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Abstract
One way to reduce the time of conducting optimization studies is to evaluate designs

in parallel rather than just one-at-a-time. For expensive-to-evaluate black-boxes, batch
versions of Bayesian optimization have been proposed. They work by building a surrogate
model of the black-box to simultaneously select multiple designs via an infill criterion. Still,
despite the increased availability of computing resources that enable large-scale parallelism,
the strategies that work for selecting a few tens of parallel designs for evaluations become
limiting due to the complexity of selecting more designs. It is even more crucial when the
black-box is noisy, necessitating more evaluations as well as repeating experiments. Here we
propose a scalable strategy that can keep up with massive batching natively, focused on
the exploration/exploitation trade-off and a portfolio allocation. We compare the approach
with related methods on noisy functions, for mono and multi-objective optimization tasks.
These experiments show orders of magnitude speed improvements over existing methods
with similar or better performance.

1. Introduction

Current trends in improving the speed or accuracy of individual computations are on
exploiting parallelization on highly concurrent computing systems. These computer models
(a.k.a. simulators) are prevalent in many fields, ranging from physics to biology and engineering.
Still, increasing the parallelization for individual simulators often comes with diminishing
returns and model evaluation time remains limiting. A strategy is then to conduct several
evaluations simultaneously, in batches, to optimize (here minimize) quantities of interest
(see, e.g., Haftka et al., 2016, for a review).

For fast simulators, evolutionary algorithms (EAs) are amenable to parallelization by
design, see, for instance, the review by Emmerich and Deutz (2018). But they require a
prohibitive number of evaluations for more expensive-to-evaluate simulators. For these,
Bayesian optimization (BO) (see, e.g., Shahriari et al., 2016, Frazier, 2018, Garnett, 2022) is
preferred, with its ability to carefully select the next evaluations. Typically, BO relies on a
Gaussian process (GP) model of the simulator, or any black-box, by using a probabilistic
surrogate model to efficiently perform the so-called exploration/exploitation trade-off. Ex-
ploitation refers to areas where the prediction is low (for minimization), while exploration is
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for areas of large predictive variance. An infill criterion, or acquisition function, balances this
trade-off to select evaluations, such as the expected improvement (EI) (Mockus et al., 1978)
in the efficient global optimization algorithm (Jones et al., 1998). Alternatives include upper
confidence bound (UCB) (Srinivas et al., 2010), knowledge gradient (Frazier, 2018), and
entropy based criteria (Villemonteix et al., 2009b; Hennig & Schuler, 2012; Wang & Jegelka,
2017). Parallelization is then enabled by the definition of batch versions of the corresponding
infill criteria, selecting several designs to evaluate at once.

Noisy simulators have their own set of challenges, as detailed in Baker et al. (2022),
and raise questions about selecting the right amount of replication. While not necessary
per se, repeating experiments is the best option to separate signal from noise, and is
beneficial in terms of computational speed by limiting the number of unique designs, see,
for example, Binois et al. (2019), Zhang et al. (2022). Rather than arbitrarily fixing the
amount of replication a priori, allocating it adaptively is a way to improve accuracy for a
given evaluation budget.

Here, we also consider multi-objective optimization (MOO) where the goal is to find the
set of best compromise solutions, the Pareto front, since there is rarely a solution minimizing
all objectives at once. We refer to Hunter et al. (2019) for a review of MOO options for
black-boxes and Emmerich et al. (2020) for multi-objective (MO) BO infill criteria. MO
versions of batch algorithms have also been proposed, taking different scalarization weights
(Zhang et al., 2010), or relying on an additional notion of diversity (Lukovic et al., 2020).

Our motivating example is the calibration of a large-scale agent-based model (ABM) of
COVID-19 run on a supercomputer (Ozik et al., 2021) with the added goal of reducing the
time to solution for meaningful, i.e., timely, decision-making support. The targeted setup is
as follows: a massively parallel system (for example, HPC cluster or supercomputer) with
the ability to run hundreds of simulation evaluations in parallel over several iterations for
the purpose of reducing the overall time to solution of the optimization to support rapid
turnaround of analyses for high consequence decision making. Examples include public health
(Ozik et al., 2021), meteorological (Goubier et al., 2020), and other emergency response
(Mandel et al., 2019). This is sometimes called the high throughput regime (Hernández-
Lobato et al., 2017) or scalable BO (Eriksson et al., 2019). Hence the time dedicated to
select the batch points should be minimal (and not considered negligible), and this selection
procedure amenable to parallelization (to use the available computing concurrency). While
ABMs, or other noisy simulators, are applications where larger batch sizes are useful, this
may also be the case for high-dimensional problems, even if larger evaluation budgets alone
are not sufficient to avoid the curse dimensionality.

The method we propose is to directly identify candidates realizing different explo-
ration/exploitation trade-offs. This amounts to approximating the GP predictive mean
vs. variance Pareto front, which is orders of magnitude faster than optimizing most existing
batch infill criteria. In doing so, we shift the paradigm of optimizing (or sampling) acquisition
functions over candidate batches to quickly finding a set of desirable candidates to choose from.
In the noisy setup, possibly with input-dependent noise variance, the predictive variance
reduction makes an additional objective to further encourage replication. Then, to actually
select batches, we follow the approach proposed by Guerreiro and Fonseca (2016) with the
hypervolume Sharpe ratio indicator (HSRI) in the context of evolutionary algorithms. In the
MO version, the extension is to take the predictive mean and variance of each objective, and

138



A Portfolio Approach to Massively Parallel Bayesian Optimization

still select batch-candidates based on the HSRI. The contributions of this work are: 1) The
use of a portfolio allocation strategy for batch-BO, defined on the exploration/exploitation
trade-off. It extends directly to the multi-objective setup; 2) An approach independent of the
size of the batch, removing limitations of current batch criteria for large q; 3) The potential
for flexible batch sizes and asynchronous allocation via the portfolio approach; 4) The ability
to natively take into account replication and to cope with input-dependent noise variance.

In Section 2 we briefly present GPs, batch BO and MO BO as well as their shortcomings
for massive batches. In Section 3, the proposed method is described. It is then tested and
compared empirically with alternatives in Section 4. A conclusion is given in Section 5.

2. Background and Related Works

We consider the minimization problem of the black-box function f :

find x∗ ∈ argmin
x∈X⊆Rd

f(x)

where X is typically a hypercube. Among various options for surrogate modeling of f (see,
e.g., Shahriari et al., 2016), GPs are prevalent.

