its utility. The experimental
results in Fig. 2 show that our ParSKP algorithm consistently outperforms ENE on all these
settings, which demonstrate the effectiveness of our approach again.

6.4 Experiments for the SSP

In this section, we compare our ParSSP algorithm with several state-of-the-art algorithms
for the non-monotone SSP. Specifically, we implement four algorithms: (1) ParSSP (Al-
gorithm 5) using binary search; (2) RepSampling (Quinzan et al., 2021), which may not
provide a constant approximation as we explained in Appendix B; (3) TwinGreedy (Han
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Figure 3: The figure compares the implemented algorithms on utility and adaptivity, where
the plotted utilities are normalized by the largest utility achieved by all algorithms

et al., 2020), which gives a ((2k+2)−1− ϵ)-approximation using O(nϵ log
r
ϵ ) adaptive rounds

and queries; (4) RandomMultiGreedy (Cui et al., 2021), which gives a (1 + ϵ)−1(
√
k + 1)−2-

approximation using O(nϵ log
r
ϵ ) adaptive rounds and queries. Note that both TwinGreedy

and RandomMultiGreedy are non-parallel algorithms with super-linear adaptivity, so we use
these two baselines only to see how other algorithms can approach them. For all the al-
gorithms tested, the accuracy parameter ϵ is set to 0.4. Each randomized algorithm is
executed independently for 10 times, and the average result is reported. All experiments
are run on a Linux server with Intel Xeon Gold 6126 @ 2.60GHz CPU and 256GB memory.
We transform the three real-world applications introduced in Section 6.1 into SSPs and
evaluated all implemented algorithms on these problems. The modifications we made and
additional experimental settings are as follows:

• Revenue Maximization. By setting ∀u ∈ N : c(u) = 1 and B = ∞, we remove the
knapsack constraint from this application and transform it into the SSP considered
by (Cui et al., 2021). Following (Balkanski et al., 2018; Fahrbach et al., 2019a; Han
et al., 2021), we randomly select 25 communities from the top 5, 000 communities in
the YouTube social network (Leskovec & Krevl, 2014) to construct the network G,
which contains 1,179 nodes and 3,495 edges. We set t = 5 and q = 2 while scaling
the number of items available for seeding (i.e., m) to compare the performance of all
algorithms.

• Image Summarization. By setting ∀u ∈ N : c(u) = 1 and B = ∞, we remove the
knapsack constraint from this application and transform it into the SSP considered
by (Cui et al., 2021). Following (Mirzasoleiman et al., 2016; Cui et al., 2021), we use
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the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) to construct N , and restrict the
selection of images from three categories: Airplane, Automobile and Bird. We set
q = 5 while scaling m to compare the performance of all algorithms.

• Movie Recommendation. By setting ∀u ∈ N : c(u) = 1 and B = ∞, we remove the
knapsack constraint from this application and transform it into the SSP considered by
(Feldman et al., 2017, 2023; Haba et al., 2020; Cui et al., 2021). We use the MovieLens
dataset (Badanidiyuru et al., 2020; Haba et al., 2020) which contains 1,793 movies
from three genres “Adventure”, “Animation” and “Fantasy”, and thus we have k = 3
in our experiments. We scale m to compare the performance of all algorithms.

Experimental Results. In Fig. 3(a)–(c), the utility performance of ParSSP is slightly
weaker than the two non-parallel algorithms TwinGreedy and RandomMultiGreedy (with the
average performance loss of 10%). Besides, Fig. 3(a)–(c) also show that ParSSP achieves
significantly better utility than RepSampling (with the performance gains of up to 134%),
which is the only existing low-adaptivity algorithm for non-monotone SKP. In Fig. 3(d)–
(f), we compare the implemented algorithms on adaptivity, and the results indicate that
our algorithm ParSSP performs comparably to RepSampling and significantly better than
non-parallel algorithms TwinGreedy and RandomMultiGreedy. Specifically, ParSSP incurs
13–3327 times fewer adaptive rounds than TwinGreedy, and 2–582 times fewer adaptive
rounds than RandomMultiGreedy, which demonstrates the effectiveness of our approach.

6.5 Experiments for the SMC
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Figure 4: The figure compares the implemented algorithms on utility and adaptivity, where
the plotted utilities are normalized by the largest utility achieved by all algorithms

In this section, we test the performance of our ParSKP and ParSSP algorithms on SMC
problems. The baseline we use is the Random Lazy Greedy Improved algorithm (abbreviated
as RLGI) proposed by (Buchbinder et al., 2015), which is the state-of-the-art non-parallel al-
gorithm with optimal approximation ratio and super-linear adaptivity for the non-monotone

66



Practical Parallel Algorithms for Submodular Maximization

SMC. We conduct this comparison to observe how closely our algorithms can match the
utility of the algorithm with optimal approximation ratios in practice, while also highlight-
ing the efficiency advantages of our algorithms over non-parallel algorithms. For all the
algorithms tested, the accuracy parameter ϵ is set to 0.1. Each randomized algorithm is
executed independently for 10 times, and the average result is reported. Following (Ama-
natidis et al., 2023, 2021), we employ the USM (Unconstrained Submodular Maximization)
algorithm from (Feige et al., 2011), which achieves a 1/4-approximation and O(1) adaptiv-
ity, as a subroutine of our algorithms. Besides, our algorithms are implemented using binary
search. All experiments are run on a Linux server with Intel Xeon Gold 6126 @ 2.60GHz
CPU and 256GB memory. Since our algorithms’ contribution to the SMC problem is merely
a by-product, we simplify our experiments and test the implemented algorithms on only
one application. The specific experimental settings are as follows.

