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Abstract

We present algorithms based on satisfiability problem (SAT) solving, as well as answer
set programming (ASP), for solving the problem of determining inconsistency degrees in
propositional knowledge bases. We consider six different inconsistency measures whose
respective decision problems lie on the first level of the polynomial hierarchy. Namely,
these are the contension, forgetting-based, hitting set, max-distance, sum-distance, and
hit-distance inconsistency measures. In an extensive experimental analysis, we compare
the SAT-based and ASP-based approaches with each other, as well as with a set of naive
baseline algorithms. Our results demonstrate that, overall, both the SAT-based and the
ASP-based approaches clearly outperform the naive baseline methods in terms of runtime.
The results further show that the proposed ASP-based approaches perform superior to
the SAT-based ones with regard to all six inconsistency measures considered in this work.
Moreover, we conduct additional experiments to explain the aforementioned results in
greater detail.

1. Introduction

The handling of conflicting information is a substantial problem in symbolic approaches
to Artificial Intelligence. For instance, different expert opinions could (partially) contra-
dict each other, rule mining algorithms could yield conflicting rules, or data gathered from
sensors could be noisy or otherwise distorted. Thus, inconsistencies can occur in virtually
any area of application, and require to be detected and handled. The field of inconsistency
measurement (Grant & Martinez, 2018; Thimm, 2019) provides an analytical perspective
on this matter by facilitating the quantitative assessment of the severity of inconsistency
in formal knowledge representation formalisms. Representing the degree of inconsistency
as a numerical value may assist automatic reasoning mechanisms on the one hand, and
human modellers who aim to identify and compare multiple alternative formalizations on
the other hand. Moreover, such an analysis can be used to identify conflicts, and conse-
quently also help to restore consistency to an inconsistent knowledge base. Inconsistency
measures have been used to estimate reliability of agents in multi-agent systems (Cholvy,
Perrussel, & Thevenin, 2017), to analyze inconsistencies in news reports (Hunter, 2006), to
support collaborative software requirements specifications (Martinez, Arias, & Vilas, 2004),
to allow for inconsistency-tolerant reasoning in probabilistic logic (Potyka & Thimm, 2017),

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.



Kuhlmann, Gessler, Laszlo & Thimm

to handle inconsistencies in business processes (Corea, Thimm, & Delfmann, 2021; Corea,
Grant, & Thimm, 2022), and to monitor and maintain quality in database settings (Decker
& Misra, 2017; Bertossi, 2018a). For a general overview of the subject, see the seminal work
by Grant (1978) and the edited collection by Grant & Martinez (2018).

In the literature, a multitude of different inconsistency measures have been introduced.
Some approaches conceptually rely on minimal inconsistent sets or maximal consistent sets
(see, e. g., (Hunter, Konieczny, et al., 2008; Jabbour, Ma, & Raddaoui, 2014; Ammoura,
Raddaoui, Salhi, & Oukacha, 2015)), others rely on non-classical semantics (see, e. g., (Grant
& Hunter, 2011; Ma, Qi, Xiao, Hitzler, & Lin, 2009; Knight, 2002)), and yet others utilize
further properties (see, e. g., (Thimm, 2016b)). However—and despite the above list of
applications and consequent need for practical working solutions—algorithmic approaches
to inconsistency measurement have received only little attention so far. Ma et al. (2009)
propose an algorithm that approximates the inconsistency value of a newly proposed in-
consistency measure and evaluate it with respect to computational complexity. Likewise,
Xiao & Ma (2012) present two new inconsistency measures and perform a complexity anal-
ysis on their decision problems, both of which are found to be on the second level of the
polynomial hierarchy. They also develop and evaluate a practically feasible anytime algo-
rithm. McAreavey et al. (2014) note that there is a lack of practical implementations for
inconsistency measures that employ minimal unsatisfiable subsets, and develop and evaluate
an algorithm for enumerating such subsets. Jabbour & Sais (2016) describe two algorithms
for their newly introduced inconsistency measure, but do not evaluate them with regard to
performance or complexity. Thimm (2016b) designs and evaluates evolutionary algorithms
for two inconsistency measures. Bertossi (2018b) proposes an inconsistency measure for
databases that can be computed using answer set programming and analyzes its complex-
ity.

As the above overview shows, most algorithmic studies of inconsistency measurement
focus on individual inconsistency measures and have failed to address systematic compar-
isons of algorithms and complexities. In response, one of the contributions of the survey by
Thimm & Wallner (2019) was to determine the complexity levels of a large number of incon-
sistency measures. The authors concluded that the problem of inconsistency measurement
is hard in general, but that there are certain measures which are more suitable candidates
for practical applications due to their complexity class. Based on these findings, for a selec-
tion of three different inconsistency measures whose corresponding decisions problems—i. e.,
deciding whether a certain value is an upper or lower bound of the inconsistency value, or
whether it corresponds exactly to the inconsistency value—were found to be on the first
level of the polynomial hierarchy, a set of algorithms based on Answer Set Programming
(ASP) has been introduced in (Kuhlmann & Thimm, 2020) and (Kuhlmann & Thimm,
2021). Namely, these measures are the contension inconsistency measure (Grant & Hunter,
2011), the forgetting-based inconsistency measure (Besnard, 2016), and the hitting set in-
consistency measures (Thimm, 2016b) (for their formal definitions, see Section 2). Those
three measures were not only selected because of their associated complexity class, but
also because they each give a different perspective on the inconsistencies in a given knowl-
edge base, meaning that they could each provide different information that could be used
to subsequently restore consistency. The contension inconsistency measure tells us which
propositions are involved in a conflict, while the forgetting-based inconsistency measure
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tells us which occurrences of each proposition are involved in a conflict, and can therefore
also point to specific formulas. In addition, the forgetting-based measure is, to the best of
our knowledge, the only inconsistency measure in the literature that is based on the no-
tion of atom occurrences. The contension inconsistency measure serves as a representative
example of inconsistency measures based on non-classical semantics (see, e. g., (Ma et al.,
2009; Knight, 2002) for other examples of such measures). The hitting set inconsistency
measure offers a further perspective by considering how many different interpretations are
minimally needed to (individually) satisfy all formulas. This measure was originally de-
signed for streaming-based applications, such as Linked Open Data. With regard to such
applications, the development of efficient algorithms is of great interest.

