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Université Caen Normandie, ENSICAEN, CNRS, Normandie Univ,
GREYC UMR6072, F-14000 Caen, France
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Abstract
Extensive-form games model strategic interaction between players, with an emphasis on the

sequential aspect of decision-making: players take turns to move until an ending is reached, and
receive a reward according to which ending is reached. We study the complexity of computing the
pure maxmin value for such games, i.e. the maximum reward that a player can guarantee by playing
a pure strategy, whatever their opponents play. We focus on two-player and two-team games and
perform a systematic study depending on the degree of imperfect information of each player or
team: perfect information, perfect recall, or perfect recall for each agent in a team (which we call
multi-agent perfect recall). For each combination, we settle the complexity of deciding whether
the maxmin value is at least as high as a given threshold. We give a complete complexity picture
for three orthogonal settings: games represented explicitly by their game tree; games represented
compactly by game rules, for which we propose two new formalisms; games in which the set of
strategies of the opponents is restricted to a known set of opponent models.

1. Introduction

Game theory is concerned with strategic interaction between players, typically in a competitive
setting (Bonanno, 2018; Maschler et al., 2020). In this paper, we are interested in algorithmic and
complexity-theoretic aspects of game theory, for games represented in extensive form, that is, as
trees of possible sequences of moves by the players and of resulting payoffs. Extensive-form games
(EFGs) provide a natural representation of games. Additionally, they put emphasis on the sequence
of moves, and in particular on the information available to a player when they are to choose a move,
which is the focus of this work.

We are interested in EFGs with imperfect information, where players do not necessarily observe
or remember all the moves made by their opponents or themselves. This is captured by information
sets, which contain game positions that a player cannot distinguish due to what they cannot observe
or remember. For instance, at the beginning of a typical card game, a player cannot distinguish two
positions in which they have the same hand while their opponents have different ones.

We focus on two-player zero-sum games, and we study the solution concept called maxmin,
according to which each player attempts to maximise their minimal reward against any strategy
of their opponent, which corresponds to a notion of robustness. Maxmin is especially relevant in
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settings where nothing should be assumed about the opponent’s strategy: in such cases, playing any
strategy but a maxmin one exposes the player to the risk of getting a lower payoff than the maxmin
value. In particular, maxmin strategies are the counterpart for zero-sum games of Stackelberg
strategies for general-sum games; Stackelberg strategies have been adequately applied to real-world
situations, e.g. those modelled by security games, in which a defender must choose a strategy to
protect resources against an attacker (Pita et al., 2008; Basilico et al., 2012).

In this setting, we study the complexity of computing robust pure strategies. A pure strategy of
a player is a strategy that deterministically prescribes a move for each information set of this player.
In general, such strategies guarantee a lower payoff than mixed or behaviour strategies, which can
prescribe stochastic choices. However, pure strategies are important in many settings. For instance:

• Pure strategies are optimal against nondeterministic opponents, as in contingent planning
(Rintanen, 2004).

• Pure strategies are particularly important for pedagogical purposes, for instance when teaching
human players to play a game, as experiments have shown that human reason in terms of pure
rather than mixed or behaviour strategies (Dhami, 2019, Chapter 1).

• Pure strategies are a realistic model of the defender’s strategies in some security games, where
the defender’s policy is changed infrequently and hence appears to be pure to the attacker
(Schlenker et al., 2018).

• Pure strategies are by nature more predictable, interpretable, and verifiable than mixed strate-
gies; these properties are of prime importance in high-risk safety-critical systems or in systems
with legal or regulatory constraints, where stochasticity and opacity of policies are undesirable.

• Deploying pure strategies does not require additional sources of random bits as required by
mixed and behaviour strategies, especially in the case of correlated team maxmin equilibria
(Basilico et al., 2017) where the coordination between multiple players of the same team may
be necessary.

• When pure strategies correspond to resources (e.g. to be bought before implementing the
strategy), then it may not be operational to randomise over pure strategies, as this may require
to have all resources at one’s disposal instead of only one (Lipton et al., 2003).

• When pure strategies correspond to protocols to be executed by human agents in a repeated
game, randomising over pure strategies requires them to be familiar with all the protocols
involved; such tasks may be cognitively difficult and error-prone (McCarthy et al., 2018).

Noticeably, pure Nash Equilibria have already been studied (Gottlob et al., 2005; Yun et al., 2022).
We investigate the complexity of computing the pure maxmin value of a given two-player zero-

sum EFG in various settings. We mostly study the following decision problem: given an EFG and a
threshold, decide whether the pure maxmin value for a given player (or team) is at least the threshold
(Pure Maxmin). The complexity of Pure Maxmin is established with respect to different types of
games, characterised by the degree of imperfect information of the two players, and the presence
or absence of chance factors. In our work, three degrees of imperfect information are considered:
perfect information (a player observes and remembers every move made by their opponents or
themselves), perfect recall (a player does not necessarily observe all the moves but never forgets
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anything they did or knew in the past), and multi-agent perfect recall (a team of agents with perfect
recall).1 Apart from completeness results for various complexity classes, we also provide (or refer
to) polynomial-time algorithms for decision problems belonging to the complexity class P.

The decision problem Pure Maxmin is studied under three orthogonal settings:

• First, we consider the standard setting in which EFGs are explicitly represented by their game
tree; the complexity is measured with respect to the size of the whole game tree. This setting
has already been partially tackled in the literature, e.g. in early work by Koller and Megiddo
(1992), Koller et al. (1996), von Stengel (1996) (for pure, mixed, and behaviour strategies) and
recent work by von Stengel and Koller (1997), Basilico et al. (2017), Celli and Gatti (2018)
(for behaviour and mixed strategies in two-team games).

• Then, we consider the setting in which EFGs are represented compactly, for which we introduce
a very generic representation called oracle games. This setting captures more naturally tabletop
games or video games played by humans: in such games, the game tree is usually described
by succinct game rules and is generated online (when the game is played) rather than offline.
Intuitively, the complexity in this setting is measured with respect to the size of the game rules.

• Finally, we consider the setting in which the opponent does not consider all strategies, but
only a limited set of (behaviour) strategies, known as opponent models in the literature; we
are looking for pure maxmin strategies only against these models. This allows modelling
situations in which a player has prior information about the behaviour or reasoning process of
their opponent.

Near the end, we also briefly discuss the complexity of deciding whether the pure maxmin value
of a given EFG is at most (Pure ≤-Maxmin), or equal to (Pure =-Maxmin) a given threshold.

The main contribution of our work is the following: (i) we thoroughly study the complexity
of finding pure maxmin strategies in two-player extensive-form games under the aforementioned
settings; (ii) we assemble known results scattered in the literature into one place and fill the gaps
among these results; (iii) we present all the results in a coherent manner with rigorous proofs and
sufficient references; (iv) for existent results, we strengthen them (e.g. by restricting the number of
different payoffs, players, or turns needed in the construction for hardness results) or simplify their
proof when possible.

The paper is organised as follows. We first present related work (Section 2) and technical
background about EFGs and the notion of information in such games (Section 3). Then we study
Pure Maxmin for EFGs defined explicitly by their game tree (Section 4), for compactly represented
EFGs (Section 5), and for EFGs defined explicitly by their tree but with known opponent models
(Section 6). Pure ≤-Maxmin and Pure =-Maxmin are then studied (Section 7) before we conclude
(Section 8). The proofs of auxiliary lemmas are deferred from the main text to the appendix. Finally,
the complexity results of each section are summarised in a separate table.

2. Related Work

Our work concerns non-cooperative games from the field of game theory, a rigorous treatment
of which is given by Maschler et al. (2020). These games model non-cooperative multi-agent

1. The more general case in which an agent can forget some information, a setting called absent-mindedness in the
literature (Piccione & Rubinstein, 1997), is not considered in our work.
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interaction, and mainly come in two categories: normal-form games, for one-round interaction
during which agents pick their action concurrently; extensive-form games (EFGs), for multi-round
interaction during which agents take turns to make decisions. The reward at the end of a game
is determined by the actions taken by every agent during the game; the goal of each agent is to
maximise their own reward.

Solution Concepts for Games One of the central questions of game theory concerns what will
happen in a given game. From a theoretical and analytical point, we are interested in predicting
what players will do under the assumptions of certain notions of reasonable or rational behaviours
from the players (Maschler et al., 2020, page 84). In single-player games, the focus is usually on
identifying optimal strategies, i.e. those maximising the expected payoff of a player. However, in
multi-player games, the notion of optimal strategies of a player is not uniquely defined, since the
optimality of a strategy can depend on the choices of other players. In this case, game theorists
resort to solution concepts to identify certain subsets of outcomes deemed interesting in one sense
or another (Shoham & Leyton-Brown, 2009, page 60).

In general, a solution concept is a rule or a systematic way to specify, given any game, predictions
about players’ behaviour and outcomes of the game to be expected (Myerson, 1997, page 107). Since
the foundational work by von Neumann and Morgenstern (1994), various solution concepts have
been proposed and studied.

The most prominent solution concept, and the one that has received the most attention from
the literature, is Nash equilibrium (NE). An NE is a strategy profile such that no one has a strict
unilateral incentive to deviate. Hence, NE is a solution concept about stability. Many refinements
of NE have also been proposed and studied in the literature; see the work by van Damme (1991) for
a detailed exposition.

For other examples of solution concepts, one may also refer to the books by Maschler et al. (2020,
Chapter 7) and Shoham and Leyton-Brown (2009, Sections 3.3-4) for a quick overview. Moreover,
the field of epistemic game theory (Perea, 2012) studies solution concepts coming from different
assumptions of rationality, e.g. rationalisability (Pearce, 1984). Behavioural game theory (Dhami,
2019) concerns solution concepts that take human behaviour into account.

Maxmin and Stackelberg Strategies We focus on the solution concept of maxmin for EFGs, espe-
cially pure maxmin, where strategies for MAX are restricted to be pure. Maxmin predicts/prescribes
that every player aims to maximise the minimum reward they get against all possible strategies of
their opponents, whence the name “maxmin”.

By definition, maxmin is a solution concept about safety and robustness, since playing a maxmin
strategy guarantees a certain amount of reward for a player. Importantly, in a zero-sum game, the
notions of Nash equilibrium and mixed maxmin coincide, in the sense that a mixed strategy profile
is an NE if and only if every strategy in it is a mixed maxmin strategy. Hence, the notion of maxmin
is particularly attractive for zero-sum games.

Another closely related solution concept is that of Stackelberg strategies proposed by von
Stackelberg (1934). A Stackelberg strategy, also called an optimal strategy to commit to, is a
strategy that maximises a player’s expected payoff when the opponents always best-respond with
respect to their own reward.2 In particular, Stackelberg strategies reduce to maxmin strategies in
zero-sum games. However, these two notions differ in general-sum games: Stackelberg strategies

2. A formal definition in our notation is provided near the end of Section 8.
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assume that one’s opponents are self-interested and aim to maximise their own payoffs; maxmin
assumes that one’s opponents strive to minimise one’s payoff.

Team Games We also study the complexity of maxmin in multi-agent settings, i.e. when MAX
or MIN consists of multiple agents, who all have perfect recall but do not share observation or
information. This setting, called (two-)team games, is worth a special mention since until quite
recently, most of the literature on complexity or algorithms for equilibrium or maxmin focused
solely on games involving two agents.

Maxmin for team MAX is called team maxmin equilibrium (TME) in the literature, first proposed
by von Stengel and Koller (1997). Later, Basilico et al. (2017) and Celli and Gatti (2018) propose
another maxmin notion called TMECor (“Cor” stands for “correlation”), which allows agents in
team MAX to have access to a correlation device in order to coordinate in their mixed strategies
(in a similar vein to correlated equilibrium, a reference for which is given by Maschler et al.,
2020, Chapter 8). These works also study the inefficiency gap between NE, TME, and TMECor.3
Seemingly, these works have stirred the community’s interest in team games; many algorithms for
computing TMECor of EFGs have been designed in recent years. To cite a few: Farina et al. (2018),
Zhang et al. (2021), Farina et al. (2021), Zhang and Sandholm (2022), Zhang et al. (2023).

Opponent Models Part of our work concerns the complexity of computing optimal strategies
when it is assumed that the opponents’ strategies are taken from a known, restricted set. Such known
strategies are referred to in the literature as opponent models. Behavioural game theory, for instance,
studies models of human behaviour in games (Dhami, 2019).

Opponent models can come in diverse forms. Iida et al. (1993, 1994) propose opponent models
for games with perfect information, where models are given by the evaluation function and the
search depth of the opponent. Sturtevant et al. (2006) propose opponent models given by opponent’s
preferences over the outcomes of a game. Rebstock et al. (2019) use opponent models learnt from
human in card games with imperfect information. Albrecht and Stone (2018) provide a survey of
approches for opponent modelling. Our work is related to these in the sense that we assume opponent
models to be given (called “type-based reasoning” by Albrecht & Stone, 2018, Section 4.2).

Complexity of Solving Games Most work in the literature on the computational complexity of
games concerns finding Nash equilibria, especially in normal-form games (e.g. Gilboa & Zemel,
1989; Daskalakis et al., 2009, who show the PPAD-completeness of computing NE). For more
references, one may consult the introduction by Conitzer and Sandholm (2008), who also show that
it is NP-complete to decide whether NEs with certain natural properties exist.

Koller and Megiddo (1992), Koller et al. (1996), von Stengel (1996) made the first major steps
towards understanding the complexity landscape of solving two-player zero-sum EFGs. Apart from
studying the complexity of computing pure, behaviour, and mixed maxmin strategies for some classes
of EFGs, they also give polynomial-time algorithms for computing behaviour maxmin strategies of
EFGs with perfect recall, based on linear programming. Building on the work by Koller and
Megiddo (1992), Gimbert et al. (2020) and Zhang et al. (2023) study the complexity of TME and
TMECor, thereby yielding a relatively complete picture of the complexity of behaviour and mixed
maxmin for two-team zero-sum EFGs. Finally, we also established the complexity of computing
(pure/behaviour/mixed) maxmin strategies in a specific subclass of two-team EFGs, namely those

3. Allowing more communication between agents of team MAX increases their maxmin value.
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with incomplete information but only public actions (hence all the uncertainty comes from the initial
state) (Li et al., 2024).

As for Stackelberg strategies, their computational complexity has been studied for normal-form
games and Bayesian games by Conitzer and Sandholm (2006) and for EFGs by Letchford and
Conitzer (2010). Since Stackelberg strategies generalise maxmin strategies for general-sum multi-
player games, the latter work is very similar to ours in flavour. However, their results are independent
of ours; our study can be considered to be more refined results for the zero-sum two-team case.

Peterson et al. (2001) study the complexity of compactly represented EFGs. However, they define
games as alternating Turing machines with different kinds of specifications (number of alternations,
amount of space, private or public band, etc.). They also invent a formalism called dependency
quantified Boolean formulae, generalising the well-known formalism of quantified Boolean formulae
(which compactly represent two-player EFGs of no chance and with perfect information) to allow
multiple agents of MAX with different information. Deciding the truth value of such a formula is
NEXP-complete, in contrast with the PSPACE-completeness for QBF.

Complexity of Other Models for Decision-Making The complexity of other models for decision-
making under uncertainty (Kochenderfer, 2015; Kochenderfer et al., 2022) has also been studied in
parallel. In general, these results showcase a jump in computational complexity when we go from
single-agent models to multi-agent ones, or from fully observable models to partially observable
ones; we will also observe this phenomenon in the complexity of EFGs.

For the complexity (and computability) of automatic planning, see the work by Mundhenk et al.
(2000) for the complexity of finite horizon MDP and POMDP (with different observability, stationary
or time/history-dependent policies, short or long horizon); Madani et al. (2003) for the undecidability
of infinite horizon POMDP; Bernstein et al. (2002) for the complexity of Dec-POMDP; Brafman
et al. (2013) for the complexity of qualitative Dec-POMDP; Goldsmith and Mundhenk (2007) for
the complexity of POSG; and Rintanen (2004) for the complexity of propositional planning with
full/no/partial observability and deterministic/nondeterministic transitions.

For the complexity of graph games (Apt & Grädel, 2011) for different observability and objec-
tives, see the surveys by Chatterjee and Henzinger (2012) and Chatterjee et al. (2013).

3. Background on Game Theory

We now introduce notions that we will use throughout this work. For more details on game theory,
one can refer to the textbook by Maschler et al. (2020), on which most of this section is based.

3.1 Games and Strategies

We adopt the following notations. For a tree 𝑇 , we write L(𝑇) for the set of its leaves. For an internal
vertex 𝑣, we write C(𝑣) for the set of children/successors of 𝑣. For a finite set 𝑆, we write |𝑆 | for its
cardinality and Δ(𝑆) for its simplex, i.e. the set of all probability distributions over 𝑆.