2.1 Gaussian Process Regression

Consider a set of n ∈ N∗ designs-observations couples (xi, yi) with yi = f(xi) + εi, εi ∼
N (0, τ(xi)), often obtained with a Latin hypercube sample as design of experiments (DoE).
The idea of GP regression, or kriging, is to assume that f follows a multivariate normal
distribution, characterized by an arbitrary mean function m(x) and a positive semi-definite
covariance kernel function k : X× X→ R. Unless prior information is available to specify a
mean function, m is assumed to be zero for simplicity. As for k, parameterized families of
covariance functions such as Gaussian or Matérn ones are preferred, whose hyperparameters
(process variance σ2, lengthscales) can be inferred in many ways, such as maximum likelihood
estimation.

Conditioned on observations y := (y1, . . . , yn), zero mean GP predictions at any set of q
designs in X, Xq : (x

′
1, . . . ,x

′
q)

⊤, are still Gaussian, Yn(Xq)|y ∼ N (mn(Xq), s
2
n(Xq)):

mn(Xq) = kn(Xq)
⊤K−1

n yn,

s2n(Xq) = k(Xq,Xq)− kn(Xq)
⊤K−1

n kn(Xq) + τ(Xq)

where kn(Xq) = (k(xi,x
′
j))1≤i≤n,1≤j≤q and Kn = (k(xi,xj) + δi=jτ(xi))1≤i,j≤n. We refer

to Rasmussen and Williams (2006), Forrester et al. (2008), Ginsbourger (2018), Gramacy
(2020) and references therein for additional details on GPs and associated sequential design
strategies.

Noise variance, τ(x), if present, is seldom known and must be estimated. With replication,
stochastic kriging (Ankenman et al., 2010) relies on empirical noise variance estimates.
Otherwise, estimation methods have been proposed, building on the Markov chain Monte
Carlo method of Goldberg et al. (1998), as discussed, for example, by Binois et al. (2018).
Not only is replication beneficial in terms of predictive variance estimation, it also has an
impact on the computational speed of using GPs, where the costs scale with the number of
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unique designs rather than the total number of evaluations. This stems from the fact that p
replicates y1, . . . , yq ∼ N (f(x), τ(x)) at the same x are equivalent for GP prediction to a
single observation ȳ ∼ N (f(x), τ(x)/p).

2.2 Batch Bayesian Optimization

Starting from the initial DoE to build the starting GP model, (batch-) BO sequentially selects
one (q) new design(s) to evaluate based on the optimization of an acquisition function that
balances exploration and exploitation. The GP model is updated every time new evaluation
results are available. The generic synchronous batch BO loop is illustrated in Algorithm 1.
An asynchronous adaptation is detailed in Appendix A.

Algorithm 1 Pseudo-code for batch BO
Require: Nmax (total budget), q (batch size), GP model trained on initial DoE (xi, yi)1≤i≤n

1: while n ≤ Nmax do
2: Choose xn+1, . . . ,xn+q ∈ argmaxXq∈X α(Xq)
3: Update the GP model by conditioning on {xn+i, yn+i}1≤i≤q.
4: n← n+ q
5: end while

Among acquisition functions α, we focus on EI, with its analytical expression, compared to,
say, entropy criteria. EI (Mockus et al., 1978) is defined as: αEI(x) := E[max(0, T − Yn(x))]
where T is the best value observed so far in the deterministic case. In the noisy setup, taking
T as the best mean estimation over sampled designs (Villemonteix et al., 2009a) or the entire
space (Gramacy & Lee, 2011), are alternatives. Integrating out noise uncertainty is done by
Letham et al. (2019), losing analytical tractability. This acquisition function can be extended
to take into account the addition of q new points, with, for example, the batch (q in short)
EI, αqEI(Xq) := E[max(0, T − Yn(x

′
1), . . . , T − Yn(x

′
q)] that has an expression amenable for

computation (Chevalier & Ginsbourger, 2013) and also for its gradient (Marmin et al., 2015).
A much faster approximation of the batch EI (qEI) is described by Binois (2015), relying

on nested Gaussian approximations of the maximum of two Gaussian variables from Clark
(1961). Otherwise, stochastic approximation (Wang et al., 2020) or sampling methods by
Monte Carlo, with, for instance, the reparameterization trick (Wilson et al., 2018), are largely
used, but may be less precise as the batch size increases. These methods may be combined for
evaluating the parallel knowledge-gradient acquisition function, similar to EI but where the
improvement is over the future optimum, see for instance Wu and Frazier (2016), Balandat
et al. (2020). Using gradients may help as well (Wu et al., 2017), but they are seldom present
in the noisy simulators.

Many batch versions of infill criteria have been proposed, such as Kandasamy et al. (2018),
Hernández-Lobato et al. (2017) for Thompson sampling or Hernández-Lobato et al. (2017),
Moss et al. (2021) for information-theoretic ones. For EI, rather than just looking at its
local optima (Sóbester et al., 2004), some heuristics propose to select batch points iteratively,
replacing unknown values at selected points by pseudo-values (Ginsbourger et al., 2010). This
was coined as “hallucination” in the UCB version of Desautels et al. (2014). More generally,
Rontsis et al. (2020) use an optimistic bound on EI for all possible distributions compatible
with the same first two moments as a GP, which requires solving a semi-definite problem,
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limiting the scaling up to large batches. Gonzalez et al. (2016) reduce batch selection cost by
not modeling the joint probability distribution of the batch nor using a hallucination scheme.
Their idea is to select batch members sequentially by penalizing proximity to the previously
selected ones.

Taking different infill criteria is an option to select different trade-offs, as by Tran et al.
(2019), or with inter-distances as a secondary objective by Bischl et al. (2014). This idea of
a portfolio of acquisition functions is also present in Hoffman et al. (2011), but limited to
a few options and not intended as a mechanism to select batch candidates. This option is
further enabled by Lyu et al. (2018) by randomly selecting from the Pareto front between
acquisition functions. If these acquisition functions are the mean and predictive variance,
then this leads to methods such as those proposed, for example, by Gupta et al. (2018),
De Ath et al. (2021). Using local models is another way to select batches efficiently, up
to several hundreds in Wang et al. (2018). The downside is a lack of coordination in the
selection and the need of an ad hoc selection procedure. For entropy or stepwise uncertainty
reduction criteria (see, e.g., Chevalier et al., 2014), batching would increase their already
intensive computational burden. Another early work by Azimi et al. (2010) attempts to
match the expected sequential performance, via approximations and sampling.