In (Kuhlmann & Thimm, 2021), the three ASP-based approaches were implemented
and compared to naive baseline implementations in an experimental evaluation. As an-
ticipated, the result of the study was that the ASP-based implementations were clearly
superior. Furthermore, in (Kuhlmann, Gessler, Laszlo, & Thimm, 2022), a revised version
of the ASP-based approach for the contension inconsistency measure is proposed, in ad-
dition to an approach based on satisfiability problem (SAT) solving. The latter is widely
used in applications such as hardware verification (Biere, Cimatti, Clarke, Fujita, & Zhu,
1999; Vizel, Weissenbacher, & Malik, 2015), electronic design automation (Marques-Silva &
Sakallah, 2000), or cryptanalysis (Mironov & Zhang, 2006; Nejati & Ganesh, 2019). This,
in addition to the fact that there exist highly optimized SAT solvers (see the results of
the annual SAT competition1 for an overview), makes it a natural approach for computing
inconsistency measures on the first level of the polynomial hierarchy. Moreover, SAT and
ASP have been compared wrt. other applications before (see, e. g., (Banbara, Gebser, Inoue,
Ostrowski, Peano, Schaub, Soh, Tamura, & Weise, 2015; Eyupoglu, Fidan, Gulesen, Izci,
Teber, Yilmaz, Alkan, & Erdem, 2021)). The results of the study show that both the ASP
and the SAT approach clearly outperform the naive baseline method, but ultimately the
ASP approach performs superior to the SAT approach.

In the work at hand, we follow up on (Kuhlmann et al., 2022) by greatly extending the
scope of the considered measures and the depth of the experimental evaluation. For that,
we revisit the proposed SAT-based and ASP-based approaches for the contension incon-
sistency measure and we present SAT-based approaches for the forgetting-based and the
hitting set inconsistency measure, as well as revised versions of the corresponding ASP-based
approaches introduced in (Kuhlmann & Thimm, 2021). Moreover, we propose both a SAT-
based and an ASP-based approach for each of three different variations of the distance-based
inconsistency measure (Grant & Hunter, 2017), which are likewise on the first level of the
polynomial hierarchy. Further, the distance-based approach offers yet another perspective
on the notion of an inconsistency than the three previously discussed measures—Grant &
Hunter (2017) view the models of the formulas in a knowledge base as points in Euclidian
space. The authors also point out how these measures can be used in applications such
as the evaluation of violations of integrity constraints in databases. We consider the max-
distance, sum-distance, and hit-distance inconsistency measures. Their formal definitions
follow, along with those of the other measures, in Section 2.

1. http://www.satcompetition.org/
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Hence, we examine a total of six different inconsistency measures in this work (the
contension, the forgetting-based, the hitting set, the max-distance, the sum-distance, and
the hit-distance inconsistency measure), and present one SAT-based and one ASP-based
approach for each of them. With regard to each measure, we compare the SAT and the ASP
approach to each other, as well as to a naive baseline method in an experimental evaluation.
More precisely, we conduct our experiments on a total of five different data sets. Whilst two
of them were used in the literature before (Kuhlmann & Thimm, 2021; Kuhlmann et al.,
2022), the three other data sets are newly introduced and made publicly available. Further,
we investigate the runtime composition of the SAT-based and the ASP-based approaches
in more detail. In addition to the runtimes, we also record the actual inconsistency values
resulting from the different inconsistency measures on the various data sets. Based on
that, we conduct an experiment in which we compare different search strategies wrt. the
SAT-based methods. Overall, the results of our experimental analysis confirm that both
the SAT-based and the ASP-based approaches perform superior to the baseline algorithms.
Nevertheless, the results also show that the ASP-based approaches altogether outperform
the SAT-based ones.

In the following, we give a concise overview of the structure of this paper. We first
provide the required preliminaries on inconsistency measurement in Section 2. Sections
3 and 4 comprise detailed descriptions of our SAT-based and, respectively, ASP-based
algorithms. Section 5 encompasses an evaluation, in which we compare the SAT-based and
the ASP-based approaches with each other, and additionally, we draw a comparison with
the naive baseline methods. Section 6 concludes this work by providing a brief summary of
our results, as well as an overview of possible future work.

2. Preliminaries

The inconsistency measures examined in this work are all designed to be applied in propo-
sitional logic knowledge bases. A knowledge base K is a finite set of propositional formulas,
and we define K as the set of all propositional knowledge bases. Formulas are constructed
by means of the usual connectives negation (¬), disjunction (∨), and conjunction (∧). Some
algorithms defined in Section 3 and 4 use the notion of subformulas. The set of subformulas
of a formula Φ is denoted by sub(Φ) and is inductively defined in the following manner.

Definition 1. Let Φ be a propositional formula. If Φ is a proposition X, the only sub-
formula of Φ is the proposition itself, meaning sub(X) = {X}. If Φ is a negation ¬Ψ, the
subformulas sub(¬Ψ) are given by {¬Ψ}∪sub(Ψ). The subformulas sub(Ψ1 ▷◁ Ψ2) for a for-
mula Ψ1 ▷◁ Ψ2, where ▷◁ ∈ {∧,∨} is a binary operator, are {Ψ1 ▷◁ Ψ2}∪ sub(Ψ1)∪ sub(Ψ2).

Analogously, we define the set of subformulas sub(K) of a knowledge base K:

sub(K) =
⋃
A∈K

sub(A)

Observe that we denote arbitrary formulas and subformulas as Φ, and formulas that are
explicitly elements of a knowledge base as A. If a finer granularity is required, we may use
the notation Ψ for the subformula of Φ.
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We denote the signature of a propositional formula or knowledge base, i. e., the (propo-
sitional) atoms appearing in it, as At(·). Formulas can evaluate to either true (abbreviated
as t) or false (abbreviated as f). An interpretation is a function ω : At → {t, f} that
assigns truth values to all atoms. An interpretation ω satisfies an atom X ∈ At if and only
if ω(X) = t, represented by ω |= X. For non-atomic formulas, the satisfaction relation
is extended recursively according to the truth-valued functions of the connectives as usual
(see (van Harmelen, Lifschitz, & Porter, 2008)).

An interpretation that satisfies a formula Φ is also called a model of Φ. For every
interpretation ω, if ω is a model of a formula Φ1 if and only if ω is a model of another
formula Φ2, then Φ1 and Φ2 are called logically equivalent. A knowledge base is satisfied
by an interpretation if all of its formulas are satisfied. Throughout this paper we denote
the set of models of a knowledge base K by Mod(K) and the set of interpretations wrt. the
signature At(K) by Ω(At(K)).

A formula Φ is inconsistent if there is no interpretation that satisfies it, meaning
Mod(Φ) = ∅. By extension, a knowledge base K is inconsistent if Mod(K) = ∅. Let
R∞
≥0 be the set containing all non-negative real numbers and ∞.

Definition 2. An inconsistency measure is a function I : K → R∞
≥0 which satisfies I(K) =

0 iff K is consistent, for all K ∈ K.