3.1.1 Extensive-Form Games

Informally, an extensive-form game (EFG) is a game played on a tree starting from the root, during
which players take turns to choose a child of the current node until a leaf is reached; the leaf
determines the payoff for each player. To model the idea that a player cannot distinguish one
situation from another, the concept of information set can be used:
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Definition 3.1 (Information Set and Available Actions). In a tree, an information set is a pair
⟨IS, 𝐴⟩, where IS is a set of internal vertices with the same number of children, and 𝐴 (called the set
of available actions at IS) is a partition of the children of all vertices in IS,4 such that no pair of two
different children of the same vertex is in the same set in 𝐴: ∀𝑎 ∈ 𝐴,∀𝑣 ∈ IS, |𝑎 ∩ C(𝑣) | = 1.

Intuitively, two nodes in the same information set are indistinguishable by a player; if a player
picks 𝑎 ∈ 𝐴 at IS, then the next node will be the unique node in 𝑎∩C(𝑣), where 𝑣 ∈ IS is the current
node. This forces a player to pick the same action for every vertex in the same information set.
Definition 3.2 (EFG of Chance). A two-player zero-sum EFG of chance (with imperfect information)
is a tuple 𝐺 =

(
𝑇, (𝑉𝑖)𝑖∈{0,+,−} , (𝑝𝑣)𝑣∈𝑉0 , 𝑢+,

(
⟨IS 𝑗

𝑖
, 𝐴

𝑗

𝑖
⟩
) 𝑗=1,...,𝑘𝑖
𝑖∈{+,−}

)
where 𝑇 = (𝑉, 𝐸, 𝑟) is a finite

game tree; (𝑉𝑖)𝑖∈{0,+,−} is a partition of 𝑉 \ L(𝑇); for every 𝑣 ∈ 𝑉0, 𝑝𝑣 ∈ Δ(C(𝑣)); 𝑢+ : L(𝑇) → R

is a utility function; and for each player 𝑖 ∈ {+,−},
(
⟨IS 𝑗

𝑖
, 𝐴

𝑗

𝑖
⟩
) 𝑗=1,...,𝑘𝑖 is a set of information sets

of player 𝑖 such that (IS 𝑗

𝑖
) 𝑗=1,...,𝑘𝑖 forms a partition of 𝑉𝑖 .

The index 0 corresponds to Nature, who chooses the successor at every 𝑣 ∈ 𝑉0 (called chance
node) according to the probability distribution 𝑝𝑣 . If a game has no chance node (i.e. 𝑉0 = ∅), it
is called an EFG of no chance. Hence, by definition, games of no chance form a strict subclass of
games of chance. In the following, unless explicitly specified, an EFG refers to an EFG of chance.

The players indexed by + and − are called player MAX and player MIN, respectively. 𝑢+ is
interpreted to be the utility function of MAX. The game is zero-sum in the sense that the two players
have opposite payoffs at every leaf (hence for every outcome). In other words, zero-sum games are
completely adversarial. Henceforth, we write 𝑢− = 𝑢+ for the utility function of MIN.
Remark. In general, games can be general-sum, i.e. what a player gains is not necessarily equal to
what another player loses. However, as we are only interested in the solution concept of maxmin,
we may assume without loss of generality that all two-player games we consider are zero-sum (cf.
Definition 3.6 and the discussion thereafter).

For 𝑖 ∈ {+,−}, 𝑉𝑖 is the set of decision nodes of player 𝑖. We will refer to a set IS 𝑗

𝑖
as an

information set of player 𝑖, leaving implicit the set 𝐴 𝑗

𝑖
of actions available at IS 𝑗

𝑖
. We denote the set

of all information sets of player 𝑖 in an EFG by IS𝑖 ≔ {IS1
𝑖 , . . . , IS

𝑘𝑖
𝑖
}. By definition, the union of

the sets in IS𝑖 yields 𝑉𝑖 .
Definition 3.3 (Boolean EFG). A two-player zero-sum EFG is said to be Boolean if 𝑢+(𝑙) ∈ B =

{0, 1} for all leaves 𝑙.
A Boolean game is a zero-sum game with only Boolean payoffs for player MAX. 1 as payoff

usually signifies a win for MAX (and a loss for MIN), and 0 a loss for MAX (and a win for MIN).
Remark. The values 0 and 1 are inessential; one can choose any two different constants: what
captures the essence of Boolean games is that there are only two possible payoff values for MAX.
Definition 3.4 (Timeability). An EFG is said to be timeable if every two nodes in the same information
set have the same depth in the game tree.

Not every EFG is timeable; see the work by Jakobsen et al. (2016), who introduce this notion
and argue that timeability is a necessary condition for EFGs to be practically implementable in the
real world. However, all hardness results in this paper will be proven by constructing only timeable
EFGs to strengthen their practical implication.

4. A partition of a set 𝑆 is a set of non-empty subsets of 𝑆 such that the subsets are pairwise disjoint and their union is 𝑆.
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3.1.2 Strategies and Maxmin

A pure strategy of a player 𝑖 in a game maps each information set of player 𝑖 to one of their available
actions at that information set. Formally:

Definition 3.5 (Pure Strategy). A pure strategy of player 𝑖 ∈ {+,−} in a game 𝐺 is a mapping
𝑠𝑖 : IS𝑖 →

⋃
𝑗 𝐴

𝑗

𝑖
such that 𝑠𝑖 (IS 𝑗

𝑖
) ∈ 𝐴

𝑗

𝑖
for every information set IS 𝑗

𝑖
∈ IS𝑖 . The set of all pure

strategies of player 𝑖 in the game 𝐺 will be denoted by SP
𝑖

.

Every pure strategy profile (𝑠+, 𝑠−) ∈ SP
+×SP

− induces a probability distribution (due to Nature’s
drawings at chance nodes) over the leaves to be reached. In particular, every profile reaches a unique
leaf in a game of no chance; the path from the root to this leaf is called the playout under the profile.

Let us denote by 𝑝 (𝑠+,𝑠− ) the distribution induced by the profile (𝑠+, 𝑠−). Then, the ex-
pected utility/payoff/reward for MAX when MAX plays 𝑠+ and MIN plays 𝑠− reads U+(𝑠+, 𝑠−) ≔∑

𝑙∈L(𝑇 ) 𝑝 (𝑠+,𝑠− ) (𝑙)𝑢+(𝑙). The solution concept of maxmin is then defined as follows.

Definition 3.6 (Pure Maxmin Value). The pure maxmin value for MAX in a game 𝐺 is defined to be

𝑣+ ≔ max
𝑠+∈SP

+

min
𝑠−∈SP−

U+(𝑠+, 𝑠−). (1)

Maxmin is a security/robustness concept: 𝑣+ is the largest payoff player MAX can guarantee by
playing a pure strategy. Notice that the maxmin value for MAX depends solely on U+, hence only
on 𝑢+, not on 𝑢−. As a result, when studying the maxmin value of a two-player game, we can always
assume without loss of generality that the game is zero-sum.

In a Boolean game, if the maxmin value for MAX is 1, it means MAX can force a win, no matter
how Nature draws at chance nodes and how MIN plays; if the maxmin value for MAX is 0, then
MIN can force a loss for MAX.

Definition 3.7 (Best response and maxmin strategy). Let 𝑠∗+ ∈ SP
+ and 𝑠∗− ∈ SP

−.

• 𝑠∗− is called a (pure) best response to 𝑠∗+, ifU+(𝑠∗+, 𝑠∗−) = min𝑠−∈SP−
U+(𝑠∗+, 𝑠−).

• 𝑠∗+ is called an optimal pure strategy or a pure maxmin strategy against SP
−, if 𝑠∗+ achieves the

pure maxmin value, i.e. min𝑠−∈SP−
U+(𝑠∗+, 𝑠−) = 𝑣+.

A mixed strategy of player 𝑖 ∈ {+,−} is an element of Δ(SP
𝑖
), i.e. a probability distribution over

the pure strategies of player 𝑖. Instead of mixing pure strategies of a player, we may also consider
mixing their choice of actions at each of their information sets; this yields a new notion of strategy
called behaviour strategy. Concretely, a behaviour strategy of player 𝑖 maps each information set of
player 𝑖 to a probability distribution over their available actions at that information set. The set of
mixed and behaviour strategies of player 𝑖 will be denoted by SM

𝑖
and SB

𝑖
, respectively.

Although we will not detail this here, the notion of expected utility (hence also the notions of
maxmin value, best response, maxmin strategy) is well-defined with respect to mixed or behaviour
strategies. Formal definitions can be found in the book by Maschler et al. (2020, Chapter 6).

Remark. In all the settings we will consider, we have (with abuse of the subset relation) SP
𝑖
⊆

SB
𝑖
⊆ SM

𝑖
for every player 𝑖 (see also the remark after Definition 3.10). In addition, by linearity of

the expected utility with respect to MIN’s mixed strategies, best responses can be taken to be pure
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ones instead of mixed ones. Therefore, it is without loss of generality that we consider only MIN’s
pure strategies in Definition 3.6. To put it in another way, the pure maxmin value will not change if
we replace SP

− in (1) by SB
− or SM

− . This fact has also been shown by Isbell (1957), Piccione and
Rubinstein (1997); the argument before is provided for our work to be self-contained.

Remark. When MAX and MIN can use mixed strategies, the minimax theorem holds:

max
𝜎+∈SM

+

min
𝜎−∈SM−

U+(𝜎+, 𝜎−) = min
𝜎−∈SM−

max
𝜎+∈SM

+

U+(𝜎+, 𝜎−).

Hence the role of MAX and MIN is symmetric. This symmetry is broken when MAX can only use
pure strategies since, in general, we only have

max
𝑠+∈SP

+

min
𝜎−∈SM−

U+(𝑠+, 𝜎−) ≤ min
𝜎−∈SM−

max
𝑠+∈SP

+

U+(𝑠+, 𝜎−),

and the inequality is strict, for instance, in the game Matching Pennies. More evidence of this broken
symmetry is provided by the lack of symmetry in the complexity results we will see, e.g. Table 1.

3.2 Information in Games

We now present notions about information5 that are implicitly encoded by the structure of the
information sets of the players in an EFG. In particular, we present the notions of perfect information,
perfect recall, and multi-agent perfect recall (team games).

3.2.1 Degrees of Imperfect Information

Definition 3.8 (Perfect Information). A player is said to have perfect information (PI) if all their
information sets are singletons. An EFG is said to be with perfect information if all players have
perfect information.

A player 𝑖 ∈ {+,−} is said to have perfect recall (PR) if whenever two paths from the root arrive
at the same information set of 𝑖, they pass through the same information sets of 𝑖, in the same order,
and the same action is chosen by 𝑖 at each such information set in these two paths. Formally:

Definition 3.9 (Perfect Recall). A player 𝑖 ∈ {+,−} is said to have perfect recall (PR) if the following
condition holds: Let 𝑣 and 𝑣′ be two nodes in the same information set of 𝑖, let 𝑣1, 𝑣2, . . . , 𝑣𝑛 = 𝑣

(respectively 𝑣′1, 𝑣
′
2, . . . , 𝑣

′
𝑛′ = 𝑣′) be the decision nodes of 𝑖 passed through by the unique path from

the root to 𝑣 (respectively the path from the root to 𝑣′). Then 𝑛 = 𝑛′, and for 𝑘 = 1, 2, . . . , 𝑛 − 1:
(i) 𝑣𝑘 and 𝑣′

𝑘
are in the same information set of 𝑖, denoted by IS 𝑗

𝑖
for some 𝑗; (ii) the child of 𝑣𝑘 in

the path to 𝑣 and the child of 𝑣′
𝑘

in the path to 𝑣′ are in the same available action at IS 𝑗

𝑖
.

An EFG is said to be with perfect recall if all players have perfect recall.

Intuitively, perfect recall implies that a player never forgets anything they knew in the past: two
paths passing through different sequences of information sets cannot end in the same information set,
hence if the player can distinguish two of their decision nodes 𝑣 and 𝑣′, then they will not confound
a descendant of a 𝑣 with one of 𝑣′. In addition, the player remembers the actions they have chosen in
the past, since taking different actions at the same information set will lead to different information
sets. Hence, a player with perfect recall always remembers what they saw and did in the past.

5. By “information”, we informally refer to what actions in the past a player can observe or retain in memory.
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Remark. Perfect recall is the necessary and sufficient condition for all mixed strategies of a player
to have an equivalent behaviour strategy (Kuhn, 1953).

A player 𝑖 is said to have multi-agent perfect recall (MA-PR) if none of their information sets is
intersected twice by a path starting from the root. Formally:

Definition 3.10 (Multi-Agent Perfect Recall). A player 𝑖 ∈ {+,−} is said to have multi-agent perfect
recall (MA-PR) if for every two different nodes in the same information set of 𝑖, neither node is the
ancestor of the other node. An EFG is said to be with multi-agent perfect recall or to be a team game
if all players have multi-agent perfect recall.

Notice that by definition, PI implies PR, which itself implies MA-PR.

Remark. Multi-agent perfect recall is the necessary and sufficient condition for all behaviour
strategies of a player to have an equivalent mixed strategy (Maschler et al., 2020, Theorem 6.11).

Remark. In the literature, the lack of multi-agent perfect recall is called absent-mindedness, or, less
accurately, imperfect recall. We will not study this setting; one may refer to the work by Piccione and
Rubinstein (1997) and other papers in the same collection for decision-making under this setting.

The term multi-agent is motivated by the fact that if none of the information sets of a player
is intersected twice by a path, then this player can be regarded as a team of multiple agents with
perfect recall and a shared reward, each agent controlling one of the information sets of the player.
Conversely, agents with perfect recall and identical payoffs can be regarded as being controlled by a
meta-player (i.e. their team) who has multi-agent perfect recall.

This multi-agent interpretation dates back to the work by Isbell (1957), which leads to the notion
of team games (von Stengel & Koller, 1997) and is widely adopted in recent research on these games
(Basilico et al., 2017; Celli & Gatti, 2018, for instance). In the literature, a team is defined to be an
inclusion-wise maximal set of players with perfect recall and the same utility function; and recent
research focuses on the computational complexity or algorithms for solution concepts such as TME
and TMECor in two-team games with perfect recall;6 see the references in Section 2 on this subject.

As the notion of two-player games with multi-agent perfect recall and the one of two-team games
with perfect recall are equivalent, we use these two notions interchangeably throughout this work;
we prefer using the first term so as to say that we focus exclusively on two-player games. From now
on, to avoid potential confusion, a player means a team with zero, one, or more agents with perfect
recall and a common utility function who make decisions in a completely decentralised manner.
Since all agents in the same team have the same payoffs by definition, we only show the rewards for
player/team MAX in all our examples of two-player zero-sum EFGs.

3.2.2 Concurrent Actions in Team Games

The notion of multi-agent perfect recall (or team) allows constructing EFGs that model concurrent
actions, which are useful for proving complexity results. By concurrent actions, we mean situations
in which each agent in the same team has to make decisions concurrently and independently, without
knowing which action the others have taken. We use the word concurrent instead of simultaneous to
emphasise that the chronological order of the actions of the agents is not relevant to the game; when
modelling such situations with EFG, we can allow agents to take turns in any order.

6. In our terminology, TME (respectively, TMECor) corresponds to the maxmin value for player MAX with multi-agent
perfect recall when MAX is allowed to use all behaviour strategies (respectively, all mixed strategies).
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Figure 1: Cooperative Matching Pennies. Dotted lines represent (non-singleton) information sets.

Example. Consider the games called cooperative Matching pennies in Figure 1. In these games,
we have a team MAX of 2 agents and a team MIN of 0 agent. Notice that on the left, we let agent 1
move first, but this is inessential; we may as well let agent 2 move first as on the right. These
two games model the same situation, in which agent 1 and 2 have to pick between heads and tails
concurrently and independently. Notice that in these two games, the only pure strategies of team
MAX to guarantee a win (i.e. a payoff of 1), are to let both agents 1 and 2 choose heads, or to let
them both choose tails.7

Remark. Notice how concurrent actions in the example above allow imposing non-adaptivity: both
agents of MAX must stick to the same answer, otherwise they lose. This is essentially why multi-
agent perfect recall allows encoding difficult (e.g. NP-hard) decision problems. This technique of
forcing non-adaptivity is also used to prove that multi-prover interactive proofs are more powerful
than single-prover ones (Babai et al., 1991), or that multi-agent planning is computationally more
difficult than single-agent planning (Bernstein et al., 2002; Brafman et al., 2013). In our work, we
will show similar results concerning team games with the same technique.

4. Complexity of EFGs

We first study the complexity of deciding whether the pure maxmin value of a given zero-sum EFG
is above a given threshold, when the game tree of the EFG is explicitly given as input.

4.1 Problem Setting

Throughout this section, we consider the following decision problem:

Definition 4.1 (Pure Maxmin). Let G be a class of zero-sum EFGs. Then Pure Maxmin(G) is the
following decision problem.