• Movie Recommendation. By setting m =∞, ∀g ∈ G : mg =∞ and ∀u ∈ N : c(u) =
1, we remove the k-system constraint and transform the knapsack constraint as the
cardinality constraint. Thus this application now is an SMC. In our experiments,
We use the MovieLens dataset (Badanidiyuru et al., 2020; Haba et al., 2020) which
contains 1,793 movies from three genres “Adventure”, “Animation” and “Fantasy”.
We scale the maximum cardinality of any feasible solution (i.e., r) to compare the
performance of all algorithms.

Experimental Results. In Fig. 4(a), the results show that ParSKP (resp. ParSSP)
achieves 93%-98% (resp. 98%-100%) of the utility of RLGI. In Fig. 4(b), we compare the
implemented algorithms on adaptivity, and the results show that ParSKP incurs 2-4 times
fewer rounds than ParSSP, and 4-10 times fewer rounds than RLGI. The above experimen-
tal results demonstrate that our algorithms can achieve utility performance comparable to
that of the algorithm with optimal approximation ratio using much fewer adaptive rounds.

7. Conclusions

In this paper, we propose ParSKP, a low-adaptivity algorithm that provides an (1/8 − ϵ)
approximation ratio for the problem of non-monotone submodular maximization subject to
a knapsack constraint (SKP). To the best of our knowledge, our ParSKP algorithm is the
first of its kind to achieve either near-optimal O(log n) adaptive complexity or near-optimal
Õ(n) query complexity for the non-monotone SKP. Furthermore, we propose ParSSP, a
low-adaptivity algorithm that provides an (1 − ϵ)5(

√
k + 1 + 1)−2 approximation ratio for

the problem of non-monotone submodular maximization subject to a k-system constraint
(SSP). Our ParSSP algorithm is the first of its kind to achieve sublinear adaptive com-
plexity for the non-monotone SSP. Additionally, we demonstrate that our two algorithms
can be extended to solve the problem of submodular maximization subject to a cardinality
constraint, achieving performance bounds that are comparable to those of existing state-
of-the-art algorithms. During our literature review, we identified and discussed theoretical
analysis errors presented in several related studies. Finally, we have validated the effec-
tiveness of our algorithms through extensive experimentation on real-world applications,
including revenue maximization, movie recommendation, and image summarization.
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Appendix A. A Subtle Issue in (Amanatidis et al., 2021, Theorem 1)

In Theorem 1 of (Amanatidis et al., 2021), an approximation ratio of (3−
√
3)/12−Θ(ϵ) is

proved for their Algorithm 3 (i.e., ParKnapsack). In their Algorithm 3, they first randomly
delete each element from the ground set N with probability of 1−p to get a new ground set
H, and then use H to run a procedure ThreshSeq for multiple times, and finally return
S, which is the result of one run of ThreshSeq. Note that there are two randomnesses in
their algorithm: the randomness for generating H, and the randomness for generating S by
ThreshSeq given a fixed H. The derivation of their approximation ratio is based on the
analysis of two events:

• E[c(S)] < (1− ε̂)B2 given a fixed H. For convenience, let us denote this event by H<

and put it in a more clear form, i.e., H< = {ES [c(S) | H] < (1− ε̂)B2 }.

• E[c(S)] ≥ (1− ε̂)B2 given a fixed H. For convenience, let us denote this event by H≥
and put it in a more clear form, i.e., H≥ = {ES [c(S) | H] ≥ (1− ε̂)B2 }.

Note that the distribution of H making the event H< (or H≥) happen is different from
the original distribution of H where each element in N appears in H with a probability
of p. In a nutshell, the (3 −

√
3)/12 − Θ(ϵ)-ratio of (Amanatidis et al., 2021) is derived

by: (Step I) Deriving E[f(S ∪ OH)] ≥ p(1 − p)f(O); (Step II) Deriving an upper bound
of E[f(S ∪ OH)] using ALG; and (Step III) Using Step I and Step II to bridge ALG and
f(O), where OH = O ∩ H. The subtle problem lying in their analysis is that, the two
E[f(S ∪ OH)]’s they use in Step I and Step II are actually different: the one in Step I
considers all randomness and hence the original distribution of H, while the one in Step
II is actually conditioned on H< and hence only considers a biased distribution of H.
Therefore, Step III cannot be done. In the sequel, we explain this in more detail.