Many different inconsistency measures and properties that characterize these measures
have been proposed. To illustrate why there are many ways to define the severity of incon-
sistency, consider the following example.

Example 1. Let At = {sunny, cloudy}, where sunny represents “it is sunny” and cloudy
represents “it is cloudy”. The following knowledge bases are inconsistent:

1. K1 = {¬cloudy, cloudy, sunny}

2. K2 = {¬cloudy ∨ ¬sunny, cloudy ∨ sunny, sunny ↔ cloudy}

If our aim was to decide which of these knowledge bases is more severely inconsistent,
there are different aspects to consider. The first knowledge base has a more obvious and
easily fixable conflict (remove either ¬cloudy or cloudy), but it also includes a formula that
is not involved in any conflict (sunny), meaning it contains non-zero information even if
the conflict cannot be repaired. The second knowledge base has a more hidden conflict
(all three formulas are required to produce the inconsistency); nevertheless, since all of its
formulas are involved in the conflict, there is no “safe” formula that does not participate in
any conflict, and the whole knowledge base needs to be discarded if the conflict cannot be
repaired.

2.1 The Contension Inconsistency Measure

The contension inconsistency measure Ic (Grant & Hunter, 2011) is based on Priest’s three-
valued logic (Priest, 1979). The latter extends the truth values of propositional logic—true
(t) and false (f)—by a third value both (b), also referred to as the inconsistent or paradoxical
truth value. The semantics for this three-valued logic are specified in Table 1. Further, a
three-valued interpretation ω3 : At(K) → {t, f, b} assigns one of the three truth values to
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x y ¬x x ∨ y x ∧ y

t t f t t

t b f t b

t f f t f

b t b t b

b b b b b

b f b b f

f t t t f

f b t b f

f f t f f

Table 1: Truth table for Priest’s three-valued logic. The rows that differ from classical
propositional logic are marked in gray.

each atom in the signature At(K) of the knowledge base K. Further, a three-valued model of
a knowledge base is an interpretation ω3 that does not assign f to any formula. Therefore, a
formula is satisfiable if it evaluates to either t or b in some interpretation. The set of three-
valued models of a knowledge base K is denoted by Mod3(K). For a given three-valued
interpretation ω3, we denote the set of atoms that are assigned b as the Conflictbase(ω3).

Example 2. The knowledge base K3 = {x,¬x} is unsatisfiable in propositional logic but
satisfiable in Priest’s three-valued logic. The interpretation ω3

1 on x with ω3
1(x) = b is a

three-valued model for K3 with Conflictbase(ω3
1) = {x}.

Definition 3 (Grant & Hunter (2011)). The contension inconsistency measure Ic(K) :
K → N0 is defined as

Ic(K) = min{|Conflictbase(ω3)| | ω3 ∈ Mod3(K)}.

In other words, the contension inconsistency value is the minimum number of atoms
in a knowledge base that need to be assigned b to produce a three-valued model of the
knowledge base. The maximum inconsistency value is |At(K)|, because there can only be
as many b assignments as there are atoms in the signature.

Example 3. Let K4 = {x∧y,¬y}. The interpretation ω3
2 : {x, y} → {t, b, f} with ω3

2(x) = t
and ω3

2(y) = b is a three-valued model for K4 with Conflictbase(ω3
2) = {y}. There is no

model that assigns b to 0 atoms, therefore min{|Conflictbase(ω3
2)|} = |{y}| = 1, and hence

Ic(K4) = 1.

2.2 The Forgetting-Based Inconsistency Measure

In order to define the forgetting-based inconsistency measure, we first require the definition
of atom occurrences in formulas. Let Φ be a propositional logic formula and At(Φ) its
signature. An atom X ∈ At(Φ) can appear multiple times in Φ. Each of these appearances
is called an occurrence of X.
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Definition 4. Let #occ(X,Φ) denote the number of times X occurs in Φ.

Example 4. Consider ϕ1 = x ∧ y ∨ ¬x ∧ z with At(ϕ1) = {x, y, z}. We can see that x
appears twice in ϕ1, and y and z each appear once. Consequently, #occ(x, ϕ1) = 2 and
#occ(y, ϕ1) = #occ(z, ϕ1) = 1.

We extend Definition 4 to knowledge bases such that #occ(X,K) represents the number
of times X occurs in the formulas of the knowledge base K:

#occ(X,K) =
∑
A∈K

#occ(X,A)

We use superscripts to distinguish between different occurrences of the same atom. We
assume that X l refers to the l-th occurrence of X in the considered formula Φ, or the
considered knowledge base K, with l ∈ {1, . . . ,#occ(X,Φ)}, or l ∈ {1, . . . ,#occ(X,K)},
respectively. We also refer to l as the label of X.

Definition 5. We define the set of all atom occurrences in a formula Φ as

Occ(Φ) = {X l
i | Xi ∈ At(Φ), i ∈ {1, . . . , |At(Φ)|}, l ∈ {1, . . . ,#occ(Xi,Φ)}}

Example 5. Consider again the formula ϕ1 = x ∧ y ∨ ¬x ∧ z from Example 4. We assign
each atom X a label l ∈ {1, . . . ,#occ(X,ϕ1)} and get ϕl

1 = x1 ∧ y1 ∨ ¬x2 ∧ z1. Occ(ϕ1)
contains all (labeled) atom occurrences in ϕ1, i. e., Occ(ϕ1) = {x1, x2, y1, z1}.

We analogously extend the definition of Occ(·) to knowledge bases.
The forgetting-based inconsistency measure If as defined by Besnard (2016) utilizes

a special operation on knowledge bases (forgetting) to measure the level of inconsistency.
The idea behind this measure is similar to the one behind the contension inconsistency
measure. However, while the contension measure refers to the atoms in the signature of
a knowledge base, the forgetting-based measure refers to individual atom occurrences. An
atom occurrence can be “forgotten” by replacing it with ⊤ or ⊥. We denote the replacement

of the l-th occurrence of atom X in formula Φ by ⊤ as Φ | X l f−→ ⊤ (analogously with ⊥
instead of ⊤). Formally, the forgetting operation is defined as follows.

Definition 6 (Besnard (2016)). Let Φ be a propositional logic formula containing #occ(X,Φ)
occurrences of X ∈ At(Φ). The following substitution of the l-th occurrence of X is then
called forgetting X l in Φ:

Φ | X l f−→ ⊤,⊥ = (Φ | X l f−→ ⊤) ∨ (Φ | X l f−→ ⊥)

For succinct notation we express the formula obtained by forgetting the occurrence X l in Φ
by writing Fl,X .Φ.