Input: An EFG 𝐺 ∈ G and a rational number 𝑚.
Output: Does 𝑣+ ≔ max𝑠+∈SP

+
min𝑠−∈SP−

U+(𝑠+, 𝑠−) ≥ 𝑚 hold in 𝐺?

For complexity analyses, to account for the explicit representation of the game, we define the
size of an instance ⟨𝐺, 𝑚⟩ of Pure Maxmin to be ∥𝐺∥ + ∥𝑚∥, where for a rational number 𝑚, we
define ∥𝑚∥ to be the number of bits in the representation of 𝑚, and for an EFG of chance 𝐺 ≔

7. Also, notice that if the two agents have access to a correlation device so that they can coordinate in their mixed
strategies, then they can implement a mixture of the two pure strategies above to guarantee a win; this is the problem
setting for the solution concept of TMECor (Basilico et al., 2017; Celli & Gatti, 2018).
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(
𝑇, (𝑉𝑖)𝑖∈{0,+,−} , (𝑝𝑣)𝑣∈𝑉0 , 𝑢+,

(
⟨IS 𝑗

𝑖
, 𝐴

𝑗

𝑖
⟩
) 𝑗=1,...,𝑘𝑖
𝑖∈{+,−}

)
we define ∥𝐺∥ ≔ |𝑇 | + max𝑙∈L(𝑇 ) (∥𝑢+(𝑙)∥) +

max𝑣∈𝑉0,𝑣′∈C(𝑣) (∥𝑝𝑣 (𝑣′)∥).
We will study the complexity of Pure Maxmin for the classes G defined by three parameters:

• MAX’s degree of imperfect information: perfect information (PI), perfect recall (PR), or
multi-agent perfect recall (MA-PR);8

• MIN’s degree of imperfect information: PI, PR, or MA-PR;

• the existence of chance nodes: games of no chance, or games of chance.

Notice that we are interested in maxmin values with respect to all MIN’s pure strategies SP
−,

which is equivalent to considering all behaviour or mixed strategies of MIN for all subclasses of
games we consider: since MIN has at least multi-agent perfect recall, every behaviour strategy of
MIN has an equivalent mixed strategy (Maschler et al., 2020, Theorem 6.11); in addition, best
responses of MIN in mixed strategies can always be taken to be pure strategies, for the expected
utility is linear with respect to MIN’s mixed strategies.

Moreover, we can further simplify the analysis for games of no chance. Given an EFG 𝐺 of no
chance, let PIMIN(𝐺) be the EFG of no chance obtained from 𝐺 by replacing the set of information
sets of MIN by the set of all singleton nodes. Then, in PIMIN(𝐺), the game tree, the payoff functions,
MAX’s information sets, and the set of MAX’s pure strategies are the same as in 𝐺, but MIN has
perfect information.

Lemma 4.2 (Hansen et al., 2007, Lem. 1). Let 𝐺 be an EFG of no chance in which MIN has
multi-agent perfect recall and 𝑠+ ∈ SP

+ be a pure strategy of MAX in 𝐺. Then 𝑠+ has the same payoff
against MIN’s best responses in 𝐺 as against MIN’s best responses in PIMIN(𝐺).

Proof. As stated before, we may restrict our attention to MIN’s pure best responses. It suffices to
show that against a fixed pure strategy 𝑠+ of MAX, every pure best response of MIN in PIMIN(𝐺)
corresponds to at least one pure strategy of MIN in 𝐺 with the same payoff.

Let 𝑠′− be a pure best response of MIN to 𝑠+ in PIMIN(𝐺). The pure strategy profile (𝑠+, 𝑠′−)
in PIMIN(𝐺) uniquely determines a playout of the game. Since MIN has MA-PR in 𝐺, this path
intersects every information set of MIN in 𝐺 at most once. Hence, one can define a pure strategy 𝑠−
of MIN in 𝐺 such that at every decision node of MIN in the path, MIN takes the same action as in
𝑠′−.9 By construction, the playout is the same under the pure strategy profile (𝑠+, 𝑠−) in 𝐺 as under
(𝑠+, 𝑠′−) in PIMIN(𝐺), hence the payoff for MAX is the same. □

Remark. Hansen et al. (2007) only consider EFGs in which MIN has perfect recall, but their
argument, which is reproduced here in our terminology, also carries over to the case in which MIN
has only MA-PR.

8. The case in which a player has absent-mindedness (i.e. no multi-agent perfect recall) is not in the scope of our work.
For the computational complexity of EFGs with absent-mindedness, see the recent work by Gimbert et al. (2020),
Tewolde et al. (2023, 2024).

9. Concretely, at an information set IS− of MIN in 𝐺, if IS− intersects exactly once the playout in PIMIN (𝐺) under
(𝑠+, 𝑠′−), then 𝑠− (IS−) is defined to be the action picked by MIN under 𝑠′− in PIMIN (𝐺) at the unique intersection of
IS− and the playout; otherwise, if IS− does not intersect the playout, then 𝑠− (IS−) can be defined to be any available
action at IS− .
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No chance Chance

MAX
MIN PI/PR/MA-PR PI PR MA-PR

PI P P [m: 4.7] NP-c [h: 4.8] 𝚺P
2 -c [h: 4.10]

PR P [m: 4.5] NP-c [h: 4.9] NP-c 𝚺P
2 -c

MA-PR NP-c [h: 4.6] NP-c NP-c [m: 4.4] ΣP
2 -c [m: 4.12]

Table 1: Complexity of Pure Maxmin. All hardness results hold even under the restriction to
Boolean timeable EFGs with at most 2 agents for both MAX and MIN. PI, PR, MA-
PR stand for perfect information, perfect recall, multi-agent perfect recall, respectively.
Only key membership (“m”) and hardness (“h”) results are referred to; the others can be
deduced by monotonicity. Results in bold are new from this paper; other results are direct
consequences of known results (see the citations in the referred statements).

The intuition behind this result is that when MAX plays a pure strategy in a game of no chance,
MIN essentially faces a deterministic decision problem, hence MIN’s degree of imperfect information
is not relevant (as long as it is no worse than MA-PR) when computing MIN’s best response. This
result no longer holds if MAX can use mixed or behaviour strategies. For example, in the game
Matching Pennies, MAX’s uniform strategy has a lower payoff if MIN has perfect information.

Corollary 4.3. The pure maxmin values for MAX in 𝐺 and in PIMIN(𝐺) are the same.

Since PIMIN(𝐺) can clearly be built in polynomial time from 𝐺, it follows that for games of no
chance, for a fixed degree of imperfect information of MAX, the degree of imperfect information of
MIN (PI, PR, or MA-PR) does not influence the complexity of Pure Maxmin.

4.2 Summary of Results

The complexity of Pure Maxmin(G) is summarised in Table 1. By definition, the complexity of
each case is increasingly monotone in all three parameters: MAX’s degree of imperfect information
(in this order: PI, PR, MA-PR), MIN’s degree of imperfect information, and the existence of chance
nodes (in this order: no chance, chance). Hence, Table 1 only gives the references for the key
hardness (“h”) and membership (“m”) results; the other results can be deduced using monotonicity.
Note that results written in bold font are new from our work. The relevant citations for the other
results, which can be directly deduced from the literature, will be given with their statements.

Notice that the table is asymmetric with respect to MAX and MIN: this is evidence of the fact
that the minimax theorem no longer holds when MAX can only play pure strategies.10

4.3 EFGs of no Chance

We start with an NP upper bound for most cases in Table 1, which follows directly from the literature.

Proposition 4.4 (Koller & Megiddo, 1992). Pure Maxmin is in NP for EFGs of chance in which
MAX has MA-PR and MIN has PR.
10. It is interesting to compare this table to Table 5, which shows the complexity of Mixed Maxmin and where the

symmetry between MAX and MIN holds.
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Proof. One can guess a pure strategy 𝑠+ for MAX, then verify that it yields an expected payoff no
less than the given threshold, by computing a best response to 𝑠+ for MIN, which can be done in
linear time when MIN has PR (Koller & Megiddo, 1992, Proposition 2.7). □

When MAX has perfect recall, the problem is actually in P.

Proposition 4.5 (Hansen et al., 2007). Pure Maxmin is decidable in linear time, and a fortiori is
in P, for EFGs of no chance in which MAX has PR and MIN has MA-PR.

Proof. This follows directly from applying Corollary 4.3 to a result by Hansen et al. (2007, Theo-
rem 1). The linear-time algorithm for computing the pure maxmin value is given below; it will also
be used to prove Proposition 5.7.

Given a two-player game of no chance in which MAX has perfect recall and MIN has multi-agent
perfect recall, we recursively define the function ev : 𝑉 → R on all vertices of the game tree:

• If 𝑣 is a leaf, then the value of this node is given by the utility function of MAX: ev(𝑣) ≔ 𝑢+(𝑣).

• If 𝑣 is a decision node of MIN, then the value of this node is the minimum of the value of its
children: ev(𝑣) ≔ min𝑣′∈C(𝑣) ev(𝑣′).

• Otherwise, 𝑣 is a decision node of MAX. Let IS+ be the information set containing 𝑣. Then
the value of this node is

ev(𝑣) ≔ max
𝑎∈𝐴+

min
𝑣′∈IS+

ev(𝑎(𝑣′)), (2)

where 𝑎(𝑣′) ≔ 𝑎 ∩ C(𝑣′) denotes the vertex reached by taking action 𝑎 at node 𝑣′.

The function ev is well-defined since MAX’s information sets form a forest due to MAX’s perfect
recall (Koller & Megiddo, 1992, Proposition 3.1). In addition, ev has the same value for vertices in
the same information set of MAX: the range of the operators max and min in (2) both depend solely
on the information set containing the vertex given as input to ev.

It can be shown that ev(𝑟) is the pure maxmin value of the game (Hansen et al., 2007, Lemma 2;
Theorem 1). Therefore, a linear-time algorithm for computing the pure maxmin value is given by
an algorithm that computes ev(𝑟) using the recursive definition of ev. □

If MAX only has MA-PR, then the problem becomes NP-hard.

Proposition 4.6 (von Stengel & Forges, 2008, Thm. 1.3). Pure Maxmin is NP-hard for EFGs of no
chance in which MAX has MA-PR. The result holds even under the restriction to 2 agents for MAX
and to Boolean timeable games.

Proof. The proof is a straightforward adaptation of the proof of the same result with chance nodes
by von Stengel and Forges (2008, Theorem 1.3). Given a 3-CNF formula with 𝑛 clauses, their
reduction builds a game in which the maxmin value is 1 if the formula is satisfiable, and at most
1 − 1/𝑛 otherwise: first, Nature chooses a clause (uniformly at random), then a first agent of MAX,
who observes the clause, chooses a literal in it, and finally a second agent of MAX, who observes
the variable but not the clause nor the polarity of the literal, chooses a value for the variable. The
payoff for MAX is 1 if and only if the assignment to the variable satisfies the literal (and hence the
clause). The intuition is that if (and only if) the formula is not satisfiable, then for every strategy of
MAX, there is at least one clause not satisfied, which is picked by Nature with probability 1/𝑛.
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The adaptation to our statement simply consists in replacing Nature by MIN: if (and only if)
the formula is not satisfiable, then for every strategy of MAX, the best response of MIN consists in
choosing an unsatisfied clause, yielding a payoff of 0 for MAX. □

Remark. We also briefly present an alternative reduction from 3-Colouring to highlight the idea
that multi-agent coordination makes it hard to play a game optimally (see also Subsubsection 3.2.2).
Given a graph, we construct an EFG of no chance: MIN picks a pair of vertices (not necessarily
different); each agent of MAX is shown a different vertex from the pair; then concurrently and
independently, each picks a colour for the vertex they observe. MAX wins if and only if (1) the two
agents pick the same colour if they are shown the same vertex, and (2) they pick different colours if
the pair of vertices are connected by an edge. It is straightforward to verify that MAX can guarantee
a win in this game if and only if the given graph is 3-colourable.

Remark. The contrast between the NP-hardness in Proposition 4.6 ( EFGs of no chance; MAX has
MA-PR and MIN has PI) and the membership in P in Proposition 4.5 (EFGs of no chance; MAX has
PI and MIN has MA-PR) demonstrates the asymmetry between MAX and MIN in the computation of
maxmin values when MAX can only use pure strategies. This is in contrast to the symmetry between
MAX and MIN implied by the minimax theorem when MAX can use mixed strategies.

4.4 EFGs of Chance

For EFGs of no chance and with perfect information for both players, the famous minimax algorithm
and alpha-beta search (Knuth & Moore, 1975) compute the maxmin value in linear time; this result
has also been generalized to games with chance nodes.

Proposition 4.7 (Ballard, 1983). Pure Maxmin is decidable in linear time, and a fortiori is in P,
for EFGs of chance in which both MAX and MIN have PI.

However, Pure Maxmin becomes hard when at least one player has imperfect information.11

Proposition 4.8. Pure Maxmin is NP-hard for EFGs of chance in which MAX has PI and MIN has
PR. The result holds even under the restriction to Boolean timeable games.

Proof. We give a reduction from the NP-complete problem Subset Sum, which is defined as follows:

Input: A multi-set of natural numbers 𝑆 = {𝑖1, . . . , 𝑖𝑛}, a natural number 𝑘 .
Output: Is there a subset 𝐽 ⊆ 𝑆 that sums up to 𝑘 (i.e. 𝑘 =

∑
𝑗∈𝐽 𝑗).

Let 𝑆 = {𝑖1, . . . , 𝑖𝑛} and 𝑘 form an instance of Subset Sum. We build a game in which, intuitively,
a strategy of MAX is a subset 𝐽 of 𝑆, and MIN chooses to verify either 𝑘 ≥ ∑

𝑗∈𝐽 𝑗 or 𝑘 ≤ ∑
𝑗∈𝐽 𝑗 .

Concretely, consider the following game:

• Players: Nature; MAX with perfect information; MIN with perfect recall.

• Game tree: At the root, Nature chooses uniformly at random an element 𝑗 ∈ 𝑆. MAX
observes 𝑗 and chooses between ✓ (encoding the choice of some 𝐽 ∋ 𝑗) or × (encoding
𝐽 ∌ 𝑗). Finally, without observing 𝑗 nor the choice of MAX, MIN chooses ≤ or ≥.

11. In contrast, computing optimal behaviour/mixed strategies for MAX is still in P when both players have perfect recall
(Koller & Megiddo, 1992, Section 3).
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• Payoffs: For each Nature’s choice 𝑗 ∈ 𝑆, MAX’s payoff is as follows:

– If MIN has chosen ≥, MAX receives 𝑛 𝑗 if they have chosen ✓, otherwise 0.
– If MIN has chosen ≤, MAX receives 2𝑘 − 𝑛 𝑗 if they have chosen ✓, otherwise 2𝑘 .

• Threshold: The threshold of maxmin value is 𝑘 .

The construction is polynomial-time in the input (𝑆, 𝑘). Indeed, the game tree is of size O(|𝑆 |). In
addition, the construction yields a timeable EFG of chance in which MAX has perfect information
and MIN has perfect recall.

Observe that the pure strategies of MAX are in bijection with the subsets of 𝑆. For each subset
𝐽 ⊆ 𝑆, if MAX plays the pure strategy corresponding to 𝐽 via choosing ✓ (respectively ×) for 𝑗 ∈ 𝐽
(respectively 𝑗 ∉ 𝐽), then MAX gets an expected payoff of

∑
𝑗∈𝐽 ( 1

𝑛
× 𝑛 𝑗) +∑

𝑗∉𝐽 ( 1
𝑛
× 0) = ∑

𝑗∈𝐽 𝑗

if MIN chooses to play ≥, and
∑

𝑗∈𝐽 ( 1
𝑛
× (2𝑘 − 𝑛 𝑗)) +∑

𝑗∉𝐽 ( 1
𝑛
× 2𝑘) = 2𝑘 −∑

𝑗∈𝐽 𝑗 if MIN chooses
to play ≤. Hence, the maxmin value is

max
𝐽⊆𝑆

min

(∑︁
𝑗∈𝐽

𝑗 , 2𝑘 −
∑︁
𝑗∈𝐽

𝑗

)
≤ max

𝐽⊆𝑆
𝑘 = 𝑘,

with equality if and only if
∑

𝑗∈𝐽 𝑗 = 𝑘 for some 𝐽 ⊆ 𝑆.
Therefore, the maxmin value is 𝑘 if and only if there is a subset 𝐽 of 𝑆 that sums up to exactly 𝑘;

if no such subset exists, the maxmin value is at most 𝑘−1. This concludes our proof of NP-hardness.
Finally, NP-hardness also holds for Boolean games because one can use Lemma A.1 to compile the
game above into a Boolean one. □

Proposition 4.9. Pure Maxmin is NP-hard for EFGs of chance in which MAX has PR and MIN
has PI. The result holds even under the restriction to Boolean timeable games.