2.3 Multi-objective Bayesian Optimization

The multi-objective optimization problem (MOOP) is to find

x∗ ∈ argmin
x∈X⊂Rd

(f1(x), . . . , fp(x)) ,

p ≥ 2. p > 4 is often called the many-objective setup, with its own set of challenges for BO
(see, e.g., Binois et al., 2020). The solutions of a MOOP are the best compromise solutions
between objectives, in the Pareto dominance sense. A solution x is said to be dominated
by another x′, denoted x′ ⪯ x, if ∀i, fi(x′) ≤ fi(x) and fi(x

′) < fi(x) for at least one i.
The Pareto set is the set of solutions that are not dominated by any other design in X:{
x ∈ Rd, ∄x′ ∈ Rd such that x′ ⪯ x

}
; the Pareto front is its image in the objective space.

In the noisy setup, we consider the noisy MOOP defined on expectations over objectives
(Hunter et al., 2019).

Measured in the objective space, the hypervolume refers to the volume dominated by a
set of points relative to a reference point R, see Figure 1. It serves both as a performance
metric in MOO, see, for example, Audet et al. (2021) and references therein, or to mea-
sure improvement in extending EI (Emmerich et al., 2006). The corresponding expected
hypervolume improvement (EHI) can be computed in closed form for two or three objectives
(Emmerich et al., 2011; Yang et al., 2017), or by sampling (see, e.g., Svenson, 2011). A batch
version of EHI, qEHI, is proposed by Daulton et al. (2020, 2021). The operations research
community has seen works dealing with low signal-to-noise ratios and heteroscedasticity,
where replication is key. Generally, the idea is to first identify good points before defining
the number of replicates, see, for example, Zhang et al. (2017), Gonzalez et al. (2020) or
Rojas-Gonzalez and Van Nieuwenhuyse (2020) for a review on stochastic MO BO. Still, the
batch aspect is missing in the identification of candidates.
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2.4 Challenges with Massive Batches

There are several limitations in the works above. First, while it is generally assumed that the
cost of one evaluation is sufficiently high to consider the time to select new points negligible,
this may not be the case in the large batch setup. Parallel infill criteria are more expensive
to evaluate, and even computational costs increasing linearly in the batch size (q) become
impractical for hundreds or thousands of batch points. For instance, the exact qEI expression
uses multivariate normal probabilities, whose computation do not scale well with the batch
size. There are also many approximated criteria for batch EI, or similar criteria. However, in
all current approaches, the evaluation costs increase with the batch size, at best linearly in q
for existing criteria, which remains too costly for the regime we target.

This is already troublesome when optimization iterations must be conducted quickly, but
is amplified by the difficulty of optimizing the acquisition function itself. While earlier works
used branch and bounds (Jones et al., 1998) to guarantee optimality with q = 1, multi-start
gradient based optimization or EAs are predominantly used. In the batch setting, the size
of the optimization problem becomes q × d, a real challenge, even with the availability of
gradients. Wilson et al. (2018) showed that greedily optimizing batch members one-by-one is
sensible, which still requires to solve q d-dimensional global optimization problems. Both
become cumbersome for large batches and, presumably, far from the global optimum since
the acquisition function landscape is multimodal, with flat regions, and symmetry properties.
Plus, as we showcase, this results in parts of batch members being less pertinent.

Relying on discrete search spaces bypasses parts of the issue, even though finding the
best batch becomes a combinatorial search. In between the greedy and joint options is the
work by Daxberger and Low (2017), to optimize an approximated batch-UCB criterion as
a distributed constraint problem. As a result, only sub-optimal solutions are reachable in
practice for batch acquisition function optimization. Rather than optimizing, a perhaps even
more computationally intensive option is to consider the density under EI. That is, to either
find local optima and adapt batch size as in Nguyen et al. (2016), or sampling uniformly from
the EI density with slice sampling and clustering as with Groves and Pyzer-Knapp (2018).
Thompson sampling for mono-objective batch BO, see, for example, Hernández-Lobato
et al. (2017), Kandasamy et al. (2018), also bypasses the issues of optimizing the acquisition
function, but batch members are independently obtained, which can be wasteful for large
batches or when uncertainty about the location of the optimizer is low. Lastly, adaptive
batch sizes might be more efficient than a fixed number of parallel evaluations (see, e.g.,
Desautels et al., 2014). Similarly, asynchronous evaluation is another angle to exploit when
the simulation evaluation times vary, see, for instance, Gramacy and Lee (2009), Janusevskis
et al. (2012), Alvi et al. (2019).

Replication adds another layer of decision: whether or not adding a new design is worth
the future extra computational cost, compared to the perhaps marginally worse option of
replicating on the acquisition function value. With high noise, choosing the amount of
replication becomes important, as individual evaluations contain almost no information.
But even fixing the number of replicates per batch, selecting batch design locations plus
replication degree makes a hard dynamic programming optimization problem.

142



A Portfolio Approach to Massively Parallel Bayesian Optimization

3. Batch Selection as a Portfolio Problem

We propose an alternative to current BO methods to handle large batches by returning to
the roots of BO, with the exploration/exploitation trade-off. The idea is to first identify
batch candidates on this trade-off surface before selecting among them. Specifically, we focus
on a portfolio selection criterion to select a batch balancing risk and return, while handling
replication.

3.1 Exploration/Exploitation Trade-off

At the core of BO is the idea that regions of interest have either a low mean, or have a
large predictive variance. This is the BO exploration/exploitation trade-off, see, for example,
Garnett (2022). From a multi-objective point of view, acquisition functions resolve this
trade-off by selecting a solution on the corresponding mean vs. standard deviation (mn/sn)
Pareto front P. With UCB (Srinivas et al., 2010), αUCB(x) := −mn(x) +

√
βsn(x), the

tuning parameter β is a way to select one solution on the convex parts of this Pareto front,
or a batch by taking several βs (see, e.g., Hutter et al., 2012). EI can be interpreted this way
as well, as noticed by Jones et al. (1998), De Ath et al. (2021) in showing that

∂EI

∂mn
(x) = −Φ

(
T −mn(x)

sn(x)

)
< 0 and

∂EI

∂sn
(x) = ϕ

(
T −mn(x)

sn(x)

)
> 0,

where ϕ (resp. Φ) are the Gaussian pdf (resp. cdf). Hence EI also selects a specific solution
on the corresponding Pareto front.

Navigating the Pareto front can be done by taking expectations of powers of the im-
provement, i.e., the generalized EI (GEI) (Schonlau et al., 1998; Wang et al., 2017), for
which higher powers of EI reward larger variance and make it more global, as in Ponweiser
et al. (2008). Note that the probability of improvement (PI), αPI = P(Yn(x) < T ), which
corresponds to the zeroth-order EI, is not on the trade-off Pareto front P , explaining why PI
is often discarded as being too exploitative (higher variance is detrimental as soon as the
predicted mean is below T ).