Example 6. Consider the formula ϕ2 = ¬x1∧¬y1∧ (x2∨y2)∧z1. If the second occurrence
of x (i. e., x2) is forgotten, we obtain:

ϕ2 | x2
f−→ ⊤,⊥ =(ϕ2 | x2

f−→ ⊤) ∨ (ϕ2 | x2
f−→ ⊥)

=(¬x1 ∧ ¬y1 ∧ (⊤ ∨ y2) ∧ z1) ∨ (¬x1 ∧ ¬y1 ∧ (⊥ ∨ y2) ∧ z1)

=¬x1 ∧ ¬y1 ∧ z1
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Observe that the original formula ϕ2 in Example 6 is not satisfiable wrt. classical two-
valued semantics, i. e. Mod(ϕ2) = ∅. However, the formula obtained by forgetting x2 in ϕ2,
written as F2,x.ϕ2, is satisfiable. In fact, any propositional logic formula Φ can be made
consistent by forgetting a sufficient number of atom occurrences. By extension, consistency
can be restored for any inconsistent knowledge base K ∈ K if a sufficient number of atom
occurrences are forgotten.

Definition 7 (Besnard (2016)). Let ∧K be the conjunction of all formulas A ∈ K. Based
on the forgetting operation, the measure If : K → N0 can be defined as

If(K) = min{n | Fl1,X1 .Fl2,X2 . . . . .Fln,Xn .∧K ̸|= ⊥}

with Xi ∈ At(K) and li being the respective labels with i ∈ {1, . . . , n}.

In other words, the inconsistency value If(K) is the minimum number of atom occur-
rences which have to be forgotten in order to restore consistency in K. Forgetting every
atom occurrence in a knowledge base yields a trivially consistent knowledge base. It is thus
guaranteed that the inconsistency value If(K) will not exceed |Occ(K)|.

Example 7. Consider the knowledge base K5 = {x∧ y, x∨ y, z,¬x}. After assigning labels
to all atom occurrences, we get Kl

5 = {x1 ∧ y1, x2 ∨ y2, z1,¬x3}. Clearly, there is a conflict
between x∧y and ¬x. However, if we forget either the first or the third occurrence of x (i.e.,
x1 or x3), K5 becomes consistent. Since there is no possibility of rendering K5 consistent
by forgetting less than one atom occurrence, If(K5) = 1.

2.3 The Hitting Set Inconsistency Measure

In general, a hitting set is a set that contains at least one element from each set of a given
set of sets. In this work, we use a context-specific form of a hitting set.

Definition 8. A set H ⊆ Ω(At(K)) is a hitting set of a knowledge base K if for every
A ∈ K there exists an ω ∈ H with ω |= A.

We use the above notion of a hitting set to define the hitting set inconsistency measure
(Thimm, 2016b). Let N∞

0 denote N0 ∪ {∞}.

Definition 9 (Thimm (2016b)). The hitting set inconsistency measure Ih(K) : K → N∞
0

is defined as

Ih(K) = min{ |H| | H is a hitting set of K} − 1

with min{∅} = ∞ ∀K ∈ K\{∅}, and with Ih(∅) = 0.

Intuitively, the hitting set inconsistency measure is based on the idea of searching for
the minimum number of interpretations that are required to satisfy all formulas in a given
knowledge base K, subtracted by 1. If K is consistent, we only need one interpretation
(i. e., a model of K). Thus, if we subtract 1, we get 0—the desired inconsistency value for
consistent knowledge bases. If there is a conflict in K, at least 2 interpretations are needed
to satisfy all formulas, i. e., the inconsistency value is > 0. The more interpretations we
need to satisfy all formulas, the more severe the conflict is considered to be. Note that
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Ih(K) = ∞ if and only if one of the formulas in K is contradictory. In this case there
exists no hitting set as there exists no interpretation which can satisfy such a formula, and
consequently, no number of interpretations can satisfy all formulas in K. If Ih(K) ̸= ∞
then the maximum inconsistency value is |K| − 1. This value occurs when there is a model
for every formula in K, but no interpretation is a model for more than one formula.

Example 8. Consider again K4 = {x ∧ y,¬y}. Let ω1 and ω2 be interpretations with
ω1(x) = ω1(y) = t, and ω2(x) = t and ω2(y) = f . Clearly, ω1 is a model for x∧y, and ω2 is
a model for ¬y. There is no single interpretation satisfying both formulas, making {ω1, ω2}
a minimal hitting set of K4. Therefore, Ih(K4) = |{ω1, ω2}| − 1 = 2− 1 = 1.

Consider another knowledge base K6 = {x∧¬x, y, z}. The formula x∧¬x is contradic-
tory, consequently there is no hitting set of K6, and Ih(K6) = ∞.

2.4 Distance-Based Inconsistency Measures

Grant & Hunter (2013) proposed several inconsistency measures based on calculating dis-
tances between interpretations. Different distance measures could be used, but we assume
that the distance measure is always the Dalal distance d(ω, ω′) between two interpretations
ω and ω′. The Dalal distance, also known as Hamming distance, measures distances based
on the number of differing digits. When talking about interpretations, we define the Dalal
distance as the number of differing truth value assignments for atoms X ∈ At between two
interpretations ω, ω′.

Definition 10. The Dalal distance ddalal between two interpretations ω, ω′ is defined as

ddalal(ω, ω
′) = |{X ∈ At | ω(X) ̸= ω′(X)}|

Additionally, we define the Dalal distance between a set of interpretations I ⊆ Ω(At)
and a single interpretation ω as the smallest distance between some interpretation in I and
the interpretation ω.

Definition 11. The Dalal distance ddalal between a set of interpretations I and an indi-
vidual interpretation ω is defined as

ddalal(I, ω) = min
ω′∈I

(ω′, ω), with ddalal(∅, ω) = ∞

We now define three distance-based inconsistency measures. The general idea behind
all three measures is to find an interpretation that has an “optimal” distance to the models
of the individual formulas in a given knowledge base K. The definition of “optimal” differs
for each measure.

The max-distance measure calculates the interpretation with the smallest maximum
distance to the models of each formula in K. The inconsistency value is equal to the
aforementioned smallest maximum distance. In case thatK contains a contradictory formula
A⊥, i. e., Mod(A⊥) = ∅, the maximum distance will always be ∞, due to ddalal(∅, ω) = ∞
for any ω ∈ Ω(At). Hence, the minimal maximum distance is ∞, and Imax

d (K) = ∞.