Proof. This follows directly from the reduction in the proof of Proposition 4.8 by changing the order
of the players: MIN first; then Nature; finally (observing Nature’s but not MIN’s choice) MAX. Now
the game obtained is a timeable EFG of chance in which MAX has PR and MIN has PI. □

Remark. This also follows from a similar result proven by Frank and Basin (2001, Section 6) for
EFGs with one-sided incomplete information, by a reduction from the NP-complete problem Clique.

We now consider games of chance in which MIN only has multi-agent perfect recall. Koller and
Megiddo (1992, Proposition 2.10) show that if MAX also only has multi-agent perfect recall, then
Pure Maxmin is ΣP

2 -hard. We use a different reduction to strengthen their hardness result and show
that actually Pure Maxmin remains ΣP

2 -hard even if MAX has perfect information.

Proposition 4.10. Pure Maxmin is ΣP
2 -hard for EFGs of chance in which MAX has PI and MIN

has MA-PR. The result holds even under the restriction to 2 agents for MIN and to Boolean timeable
games.

For this proof, we will consider a reduction from a variant of the domino tiling problem. A
tile is a square with sides coloured, formally an element 𝑡 = (𝑐t, 𝑐r, 𝑐b, 𝑐l) ∈ 𝐶4 for some set of
colours 𝐶. We refer to 𝑐t (respectively 𝑐r, 𝑐b, 𝑐l) by t(𝑡) (respectively r(𝑡), b(𝑡), l(𝑡)), standing for
“top” (respectively “right”, “bottom”, “left”) of 𝑡.

256



The Complexity of Pure Maxmin in Extensive-Form Games

Definition 4.11 (Legal Tiling). Let 𝐶 be a set of colours, including a distinguished element w ∈ 𝐶,
let𝑇 ⊆ 𝐶4 be a set of tiles, and let 𝑚 ≥ 2 be an integer. A tiling of 𝑆 ⊆ 𝑆𝑚 ≔ {1, . . . , 𝑚}×{1, . . . , 𝑚}
is a mapping 𝜏 : 𝑆 → 𝑇 . Such a tiling is said to be legal if the colours of adjacent tiles match, and
the colour on the sides of 𝑆𝑚 is always w:12

∀(𝑟, 𝑐) ∈ 𝑆 : (𝑟, 𝑐 + 1) ∈ 𝑆 =⇒ r(𝜏(𝑟, 𝑐)) = l(𝜏(𝑟, 𝑐 + 1));
∀(𝑟, 𝑐) ∈ 𝑆 : (𝑟 + 1, 𝑐) ∈ 𝑆 =⇒ t(𝜏(𝑟, 𝑐)) = b(𝜏(𝑟 + 1, 𝑐));

∀𝑟 ∈ {1, . . . , 𝑚} : (𝑟, 1) ∈ 𝑆 =⇒ l(𝜏(𝑟, 1)) = w ∧ (𝑟, 𝑚) ∈ 𝑆 =⇒ r(𝜏(𝑟, 𝑚)) = w;
∀𝑐 ∈ {1, . . . , 𝑚} : (1, 𝑐) ∈ 𝑆 =⇒ b(𝜏(1, 𝑐)) = w ∧ (𝑚, 𝑐) ∈ 𝑆 =⇒ t(𝜏(𝑚, 𝑐)) = w.

The decision problem Tiling consists in, given (𝐶,w, 𝑇, 1𝑚),13 deciding whether there is a
legal tiling of 𝑆𝑚. Tiling is known to be NP-complete (van Emde Boas, 1997). Variants of tiling
problems provide complete problems for many complexity classes (Schwarzentruber, 2019). For
example, the variant Finite Tiling Extension is ΣP

2 -complete (Schaefer & Umans, 2002):

Input: A finite set 𝐶 with a distinguished element w ∈ 𝐶, a set of tiles 𝑇 ⊆ 𝐶4, and a natural
number 𝑚 expressed in unary.

Output: Is there a non-extendable legal tiling of the first row of 𝑆𝑚, that is, a legal tiling of
𝑆1,𝑚 ≔ {1} × {1, . . . , 𝑚} that cannot be extended to a legal tiling of 𝑆𝑚?

Proof of Proposition 4.10. Given an instance (𝐶,w, 𝑇, 1𝑚) of Finite Tiling Extension, we build
a game in which MAX wins if they can choose a legal tiling of 𝑆1,𝑚 such that whatever tiling 𝜏 of
the whole board 𝑆𝑚 MIN chooses, either 𝜏 is not legal, or it does not extend MAX’s tiling.

Concretely, we build the following game.

• Players: Nature; MAX with perfect information; MIN with multi-agent perfect recall of 2
agents, labelled by 1 and 2.

• Game tree: The game begins with a chance node and proceeds as follows:

1. At the root, Nature chooses uniformly at random a column 𝑐 ∈ {1, . . . , 𝑚}, and only
shows it to MAX.

2. MAX chooses a tile 𝑡 ∈ 𝑇 .
3. Nature then chooses uniformly at random two positions (𝑟1, 𝑐1), (𝑟2, 𝑐2) ∈ 𝑆𝑚, then

concurrently and independently shows agent 𝑖 of MIN the position (𝑟𝑖 , 𝑐𝑖).
4. Without observing 𝑐 nor 𝑡, each agent of MIN concurrently and independently chooses

a tile (𝑡1, 𝑡2 ∈ 𝑇), and the game ends.

• Payoffs: The payoff for MAX at the leaf induced by 𝑐, 𝑡, 𝑟1, 𝑐1, 𝑡1, 𝑟2, 𝑐2, 𝑡2 is defined to be:

1. 2𝑚5, if (𝑟1, 𝑐1) = (𝑟2, 𝑐2) but 𝑡1 ≠ 𝑡2 (MAX wins if agent 1 and agent 2 of MIN are
inconsistent);

2. otherwise, 2𝑚4, if (𝑟1, 𝑐1) = (1, 𝑐) but 𝑡1 ≠ 𝑡 (MAX wins if MIN’s tiling does not extend
MAX’s);14

12. We number rows from bottom to top, and columns from left to right.
13. 1𝑚 is the unary expression of 𝑚.
14. Due to the first condition, the two agents of MIN must choose the same tile 𝑡′ for (1, 𝑐) in any of their optimal

strategies, hence this second condition checks whether 𝑡′ = 𝑡 by looking only at the action of MIN 1.

257



Li, Zanuttini & Ventos

3. otherwise, −𝑚4, if 𝑟1 = 𝑟2 = 1 and 𝑐2 = 𝑐1 + 1 but r(𝑡1) ≠ l(𝑡2) (MAX loses if their
tiling is illegal with respect to adjacency, which is verified with MIN’s choices);

4. otherwise, −𝑚, if 𝑐 = 1 and l(𝑡) ≠ w, or 𝑐 = 𝑚 and r(𝑡) ≠ w, or b(𝑡) ≠ w (MAX loses if
their tiling is illegal with respect to colour w);

5. otherwise, 1, if 𝑟1 = 𝑟2 ≠ 1 and 𝑐2 = 𝑐1 + 1 but r(𝑡1) ≠ l(𝑡2) (MAX wins if MIN’s tiling
is illegal with respect to horizontal adjacency on a row different from 1);

6. otherwise, 1, if 𝑐1 = 𝑐2 and 𝑟2 = 𝑟1 + 1 but t(𝑡1) ≠ b(𝑡2) (MAX wins if MIN’s tiling is
illegal with respect to vertical adjacency);

7. otherwise, 1, if 𝑟1 ≠ 1, 𝑐1 = 1 and l(𝑡1) ≠ w, or 𝑟1 ≠ 1, 𝑐1 = 𝑚 and r(𝑡1) ≠ w, or 𝑟1 = 𝑚

and t(𝑡1) ≠ w (MAX wins if MIN’s tiling is illegal on (𝑟1, 𝑐1) with respect to colour w,
on a row different from 1);

8. otherwise, 0.

• Threshold: The threshold of maxmin value is 1/𝑚4.

The construction is polynomial-time in the input (𝐶,w, 𝑇, 1𝑚). Indeed, the game tree is of size
O(𝑚5 |𝑇 |3), and the computation of the payoffs of the leaves is polynomial-time. In addition, the
construction yields a timeable EFG of chance in which MAX has perfect information and MIN has
multi-agent perfect recall of 2 agents.

We will show that the pure maxmin value of this game is at least 1/𝑚4 if there is a non-extendable
legal tiling of 𝑆1,𝑚 (and at most 0 otherwise). First, observe that the pure strategies of MAX are in
bijection with the tilings of 𝑆1,𝑚. Similarly, the pure strategies of each agent of MIN are in bijection
with the tilings of 𝑆𝑚.

=⇒ Suppose first that there is a non-extendable legal tiling 𝜏+ of 𝑆1,𝑚. Let (𝜏1, 𝜏2) denote an
arbitrary pure strategy of MIN, where 𝜏1 and 𝜏2 are tilings of 𝑆𝑚. We show in the following that 𝜏+
yields an expected payoff of at least 1/𝑚4 against (𝜏1, 𝜏2).

First observe that, since 𝜏+ is a legal tiling of 𝑆1,𝑚, MAX gets a strictly negative payoff only
under the 3rd condition in the definition of the payoff, which happens with probability at most
1/𝑚3. Hence, MAX cannot get an expected payoff smaller than (1/𝑚3) × (−𝑚4) = −𝑚 from the
corresponding leaves.

• If 𝜏1 ≠ 𝜏2 holds, then with probability at least (1/𝑚2)2 = 1/𝑚4, Nature chooses (𝑟1, 𝑐1) =
(𝑟2, 𝑐2) over which they differ, and MAX gets 2𝑚5 (the 1st condition of payoff). Since the
smallest expected payoff MAX can get from negative leaves is −𝑚, the expected payoff of
MAX against (𝜏1, 𝜏2) is at least 1/𝑚4 × 2𝑚5 − 𝑚 > 1/𝑚4.

• Now assume 𝜏1 = 𝜏2, but 𝜏1 is not an extension of 𝜏+. Then, with probability at least 1/𝑚3,
Nature chooses 𝑐, 𝑟1 = 1 and 𝑐1 = 𝑐 such that 𝜏1 differs from 𝜏+ on (1, 𝑐), and MAX wins 2𝑚4

(the 2nd condition of payoff). As above, it follows that the expected payoff of MAX against
(𝜏1, 𝜏2) is at least 1/𝑚3 × 2𝑚4 − 𝑚 > 1/𝑚4.

• Finally, assume that 𝜏1 = 𝜏2 holds and 𝜏1 is an extension of 𝜏+. Then 𝜏1 is illegal by definition
of 𝜏+. Since 𝜏1 extends 𝜏+, which is legal, the third condition of the payoff is never satisfied;
MAX cannot get a negative payoff at any leaf. If 𝜏1 is illegal with respect to adjacency, with
probability at least 1/𝑚4, Nature chooses (𝑟1, 𝑐1) and (𝑟2, 𝑐2) to witness the illegality, and
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MAX gets 1 (the 5th or 6th condition of payoff). It follows again that the expected payoff of
MAX against (𝜏1, 𝜏2) is at least 1/𝑚4. Otherwise, 𝜏1 is illegal with respect to colour w, which
is witnessed by Nature’s choice (𝑟1, 𝑐1) with probability at least 1/𝑚2 and MAX gets 1 (the
7th condition of payoff); so again MAX has expected payoff of at least 1/𝑚2 > 1/𝑚4.

Hence, playing 𝜏+ guarantees a payoff of at least 1/𝑚4 for MAX, which means the maxmin value
of the game is at least 1/𝑚4.

⇐= Conversely, suppose that the maxmin value of the game is at least 1/𝑚4, and let 𝜏+ be a pure
strategy of MAX achieving this value.

• We claim that 𝜏+ is legal. Indeed, otherwise MIN can play the strategy (𝜏, 𝜏), where 𝜏 : 𝑆𝑚 →
𝑇 is an arbitrary extension of 𝜏+. Under this profile, MAX cannot get a payoff of 2𝑚5 nor
2𝑚4, so they get at most 1 from every leave. Then if 𝜏+ is illegal with respect to adjacency,
with probability at least 1/𝑚4 Nature chooses 𝑟1 = 𝑟2 = 1 and 𝑐1, 𝑐2 = 𝑐1 + 1 witnessing the
illegality of 𝜏 on the first row, resulting in a negative payoff of−𝑚4 for MAX (the 3rd condition
of payoff). It follows that MAX’s expected payoff is at most 1/𝑚4×(−𝑚4)+(1−1/𝑚4)×1 ≤ 0,
contradicting the assumption. Now if 𝜏+ is illegal with respect to colour w, with probability
at least 1/𝑚 Nature chooses 𝑐 witnessing this, yielding −𝑚 to MAX (the 4th condition of
payoff), and again MAX’s expected payoff is at most 1/𝑚 × (−𝑚) + (1 − 1/𝑚) × 1 ≤ 0.

• We also claim that any extension 𝜏 : 𝑆𝑚 → 𝑇 of 𝜏+ is illegal. Indeed, otherwise MIN can play
the strategy (𝜏, 𝜏), where 𝜏 is a legal extension of 𝜏+, which yields a payoff of 0 to MAX at
all leaves, again contradicting the assumption.

Hence, 𝜏+ is a non-extendable legal tiling of the first row. In addition, by the argument above,
we see that if no such 𝜏+ exists, then MAX gets at most 0 against MIN’s best responses.

To show that this result still holds under the restriction to Boolean games, we can use the gadgets
in Lemma A.1 to compile all integers payoffs in the construction above into Boolean ones. □

We conclude this section by recalling the upper bound for the most general setting.

Proposition 4.12 (Koller & Megiddo, 1992, Prop. 2.10). Pure Maxmin is in ΣP
2 for EFGs of chance

in which MAX and MIN have MA-PR.

5. Complexity of Compactly Represented Games

In this section, we study the complexity of Pure Maxmin for EFGs represented in compact form.
As it turns out, the complexity of Pure Maxmin is very robust to the exact compact representation
chosen. Hence, we formulate hardness results for a very restricted class of representations, and
membership results for a very general one. We first introduce these representations and show that
they encompass natural representations, then we give the complexity results, which, as it happens,
parallel the results for non-compact EFGs.

5.1 Compact Representations of Games

For most tabletop and video games, the game tree is rarely defined explicitly, but rather implicitly
by the game rules; such rules allow computing the decision maker, the children, the payoffs, etc., at
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a given node of the tree, which can therefore be generated online. In other words, we may say that
the trees of these games are represented compactly by their game rules.

Typically, for such a compact representation of a game, the corresponding game tree is exponen-
tially larger, or more. In the following, we introduce two formalisms to capture the intuition of what
compactly represented games means.

5.1.1 Compact Boolean Games

We first introduce a minimal formalism for compactly represented games, which will be used to
prove all hardness results in this section. Our formalism is inspired by quantified Boolean formulae
(QBF). A QBF is a formula of the form Q1 𝑥1 Q2 𝑥2 · · ·Q𝑛 𝑥𝑛 𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑛), where for all 𝑖,
Q𝑖 ∈ {∀, ∃} and 𝑥𝑖 is a Boolean variable (with values in B = {0, 1}), and 𝜑 is a plain (unquantified)
Boolean formula. A QBF can be regarded as a game of no chance with perfect information in which
MAX and MIN take turns to pick a value for each variable: MAX is responsible for variables with
the existential quantifier ∃ and MIN for the universal quantifier ∀, and MAX’s goal is to render the
formula 𝜑 true.

Peterson et al. (2001) propose a generalisation of QBF called dependency quantified Boolean
formula (DQBF), which allows dependencies for existential variables. For example, in the DQBF
∀𝑥1∀𝑥2∃𝑦1(𝑥1)∃𝑦2(𝑥2) 𝜑(𝑥1, 𝑦1, 𝑥2, 𝑦2), the value of 𝑦1 can only depend on the value of 𝑥1, and the
value of 𝑦2 only on 𝑥2. In general, a DQBF represents a game of no chance in which MIN has perfect
information but MAX only has multi-agent perfect recall. In the example above, 𝑦1 and 𝑦2 can be
regarded as being controlled by two agents of MAX. Notice that DQBF is indeed a generalisation
of QBF, in the sense that every QBF of size 𝑛 can be transformed into an equivalent DQBF of size
O(𝑛2) by allowing each existential variable to depend on all previous variables.