Our main point is that rather than having to define a specific trade-off between exploration
and exploitation a priori, before considering batching, it is better to find the set of optimal
trade-offs P and select batch points from it a posteriori. This batch candidate selection from
P can be interpreted as forming a portfolio, where the allocation correspond to the number
of replicates of each P design.

3.2 Portfolio Selection with HSRI

We propose to use a criterion to select solutions on the exploration-exploitation Pareto front,
rather than doing so randomly as in Gupta et al. (2018). Yevseyeva et al. (2014) defined the
hypervolume Sharpe ratio indicator (HSRI) to select individuals in MO EAs, with further
study on their properties by Guerreiro and Fonseca (2016, 2020). Here, we borrow from
this portfolio-selection approach, where individual performance is related to expected return,
while diversity is related to the return covariance (interpreted as risk).

Let A =
{
a(1), . . . ,a(l)

}
be a non-empty set of assets, a(i) ∈ Rs, s ≥ 2, let vector r ∈ Rl

denote their expected return and matrix Q ∈ Rl×l denote the return covariance between
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pairs of assets. Let z ∈ [0, 1]l be the investment vector where zi denotes the investment in
asset a(i). In portfolio assessment, an allocation can be evaluated in terms of expected return,
r⊤z versus return variance z⊤Qz, where higher returns come with more risk, hence forming
a Pareto front. One classical way of selecting a solution is to consider the reward to volatility
ratio, or Sharpe ratio. We refer the interested reader to Cornuejols and Tütüncü (2006) for
more details and alternatives. The Sharpe-ratio maximization problem is defined as

max
z∈[0,1]l

h(z) =
r⊤z− rf√

z⊤Qz
such that

l∑
i=1

zi = 1, (1)

with rf the return of a riskless asset and h the Sharpe ratio. This problem, restated as a
convex quadratic programming problem (QP), see, for example, Cornuejols and Tütüncü
(2006), Guerreiro and Fonseca (2016), can be solved efficiently only once per iteration:

ζ∗ ∈ arg min
ζ∈Rl

ζ⊤Qζ such that
l∑

i=1

(ri − rf )ζi = 1, ζi ≥ 0, 1 ≤ i ≤ l. (2)

The outcome is a set of weights, corresponding to the allocation to each asset, z∗ =
ζ∗/

∑l
i=1 ζ

∗
i .

HSRI by Guerreiro and Fonseca (2016) is an instance of portfolio selection where the
expected return and return covariance are based on the hypervolume improvement: ri = pii
and Qij = pij − piipjj where

pij =

 ∏
1≤t≤p

(
Rl −max

(
a
(i)
t , a

(j)
t

)) /

 ∏
1≤t≤p

(Rl − f∗
l )

 ; (3)

see Figure 1 for an illustration. Note that this hypervolume computation scales linearly with
the number of objectives. Importantly, as shown by Guerreiro and Fonseca (2016), if a set of
assets is dominated by another set, its Sharpe ratio is lower. Furthermore, no allocation is
made on dominated points: they are all on P. Finally they show that only the reference
point R needs to be set in practice.

3.3 Proposition with qHSRI

From a BO viewpoint, the goal is to obtain the q candidates leading to the highest return in
terms of HSRI:

αqHSRI(Xq) = h(z(Xq)) =
(
r(Xq)

⊤1q − rf

)(√
1⊤q Q(Xq)1q

)−1

with 1q a vector of q ones. Here, instead of using actual objective values as in MO EAs,
an asset a(i), corresponding to candidate design x(i), is characterized by its GP predictive
mean(s) and standard deviation(s), i.e., with p = 1, a(i)1 = mn(xi) and a

(i)
2 = −sn(x(i)).

Since the hypervolume metric is not invariant to a rescaling of the objectives, standard
deviations rather than variances are used to define the Pareto front P to have comparable
quantities across the objectives. Also here rf = 0 since risk-less assets (noiseless observations
whose predictive uncertainty is already zero) bring no improvement.
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R

a(1)

a(2)

y1

y2

Figure 1: Hypervolume dominated by two assets a(1) (light gray) and a(2) (gray) with respect
to the reference point R, corresponding to the expected return. The covariance
return is given by the volume jointly dominated by both points (dark gray).

Directly optimizing αHSRI would have the issues raised in Section 2.4: too many opti-
mization variables and a significant computational cost, from repeated QP problem solvings.
But since the optimal solutions will belong to P thanks to the properties of HSRI, the search
can be decomposed into three steps: approximating P , solving the QP problem (2) over this
approximation of P, and then selecting q evaluations. In the noiseless case, they are the q
largest weights. When replication is possible, the allocation becomes proportional to the
weights:

find γ such that
l∑

i=1

⌊γ × z∗i ⌉ = q,

by bisection (randomly resolving ties). The adaptation to the asynchronous setup is detailed
in Appendix A.

Extension to the Multi-objective Setup To extend to MO, we propose to search
trade-offs on the objective means, m(1)

n (x), . . . ,m
(p)
n (x), and averaged predictive standard

deviations Pareto front,

σ̄n(x) = p−1
p∑

i=1

s(i)n (x)/σ(i)
n

with (σ
(i)
n )2 the ith-objective GP variance hyperparameter, a p+1 dimensional space. Taking

all p standard deviations is possible, but the corresponding objectives are correlated since
they increase with the distance to observed design points. In the case where the GP
hyperparameters are the same and evaluations of objectives coupled, the objectives would be
perfectly correlated. Even with different hyperparameters, preliminary tests showed that
using the averaged predictive standard deviation do not degrade the performance compared
to the additional difficulty of handling more objectives.

Replication When noise is present, we include an additional objective of variance reduction.
That is, for two designs with the same predictive mean and variance, the one for which adding
an observation will decrease the predictive variance the most is preferred. This decrease is
given by GP update equations (see, e.g., Chevalier et al., 2014) and does not depend on the

145



Binois, Collier, & Ozik

value at the future q designs:

s2n+q(Xq) = s2n(Xq)− s2n(Xq,x1:(n+q))(s
2
n(x1:(n+q)))

−1s2n(x1:(n+q),Xq), (4)

with x1:(n+q) defined as the current DoE augmented by future q designs. It does depend
on the noise variance and the degree of replication, see, for example, Binois et al. (2019),
which may be used to define a minimal degree of replication at candidate designs to ensure a
sufficient decrease. Similarly, it is possible to limit the replication degree when the decrease
of predictive variance of further replication is too low.