Definition 12 (Grant & Hunter (2013)). The max-distance inconsistency measure Imax
d (K) :

K → N∞
0 is defined as

Imax
d (K) = min{max

A∈K
ddalal(Mod(A), ω) | ω ∈ Ω(At(K))}
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The sum-distance measure calculates an interpretation ω such that the sum of ω’s dis-
tances to the models of each formula in K is minimal. The inconsistency value is equal
to the aforementioned smallest sum of distances. Note that in the case that K contains a
contradictory formula A⊥, each sum will add up to ∞, and thus Imax

d (K) = ∞.

Definition 13 (Grant & Hunter (2013)). The sum-distance inconsistency measure IΣ
d (K) :

K → N∞
0 is defined as

IΣ
d (K) = min{ΣA∈Kddalal(Mod(A), ω) | ω ∈ Ω(At(K))}

The hit-distance measure calculates an interpretation such that the number of distances
greater than 0 to the models of each formula is minimal. A different, simpler characterization
of this measure (Grant & Hunter, 2017), shows that Ihit

d is equal to the minimum number of
formulas that need to be removed from a knowledge base K in order to make it consistent.

Definition 14 (Grant & Hunter (2017)). The hit-distance inconsistency measure Ihit
d (K) :

K → N0 is defined as

Ihit
d (K) = min{|{A ∈ K | ddalal(Mod(A), ω) > 0}| | ω ∈ Ω(At(K))}

Imax
d (K) and IΣ

d (K) take the value∞ if and only if one of the formulas inK is inconsistent
individually. For the non-infinity case, the maximum value of Imax

d (K) is |At(K)|, because
the distance is based on the number of differing atom assignments which cannot exceed the
number of atoms. For the non-infinity case of IΣ

d (K), the maximum value is |K| · |At(K)|,
because in the worst case, each distance ddalal(Mod(A), ω) for all formulas A ∈ K is maximal.
Ihit
d cannot take the value ∞, because the value of Ihit

d is the number of distances greater
than 0 rather than a distance itself. The maximum value of Ihit

d is therefore |K|.

Example 9. Consider again K4 = {x ∧ y,¬y}. For simplified readability, we name
the formulas: x ∧ y =: α1 and ¬y =: α2. The possible interpretations for At(K4) are
Ω(At(K4)) = {ω0, ωx, ωy, ωxy} with:

ω0(x) = ω0(y) = f

ωx(x) = t, ωx(y) = f

ωy(x) = f, ωy(y) = t

ωxy(x) = ωxy(y) = t

The models for the formulas in K4 are Mod(α1) = {ωxy} and Mod(α2) = {ω0, ωx}. We now
calculate ddalal for all formulas in K4 and all interpretations in Ω(At(K4)):

ddalal(Mod(α1), ω0) = 2 ddalal(Mod(α2), ω0) = 0

ddalal(Mod(α1), ωx) = 1 ddalal(Mod(α2), ωx) = 0

ddalal(Mod(α1), ωy) = 1 ddalal(Mod(α2), ωy) = 1

ddalal(Mod(α1), ωxy) = 0 ddalal(Mod(α2), ωxy) = 1
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The max-distance measure Imax
d looks at the maximum distances per interpretation, i. e.,

maxα∈K ddalal(Mod(α), ω). Here, the set of maximal distances consists of:

ddalal(Mod(α1), ω0) = 2

ddalal(Mod(α1), ωx) = 1

ddalal(Mod(α1), ωy) = 1

ddalal(Mod(α2), ωxy) = 1

The value Imax
d (K4) is the minimum of those maxima, meaning

ddalal(Mod(α1), ωx) = 1,

or one of the other maxima with value 1. Therefore, Imax
d (K4) = 1.

For the sum-distance inconsistency measure IΣ
d , we sum up the distances for each in-

terpretation:

Σα∈K4ddalal(Mod(α), ω0) = 2

Σα∈K4ddalal(Mod(α), ωx) = 1

Σα∈K4ddalal(Mod(α), ωy) = 2

Σα∈K4ddalal(Mod(α), ωxy) = 1.

The value of IΣ
d (K4) is the minimum of the above sums. Consequently, IΣ

d (K4) = 1.
For the hit-distance inconsistency measure Ihit

d , we count the number of distances greater
than 0 for each interpretation:

|{α ∈ K4 | ddalal(Mod(α), ω0) > 0}| = 1

|{α ∈ K4 | ddalal(Mod(α), ωx) > 0}| = 1

|{α ∈ K4 | ddalal(Mod(α), ωy) > 0}| = 2

|{α ∈ K4 | ddalal(Mod(α), ωxy) > 0}| = 1

The inconsistency value is the minimum of those counts: Ihit
d (K4) = 1.

3. SAT-Based Algorithms for Selected Inconsistency Measures

By now we have established a fundamental overview of inconsistency measurement in gen-
eral, and we defined the six particular inconsistency measures considered in this work.
Building on that, in the section at hand, we describe how to use SAT encodings to deter-
mine inconsistency values.

3.1 Satisfiability Solving

A major problem in the realm of propositional logic is the Boolean satisfiability problem,
which is one of the most-studied problems of computer science, and which is NP-complete
(Biere, Heule, Maaren, & Walsh, 2009). The input of the Boolean satisfiability problem
is a formula in conjunctive normal form (CNF), which is a conjunction of clauses. Note
that we do not restrict our input knowledge bases for inconsistency measurement to CNF,
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however, every propositional formula can be converted into an equivalent formula in CNF
(see (van Harmelen et al., 2008) for a proof). Naively, this conversion can be done using
Boolean transformation rules, but the resulting formulas are sometimes exponentially larger
than the original formula. Using the Tseitin method (Tseitin, 1968), every formula can be
converted into an equisatisfiable CNF formula with only a linear increase in size.

Definition 15. The Boolean satisfiability problem (SAT) is the problem of deciding if there
exists an interpretation that satisfies a given propositional formula.

• Input: formula Φ in CNF

• Output: true iff Mod(Φ) ̸= ∅, false otherwise

A SAT solver is a program that solves SAT for a given formula. There exist many
high-performance SAT solvers (for an overview, see the results of the recurring SAT com-
petition2). A consequence of the NP-completeness of SAT is that SAT solvers can also be
used to solve other NP-complete problems if we transform them into SAT problems.