As we intend to model games of chance with multi-agent perfect recall for both MAX and MIN,
we introduce a generalisation of DQBF that we call compact Boolean game (CBG), which can be
written into the following form to mimic DQBF:

P1 𝑥1(𝐷1) P2 𝑥2(𝐷2) · · · P𝑛 𝑥𝑛 (𝐷𝑛) 𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛),

where P 𝑗 is the owner of 𝑥 𝑗 , 𝐷 𝑗 is the set of variables on which 𝑥 𝑗 depends, and 𝜑+ is an unquantified
Boolean circuit. More formally:

Definition 5.1 (Compact Boolean Game). A compact Boolean game (CBG) is a tuple of the form
𝛾 = ⟨𝑋, P,D, 𝜑+⟩, with 𝑋 an ordered list of variables, P: 𝑋 → {0,+,−} an owner function,
D: 𝑋 → P(𝑋) a dependency function such that for all 𝑥 ∈ 𝑋 , D(𝑥) only contains variables that
precede 𝑥 in the ordering and D(𝑥) = ∅ if P(𝑥) = 0, and 𝜑+ a Boolean circuit with inputs in 𝑋

and one Boolean output.15 A CBG is said to be of no chance, if it does not have chance variables:
∀𝑥 ∈ 𝑋, P(𝑥) ≠ 0.

Intuitively, a CBG represents a game in which for each 𝑥 𝑗 in turn, player P(𝑥 𝑗) chooses a Boolean
value after observing only the values chosen for the variables in D(𝑥 𝑗) (and Nature chooses uniformly
at random). After all variables have been played, MAX receives the payoff given by the Boolean
output of the circuit 𝜑+(𝑥1, 𝑥2, . . . , 𝑥𝑛) (and MIN receives the opposite).

Therefore, every CBG induces a Boolean EFG of chance. It is straightforward to define the EFG
of chance induced by a CBG, with each node in the game tree given by a variable index 𝑗 and an

15. P(𝑋) is the powerset of 𝑋 , i.e. the set of all subsets of 𝑋 .
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assignment to 𝑥1, . . . , 𝑥 𝑗−1, and with two nodes in the same information set if and only if they have
the same index 𝑗 and the same value for all variables in D(𝑥 𝑗). Moreover, the EFG thus defined is
timeable: only nodes at the same depth can be in the same information set. In particular, it implies
that not all two-player EFGs (even those without absent-mindedness) can be represented by CBGs.16

It is clear that the players in the EFG defined by a CBG have multi-agent perfect recall and:

• a player 𝑖 ∈ {+,−} has perfect information if and only if D(𝑥 𝑗) = {𝑥1, . . . , 𝑥 𝑗−1} for all 𝑥 𝑗 ∈ 𝑋

such that P(𝑥 𝑗) = 𝑖 (which intuitively means player 𝑖 observes all values chosen in the past);

• a player 𝑖 ∈ {+,−} has perfect recall if and only if for all 𝑥 𝑗 , 𝑥 𝑗′ ∈ 𝑋 , 𝑗 < 𝑗 ′ and P(𝑥 𝑗) =
P(𝑥 𝑗′) = 𝑖 implies D(𝑥 𝑗) ⊆ D(𝑥 𝑗′) (i.e. player 𝑖 never forgets any value they have observed
before) and 𝑥 𝑗 ∈ D(𝑥′

𝑗
) (i.e. player 𝑖 never forgets any value they have chosen before).

We will prove hardness results for CBGs with an arbitrary circuit 𝜑+. However, these hardness
results even hold for CBGs the circuit 𝜑+ of which is restricted to certain languages (CNF, DNF,
ROBDD),17 since we can compile 𝜑+ into these languages in polynomial time using the Tseitin
transformation (Tseitin, 1983) without changing the characteristics of the game; see Lemma A.2 for
the details.

Note that the restriction to these languages is in some sense minimal: it is indeed easy to show
that the computation of the maxmin value for a CBG is essentially trivial if the circuit 𝜑+ is restricted
to be a single term (conjunction of literals) or a single clause (disjunction of literals).

5.1.2 Oracle Games

CBGs are intended to be a very constrained representation of games. At the other extreme, we now
define oracle games, a minimally constrained representation for which we will show membership
complexity results. Intuitively, an oracle game (respectively a valid oracle game) is a game with
an exponential number of vertices 0, 1, . . . , 2𝑛 − 1, represented in binary over 𝑛 digits, for which
all components are given by oracles (respectively by polynomial-space oracles with a polynomial
horizon).

Definition 5.2 (Oracle Game). A two-player oracle game (OG) is a tuple of the form G ≔

⟨𝑛, C, P, p, u, IS⟩, where 𝑛 is a positive integer, and C, P, p, u, IS are algorithms such that for all
𝑣, 𝑣′ ∈ 𝑉 (G) ≔ {0, 1, . . . , 2𝑛 − 1}:18

• on input 𝑣, C returns an ordered list of elements of 𝑉 (G) (children of 𝑣);

• on input 𝑣, P returns one of 0,+,− (decision-maker at 𝑣);

• on inputs 𝑣, 𝑣′ with P(𝑣) = 0 and 𝑣′ ∈ C(𝑣), p returns a rational number in [0, 1] (probability
of 𝑣′ being the child of 𝑣 drawn by Nature);

• on input 𝑣 with C(𝑣) = ∅, u returns a rational number (utility of leaf 𝑣 for MAX);

• on inputs 𝑣, 𝑣′ and 𝑖 ∈ {+,−}, IS returns a Boolean value (whether 𝑣, 𝑣′ are in the same
information set of 𝑖).

16. This fact actually strengthens our hardness results, which will all be proven using the restrictive formalism of CBG.
17. ROBDD stands for “reduced ordered binary decision diagram”; see the work by Darwiche and Marquis (2002).
18. If the number of nodes of a game is not a power of 2, extra nodes are simply disconnected from the root 0.
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Definition 5.3 (Valid OG). An OG G ≔ ⟨𝑛, C, P, p, u, IS⟩ is said to be valid if the following conditions
hold:

1. algorithms C, P, p, u, IS are all deterministic algorithms that run in space at most 𝑛 and
terminate in time at most 2𝑛;

2. the output of algorithms p and u is of size at most 𝑛 (probabilities and utilities have a
representation of linear size);

3. the binary relation {(𝑣, 𝑣′) ∈ 𝑉 (G)2 | 𝑣′ ∈ C(𝑣)} is a tree with node 0 as the root;

4. for all sequences 𝑣1 ∈ 𝑉 (G), 𝑣2 ∈ C(𝑣1), . . . , 𝑣𝑘 ∈ C(𝑣𝑘−1), 𝑘 is at most 𝑛 (that is, the game
horizon is linear);

5. for all 𝑣 ∈ 𝑉 (G) with P(𝑣) = 0,
∑

𝑣′∈C(𝑣) p(𝑣, 𝑣′) = 1 holds (p returns a probability distribution
at chance nodes);

6. for 𝑖 ∈ {+,−}, IS(𝑣, 𝑣′, 𝑖) = 1 only if P(𝑣) = P(𝑣′) = 𝑖;

7. for 𝑖 ∈ {+,−}, the binary relation {(𝑣, 𝑣′) ∈ 𝑉 (G)2 | IS(𝑣, 𝑣′, 𝑖) = 1} is an equivalence
relation such that for every (𝑣, 𝑣′) in this relation, |C(𝑣) | = |C(𝑣′) | holds (vertices in the same
information set have the same number of children).

Observe that we require the oracles to run in linear rather than polynomial space, and similarly
we require a linear horizon. However, this assumption is without loss of generality up to polynomial-
time reductions. Indeed, if an oracle runs in space 𝑛𝑐 rather than 𝑛 for some constant 𝑐, then one
can define the OG game with 𝑛𝑐 instead of 𝑛 as its first component (akin to the idea of padding
used in complexity theory). Similarly, up to a replacement of 𝑛 by 𝑑𝑛 for some constant 𝑑, this
definition is independent of the computational model on which the oracles are supposed to run. For
complexity analyses, we define the size of a valid oracle game to be 𝑛; in particular, we do not count
the representations of the oracles, for which we make no specific assumption.19

The definition allows one to naturally capture families of games defined by the same rules
(oracles) but different sizes (𝑛), e.g. the family of Checkers games played on an 𝑛 × 𝑛 board. If such
a family of OGs is valid, this means that it has “reasonable” game rules (essentially, computable in
polynomial space). Observe that “more reasonable” game rules, e.g. computable in polynomial time,
are also encompassed; hence the membership results given in this section also apply to such games;
our definition of OG games with linear space and exponential time makes them more general.

Let us elaborate on the last point. Let OG be the class of all valid OGs, and OGpoly be the class
of all valid OGs with a polynomial time bound on the oracles (instead of a polynomial space bound).
Then by definition, OGpoly ⊆ OG, which means for all decision problems that take a valid OG as
input, the complexity of such problems for OG is an upper bound on their complexity for OGpoly.
Contrastingly, lower complexity bounds may fail to go from OG over to OGpoly: some problem may
be, say, NP-complete for OG but polynomial for OGpoly. However, as we will show in the following,
the complexity of all decision problems we consider is the same for OG as for the class of all CBGs,
which is a subclass of OGpoly (up to a polynomial-time translation, see Subsubsection 5.1.3). Hence,
as it turns out, all our complexity results (membership and hardness) about OG also apply to OGpoly.

19. A reasonable encoding would be given by the input to a fixed Universal Turing Machine.

262



The Complexity of Pure Maxmin in Extensive-Form Games

In particular, our results imply that allowing game rules to be implementable in exponential time
(but still in polynomial space) instead of polynomial time does not strictly increase the worst-case
complexity of solving them. However, it may be interesting for further work on compact games to
consider a definition of a valid OG parameterized by a complexity class for the oracles.

The interpretation of a valid OG as an EFG is straightforward. The actions at an information set
can be denoted by integers in such a way that the 𝑘-th action maps every vertex 𝑣 in the information
set to the 𝑘-th child of 𝑣 (which is well-defined due to Items 6 and 7 of Definition 5.3). Moreover,
given the requirements on the oracles, the following result is straightforward.

Lemma 5.4. The EFG of chance defined by a given valid OG G can be computed in deterministic
exponential time. In particular, this EFG has at most exponential size in the size 𝑛 of G.

Let us emphasise that it can be decided in polynomial space whether a given OG is valid, by
verifying that no property is violated; for instance, it can be checked that p runs in space at most 𝑛
by enumerating all pairs of vertices and for each one, running the algorithm until more than 𝑛 space,
or more than 2𝑛 time, is used (if ever); all of this can be done in polynomial space.

Similarly, it can also be decided in polynomial space whether a player in a given OG has perfect
information, perfect recall, or multi-agent perfect recall, by verifying that there is no counterexample:
for PI, two different nodes in the same information set; for PR, an invalid pair of paths to the same
information set; for MA-PR, a path intersecting the same information set twice.

5.1.3 Relationships between Compact Representations

It is easy to see that given a CBG 𝛾 ≔ ⟨𝑋, P,D, 𝜑+⟩ with 𝑛𝛾 variables, an OG G ≔ ⟨𝑛G, C, P, p, u, IS⟩
that defines the same EFG as 𝛾 can be computed efficiently.

Indeed, the vertices in the EFG can be encoded efficiently over 𝑛𝛾 + log 𝑛𝛾 bits, by encoding the
level of a vertex over log 𝑛𝛾 bits, and the assignment of the previous variables over 𝑛𝛾 bits. Given this
propositional representation, the oracles in G can be defined to be the straightforward polynomial-
space algorithms that, given input in this representation, retrieve the corresponding information from
𝛾; for instance, u can be implemented by evaluating 𝜑+ on the values of all variables stored in the
representation of the node. Taking 𝑐𝑛𝑐

′
𝛾 to be the maximum space used by these algorithms on the

computational model at hand and defining 𝑛G ≔ max(𝑛𝛾 + log 𝑛𝛾 , 𝑐𝑛𝑐
′

𝛾 ) indeed yields a valid OG
(observe that the horizon of the underlying EFG is 𝑛𝛾).

To summarise, a family of CBGs can be transformed in polynomial time into a family of valid
OGs that define the same family of EFGs. We will in particular use this result to derive that if
computing maxmin is hard for CBGs of some type, then it is hard as well for valid OGs of this type.

In addition, since CBG is a relatively minimal formalism to represent compact games, while OG
is a relatively powerful one, if we prove that computing the maxmin value for CBGs is as hard as
for OGs, then this implies that for any other conceivable intermediate formalism, the complexity of
computing the maxmin value is as hard as for both CBG and OG. More concretely, in the following,
we prove membership results for OG and hardness results for CBG.

We leave as future work to clarify the precise relationship between oracle games (as we define
them) and standard compact languages for defining games, such as the Game Description Language
GDL (Genesereth & Thielscher, 2014), the language of Toss (Kaiser & Stafiniak, 2011), POGDDL
(Richards & Amir, 2012), or MA-PDDL (Kovacs, 2012). In particular, we conjecture that proposi-
tional GDL (restricted to games with a polynomial horizon) can be reduced to OG, while full GDL
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cannot (even with the restriction to a polynomial horizon) due to the computational complexity of
generating states (nodes in the tree) using logic programming. However, the precise connection
remains open; a good starting point may be the complexity results by Bonnet and Saffidine (2014).

5.2 Summary of Results

In the remainder of this section, we consider the following variant of Pure Maxmin called Pure
C-Maxmin, where “C” stands for “compact”.

Definition 5.5 (Pure C-Maxmin). Let G be a class of zero-sum EFGs. Then Pure C-Maxmin(G)
is the following decision problem.

Input: A valid oracle game G that defines an EFG 𝐺 ∈ G, and a rational number 𝑚.
Output: Does 𝑣+ ≔ max𝑠+∈SP

+
min𝑠−∈SP−

U+(𝑠+, 𝑠−) ≥ 𝑚 hold in 𝐺?

Recall that the size of a valid OG G ≔ ⟨𝑛, C, P, p, u, IS⟩ is defined to be 𝑛.
The complexity class NEXP contains all languages that can be decided in nondeterministic

exponential-time. The class NEXPNP (Hemachandra, 1989) contains all languages that can be
decided by an exponential-time nondeterministic Turing machine with the help of an NP oracle,
which decides the membership of a language in NP in one step.20 Equivalently, NEXPNP contains
all languages 𝐿 such that

𝑥 ∈ 𝐿 ⇐⇒ ∃𝑦1 ∈ {0, 1}2
𝑝 ( |𝑥 |)

,∀𝑦2 ∈ {0, 1}2
𝑝 ( |𝑥 |)

, (𝑥, 𝑦1, 𝑦2) ∈ 𝐿′,

where 𝑝 is a polynomial and 𝐿′ is a language in P. This class is likely to be different from NEXP
(Hemachandra, 1989, Note 3, page 312).

The complexity of Pure C-Maxmin(G) is summarised in Table 2; see Subsection 4.2 for
hints about how to read it. Observe that this table is parallel to Table 1, in the sense that all
polynomial-time (respectively NP-complete, ΣP

2 -complete) problems become PSPACE-complete
(respectively NEXP-complete, NEXPNP-complete) under compact representations. However, except
for membership results, this is not per definition of succinct representations, and we indeed have to
prove all hardness results (even if the proofs are simple).

5.3 Membership Results

Proposition 5.6. Pure C-Maxmin is in PSPACE for valid OGs of chance in which both MAX and
MIN have PI.

Proof. In this case, we can use backward induction to compute the maxmin value (Proposition 4.7).
Since the game has a polynomial horizon by assumption, and the children of a node can be iterated
over in PSPACE, this can indeed be done in PSPACE. □

Proposition 5.7. Pure C-Maxmin is in PSPACE for valid OGs of no chance in which MAX has PR
and MIN has MA-PR.

20. However, the Turing machine making use of such an oracle still needs time to write down the queries to the oracle,
which, in this case, takes exponential time (Arora & Barak, 2009, Chapter 3).
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No chance Chance

MAX
MIN PI/PR/MA-PR PI PR MA-PR

PI PSPACE-c [h: 5.10] PSPACE-c [m: 5.6] NEXP-c [h: 5.12] NEXPNP-c [h: 5.14]
PR PSPACE-c [m: 5.7] NEXP-c [h: 5.13] NEXP-c NEXPNP-c

MA-PR NEXP-c [h: 5.11] NEXP-c NEXP-c [m: 5.8] NEXPNP-c [m: 5.9]

Table 2: Complexity of Pure C-Maxmin. All hardness results hold even under the restriction to
CBGs with CNF (respectively DNF, ROBDD) circuits. PI, PR, MA-PR stand for perfect
information, perfect recall, multi-agent perfect recall, respectively. Only key membership
(“m”) and hardness (“h”) results are referred to; the others can be deduced by monotonicity.
Results in bold are new from this paper; other results are direct consequences of known
results (see the citations in the referred statements).

Proof. We consider the algorithm of Proposition 4.5, which computes the maxmin value by a
bottom-up induction on the game tree. Since the game tree of an oracle game has polynomial depth
and the children of each information set can be iterated over in PSPACE, this computation can be
done in PSPACE from the oracle representation. □

The following two results are obtained directly by using Lemma 5.4 to first compute, in deter-
ministic exponential time, the EFG defined by the given valid OG, then running a nondeterministic
polynomial-time algorithm (Proposition 4.4), respectively a nondeterministic polynomial-time al-
gorithm with an NP-oracle (Proposition 4.12) on this EFG of exponential size.