The pseudo-code of the approach is given in Algorithm 2. The first step is to identify
s designs on the mean vs. standard deviation Pareto set. In the deterministic case s must
be at least equal to q, while with noise and replication it can be lower. Population based
evolutionary algorithms can be used here, with a sufficiently large population. In general, the
number of non-dominated solutions found would be large enough, especially when including
an archive. For massive batches with the deterministic setting, which is not the envisioned
main use of qHSRI, an appropriate stopping criterion could be used to ensure that the
cardinality of P is larger than q. Once these s candidates are identified, dominated points
can be filtered out as HSRI only selects non-dominated solutions. Points with low probability
of improvement (or with low probability of being non-dominated) can be removed as well.
This prevents the method to be over-exploratory.

In the noisy setup, the predictive variance reduction serves as an additional objective
for the computation of HSRI. It is integrated afterwards as it is not directly related to
the identification of the exploration-exploitation tradeoff surface. Computing qHSRI then
involves computing r and Q before solving the corresponding QP problem (1). Designs from
Xs are selected based on z∗: either by taking the q designs having the largest weights zi, or
computing γ to obtain an allocation, which can include replicates.

Algorithm 2 Pseudo-code for batch BO with qHSRI
Require: Nmax (total budget), q (batch size), p GP model(s) fitted on initial DoE

(xi, yi)1≤i≤n

1: while n ≤ Nmax do
2: Find Xs ∈ argmin(m

(1)
n (x), . . . ,m

(p)
n (x), σ̄n(x))

3: Filter dominated solutions in Xs

4: if p = 1 then
5: Filter points with low PI in Xs

6: else
7: Filter points with low PND in Xs

8: end if
9: If τ(x) > 0: add predictive variance reduction to objectives, Equation (4)

10: Compute return r and covariance matrix Q using Equation (3)
11: Compute optimal Sharpe ratio z∗ = ζ∗/

∑l
i=1 ζ

∗
i by solving QP problem (2)

12: Allocate q points based on the weights, see Section 3.3
13: Update the GP model(s) with {xn+i, yn+i}1≤i≤q.
14: n← n+ q
15: end while
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In terms of complexity, the main task is to find the assets, i.e., candidate designs on P.
Evaluating mn and sn cost O(n2) after a O(n3) matrix inversion operation that only needs
to be done once. An order of magnitude can be gained with approximations, see for instance
Wang et al. (2019). Then r and Q are computed on the assets, before maximizing the Sharpe
ratio, whose optimal weights provide the best q designs. Filtering solutions reduces the size
of the QP problem to be solved, either with PI or the probability of non-domination (PND)
in the MO case. Crucially, the complexity does not depend on q with replication.

We illustrate the proposed method (qHSRI) on an example in Figure 2, comparing the
outcome of optimizing qEI, its fast approximation qAEI (Binois, 2015) and qHSRI in the
mean vs. standard deviation (mn vs. sn) space. Negation of the standard deviation is taken
for minimization. Additional candidates are shown, either randomly sampled in X or on
the estimated exploration/exploitation Pareto set. Interestingly, there is a gap between
the two sets, indicating that uniformly sampling may be insufficient if used as a discrete
optimization scheme. While all qHSRI selected designs are on P , this is not the case for the
qEI version, particularly so when q is larger, where none of the selected designs are – possibly
due to the much higher difficulty of solving the corresponding optimization problem. Designs
corresponding to powers of EI also appear on P, showing a richer exploration/exploitation
trade-off than with EI only. But they are not evenly spread since fixed a priori without
adaptation to the shape of P. Observations (crosses) are not on P, as it is possible to
find designs with better mean (unless exactly at the optimum) or larger predictive variance
(increasing with the distance to observation). We also observe that points with large predictive
variance may not be of interest if they have a negligible PI (for instance, < 0.1). In the
experiments we use 1/3 as default value, while preliminary experiments indicate a low
sensitivity to this parameter. A takeaway is that when dealing with large batches, all aspects
must be considered simultaneously: optimization difficulty, adaptability to the shape of P,
and computational speed.
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Figure 2: Comparison of qHSRI with qEI and qAEI acquisition functions on the noiseless
repeated Branin function (d = 6, n = 60). The first four GEI optimal solutions
are depicted as well.
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It could be argued that the qHSRI approach ignores distances in the input space and
could form clusters. While this is the case, depending on the exploration-exploitation Pareto
set, since the batch points cover P, it automatically adapts to this latter’s range of optimal
values, depending on the iteration and problem. This is harder to adapt a priori in the input
space and it avoids having to define minimal distances manually, as in Gonzalez et al. (2016).
Still, for numerical stability and to favor replication, a minimal distance can be set as well.

Convergence For the mono-objective version, the convergence analysis is related to the
one employed in the GP-UCB strategy by Gupta et al. (2018) since points on the P can be
associated with β values. I.e., if a suitable β0 is included in the selected candidates, where
other β values are higher, then the algorithm follows the standard sublinear convergence
for such methods. For the multi-objective version, we can similarly rely on the results of
Paria et al. (2020) on UCB for random scalarizations of the objectives. Again, the selected
candidates on the P can be associated with a scalarization counterpart and convergence
guarantees follow if the corresponding β is large enough.

4. Experiments

Except Wang et al. (2018) that uses disconnected local GP models and Gupta et al. (2018)
that also uses the exploration-exploitation PF, existing batch BO methods mostly give
results with low q, with typically q ≤ 20. On the implementations we could test, these
criteria take more than a few seconds per evaluation with q ≈ 100, while, in our approach,
predicting for a given design takes less than a millisecond. Some approaches, like by Eriksson
et al. (2019) or Lukovic et al. (2020), could scale better but are not adapted to handle low
signal-to-noise regimes. Consequently, comparisons with qHSRI are not always feasible for
massive q, especially for noisy problems. We thus limit q to 50 in comparisons, while scaling
results for larger q values with qHSRI, up to 500, are provided in Appendix B.

The R package hetGP (Binois & Gramacy, 2021) is used for noisy GP modeling. Anisotropic
Matérn covariance kernels are used throughout the examples, whose hyperparameters are
estimated by maximum likelihood. As we use the same GP model, the comparison shows
the effect of the acquisition function choice: qEI or qEHI vs. qHSRI. qEI is either the
exact version (Chevalier & Ginsbourger, 2013) in DiceOptim (Picheny et al., 2021), or the
approximated one from Binois (2015), qAEI. qEI is not available for q > 20 nor in the noisy
setup. In the mono-objective case, we also include Thompson sampling, qTS, implemented
by generating GP realisations on discrete sets of size 200d. qEHI is from GPareto (Binois &
Picheny, 2019), estimated by Monte Carlo. PF denotes the method from Gupta et al. (2018),
where the batch members are randomly selected on the exploration-exploitation Pareto front.
Random search (RS) is added as a baseline, as well as R package mlrMBO (Bischl et al., 2017)
(MBO) for which we use the default values. These correspond to the use of different β values
with UCB in the mono-objective case, complemented by an hypervolume indicator in the
multi-objective case (available in the deterministic setup only). All start with the same space
filling designs of size 5d, replicated five times each to help the heteroscedastic GP modeling
with low signal-to-noise ratios.