In order to use SAT solving for the problem at hand, we need a way to encode the
concept that some value is an upper limit. Cardinality constraints represent that at least,
at most, or exactly some number k out of a set of propositional atoms are allowed to be true.
Using the formal definition of Abio et al. (2013), we define that a cardinality constraint is
a constraint of the form

X1 + . . .+Xn ▷◁ k

where X1, . . . , Xn are propositional atoms, ▷◁ ∈ {<,≤,=,≥, >} is an operator, and k is a
natural number. The meaning of the + operator in this context is that for every true atom
the number 1 is added and for every false atom the number 0 is added, thereby counting
the number of true atoms. Constraints of the form X1 + . . . + Xn ≤ k are informally
referred to as at-most-k constraints. Such a constraint is true if and only if ≤ k atoms out
of the set {X1, . . . , Xn} are true. The direct approach to encode cardinality constraints is to
enumerate all possible atom assignments that satisfy the constraints. For small knowledge
bases the resulting encodings can be compact; however, in general, there are

(
n

k+1

)
subsets

of size k+1, meaning we generate
(

n
k+1

)
clauses. It is inefficient for larger inputs because the

size of the constraint grows exponentially with n. Several more efficient methods to encode
cardinality constraints more efficiently have been developed. In the implementations used
for our experimental evaluation (Section 5), we use the sequential counter encoding method
(Sinz, 2005) which only generates n · k clauses.

In the following sections, we use the notation at most(k,X) where X is a set of atoms
{X1, . . . , Xn} to denote the constraint X1 + . . .+Xn ≤ k.

3.2 Scheme for SAT-Based Algorithms for Inconsistency Measures

This section proposes a binary search algorithm for the computation of the inconsistency
value of a given knowledge base K wrt. one of the inconsistency measures considered in
this work, i. e., the computation of I(K) with I ∈ {Ic, If , Ih, Imax

d , IΣ
d , Ihit

d }. Our approach
follows similar procedures that have been proposed in the literature (see, e.g., (Giunchiglia

2. http://www.satcompetition.org/
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I Maximum non-∞ value ∞ possible?

Ic |At(K)| No

If |Occ(K)| No

Ih |K| − 1 Yes

Imax
d |At(K)| Yes

IΣ
d |At(K)| · |K| Yes

Ihit
d |K| No

Table 2: Ranges of possible values of each inconsistency measure considered in this work.
The minimum value is 0 in all cases.

& Maratea, 2006)). So the objective of our algorithm is to solve the function problem
valueI as formalized in (Thimm & Wallner, 2019).

valueI Input: K ∈ K
Output: value of I(K)

All inconsistency measures considered in this paper have a clearly defined range as
established in their descriptions in Section 2 (see also Table 2). This clearly defined search
space prompts the use of a binary search procedure. The range is searched by the algorithm
and for each iteration of the search, a call to a SAT-solver is made, to decide which half
of the range needs to be searched in the following iteration. The problem that is solved at
each iteration of the search procedure is the decision problem upperI (Thimm & Wallner,
2019), meaning the problem of deciding whether a given value u is an upper bound of the
inconsistency value of a given knowledge base.

upperI Input: K ∈ K,
u ∈ N0

Output: true iff I(K) ≤ u

For all inconsistency measures presented in Section 2, the problem upperI is NP-
complete as shown in (Thimm & Wallner, 2019), and is thus reducible to SAT. Therefore,
the idea is to find SAT encodings S : K × N0 → K for upperI for all inconsistency mea-
sures, that satisfiy the requirement that (K, u) is a positive instance of upperI if and only
if S(K, u) is a positive instance of SAT. At each search step, we compute the encoding for
the current potential upper bound u and make a call to a SAT solver to check if u is in
fact an upper limit of the inconsistency value, until the exact value is found. If no value is
found, ∞ is assumed to be the inconsistency value for the measures Ih, Imax

d , and IΣ
d . With

regard to the other measures (Ic, If , and Ihit
d ), the binary search procedure is guaranteed

to return a finite value after log2(n + 1) steps, with n being the maximally possible finite
value.

Note that the iterative SAT-based approach described in this section is essentially a naive
MaxSAT approach. Although the literature offers many different dedicated MaxSAT solvers
(see, e. g., (Berg, Järvisalo, Martins, Niskanen, & Paxian, 2024) for a recent overview), which
are based on several different optimization algorithms, we decided to rely on classical SAT
solvers for this work. In particular, the focus of this work is on the presented encodings;
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a detailed investigation of the various optimization algorithms would exceed the scope of
this paper (note, however, that we briefly touch upon the topic of optimization wrt. SAT
in Section 5.3.4 and wrt. ASP in Section 5.3.5).

3.3 The Contension Inconsistency Measure

Beginning with this section, we describe how to construct the SAT encodings that are
used in the binary search procedure described in the previous section for each specific
inconsistency measure. Note that the encoding for the contension inconsistency measure
covered in this section was already proposed in (Kuhlmann et al., 2022). However, for the
sake of completeness, we describe it once more.

Let K be a propositional knowledge base and u an integer representing a possible up-
per bound for the contension inconsistency value Ic(K). We present a SAT encoding for
upperIc , denoted Sc(K, u), which is defined by the components (SC1)–(SC17).

Recall that Ic(K) is defined by the minimal number of atoms in At(K) that need to
be set to b in order for K to become consistent in Priest’s three-valued logic. To encode
the three-valued logic in propositional logic, we use additional variables. First of all, for
every atom X in the original signature At(K), we use three new atoms Xt, Xb, Xf (SC1)
to represent the three truth values t, b, f . We need to assure that out of each triple of
new atoms that represent the three possible truth values of the original atom X, exactly
one is true. We represent this by adding the following formula for every X ∈ At(K) to the
encoding Sc(K, u):

(Xt ∨Xf ∨Xb) ∧ (¬Xt ∨ ¬Xf ) ∧ (¬Xt ∨ ¬Xb) ∧ (¬Xb ∨ ¬Xf ) (SC3)

To model three-valued satisfiability, we recursively represent the evaluation of formulas
in three-valued logic (see the semantics described in Section 2.1). To achieve this, three

variables vtΦ, v
f
Φ, v

b
Φ (SC2) are used for every subformula Φ in every formula A ∈ K to

represent each of the three possible valuations of Φ. For each of those valuation atoms we
add an equivalence that defines the evaluations based on the operator of the subformula.
To represent all possible formulas, we need to encode the operators ∧, ∨, and ¬.