Proposition 5.8. Pure C-Maxmin is in NEXP for valid OGs of chance in which MAX has MA-PR
and MIN has PR.

Proposition 5.9. Pure C-Maxmin is in NEXPNP for valid OGs of chance in which both MAX and
MIN have MA-PR.

5.4 Hardness Results

As discussed above, we give all hardness results for compact Boolean games. Since all proofs use
a polynomial-time reduction from a decision problem to Pure C-Maxmin for a family of CBGs, all
these results also imply that Pure C-Maxmin is at least as hard for the corresponding family of valid
OGs, as discussed in Subsubsection 5.1.3.

The two first hardness results are essentially given by the hardness of QBF and DQBF for
PSPACE and NEXP, respectively.

Proposition 5.10 (Stockmeyer & Meyer, 1973). Pure C-Maxmin is PSPACE-hard for CBGs of no
chance in which both MAX and MIN have PI.

Proof. It is easy to see that for a given QBF Q1 𝑥1 Q2 𝑥2 · · ·Q𝑛 𝑥𝑛 𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑛), the CBG
⟨𝑋, P,D, 𝜑⟩, with 𝑋 = (𝑥1, . . . , 𝑥𝑛), P(𝑖) = + for Q𝑖 = ∃ and P𝑖 = − for Q𝑖 = ∀, and
D(𝑥𝑖) = {𝑥1, . . . , 𝑥𝑖−1} for all 𝑖, is a game of no chance and with perfect information. Moreover, it
has a maxmin value of 1 if and only if the QBF is valid. We conclude using the PSPACE-hardness
of deciding the validity of a QBF (Stockmeyer & Meyer, 1973). □
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Proposition 5.11 (Peterson et al., 2001, Thm. 5.2.1). Pure C-Maxmin is NEXP-hard for CBGs of
no chance in which MAX has MA-PR and MIN has PR.

Proof. Peterson et al. (2001, Theorem 5.2.1) show that deciding the validity of a DQBF of the form

∀𝑥1
1 · · · ∀𝑥
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1 ∀𝑥1

2 · · · ∀𝑥
𝑘2
2
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1
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1 (𝑥
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1
2(𝑥

1
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is already NEXP-hard. We define the CBG of no chance ⟨𝑋, P,D, 𝜑⟩, where

𝑋 ≔ (𝑥1
1, . . . , 𝑥

𝑘1
1 , 𝑥1
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𝑘2
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It is easy to see that MAX has MA-PR and MIN has PI in this CBG. In addition, its pure maxmin
value is 1 if and only if the DQBF is valid, which concludes. □

Proposition 5.12. Pure C-Maxmin is NEXP-hard for CBGs of chance in which MAX has PI and
MIN has PR.

Proof. We give a reduction from Tiling(2𝑛, 2𝑛), which is NEXP-complete (Schwarzentruber, 2019,
Theorem 3) and is defined as follows:

Input: A finite set𝐶 with a distinguished element w ∈ 𝐶, a set of tiles𝑇 ⊆ 𝐶4, a tile 𝑡1,1 ∈ 𝑇 ,
and a natural number 𝑛 expressed in unary.

Output: Is there a legal tiling 𝜏 of 𝑆2𝑛 = {1, . . . , 2𝑛} × {1, . . . , 2𝑛} with 𝜏(1, 1) = 𝑡1,1?

Given an instance (𝐶,w, 𝑇, 𝑡1,1, 𝑛), we build a game as follows (the encoding as a CBG is given
afterwards):

• Players: Nature, MAX with perfect information, MIN with perfect recall.

• Game tree: At the root, Nature picks a cell (𝑟, 𝑐) ∈ 𝑆2𝑛 , uniformly at random. Then MAX
observes (𝑟, 𝑐) and chooses 𝑡 ∈ 𝑇 . Finally, MIN observes neither (𝑟, 𝑐) nor 𝑡, and chooses
(𝑟1, 𝑐1), (𝑟2, 𝑐2) ∈ 𝑆2𝑛 and 𝑡1, 𝑡2 ∈ 𝑇 .

• Payoffs: MAX’s payoff is:

1. 0, if 𝑡 is not legal at (𝑟, 𝑐) with respect to colour w (for instance, 𝑐 = 1 and l(𝑡) ≠ w);
2. otherwise, 0, if (𝑟, 𝑐) = (1, 1) and 𝑡 ≠ 𝑡1,1;
3. otherwise, 1/2, if (i) (𝑟1, 𝑐1) and (𝑟2, 𝑐2) are adjacent cells, (ii) 𝑡1, 𝑡2 have different

colours on their common side (for instance, (𝑟1, 𝑐1 + 1) = (𝑟2, 𝑐2) and r(𝑡1) ≠ l(𝑡2)), and
(iii) (𝑟, 𝑐, 𝑡) = (𝑟1, 𝑐1, 𝑡1) or (𝑟, 𝑐, 𝑡) = (𝑟2, 𝑐2, 𝑡2);
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4. otherwise, 1.

• Threshold: The threshold of maxmin value is 1 − 1/22𝑛+1.

We now show that if (𝐶,w, 𝑇, 𝑡1,1, 𝑛) is a positive instance of Tiling(2𝑛, 2𝑛), then the game has
a maxmin value of at least 1 − 1/22𝑛+1, and otherwise of at most 1 − 1/22𝑛.

Assume first that there is a legal tiling 𝜏 consistent with 𝑡1,1, and MAX plays according to it (that
is, always chooses 𝑡 to be 𝜏(𝑟, 𝑐)). Since MIN observes nothing, their strategy is to always choose
the same 𝑟1, 𝑐1, 𝑟2, 𝑐2, 𝑡1, 𝑡2. Since 𝜏 is legal and consistent with 𝑡1,1, MAX never receives a payoff
of 0, and receives 1/2 only if the third condition of the payoff function is satisfied. If (𝑟1, 𝑐1) and
(𝑟2, 𝑐2) are adjacent, since 𝜏 is legal and 𝑡1, 𝑡2 have different colours on the common side, it cannot
be the case that both 𝑡1 = 𝜏(𝑟1, 𝑐1) and 𝑡2 = 𝜏(𝑟2, 𝑐2) hold. Assume by symmetry 𝑡2 ≠ 𝜏(𝑟2, 𝑐2).
Then MAX receives 1 in all cases, except possibly when Nature chooses (𝑟, 𝑐) to be (𝑟1, 𝑐1) (and
𝑡1 = 𝜏(𝑟1, 𝑐1) holds). The latter happens with probability 1/(2𝑛)2 = 1/22𝑛, so that MAX has an
expected payoff of at least 1/2 × 1/22𝑛 + 1 × (1 − 1/22𝑛) = 1 − 1/22𝑛+1.

Conversely, assume that there is no legal tiling consistent with 𝑡1,1, and let 𝜏 be the tiling defined
by MAX’s strategy. Then if 𝜏 is not legal with respect to colour w, let (𝑟0, 𝑐0) be a cell witnessing
this; MAX receives 0 when Nature chooses (𝑟, 𝑐) to be (𝑟0, 𝑐0), which happens with probability
1/22𝑛. Similarly, if 𝜏 is not consistent with 𝜏1,1, then MAX receives 0 with probability 1/22𝑛.
Since at all other leaves MAX can receive at most 1, this means MAX’s expected payoff is at most
1 − 1/22𝑛. Otherwise, 𝜏 is not legal with respect to adjacency; let (𝑟1, 𝑐1), (𝑟2, 𝑐2) be two cells
witnessing this, and consider MIN’s strategy to play 𝑟1, 𝑐1, 𝜏(𝑟1, 𝑐1), 𝑟2, 𝑐2, 𝜏(𝑟2, 𝑐2). Then MAX
receives 1/2 whenever Nature picks (𝑟, 𝑐) to be either (𝑟1, 𝑐1) or (𝑟2, 𝑐2), which happens with
probability 2/22𝑛. Since at all other leaves MAX can receive at most 1, this yields an expected
payoff of at most 1/2 × 2/22𝑛 + 1 × (1 − 2/22𝑛) = 1 − 1/22𝑛.

We now show that a CBG equivalent to this game can be computed in polynomial time from the
instance of Tiling(2𝑛, 2𝑛).

First, observe that we can assume the number |𝑇 | of tiles to be a power of 2, since adding
dummy colours and the corresponding monochromatic tiles does not change the existence of a legal
tiling (these could not be part of one). Hence, the choice of each of 𝑟, 𝑐, 𝑡, 𝑟1, 𝑐1, 𝑡1, 𝑟2, 𝑐2, 𝑡2 can be
replaced by the choice of 𝑛 or log|𝑇 | bits, encoding the corresponding number; since 𝑛 is encoded
in unary and 𝑇 is given explicitly in the input, this only requires a polynomial number of Boolean
variables. The owner and dependency functions for a bit are defined as for the corresponding index
or tile in the game above. So there remains to define the Boolean circuit for the CBG.

As a first step, we define a Boolean circuit for each condition in the definition of MAX’s payoff,
in terms of the Boolean variables introduced above. This yields four circuits: 𝜑1

+ outputs 1 if the
input Boolean variables are such that 𝑟, 𝑐, 𝑡, as encoded by these variables, satisfy that 𝑡 is not legal
at (𝑟, 𝑐) with respect to colour w, and similarly for 𝜑2

+, 𝜑
3
+, 𝜑

4
+; details are left to the reader, but

clearly, such circuits can be constructed in polynomial time given that 𝑛 is encoded in unary and
𝑇 is given explicitly in the input. To cope with the payoff 1/2 in the third condition of the payoff
function, we introduce an extra variable 𝑦 owned by Nature and ordered last, and finally define 𝜑+
to be ¬𝜑1

+ ∧ ¬𝜑2
+ ∧

(
(𝑦 ∧ 𝜑3

+) ∨ (¬𝜑3
+ ∧ 𝜑4

+)
)
.21 Then it is easy to verify that the expected utility of

any pair of strategies as induced by 𝜑+ is exactly the same as in the game above. □

21. The idea of using a chance variable to model the payoff 1/2 is similar in spirit to the one in Lemma A.1.
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By using the same proof as for Proposition 5.12, but having MIN’s variables ordered first and
letting MAX observe only Nature’s choice of (𝑟, 𝑐), we obtain the same result for the dual setting.

Proposition 5.13. Pure C-Maxmin is NEXP-hard for CBGs of chance in which MAX has PR and
MIN has PI.

Finally, we turn to the case in which MIN only has multi-agent perfect recall.

Proposition 5.14. Pure C-Maxmin is NEXPNP-hard for CBGs of chance in which MAX has PI and
MIN has MA-PR.

Proof. This can be shown by a polynomial-time reduction from the exponential version of Finite
Tiling Extension introduced in Subsection 4.4; this exponential version is defined as follows:

Input: A finite set 𝐶 with a distinguished element w ∈ 𝐶, a set of tiles 𝑇 ⊆ 𝐶4, and a natural
number 𝑛 expressed in unary.

Output: Is there a non-extendable legal tiling of the first row of 𝑆2𝑛 , that is, a legal tiling of
𝑆1,2𝑛 ≔ {1} × {1, . . . , 2𝑛} that cannot be extended to a legal tiling of 𝑆2𝑛?

This problem is NEXPNP-hard: indeed, as observed by Goldsmith and Mundhenk (2007, Sec-
tion 2.3), the “master reduction” from computations of Turing machines to tilings (van Emde Boas,
1997) can be used to lift the proof of ΣP

2 -hardness to the exponential case.
With this in hand, we build exactly the same game as we did for the non-compact case in the

proof of Proposition 4.10, and the proof that an equivalent CBG can be computed in polynomial
time goes exactly as in the proof of Proposition 5.12. □

6. Complexity against Opponent Models

We now consider the situation in which MIN is only allowed to choose from a finite set of behaviour
strategies. This setting corresponds to playing a game against an opponent whose behaviour or
reasoning is captured by a model we know. Such a model is called an opponent model (cf. Section 2).
The same setting also captures the problem of planning in uncertain environments or with adversarial
cost functions (McMahan et al., 2003). Concretely, we study the following problem.

Definition 6.1 (Pure OM-Maxmin). Let G be a class of zero-sum EFGs. Then Pure OM-
Maxmin(G) is the following decision problem.

Input: An EFG 𝐺 ∈ G, a rational number 𝑚, and a finite set SO
− ⊆ SB

− of MIN’s behaviour
strategies in 𝐺.

Output: Does 𝑣+ ≔ max𝑠+∈SP
+

min𝜋−∈SO−
U+(𝑠+, 𝜋−) ≥ 𝑚 hold in 𝐺?

As in Section 4, we consider the complexity for EFGs; we define the size of the input of this
problem to be the sum of ∥𝐺∥, ∥𝑚∥, and the sizes of the strategies in SO

− ; the size of a behaviour
strategy 𝜋− ∈ SO

− is defined to be the sum of the sizes of the rational numbers (probabilities) that
define 𝜋−, over all MIN’s nodes in the game tree.22

In the following, strategies in SO
− ⊆ SB

− will be referred to as opponent models (shortened as
OMs). A game with OMs is said to be of no chance, if the original game is of no chance, and all OM

22. We do not consider the complexity for compactly represented games, since this would require defining compact
representations of opponent models, which is out of the scope of this paper.
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MAX
|SO
− | 1 constant (≥ 2) unbounded

No chance
PI P P P

PR P P P [m: 6.5]
MA-PR P [m: 6.3] P [m: 6.6] NP-c [m: 6.2, h: 6.7]

Chance
PI P NP-c [h: 6.8] NP-c

PR P [m: 6.3] NP-c NP-c
MA-PR NP-c [h: 6.4] NP-c NP-c [m: 6.2]

Table 3: Complexity of Pure OM-Maxmin. All hardness results hold even under the restriction to
Boolean timeable games with at most 2 agents for MAX. PI, PR, MA-PR stand for perfect
information, perfect recall, multi-agent perfect recall, respectively. Only key membership
(“m”) and hardness (“h”) results are referred to; the others can be deduced by monotonicity.
Results in bold are new from this paper; other results are direct consequences of known
results (see the citations in the referred statements).

strategies in SO
− are pure strategies. This terminology is consistent, since a player with a non-pure

OM strategy is indistinguishable from Nature, a player whose behaviour strategy is known.
Observe that an instance of Pure Maxmin can be considered as an instance of Pure OM-

Maxmin, by defining the set of opponent models to be the set of all MIN’s pure strategies. However,
this set is, in general, exponential in the size of the game tree. As a consequence, this does not give
a polynomial-time reduction from the former to the latter problem.

6.1 Summary of Results

The complexity of Pure OM-Maxmin(G) is summarised in Table 3; see Subsection 4.2 for hints
about how to read it. Note that it does not make sense to distinguish between different degrees of
imperfect information of MIN, but it makes sense to study the complexity with respect to the number
of OMs (1, a constant but at least 2, or unbounded).

Since we only consider pure strategies for MAX, this problem is trivially in NP, which provides
an upper bound for all cases in Table 3.

Proposition 6.2. Pure OM-Maxmin is in NP.

Proof. One can guess a pure strategy of MAX, then verify that it yields an expected payoff no less
than the threshold against all the OMs given in the input, all in time linear in the size of the input. □

6.2 Complexity of Best Responses in EFGs

We begin by considering the case |SO
− | = 1, i.e. MIN’s behaviour strategy is fixed. Under this

circumstance, a two-player game is transformed into a one-player game, which has no chance if the
original game has no chance and MIN’s known strategy is a pure strategy.
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Let us write 𝜋− for the only strategy inSO
− . The maxmin value reads 𝑣+ = max𝑠+∈SP

+
U+(𝑠+, 𝜋−),

which is the value of MAX’s pure best responses to 𝜋−. Hence, studying the complexity of the case
|SO
− | = 1 is equivalent to studying the complexity of finding the best responses of a player.

Proposition 6.3 (Koller & Megiddo, 1992, Sec. 3.3). Pure OM-Maxmin with only one OM is
decidable in linear time, and is a fortiori in P, for EFGs of no chance in which MAX has MA-PR,
and for EFGs of chance in which MAX has PR.

However, if MAX only has MA-PR and there is chance (due to chance nodes and/or due to
MIN’s behaviour strategy 𝜋−), then the problem becomes intractable. The following is essentially
the result by von Stengel and Forges (2008, Theorem 1.3), but viewing Nature as a MIN player with
a single OM corresponding to the uniformly random behaviour strategy.

Proposition 6.4 (von Stengel & Forges, 2008, Thm. 1.3). Pure OM-Maxmin with only one OM is
NP-hard for EFGs of chance in which MAX has MA-PR. The result holds even under the restriction
to 2 agents for MAX and to Boolean timeable games.