Optimization of the acquisition functions is performed by combining random search, local
optimization and EAs. That is, for qEI, nu = 100d designs are uniformly sampled in the
design space before computing their univariate EI. Then nb = 100d candidate batches are
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created by sampling these designs with weights given by EI. Then the corresponding best
batch for qEI is optimized locally with L-BFGS-B. A global search with pso (Bendtsen,
2012) (population of size 200) is conducted too, to directly optimize qEI, and the overall
best qEI batch is selected. The same principle is applied for qEHI. As for qHSRI and PF,
in addition to the same uniform sampling strategy with nu designs, NSGA-II (Deb et al.,
2002) from mco (Mersmann, 2020) is used to find P , the exploration/exploitation compromise
surface (with a population of size 500). The reference point R for HSRI computations is
obtained from the range over each component, extended by 20%, as is the default in GPareto
(Binois & Picheny, 2019). The R code (R Core Team, 2023) of the approach is available as
supplementary material.

For one objective, the optimality gap, i.e., the difference to a reference solution, is
monitored. With noise, the optimality gap is computed both on noiseless values (when
known) and on the estimated minimum by each method over iterations, which is the only
element accessible in real applications. In fact, the optimality gap only assesses whether a
design has been sampled close to an optimal one, not if it has been correctly predicted. As
we will see, it may be difficult to correctly identify the best solution among evaluations. The
hypervolume metric is used in the MO case, from a reference Pareto front computed using
NSGA-II and all designs found by the different methods. Similar to the mono-objective case,
the hypervolume difference is also computed on the estimated Pareto set by each method,
over iterations, to have a more reliable and realistic performance monitoring.

In a first step, for validating qHSRI, we compared it with alternatives for relatively low q
values. These preliminary experiments on noiseless functions are provided in Appendix B.
The outcome is that qHSRI gives results on par with qEI and qEHI looking at the performance
over iterations, at a much lower computational cost. These results also motivate the use
of qAEI as a proxy for qEI when this latter is not available. MBO outperforms the other
methods with q = 25 for the mono-objective problems iteration-wise, but is underperforming
for multi-objective ones. It shows intermediate running times, better than qAEI or qTS but
worse than PF or qHSRI, and it worsen with larger batches. We notice that qTS performed
poorly on these experiments, possibly because using discretized realisations is insufficient for
the relatively large input dimension (d = 12). There the use of random or Fourier features
may help (Mutny & Krause, 2018). As for PF, it requires more samples than qHSRI, even if
it goes as fast. This indicates that the portfolio allocation strategy is beneficial compared to
randomly sampling on the exploration-exploitation Pareto front.

4.1 Mono-objective Results

We first consider the standard Branin and Hartmann6 test functions, see, for example,
Roustant et al. (2012). For the noisy Branin (resp. Hartmann6), we take the first objective
of the P1 test function (Parr, 2012) (resp. repeated Hartmann3, Roustant et al., 2012) as
input standard deviation τ(x)

1
2 , hence with heteroscedastic noise (denoted by het below).

Figure 3 highlights that qHSRI is orders of magnitude faster than qTS, qAEI or MBO
for decreasing the estimated optimality gap (see also Table 1 for all timing results). It also
improves over random selection on P as with PF. In these noisy problems, looking at the
true optimality gap for observed designs shows good performance of RS, since, especially in
small dimension like for Branin (d = 2), there is a high probability of sampling close to one
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Figure 3: Mono-objective results over iterations and over time. Optimality gap and estimated
optimality gap for noisy tests over 40 macro-runs are given. Thin dotted lines are
5% and 95% quantiles.

of its three global minima. Also, replicating incurs less exploration, penalizing qHSRI on
this metric.

This is nevertheless misleading: in practice one cannot compute the true optimality gap
since the true optimum is usually unknown. A surrogate’s predicted value for a design close
to the optimum may not be identified as such. The actual metric of interest is the optimality
gap of the estimated best solution at each iteration. It is improved with qHSRI, especially
for Branin, while performances of the various acquisition functions are similar iteration-wise
in the Hartmann6 case, with qTS being slightly better initially. For RS, the estimated best
solution is the best value observed, which is driven by the noise realizations. The contrast
with the optimality gap is particularly sharp for the Branin test case, since RS performs well
under this metric. MBO struggles with noisy observations, especially for the Hartmann6
problem, and does not seem suitable for problems with low signal-to-noise.

Concerning speed, part of the speed-ups are due to the ability to replicate. Indeed, as
apparent in supplementary Figure 9, for qHSRI the number of unique designs remains low,
less than 20% of the total number of observations without degrading the sample efficiency. It
directly reduces the BO time per iteration, see supplementary Figure 10. Notice that taking
larger batches can be faster since the batch selection is independent of q with qHSRI. Also
there are fewer iterations for the same simulation budget, hence less time is spent in fitting
GPs and finding P.

Next we tackle the more realistic 12d Lunar lander problem (Eriksson et al., 2019). We
take Nmax = 2000 with q = 100, where a single evaluation is taken as the average over
100 runs to cope with the low signal-to-noise ratio (rather than fixing 50 seeds to make it
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deterministic as by Eriksson et al., 2019). The solution found (predicted by the GP) is of
−205.32 while the reference handcrafted solution gives −101.13, see Figure 5. The Lunar
lander problem with qHSRI took 5 hours; it did not complete with qAEI even in 24 hours
due to q = 100.

4.2 Multi-objective Results

We consider the P1 (Parr, 2012) and P2 (Poloni et al., 2000) problems. For the noisy setup,
one problem serves as the other one’s noise standard deviation function (taking absolute
values for positiveness). The results are shown in Figure 4, where the leftmost panels show
the beneficial performance of the qHSRI approach in terms of time to solution. While RS
performs relatively well looking solely at the hypervolume difference for the evaluated designs
(rightmost panels), this does not relate to the quality of the Pareto front estimation. Indeed,
the estimated Pareto with RS, that is, using only the non-dominated noisy observations, is
far from the actual Pareto front, due to noise realizations. There the Pareto fronts estimated
by GP models do show a convergence to the reference Pareto front, indicating that their
estimation improves over iterations (middle panels). Finally, like in the mono-objective
results, we demonstrate in Appendix B that for the noiseless case the sample efficiency of
qHSRI is at least on par to that of qEHI, and even slightly better in some cases.
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Figure 4: Multi-objective results over time, iterations, and number of samples. Hypervolume
difference over a reference Pareto front and its counterpart for the estimated Pareto
set for noisy tests over 40 macro-runs are given. Thin dotted lines are 5% and 95%
quantiles.