We encode conjunctions Φc = Ψc,1 ∧Ψc,2 by adding the following formulas to Sc(K, u):

vtΦc
↔ vtΨc,1

∧ vtΨc,2
(SC4)

vfΦc
↔ vfΨc,1

∨ vfΨc,2
(SC5)

vbΦc
↔ (¬vtΨc,1

∨ ¬vtΨc,2
) ∧ ¬vfΨc,1

∧ ¬vfΨc,2
(SC6)

Analogously, disjunctions Φd = Ψd,1 ∨Ψd,2 are encoded as follows:

vtΦd
↔ vtΨd,1

∨ vtΨd,2
(SC7)

vfΦd
↔ vfΨd,1

∧ vfΨd,2
(SC8)

vbΦd
↔ (¬vfΨd,1

∨ ¬vfΨd,2
) ∧ ¬vtΨd,1

∧ ¬vtΨd,2
(SC9)

To represent a negated formula Φn = ¬Ψn, we create new variables representing the three
evaluations of Φn, meaning vtΦn

, vfΦn
and vbΦn

, and encode the evaluation of those cases by
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adding the following formulas to Sc(K, u):

vtΦn
↔ vfΨn

(SC10)

vfΦn
↔ vtΨn

(SC11)

vbΦn
↔ vbΨn

(SC12)

Thus, (SC10) encodes that the formula Φn = ¬Ψn evaluates to t if Ψn evaluates to f . In
the same fashion, Φn evaluates to f if Ψn is t (SC11), and Φn evaluates to b if Ψn is also
b (SC12). Further, we add the following formulas for each subformula Φa which represents
an individual atom X:

vtΦa
↔ Xt (SC13)

vfΦa
↔ Xf (SC14)

vbΦa
↔ Xb (SC15)

We also add a formula to Sc(K, u) that represents when a formula A ∈ K becomes true.
This is the case when the subformula that contains the whole formula evaluates to t or b:

vtA ∨ vbA (SC16)

Finally, we add a cardinality constraint representing that at most u of the b-atoms are
allowed to be true. Let Atb be the set of b-atoms of K, i. e., AtKb = {Xb | X ∈ At(K)}. We
add the following cardinality constraint to Sc(K, u):

at most(u,AtKb ) (SC17)

Sc(K, u) is finally comprised of the signature and the formulas presented in (SC1)–(SC17)
(see Encoding 1 in Appendix A.1.1 for an overview). The following result establishes that
this encoding faithfully implements Ic. The proof of the theorem below is provided in
Appendix A.1.1.

Theorem 1. For a given value u, the encoding Sc(K, u) is satisfiable if and only if Ic(K) ≤
u.

Example 10. We illustrate the construction of Sc(K, u) for the following knowledge base:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Sc(K7, 1), i. e., a SAT encoding which returns true if
and only if 1 is an upper bound of the contension inconsistency value of K7.

As At(K7) = {x, y}, we require 2 · 3 = 6 new atoms (SC1):

xt, xb, xf , yt, yb, yf
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We also have a total of 8 (sub)formulas, so we need 8 · 3 = 24 corresponding atoms (SC2):

vtα1
, vbα1

, vfα1
, vtα2

, vbα2
, vfα2

, vtα3
, vbα3

, vfα3
,

vtϕ1,1
, vbϕ1,1

, vfϕ1,1
, vtϕ1,2

, vbϕ1,2
, vfϕ1,2

,

vtϕ2,1
, vbϕ2,1

, vfϕ2,1
, vtϕ2,2

, vbϕ2,2
, vfϕ2,2

,

vtϕ3
, vbϕ3

, vfϕ3

We add the following constraints to the encoding Sc(K7, u) via (SC3):

(xt ∨ xf ∨ xb) ∧ (¬xt ∨ ¬xf ) ∧ (¬xt ∨ ¬xb) ∧ (¬xb ∨ ¬xf )
(yt ∨ yf ∨ yb) ∧ (¬yt ∨ ¬yf ) ∧ (¬yt ∨ ¬yb) ∧ (¬yb ∨ ¬yf )

We encode the first formula α1 = ϕ1,1∧ϕ1,2, which is a conjunction, by adding the following
formulas corresponding to (SC4)–(SC6):

vtα1
↔ vtϕ1,1

∧ vtϕ1,2

vfα1
↔ vfϕ1,1

∨ vfϕ1,2

vbα1
↔ (¬vtϕ1,1

∨ ¬vtϕ1,2
) ∧ ¬vfϕ1,1

∧ ¬vfϕ1,2

We encode the second formula α2 = ϕ2,1∨ϕ2,2, which is a disjunction, by adding the formulas
corresponding to (SC7)–(SC9):

vtα2
↔ vtϕ2,1

∨ vtϕ2,2

vfα2
↔ vfϕ2,1

∧ vfϕ2,2

vbα2
↔ (¬vfϕ2,1

∨ ¬vfϕ2,2
) ∧ ¬vtϕ2,1

∧ ¬vtϕ2,2

The last formula (α3 = ¬ϕ3), which is a negation, is modeled by adding the following
formulas via (SC10)–(SC12):

vtα3
↔ vfϕ3

vfα3
↔ vtϕ3

vbα3
↔ vbϕ3

We add formulas to encode that ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2, and ϕ3 are subformulas consisting of
individual atoms, following (SC13)–(SC15):

ϕt
1,1 ↔ xt ϕt

1,2 ↔ yt ϕt
2,1 ↔ xt ϕt

2,2 ↔ yt ϕt
3 ↔ xt

ϕf
1,1 ↔ xf ϕf

1,2 ↔ yf ϕf
2,1 ↔ xf ϕf

2,2 ↔ yf ϕf
3 ↔ xf

ϕb
1,1 ↔ xb ϕb

1,2 ↔ yb ϕb
2,1 ↔ xb ϕb

2,2 ↔ yb ϕb
3 ↔ xb

For each formula in K we additionally add a constraint wrt. (SC16):

vtα1
∨ vbα1

vtα2
∨ vbα2

vtα3
∨ vbα3

Finally, via (SC17), we add the cardinality constraint at most(1, {xb, yb}).
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3.4 The Forgetting-Based Inconsistency Measure

Let K again be a propositional knowledge base and u an integer representing a candidate
for an upper bound of If(K). Recall that If(K) is defined as the minimal number of atom
occurrences which need to be forgotten in order to resolve all inconsistencies in K. We
construct an encoding Sf(K, u) that represents upperIf for the instance (K, u).

To begin with, we label the given knowledge base K to retrieve Occ(K). For each labeled
atom occurrence X l ∈ Occ(K) we also add two atoms tX,l and fX,l to the signature (SF1).
Further, for each formula A ∈ K a corresponding constraint A′ is created and added to
Sf(K, u). A′ is an extension of A, gained by substituting every atom occurrence X l in A
with the subformula (tX,l ∨X) ∧ ¬fX,l. Assigning truth values to the new atoms tX,l, fX,l

models the forgetting operation on X l in A. More precisely, setting tX,l to true represents
forgetting X l and replacing it with ⊤, while setting fX,l to true represents forgetting X l

and replacing it with ⊥. We define ΦX,l to be the subformula X l is substituted with:

ΦX,l := (tX,l ∨X) ∧ ¬fX,l (SF2)

• If tX,l is set to true and fX,l is set to false, then ΦX,l becomes true, regardless of the
truth value assigned to X. This represents the case in which X l has been forgotten
and was replaced by ⊤.