In the proof of Theorem 1 by (Amanatidis et al., 2021, pp. 6–7) (see their Section 3),
f(S ∪ OH) is used to build the connection between OPT and ALG. When analyzing the
case E[c(S)] < (1− ε̂)B2 given a fixed H (i.e., event H< occurs), a more careful analysis, via
their Lemmata 5 and 6, is conducted (starting from the line just below Eq. (6) in the right
column of page 6). Then, it shows that keeping fixed H,

E[f(S ∪OH) | G] ≤ (1 + ε̂+ q)ALG+ τc(OH)− qτ B
2 , (first equation in their page 7; (a))

where the event G is defined such that at least one of the parallel runs of ThreshSeq outputs
S with c(S) < B

2 and that solution is considered. Subsequently, it shows that, “move on to
the expectation with respect to H”,

E[f(S ∪OH)] = E[f(S ∪OH) | G]P(G) + E[f(S ∪OH) | GC ]P(GC)
≤ (1 + ε̂+ q)ALG+ τpc(O)− qτ B

2 + 2ε̂f(O).
(second equation in their page 7; (b))
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Combing that with their Equation (5), which is copied as follows

p(1− p)f(O) ≤ E[f(S ∪OH)], (their Equation (5) in page 6; (c))

they finally obtain

f(O) ≤ 1 + q + ε̂

p(1− p)− αp+ αq
2 − 2ε̂

ALG. (their Equation (7) in page 7; (d))

Unfortunately, there is a gap in this claim by abusing the expectations. Because Eqn.
(a) and Eqn. (b) listed above only hold when event H< occurs according to their reasoning,
while from Eqn.(a) to Eqn. (b) they never “move on to the expectation with respect to H”
as they never bound E[f(S ∪OH)] under the event H≥, nor P(H<) and P(H≥). To explain
this more clearly, we give the full expression of the above equations. Recall that Eqn. (a)
and Eqn. (b) only hold when H< occurs. Then,

EH

[
ES [f(S ∪OH) | H]

∣∣∣ H<

]
= EH

[
ES [f(S ∪OH) |H,G]P(G |H)+ES [f(S ∪OH) |H,GC ]P(GC |H)

∣∣∣H<

]
≤ EH

[
(1 + ε̂+ q)ALG+ τc(OH)− qτ B

2 + 2ε̂f(O)
∣∣∣ H<

]
. (24)

On the other hand, their Equation (5) (i.e. Equation (c) listed above) can be fully expressed
as

p(1− p)f(O) ≤ EH

[
ES [f(S ∪OH) | H]

]
= EH

[
ES [f(S ∪OH | H)]

∣∣∣ H≥ ∪H<

]
. (25)

Note that the correctness of Equation (25) is ensured by the fact that elements belong to
H with probability p. However, when H< occurs, it is not guaranteed that the conditional
probability of every element belonging to H is p (or upper bounded by p). As a result, it is
invalid to claim

p(1− p)f(O)
?
≤ EH

[
ES [f(S ∪OH) | H]

∣∣∣ H<

]
. (invalid claim)

Putting it together, we cannot directly establish the relation between p(1 − p)f(O) and
EH [(1+ε̂+q)ALG+τc(OH)−qτ B

2 +2ε̂f(O) | H<] using Equations (24) and (25). Therefore,
the claim of their Equation (7) is invalid.

Another similar issue applies to the use of E[OH ] = pc(O) ≤ pB (in their page 7). Note
that in Equation (24), what we actually need is EH [c(OH) | H<]. However, in general, it is
trivial to see that

EH [c(OH) | H<] ̸= EH [c(OH)] = pc(O),

since when H< occurs, it is not guaranteed that the conditional probability of every element
belonging to H is p.

The same issues as explained above also exist in (Amanatidis et al., 2021, Theorem 4),
where they claim a (3− 2

√
2− ϵ)-approximation under O(log n) adaptivity for the problem

of non-monotone submodular maximization with a cardinality constraint. The reason is
that their Theorem 4 uses almost identical methods and analysis as those in their Theorem
1 (see their Appendix D).
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Appendix B. Abuse of Markov’s Inequality for Non-monotone
Submodular Optimization Problems

(Quinzan et al., 2021) recently studied the problem of non-monotone submodular maximiza-
tion subject to a k-system constraint. However, their analysis contains flaws, as explained
below. In the proof of (Quinzan et al., 2021, Lemma 7) (see page 13 in Appendix of their
full version at arXiv:2102.06486v1), the following claim is incorrect:

Eai [f(ai | {a1, . . . , ai−1})] ≥ Pr[f(ai | {a1, . . . , ai−1}) > δ]δ.

The issue arises because f(ai | {a1, . . . , ai−1}) can be negative since f(·) is non-monotone,
which violates the non-negative requirement of Markov’s inequality.
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