6.3 Complexity of EFGs with Multiple OMs

We now consider the case |SO
− | ≥ 2, starting with games of no chance. In this problem setting, the

OMs are pure strategies of MIN. Hence, we can write SO
− = {𝑠−,1, . . . , 𝑠−, |SO− |}, where 𝑠−,𝑖 ∈ SP

−
for 1 ≤ 𝑖 ≤ |SO

− |.
Proposition 6.5. Pure OM-Maxmin with multiple OMs is in P for EFGs of no chance in which
MAX has PR.

Proof. We reduce this problem to the equivalent one without OM.23

Let (𝐺, 𝑚,SO
− ) be an instance, and write 𝑇 for its game tree. For each OM 𝑠−,𝑖 ∈ SO

− , write
𝑇𝑖 for the tree obtained from 𝑇 by removing all edges which do not correspond to the move by 𝑠−,𝑖
at MIN’s nodes (thereby also removing the subtrees reached by such edges). Moreover, for each
information set IS 𝑗

+ of MAX in 𝐺, write IS 𝑗

+,𝑖 for the corresponding information set in 𝑇𝑖 (restricted
to the nodes in 𝑇𝑖).

Now define the game 𝐺′ (without OM) as follows:

• the tree of 𝐺′ has a root for player MIN, with one child per OM 𝑠−,𝑖 ∈ SO
− , leading to the

subtree 𝑇𝑖 (that is, the game starts with MIN choosing their future behaviour);

• all information sets of MIN in 𝐺′ are singletons;

• the information sets of MAX are the sets
⋃

𝑠−,𝑖∈SO−
IS 𝑗

+,𝑖 , for all information sets IS 𝑗
+ of MAX

in 𝐺 (that is, MAX has the same information as in 𝐺, and does not observe the behaviour/OM
chosen by MIN);

• the utility function is as in 𝐺.

Now, if MIN chooses 𝑠−,𝑖 at the root and MAX plays some strategy 𝑠+, the node reached in 𝐺′

is the node of 𝑇𝑖 corresponding to the node reached in 𝐺 if MAX plays 𝑠+ against the OM 𝑠−,𝑖 . It
follows that the maxmin value of 𝐺′ is the same as the one of 𝐺. Since the construction is clearly
polynomial, and 𝐺′ is an EFG of no chance in which MAX has perfect recall and MIN has perfect
information, we conclude with Proposition 4.5. □

23. We are truly grateful to an anonymous reviewer for suggesting this reduction.
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If MAX only has multi-agent perfect recall, Proposition 4.5 no longer applies. However, if the
number of OMs is bounded by a constant, then the decision problem is still in P.
Proposition 6.6. For every 𝑘 ≥ 1, Pure OM-Maxmin with 𝑘 OMs is in P for EFGs of no chance in
which MAX has MA-PR.
Proof. Let us write SO

− = {𝑠−,1, . . . , 𝑠−,𝑘}, where 𝑠−,𝑖 ∈ SP
− for 1 ≤ 𝑖 ≤ 𝑘 . We first observe that for

a fixed pure strategy of MAX and a fixed OM, a unique leaf of the game tree 𝑇 is reached. Hence,
the outcome of a given strategy 𝑠+ of MAX against all OMs can be represented by a 𝑘-tuple of leaves
(𝑙1, . . . , 𝑙𝑘) (possibly with repetitions) such that 𝑙𝑖 is the leaf reached by the playout under the profile
(𝑠+, 𝑠−,𝑖). For every constant 𝑘 , there are only O(|L(𝑇) |𝑘) such tuples. Hence, we can enumerate
them to decide whether there is one 𝑘-tuple for which (i) the value min1≤𝑖≤𝑘 𝑢+(𝑙𝑖) is at least 𝑚 and
(ii) the tuple indeed corresponds to the outcomes of some pure strategy of MAX against the 𝑘 OMs.

Algorithm 1: Polynomial-time algorithm for verifying that a 𝑘-tuple (𝑙1, . . . , 𝑙𝑘) is reach-
able under some pure strategy of MAX against the 𝑘 OMs.
1 𝑠+ ← empty mapping from IS+ to actions
2 for 𝑖 = 1, . . . , 𝑘:
3 pl← the unique path from 𝑟 to 𝑙𝑖
4 for 𝑣 ∈ pl:
5 𝑎 ← the action taken at 𝑣 in pl
6 if P(𝑣) = −:
7 if 𝑎 ≠ 𝑠−,𝑖 (𝑣):
8 return False /* 𝑙𝑖 is not consistent with 𝑠−,𝑖 */
9 continue /* 𝑣 is good, look at the next one */

10 IS+ ← the information set of MAX containing 𝑣

11 if 𝑠+(IS+) is not set yet:
12 𝑠+(IS+) ← 𝑎

13 elif 𝑠+(IS+) ≠ pl(𝑣):
14 return False /* no 𝑠+ can reach (𝑙1, . . . , 𝑙𝑘) */
15 return True

It remains to show that (ii) can be decided in polynomial time. The whole algorithm is given
as Algorithm 1. We first check that on the unique path from the root to 𝑙𝑖 , all decisions taken at
MIN’s nodes are indeed as prescribed by the 𝑖-th OM 𝑠−,𝑖 . We then check that these 𝑘 paths indeed
prescribe the same action at every information set of MAX. Clearly, Algorithm 1 runs in polynomial
time (more precisely, in O(𝑘 |𝑇 |) time), which completes the proof. □

It turns out that a constant number of OMs is essentially the best we can do when MAX only has
multi-agent perfect recall.
Proposition 6.7. Pure OM-Maxmin with multiple OMs is NP-hard for EFGs of no chance in which
MAX has MA-PR. The result holds even under the restriction to 2 agents for MAX, to Boolean
timeable games, and to polynomially (in the size of the game tree) many OMs.
Proof. Consider the reduction in Proposition 4.6. Notice that in the game obtained by the reduction,
MIN has 𝑛 pure strategies, one for each clause. If we take all these strategies as OMs, then a 3-CNF
formula is satisfiable if and only if MAX has a pure strategy with payoff 1 against all these OMs. □

271



Li, Zanuttini & Ventos

Remark. Another way to interpret this result is by comparing it to Proposition 6.4: the proof by
von Stengel and Forges (2008) is essentially the same as the proof of Proposition 6.7, but involves a
single behaviour OM (or Nature) corresponding to the uniform mixture of the 𝑛 pure OMs above.

We finally turn to the case of multiple OMs, for games of chance. Surprisingly, in the presence
of chance, computing the pure maxmin value against only 2 OMs is already NP-hard, even if MAX
has perfect information.

Proposition 6.8. Pure OM-Maxmin with 2 OMs is NP-hard for EFGs of chance in which MAX has
PI. The result holds even under the restriction to Boolean timeable games.

Proof. The proof follows from the proof of Proposition 4.8. Indeed, it is shown there that Pure
Maxmin is NP-hard even if MIN has only 2 strategies; seeing these as OMs gives a polynomial-time
reduction from Subset Sum to Pure OM-Maxmin with 2 OMs. □

7. Other Variants of Pure Maxmin

We finally briefly discuss two natural variants of Pure Maxmin for EFGs.

Definition 7.1 (Pure ≤-Maxmin). Let G be a class of zero-sum EFGs. Then Pure ≤-Maxmin(G)
is the following decision problem.

Input: An EFG 𝐺 ∈ G and a rational number 𝑚.
Output: Does 𝑣+ ≔ max𝑠+∈SP

+
min𝑠−∈SP−

U+(𝑠+, 𝑠−) ≤ 𝑚 hold in 𝐺?

Notice that Pure ≤-Maxmin(G) is not the complement of Pure Maxmin(G), which would
consist in deciding whether the maxmin value of a game is strictly smaller than a given threshold.
Still, the complexity class of Pure ≤-Maxmin(G) turns out to be the complement of that of Pure
Maxmin(G).

Definition 7.2 (Pure =-Maxmin). Let G be a class of zero-sum EFGs. Then Pure =-Maxmin(G)
is the following decision problem.

Input: An EFG 𝐺 ∈ G and a rational number 𝑚.
Output: Does 𝑣+ = 𝑚 hold in 𝐺?

The results are summarized in Table 4. As it turns out, all results are parallel to those for Pure
Maxmin in Table 1.

Proposition 7.3. The P-membership results in Table 4 hold.

Proof. This follows from the fact that there is a polynomial-time algorithm for computing the maxmin
value in these cases (cf. Proposition 4.5 and Proposition 4.7). □

Proposition 7.4. The coNP-completeness and ΠP
2 -completeness results in Table 4 hold. They hold

even under the restrictions to 2 agents for MAX (in case MAX has MA-PR) and to Boolean timeable
games.
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No chance Chance

MAX
MIN PI/PR/MA-PR PI PR MA-PR

PI P P coNP-c/DP-c ΠP
2 -c/DP

2 -c
PR P coNP-c/DP-c coNP-c/DP-c ΠP

2 -c/DP
2 -c

MA-PR coNP-c/DP-c∗ coNP-c/DP-c coNP-c/DP-c ΠP
2 -c/DP

2 -c

Table 4: Complexity of Pure ≤-Maxmin and Pure =-Maxmin, on the left and right of each cell,
respectively. All hardness results hold even under the restriction to timeable games, and,
except for the DP-completeness result marked with a star, under the further restriction to
Boolean games. PI, PR, MA-PR stand for perfect information, perfect recall, multi-agent
perfect recall, respectively.

Proof. For membership in coNP, we can check that for all pure strategies of MAX, the best response
of MIN, computable in linear time in these cases (Koller & Megiddo, 1992, Proposition 2.7), yields
at most 𝑚 for MAX.

For membership in ΠP
2 , we can check that for all pure strategies of MAX, there exists a strategy

of MIN which yields at most 𝑚 for MAX.
For hardness, the argument is similar for all cases. Consider for example EFGs of chance in

which MAX has PI and MIN has PR. In the proof of Proposition 4.8, we give a reduction from
Subset Sum to Pure Maxmin, such that if the instance is positive, the maxmin value of the EFG
obtained is at least 𝑘 , and otherwise it is at most 𝑘 − 1. Hence, this also gives us a reduction from
the coNP-complete complement of Subset Sum to Pure ≤-Maxmin with 𝑘 − 1 as threshold.

The other cases are similar:

• for EFGs of chance in which MAX has PR and MIN has PI (cf. Proposition 4.9), EFGs from
“yes” instances of Subset Sum have a maxmin value of at least 𝑘 while those from “no”
instances have a maxmin value of at most 𝑘 − 1;

• for EFGs of no chance in which MAX has MA-PR and MIN has PI (cf. Proposition 4.6), EFGs
from “yes” instances of the satisfiability problem have a maxmin value of 1, while those from
“no” instances have a maxmin value of 0;

• finally, for EFGs of chance in which MAX has PI and MIN has MA-PR (cf. Proposition 4.10),
EFGs from “yes” instances of Tiling Extension have a maxmin value of at least 1/𝑚4 while
those from “no” instances have a maxmin value of at most 0.

□

To describe the complexity of Pure =-Maxmin, we make use of the classes DP
𝑘 . For each 𝑘 ≥ 1,

DP
𝑘 is the set of languages 𝐿 that can be written as 𝐿 = 𝐿1 ∩ 𝐿2 with 𝐿1 ∈ ΣP

𝑘
and 𝐿2 ∈ ΠP

𝑘
, or

equivalently as the difference of two languages in ΣP
𝑘

(or two languages in ΠP
𝑘

). The most well-known
one is DP

1 , which is also called DP in the literature. Intuitively, DP corresponds to problems that
concern the optimal value of an optimisation problem in NP (Papadimitriou, 1994).
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-

𝐺1
+

𝑘 − 1 𝐺2

Figure 2: An EFG with subgames 𝐺1 and 𝐺2.

By generalising the argument by Papadimitriou (1994, Theorem 17.1), one can prove the DP
𝑘 -

hardness of a language 𝐿 by showing that there are a ΣP
𝑘
-hard language 𝐿1, a ΠP

𝑘
-hard language 𝐿2,

and a polynomial-time reduction 𝑓 such that ⟨𝑥, 𝑦⟩ ∈ 𝐿1 × 𝐿2 ⇐⇒ 𝑓 (⟨𝑥, 𝑦⟩) ∈ 𝐿.
When Pure Maxmin(G) is NP-complete, we have observed that Pure ≤-Maxmin(G) is coNP-

complete, hence Pure =-Maxmin(G) is in DP (since a game has a maxmin value 𝑘 if and only if its
maxmin value is both at least 𝑘 and at most 𝑘). We show below that it is also DP-hard.24

Proposition 7.5. The DP-completeness results in Table 4 hold for EFGs of chance in which MAX
has PI and MIN has PR, and for EFGs of chance in which MAX has PR and MIN has PI. They hold
even under the restriction to Boolean timeable games.

Proof. The membership results are shown as discussed above. For hardness, we will give a reduction
from two instances of Subset Sum such that the EFG of chance thus obtained has a certain maxmin
value if and only if the first instance of Subset Sum is a “yes” instance and the second one is not.

Let (𝑆0
1, 𝑘

0
1) and (𝑆0

2, 𝑘
0
2) be two arbitrary instances of Subset Sum, and define the two instances

(𝑆1, 𝑘) and (𝑆2, 𝑘) by 𝑆1 = {2𝑖𝑘0
2 | 𝑖 ∈ 𝑆

0
1}, 𝑆2 = {2𝑘0

1 𝑗 | 𝑗 ∈ 𝑆
0
2}, and 𝑘 = 2𝑘0

1𝑘
0
2. Clearly, (𝑆1, 𝑘)

(respectively (𝑆2, 𝑘)) is a positive instance if and only if so is (𝑆0
1, 𝑘

0
1) (respectively (𝑆0

2, 𝑘
0
2)).

Consider first the case in which MAX has PI and MIN has PR. Let 𝐺1 (respectively 𝐺2) be the
timeable EFG of chance built from (𝑆1, 𝑘) (respectively (𝑆2, 𝑘)) in the proof of Proposition 4.8.
Then 𝐺1 (respectively 𝐺2) has a maxmin value of at least 𝑘 if (𝑆1, 𝑘) (respectively (𝑆2, 𝑘)) is a
positive instance of Subset Sum, and at most 𝑘 −2 instead (since all elements in 𝑆1 and 𝑆2 are even).

Now consider the EFG 𝐺 depicted in Figure 2: at the root, MIN chooses whether to play 𝐺1; if
they do, then the game proceeds as in 𝐺1. Otherwise, MAX chooses whether to play the game 𝐺2;
if they do, then the game proceeds as in 𝐺2. Otherwise, MAX receives a payoff of 𝑘 − 1.

Since both 𝐺1 and 𝐺2 are timeable EFGs of chance in which MAX has PI and MIN has PR, the
game 𝐺 is also a timeable EFG of chance in which MAX has PI and MIN has PR. In addition, the
construction is polynomial-time in the two instances of Subset Sum in input.

It remains to show that 𝐺 has a maxmin value of exactly 𝑘 − 1 if and only if (𝑆1, 𝑘) is a positive
instance of Subset Sum and (𝑆2, 𝑘) is not. This is straightforward to verify:

• if (𝑆1, 𝑘) is a negative instance, then MIN can choose to play 𝐺1 so that the maxmin value of
𝐺 is at most 𝑘 − 2 < 𝑘 − 1;

• if both (𝑆1, 𝑘) and (𝑆2, 𝑘) are positive instances, the maxmin value of 𝐺 is at least 𝑘 > 𝑘 − 1
since MAX can get at least 𝑘 from both 𝐺1 and 𝐺2;

24. The fact that a decision problem is both NP-hard and coNP-hard, is, in general, not enough for it to be DP-hard.
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• if (𝑆1, 𝑘) is a positive instance but (𝑆2, 𝑘) is not, then it is optimal for MIN to choose not to
play 𝐺1, and for MAX to choose not to play 𝐺2. Hence, the maxmin value of 𝐺 is exactly
𝑘 − 1.

This concludes the DP-hardness of =-Maxmin for timeable EFGs of chance in which MAX has
PI and MIN has PR. The same construction as above with Proposition 4.9 also shows the DP-hardness
of =-Maxmin for timeable EFGs of chance in which MAX has PR and MIN has PI.

Finally, these two problems remain DP-hard for Boolean games since we can compile away the
constant 𝑘 − 1 and the non-Boolean payoffs in 𝐺1 and 𝐺2 using Lemma A.1. □

Proposition 7.6. The DP-completeness results in Table 4 hold for EFGs in which MAX has MA-PR.
They hold even under the restriction to 2 agents for MAX and to timeable games. For EFGs of
chance, they hold even under the further restriction to Boolean games.