Next, we consider the training of a convolutional neural network (CNN) used for the
classification of digits based on the MNIST data (LeCun et al., 1998), with 70,000 handwritten
digits (including 10,000 for testing). There are six variables on this problem, detailed in
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Appendix C, modifying the neural network architecture and training. Neurons are randomly
cut off during training to increase robustness, referred to as dropout, which introduces
randomness to the process. The goal is to find compromise solutions between accuracy on
the testing set and the CNN training time, with Nmax = 2000 and q = 200. The outcome is
presented in Figure 5, showing the symmetric difference between the estimated Pareto front
over iterations and a reference Pareto front obtained by fitting a GP to all the observations
collected. qSHRI consistently learns an accurate Pareto front faster than random search,
even if the latter found good solutions in one macro-run.

4.3 CityCOVID Data Set

We showcase a motivating application example for massive batching: calibrating the City-
COVID ABM of the population of Chicago in the context of the COVID-19 pandemic,
presented by Ozik et al. (2021) and built on the ChiSIM framework (Macal et al., 2018).
It models the 2.7 million residents of Chicago as they move between 1.2 million places
based on their hourly activity schedules. The synthetic population of agents extends an
existing general-purpose synthetic population (Cajka et al., 2010) and statistically matches
Chicago’s demographic composition. Agents colocate in geolocated places, which include
households, schools, workplaces, etc. The agent hourly activity schedules are derived from
the American Time Use Survey and the Panel Study of Income Dynamics and assigned based
on agent demographic characteristics. CityCOVID includes COVID-19 disease progression
within each agent, including differing symptom severities, hospitalizations, and age-dependent
probabilities of transitions between disease stages.

The problem is formulated as a nine variable bi-objective optimization problem: the
aggregated difference for two target quantities. It corresponds to the calibration of the
CityCOVID parameters θ listed in Table 4, each normalized to [0, 1]. Model outputs are
compared against two empirical data sources obtained through the City of Chicago data
portal (City of Chicago, 2022): H the daily census of hospital beds occupied by COVID-19
patients and D the COVID-19 attributed death data in and out of hospitals, both for residents
of Chicago. We used an exponentially weighted error function L(θ, Ti, T̃i, d), i ∈ {H,D},
with daily discount rate d tuned to 98% and 95% for H and D, with the corresponding
observed (resp. simulated) time-series denoted by T and T̃ giving the objectives.

To inform public health policy, many simulations are necessary in a short period of
time, which can only be achieved by running many concurrently. One simulation takes
≈ 10min, with a low signal-to-noise ratio. A data set of 217, 078 simulations (over 8, 368
unique designs, with a degree of replication between 1 and 1000) has been collected by
various strategies: IMABC (Rutter et al., 2019), qEHI with fixed degree of replication, and
replicating non-dominated solutions. This data set is available in the supplementary material.

Contrary to the previous test cases that were defined over continuous domains, for testing
qHSRI we use this existing data set. The initial design is a random subset of the data:
25, 000 simulation results over 2500 unique designs with a degree of replication of 10, out
of 50, 585 simulations over 5075 unique designs, with a degree of replication between 3 and
10. These correspond to results given by IMABC (akin to a non uniform sampling). qHSRI
is used to select candidates among remaining designs up to q = 2500 if enough replicates
are available, hence with a flexible batch size. To speed up prediction and to benefit from a
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parallel architecture, local GPs are built from 20 nearest neighbors rather than relying on a
single global GP. We show in Figure 5 the progress in terms of symmetric difference to the
final estimate of the Pareto front, thus penalizing both under and over confident predictions.
qHSRI quickly converges to the reference Pareto front, compared to RS.
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Figure 5: Left: optimality gap for the Lunar lander problem (one single run) with the
evaluated values and estimated minimum found. Center: results of the tuning of
the hyperparameters of a convolutional neural network over 5 macro-runs. Right:
results on CityCOVID data set over 5 macro-runs. Thin dotted lines are 5% and
95% quantiles.

5. Conclusions and Perspectives

Massive batching for BO comes with the additional challenge that batch selection must
happen at a fast pace. Here we demonstrate qHSRI as a flexible and light-weight option,
independent of the batch size. It also handles replication natively, resulting in additional
speed-up for noisy simulators without fixing a degree of replication. Hence, this proposed
approach makes a sensible, simple, yet efficient, baseline for massive batching.

Randomness in simulators is often controlled by a seed. When the seed carries some
information, it may be relevant to take it into account in the optimization (see, e.g., Pearce
et al., 2022). For example, this could guide the selection of seeds when replicating. Possible
extensions could take into account global effects (on entropy, integrated variance, etc.) of
candidate designs to be less myopic. A more dynamic Sharpe ratio allocation could be
beneficial, to improve replication. Additionally, while the integration of a few constraints is
straightforward, handling more could rely on the use of copulas as in Eriksson and Poloczek
(2021) to alleviate the increase of the dimension of the exploration/exploitation trade-off
surface. Finally, based on results for UCB with various β values, future work could improve
the convergence analysis to account for the observation that the requirements are often too
conservative in practice (see, e.g., Paria et al., 2020).
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Appendix A. Adaptation to Asynchronous Batch Bayesian Optimization

The standard batch- (or multi-points) BO loop, where parallel evaluations are conducted
in parallel and waiting for all of them to finish, is presented in Algorithm 1. In the general
asynchronous setup, new evaluations can be performed without waiting for all the batch
results. The change is for the acquisition function, that needs to take into account running
candidates in the selection, typically relying on pseudo-values for these, see, for example,
Ginsbourger et al. (2010), Desautels et al. (2014). Next we discuss briefly the adaptations
required for qHSRI in the asynchronous setup.

The main feature of the portfolio approach is to give a weight vector corresponding to
Pareto optimal points on the mean/standard deviation Pareto front P. In the synchronous
setting, q points are selected based on the weights. That is, the q best ones in the noiseless
setting while replicates can occur in the noisy setup. If q′ additional points can be evaluated,
without new data becoming available (or while waiting for new candidates to evaluate), the
change in the asynchronous setup amounts to considering that q + q′ batch points (assets)
can be selected according to the weights. The q first ones will remain unchanged while q′

additional ones can be run. An example is provided in Figure 6.