Proof. For EFG of no chance in which MAX has MA-PR and MIN has PI, we use the reduction in
the proof of Proposition 4.6, which yields a timeable EFG of no chance with 2 agents for MAX; its
maxmin value is 1 if the formula is satisfiable, and 0 otherwise.

The construction then is the same as in Figure 2, but the payoff of the leftmost leaf is replaced
by 1/2. By construction, the reduction is to an EFG with three values (0, 1/2 and 1). For games of
chance, the constant 1/2 can be compiled into Boolean payoffs using Lemma A.1. □

Remark. When chance nodes are not allowed, we cannot compile the constant 1/2 into Boolean
payoffs. As a result, we could not prove that =-Maxmin for Boolean EFGs of no chance in which
MAX has MA-PR and MIN has PI is DP-complete. Actually, we conjecture that it is PNP

1−tt-complete
(Beigel, 1991), that is, complete for the class of problems which are solvable in polynomial time with
1 call to an NP-oracle (in particular, it is both NP- and coNP-hard). However, the details are out
of scope of this paper.

Similarly, when Pure Maxmin(G) is ΣP
2 -complete, we have observed that Pure ≤-Maxmin(G)

is ΠP
2 -complete, hence Pure =-Maxmin(G) is in DP

2 ; we show below that it is also DP
2 -hard.

Proposition 7.7. The DP
2 -completeness results in Table 4 hold. They hold even under the restriction

to 2 agents for MIN and to Boolean timeable games.

Proof. The membership results are shown as discussed above. For hardness, we use a construction
similar to the one in Proposition 7.5, but with a reduction from a pair of instances of Tiling
Extension (cf. Proposition 4.10).

Given the timeable EFGs of chance 𝐺1 reduced from (𝐶1,w1, 𝑇1, 1𝑚1) and 𝐺2 reduced from
(𝐶2,w2, 𝑇2, 1𝑚2), let 𝑚 ≔ max(𝑚1, 𝑚2) and let 𝐺 be the game built as in Figure 2, but with the
payoff of the leftmost leaf replaced by 1/2𝑚4. Then 𝐺 is timeable and has a pure maxmin value of
exactly 1/2𝑚4 if and only if the first instance of Tiling Extension is a “yes” instance and the second
one is not. To show that the problem remains hard for Boolean games, we can use Lemma A.1 to
compile the payoffs in 𝐺 into Boolean ones. □

8. Conclusion

We have thoroughly investigated the computational complexity of finding a lower bound on the pure
maxmin value in two-player zero-sum EFGs. For each degree of information (perfect information,
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MAX
MIN PI PR MA-PR

PI P P coNP-c
PR P P coNP-c

MA-PR NP-c NP-c ΣP
2 -c/ΔP

2 -c

Table 5: Complexity of Behaviour Maxmin and Mixed Maxmin for EFGs of chance. In the
last cell, Behaviour Maxmin and Mixed Maxmin are ΣP

2 -complete and ΔP
2 -complete,

respectively. PI, PR, MA-PR stand for perfect information, perfect recall, multi-agent
perfect recall, respectively.

perfect recall, multi-agent perfect recall) for MAX and MIN, and for games of no chance or of chance,
we have either given a polynomial-time algorithm, or shown completeness for a certain complexity
class. This allows us to have a complete landscape of this problem (Table 1). In addition, we
have studied the complexity landscape of the same decision problem, but under two other settings:
when the EFGs are defined by some compact representations (for which we have proposed a very
generic definition) (Table 2); when MIN is known to pick strategies from a finite set known to MAX
(Table 3). We have also studied the complexity of verifying an upper bound or the exact value of
pure maxmin (Table 4).

Some hardness results presented in this work are already known in the literature (Koller &
Megiddo, 1992, for instance). However, we have strengthened many of these results in different
ways: by giving a simpler reduction; by restricting the degree of imperfect information or the number
of strategies of a player; by restricting to Boolean payoffs; etc. We emphasise that all the hardness
results in our work hold under strong restrictions: timeable games; at most 2 agents for each player;
only Boolean payoffs;25 only chance nodes with uniform distribution; only one turn per agent of
MAX or MIN.

Related work on the complexity of maxmin We have focused on the complexity of pure maxmin,
but not on behaviour maxmin or mixed maxmin, since the latter ones are well-studied in the literature.
For reference (and comparison with pure maxmin), we give the complexity results concerning
behaviour and mixed maxmin for EFGs of chance in Table 5; all come from the work by Koller and
Megiddo (1992) and Zhang et al. (2023, Appendix C).26 A few clarifications follow:

• For Behaviour Maxmin and Mixed Maxmin, the existence of chance nodes does not change
the complexity, unlike the case for Pure Maxmin:

– Koller and Megiddo (1992, Proposition 2.6) show that the NP- and coNP-hardness in
Table 5 also hold for EFGs of no chance; our proof for Proposition 4.6 also implies this.

– Carminati et al. (2024) show that the ΣP
2 - and ΔP

2 -hardness in Table 5 also hold for EFGs
of no chance.

25. Except for one case: the DP-hardness of =-Maxmin is not known to hold for Boolean EFGs of no chance in which
MAX has MA-PR and MIN has PI; see the remark after Proposition 7.6.

26. In the literature on team games (Zhang et al., 2023, for instance), behaviour maxmin and mixed maxmin are called
TME (team maxmin equilibrium) and TMECor (where “Cor” stands for “correlation”), respectively.
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• The non-polynomial upper bounds in Table 5 are proven by Zhang et al. (2023, Appendix C)
for the promise problems that concern the 𝜀-approximation of the maxmin value, where 𝜀 is a
rational number given as input.27; this is to circumvent the difficulty caused by the possibility
that the maxmin value may not be a rational number. Gimbert et al. (2020) show that the exact
version is more difficult: ∃R-complete for EFGs with multi-agent perfect recall for MAX and
no MIN, Square-Root-Sum-hard when both MAX and MIN are multi-agent.

Perspectives The main perspective for this work is to study these decision problems related to the
maxmin value with finer-grained notions of complexity. In particular, we would like to investigate
the complexity of these problems in the setting of parametrised complexity. Natural parameters for
a game are, for instance, the maximal number of alternations between MAX and MIN along any
branch; the branching factor; the maximal size of an information set; the number of distinct utility
values. For some of these parameters, we already know that the problems will be hard under the
fixed-parameter setting as well, since they are already hard for constant values of the parameters
(number of alternations, number of utility values).

It is also of interest to continue and extend our study to more general settings. More concretely,
we may add two more dimensions to the complexity tables, allowing for the possibility of general-
sum and more than two teams, by adopting Stackelberg strategies as the universal solution concept
for all the cases. For the purpose of reference, in our notation, the set of Stackelberg strategies or
optimal strategies to commit to for MAX can be defined to be the set

arg max
𝜍+∈S+

max
𝑠−∈BR(𝜍+ )

U+(𝜍+, 𝑠−),

where S+ is the set of pure or mixed strategies of MAX depending on the setting, and BR(𝜍+) is the
set of MIN’s best responses to 𝜍+ in SP

− according to MIN’s utility function 𝑢−.28

Finally, an important direction for future work is to investigate the link between our framework of
oracle games and various classes of the game description language GDL. Drawing such connections
would allow giving a complexity picture for games compactly represented in GDL (possibly with
additional information, for instance a known horizon).
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Appendix A. Proofs

A.1 Compiling away Non-Boolean Payoffs

Some proofs in this work involve EFGs of chance with non-Boolean but integer payoffs. We will
show that these payoffs can always be compiled into Boolean ones with the help of chance nodes.

27. Promise problem is a generalisation of the notion of decision problem; see the survey by Goldreich (2005) for an
overview.

28. The idea behind this definition is that MAX commits to a certain strategy that they communicate to MIN, then MIN
plays to the best of MIN’s own interest; hence, MIN picks a best response to MAX’s committed strategy; the max
operator over BR(𝜍+) is due to the common assumption that MIN breaks ties in MAX’s favour (Conitzer & Sandholm,
2006). It follows from the definition that Stackelberg strategies coincide with maxmin strategies in zero-sum games.
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Figure 3: A Boolean chance tree that represents the value 5/8.

Lemma A.1. Let 𝐺 be a two-player timeable EFG of chance with only integer payoffs. Then there
is a Boolean timeable EFG 𝐺′ and two constants 𝐶 > 0 and 𝐷, constructible in time polynomial in
the size of 𝐺, such that

• Every player has the same degree of imperfect information and set of strategies in 𝐺′ as in 𝐺.

• For all strategies 𝜍+ and 𝜍− (whether pure, mixed, or behaviour), the expected utilities
U+(𝜍+, 𝜍−) in 𝐺 andU′+(𝜍+, 𝜍−) in 𝐺′ satisfyU′+(𝜍+, 𝜍−) = 𝐶 ×U+(𝜍+, 𝜍−) + 𝐷.

Proof. We first transform the payoffs into rational numbers in the interval [0, 1] with bounded binary
expansion. Notice that every affine transformation with positive scaling for all payoffs induces the
same affine transformation on the maxmin value. Let 𝑛 ≥ 0 be the largest payoff in 𝐺 in terms of
absolute value, which means all payoffs in 𝐺 are integers in [−𝑛, 𝑛]. Let 𝑑 ∈ N be the smallest
integer such that 2𝑑 ≥ 2𝑛. Notice that the value of 𝑑 is linearly bounded by the size of 𝐺. By adding
𝑛 to all payoffs in 𝐺, we shift all payoffs into integers in [0, 2𝑛]; then by dividing all payoffs by 2𝑑 ,
we transform the payoffs into rational numbers in the interval [0, 1] with a binary expansion over at
most 𝑑 digits. If MAX’s expected payoff in the initial game 𝐺 under a strategy profile (𝜍+, 𝜍−) is 𝑣,
then MAX’s expected payoff under the same profile in the new game 𝐺′ is 𝑣′ = (𝑣+𝑛)/2𝑑 = 𝐶𝑣+𝐷
with 𝐶 = 1/2𝑑 and 𝐷 = 𝑛/2𝑑 .

Now, we show how to get rid of the fractional payoffs in 𝐺′ with the help of chance nodes. Let
𝑥 = 𝑖/2𝑑 with 0 ≤ 𝑖 ≤ 2𝑑 . Then a leaf with a payoff of 𝑥 can be replaced by a chance tree 𝑇𝑥 of
depth 𝑑 that contains only chance nodes with uniform Bernoulli distribution and Boolean payoffs in
the following way: if the 𝑑-digit binary representation of 𝑖 reads 𝑖1𝑖2 · · · 𝑖𝑑 , then the right node of the
chance tree at depth 1 ≤ 𝑗 ≤ 𝑑 has value 𝑖 𝑗 , and the left node at depth 𝑑 has value 0. See Figure 3
for an example with 𝑥 = 5/8 (i.e. 𝑑 = 3 and 𝑖 = 5 with binary representation 101); all internal nodes
are binary chance nodes that lead to either child with probability 1/2.

By construction, 𝑇𝑥 for 𝑥 = 𝑖/2𝑑 is of size O(𝑑), and the root of 𝑇𝑥 has an expected value of 𝑥.
Since there is no decision node of MAX nor of MIN in 𝑇𝑥 , one can replace a leaf with a payoff of
𝑥 in 𝐺′ by 𝑇𝑥 without changing the expected payoffU under any strategy profile of the players nor
their degree of information. Finally, timeability is clearly preserved from 𝐺 to 𝐺′. □

A.2 Tseitin Transformation for Compact Boolean Games

Lemma A.2. Let 𝛾 = ⟨𝑋, P,D, 𝜑+⟩ be a CBG. Then there exists a CBG 𝛾′ ≔ ⟨𝑋 ′, P′,D′, 𝜑′+⟩ with
𝜑′+ in CNF (respectively DNF, ROBDD), which has the same maxmin value as 𝛾, and such that (i) 𝛾′
is of no chance if and only if 𝛾 is of no chance; (ii) MAX and MIN have the same degree of imperfect
information in 𝛾′ as in 𝛾. Furthermore, 𝛾′ can be constructed from 𝛾 in polynomial time.

Proof. Let ∃𝑦1 · · · ∃𝑦𝑝 𝜓+(𝑋 ∪ {𝑦1, . . . , 𝑦𝑝}) be a formula which is satisfied by an assignment to 𝑋

if and only if 𝜑+ outputs 1 on this assignment, and in which 𝜓+ is in CNF, 𝑦1, . . . , 𝑦𝑝 are variables
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not in 𝑋 and 𝑝 is polynomial in the size of 𝜑+. Such a formula can be obtained from 𝜑+ in polynomial
time using the Tseitin transformation (Tseitin, 1983).

To build a CBG 𝛾′ with a CNF goal from 𝛾, we define 𝑋 ′ ≔ 𝑋 ∪ {𝑦1, . . . , 𝑦𝑛} (with the ordering
from 𝑋 then 𝑦1, . . . , 𝑦𝑛), P′(𝑥) ≔ P(𝑥) for 𝑥 ∈ 𝑋 and P′(𝑦𝑖) ≔ + for 𝑖 = 1, . . . , 𝑝, D′(𝑥) ≔ D(𝑥)
for 𝑥 ∈ 𝑋 and D′(𝑦𝑖) ≔ 𝑋 ∪ {𝑦1, . . . , 𝑦𝑖−1} for 𝑖 = 1, . . . , 𝑝, and finally 𝜑′+ ≔ 𝜓+. Observe that the
construction is polynomial time, does not introduce any chance variable, and preserves PI, PR, and
MA-PR for both players (since all information is revealed at the extra nodes). We now show that 𝛾′
has the same maxmin value as 𝛾.

Given a strategy 𝜍+ for MAX in 𝛾, we simply define 𝜍 ′+ for MAX in 𝛾′ to extend 𝜍+ by choosing
𝑦1, . . . , 𝑦𝑝 such that 𝜓+ is true at all leaves of 𝛾 at which 𝜑+ outputs 1, and arbitrary values at the
other leaves. This can be done because in 𝛾′, all information is revealed to MAX at the leaves of 𝛾.
Moreover, 𝜍 ′+ is pure if and only if 𝜍+ is pure. Finally, by construction, this ensures that the utility
of 𝜍 ′+ in 𝛾′ is the same as the utility of 𝜍+ in 𝛾, against any strategy of MIN (observe that the set of
strategies for MIN is the same in 𝛾 and 𝛾′), and hence that the maxmin value is preserved.

For DNF, we use the dual construction. Given a CBG with an arbitrary goal 𝜑+, we first build a
formula ∃𝑦1 · · · ∃𝑦𝑝𝜓+(𝑋 ∪ {𝑦1, . . . , 𝑦𝑝}) as above, where 𝜓+ is in CNF, but which is satisfied by
an assignment to 𝑋 if and only if 𝜑+ outputs 0 on this assignment; such a formula can be obtained
from ¬𝜑+ using the Tseitin transformation. Then we build a DNF 𝜒+ equivalent to ¬𝜓+ using De
Morgan’s laws. Finally, we define 𝛾′ by 𝑋 ′ ≔ 𝑋 ∪ {𝑦1, . . . , 𝑦𝑝}, 𝑃′(𝑥) ≔ 𝑃(𝑥) for 𝑥 ∈ 𝑋 and
𝑃′(𝑦𝑖) ≔ − for 𝑖 = 1, . . . , 𝑝, 𝐷′ as in the construction for CNF, and finally 𝜑′+ ≔ 𝜒+. Then MAX has
the same set of strategies in 𝛾′ as in 𝛾. Now given a strategy 𝜍− for MIN in 𝛾, we define 𝜍 ′− for MIN
in 𝛾′ to extend 𝜍− by choosing 𝑦1, . . . , 𝑦𝑝 such that 𝜒+ is false at all leaves of 𝛾 at which 𝜑+ outputs
0, and arbitrary values at other leaves; indeed, if and only if 𝜑+ outputs 0, then by construction there
exists 𝑦1, . . . , 𝑦𝑝 such that 𝜓+ is true, that is, such that 𝜒+ is false. It follows that MIN can force a
loss for MAX in 𝛾′ exactly at those leaves in which MAX loses in 𝛾, as desired.

Finally, for ROBDD, we use the construction given by Darwiche and Marquis (2002, middle of
page 258): for a given DNF 𝜑+, the construction introduces auxiliary variables 𝑦1, . . . , 𝑦𝑝 not in 𝑋 ,
and builds in polynomial time an ROBDD 𝜓+ over 𝑋 ∪ {𝑦1, . . . , 𝑦𝑝} such that ∃𝑦1 · · · ∃𝑦𝑝 𝜓+(𝑋 ∪
{𝑦1, . . . , 𝑦𝑝}) is equivalent to 𝜑+. Hence, with the same reasoning as for CNF above, we conclude
that a CBG with a DNF goal can be reformulated in polynomial time into a CBG with an ROBDD
goal. By the previous paragraph, it follows that any CBG can be reformulated into a CBG with an
ROBDD goal. □
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