Figure 6: Batch allocation on indices according to weights w (black points) for 10 candidates.
q = 5 designs are initially allocated, as represented by the black segments. If q′ = 2
additional designs can be evaluated, then the allocation is recomputed with the
same weights and leads to the red dashed segments.
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Appendix B. Additional Experimental Results

We complement the results of Section 4 on noisy problems with results on noiseless ones. The
R package DiceKriging (Roustant et al., 2012) is used for deterministic GP modeling. In
this deterministic setup, d is increased to accommodate larger batches via repeated versions
of these problem as used, for example, by Oh et al. (2018).

The timing results (to complete all iterations) for all synthetic benchmarks are presented
in Tables 1 and 2, with best results in bold. qHSRI or PF are always much faster than the
alternatives, even the approximated qEI criterion (qAEI) or qTS. The R code (R Core Team,
2023) of the approach and the CityCOVID data are available as supplementary material.
Results have been obtained in parallel on dual-Xeon Skylake SP Silver 4114 @ 2.20GHz (20
cores) and 192 GB RAM (or similar nodes). Lunar lander tests have been run on a laptop.

f -d-q qEI qAEI qHSRI qPF qTS MBO
B-12-10 24725 (133) 5901 (54) 1103 (104) 1024 (160) 1835 (5) 2345 (35)
B-12-25 − 5856 (61) 451 (46) 423 (66) 1760 (3) 2070 (16)
H-12-10 24258 (115) 4957 (131) 969 (38) 1266 (144) 1938 (22) 2224 (25)
H-12-25 − 4585 (129) 419 (24) 510 (76) 1816 (9) 2029 (9)

B(h)-2-25 − 2470 (93) 57 (3) 342 (36) 305 (46) 1552 (56)
H(h)-6-25 − 22012 (717) 288 (33) 4714 (702) 5327 (503) 11532 (408)

Table 1: Averaged timing results (in s), with standard deviation in parenthesis. B is for
Branin, H for Hartmann6, (h) for heteroscedastically noisy problems and ’−’
indicates when non applicable.

f -d-q qEHI qHSRI qPF MBO
P1-6-50 16308 (2118) 678 (25) 580 (26) 2463 (20)

P1(h)-2-50 35350 (1363) 567 (59) 5110 (407) −
P2-6-50 14022 (1818) 635 (24) 553 (20) 2419 (24)

P2(h)-2-50 37386 (1123) 608 (44) 5148 (414) −

Table 2: Averaged timing results (in s), with standard deviation in parenthesis. (h) is for
heteroscedastically noisy problems.

The detailed results of the performance over time are given in Figure 7, where qHSRI
show better results than the alternatives, closely matched by PF except on Branin where
it does worse. qTS performs badly as the discretization is insufficient given the problem
dimension. MBO shows an intermediate performance, especially for larger batch sizes.

The results over iterations of Figure 8 shows that the performance of qHSRI matches the
one of qEI and improves over qEHI. qTS underperforms but it is still better than RS. PF
shows similar results to qHSRI on the multi-objective problems and Hartmann6 with q = 25,
but is worse in the other test cases. For the smallest batch size, q = 10, qAEI matches the
performance of qEI, while being faster. MBO is best on the mono-objective q = 25 case, but
the multi-objective version is outperformed.
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Figure 7: Noiseless results over time. Optimality gap or hypervolume difference over 20
macro-runs is given. Thin dotted lines are 5% and 95% quantiles.
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Figure 8: Noiseless results over iterations. Optimality gap or hypervolume difference over 20
macro-runs is given. Thin dotted lines are 5% and 95% quantiles.
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To highlight that replication occurs, Figure 9 represents the number of unique designs
over time for the mono-objective noisy problems. Notice that replication is present in the
initial design and that replication can happen for all methods when sampling vertices of the
hypercube. This directly translates in the time spent per iteration to select batch candidates,
see Figure 10. qEI is largely the most time consuming approach since the criterion is
computationally expensive, followed by qAEI. Then MBO and qTS have more or less the
same cost in the deterministic setup, while MBO is more expensive when the problem is
noisy, possibly due to reinterpolation. PF and qHSRI have similar costs in the deterministic
setup while qHSRI is much faster, especially for noisy problems, as it relies on replication.
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Figure 9: Number of unique designs over iterations for the mono-objective test problems.
Thin dotted lines are 5% and 95% quantiles.
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Figure 10: Time taken per iteration for the mono-objective test problems.

We complement the synthetic experiments in Section 4 with results for larger values of q
using qHSRI. The mono-objective results are in Figure 11 and the multi-objective ones in 12.
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Increasing q shows degrading results sample-wise, as there are fewer updates of the GP model.
This effect is less pronounced on the multi-objective examples, since candidates can be spread
along the Pareto set. But increasing q decreases the time to solution. Selecting an appropriate
value of q for a given application thus involves taking into account the available parallelism,
simulation time, signal-to-noise ratio, number of variables, and number of objectives.
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Figure 11: Mono-objective results over iterations and over time. Optimality gap and esti-
mated optimality gap for noisy tests over 60 macro-runs are given.
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Figure 12: Multi-objective results over time and iterations. Hypervolume difference over a
reference Pareto front and its counterpart for the estimated Pareto set for noisy
tests over 60 macro-runs are given.
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Appendix C. Details on the CNN Training Problem Parameters

The six variables of the CNN are given in Table 3. The architecture is composed of two 2D
convolutional + max pooling layers, before two dense layers with dropout. The reference
point used for hypervolume computations is [0, 150]. The CNN training is performed on
GeForce GTX 1080 Ti GPUs.

x Lower bound Upper bound Description
x1 2 100 Number of filters of first convolutional

layer
x2 2 100 Number of filters of second convolu-

tional layer
x3 0 0.5 First dropout rate
x4 0 0.5 Second dropout rate
x5 10 200 Number of units of dense hidden layer
x6 2 50 Number of epochs

Table 3: CNN network problem parameters description.

Appendix D. Details on CityCOVID Calibration Parameters

The nine variables of the simulator are given in Table 4.

θ π(θ) Description
θ1 U(60, 190) Initial number of exposed (infected but not infectious)

agents at the beginning of the simulation
θ2 U(0.03, 0.1) Base hourly probability of transmission between one in-

fectious and one susceptible person occupying the same
location

θ3 U(0, 0.3) Magnitude of seasonality effect
θ4 U(0.5, 1) Per person probability of infection scaling factor due to

ratio of infectious versus susceptible people in a location
θ5 U(0.2, 0.7) Effective infectivity during isolation in household
θ6 U(0.1, 0.7) Effective infectivity during isolation in nursing home
θ7 U(300, 700) Simulation time (hrs) corresponding to March 27, 2020
θ8 U(0.1, 0.8) Reduction in out of household activities
θ9 U(0.01, 0.3) Reduction in transmission due to individual protective

behaviors

Table 4: CityCOVID calibration parameters θ and priors π(θ).
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