• If tX,l is set to false and fX,l is set to true, then ΦX,l becomes false, regardless of the
truth value assigned to X. This represents the case in which X l has been forgotten
and was replaced by ⊥.

• If both tX,l and fX,l are set to false, then the truth value of ΦX,l is equal to the truth
value assigned to X. This represents the case in which X l has not been forgotten.

The case in which both tX,l and fX,l are set to true holds no meaning in the chosen represen-
tation, as this would imply that X l had somehow been replaced by ⊤ and ⊥ simultaneously.
This invalid state needs to be avoided, which motivates the addition of constraints that pre-
vent tX,l and fX,l from both being set to true at the same time:

¬tX,l ∨ ¬fX,l (SF3)

Finally, an at-most-u constraint is added to limit the number of occurrences that can
be forgotten. Let Atforget denote the set of all atoms introduced by substitutions of atom
occurrences in formulas A ∈ K, i. e., the set of all tX,l, fX,l wrt.X

l ∈ Occ(K). The constraint

at most(u,Atforget) (SF4)

is added to Sf(K, u) in order to keep the number of forgotten occurrences from exceeding
u. In total, Sf(K, u) is comprised of (SF1)–(SF4) (see Encoding 2 for a complete overview).
The proof for the following theorem, along with Encoding 2, is provided in Appendix A.1.2

Theorem 2. For a given value u, the encoding Sf(K, u) is satisfiable if and only if If(K) ≤
u.
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Example 11. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Sf(K7, 2), i. e., a SAT encoding which returns true if
and only if 2 is an upper bound of the forgetting-based inconsistency value of K7.

To begin with, we need |Occ(K7)| · 2 = 5 · 2 = 10 atoms that represent the forgetting
operation wrt. each atom occurrence (SF1):

tx,1, fx,1, ty,1, fy,1, tx,2, fx,2, ty,2, fy,2, tx,3, fx,3

We substitute each occurrence in every formula in K7 as described by (SF2). This produces
the following 3 formulas, which are all added to Sf(K7, 2):

((tx,1 ∨ x) ∧ ¬fx,1) ∧ ((ty,1 ∨ y) ∧ ¬fy,1)
((tx,2 ∨ x) ∧ ¬fx,2) ∨ ((ty,2 ∨ y) ∧ ¬fy,2)
¬((tx,3 ∨ x) ∧ ¬fx,3)

Next, we apply (SF3):

¬tx,1 ∨ ¬fx,1 ¬ty,1 ∨ ¬fy,1
¬tx,2 ∨ ¬fx,2 ¬ty,2 ∨ ¬fy,2
¬tx,3 ∨ ¬fx,3

Finally, we add the at-most-u constraint (SF4) to Sf(K7, 2):

at most(2, {tx,1, fx,1, ty,1, fy,1, tx,2, fx,2, ty,2, fy,2, tx,3, fx,3})

3.5 The Hitting Set Inconsistency Measure

In the following, we propose a SAT encoding, denoted Sh(K, u), for the problem Ih(K),
with K being a knowledge base and u an integer representing a candidate for an upper
bound. We reiterate that Ih(K) is the minimum cardinality of a set of interpretations such
that there is at least one model for every formula in the knowledge base K, subtracted by
1. This is equivalent to finding the minimal number of blocks of a partitioning of K such
that each block is satisfiable (again, subtracted by 1).

The formulas in K are partitioned into u blocks, and every formula belongs to at least
one block. For every formula A ∈ K, we create copies Ai with i = 1, . . . , u. The meaning of
formula Ai is “the i-th copy of formula A”. Then, we create |K| · u new atoms pA,i (SH2).
The meaning of the atom pA,i is “formula A is a member of block i”. For every i, all atoms
X that appear in a formula Ai are replaced with new atoms Xi (SH1), meaning each block
has its own copy of At(K), allowing us to check for satisfiability block-wise.

For every block, the set of formulas inside it is satisfiable. We add |K| · u constraints of
the form

pA,i → Ai. (SH3)
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This models that if a formula A belongs to block i, then the corresponding formula Ai

must be satisfied (within this block). Every formula must be sorted into at least one block,
meaning for all A ∈ K, at least one pA,i is true. A simple encoding for the “at-least-one”
constraint is to add the following clauses for every A ∈ K:∨

1≤i≤u

pA,i (SH4)

When a value for the minimal number of satisfiable partition blocks is found, we subtract
1 to generate the value Ih(K). If no value is found in the range, the result is ∞.

The following result establishes that the above encoding Sh(K, u), defined by (SH1)–
(SH4) (for an overview, see Encoding 3 in Appendix A.1.3), faithfully implements Ih. The
proof of the theorem below is given in Appendix A.1.3 as well.

Theorem 3. For a given value u, the encoding Sh(K, u) is satisfiable if and only if Ih(K) ≤
u− 1. Sh(K, u) is unsatisfiable for all u = 1, . . . , |K| if and only if Ih(K) = ∞.

Example 12. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Sh(K7, 2), i. e., a SAT encoding which returns true if
and only if 3− 1 = 2 is an upper bound of the hitting set inconsistency value of K7.

First, we create variables for each atom xi ∈ At(K7) = {x, y} with i ∈ {1, 2} (SH1):

x1, x2, y1, y2

In addition, for each formula in K7 we create the following variables (SH2):

pα1,1, pα1,2, pα2,1, pα2,2, pα3,1, pα3,2,

Now we create indexed copies of the formulas in K7:

x1 ∧ y1, x1 ∨ y1, ¬x1,
x2 ∧ y2, x2 ∨ y2, ¬x2

Following (SH3), we add the subsequent formulas to Sh(K7, 2):

pα1,1 → (x1 ∧ y1), pα2,1 → (x1 ∨ y1), pα3,1 → (¬x1),
pα1,2 → (x2 ∧ y2), pα2,2 → (x2 ∨ y2), pα3,2 → (¬x2)

At last, we add the following constraints via (SH4):

pα1,1 ∨ pα1,2, pα2,1 ∨ pα2,2, pα3,1 ∨ pα3,2
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3.6 The Max-Distance Inconsistency Measure

Let, once again, K be a propositional knowledge base, and let u be an integer representing
a potential upper bound for Imax

d (K). In the following, we construct a SAT encoding
Smax
d (K, u) for the problem upperImax

d
.

As a reminder, the distance-based inconsistency measures look for an interpretation
with an “optimal” distance. Regarding Imax

d , the “optimal” interpretation has the minimal
maximum distance to the models of all formulas in K. In case one or more formulas in K
are unsatisfiable, i. e., they possess no models, Imax

d (K) = ∞.
First we need a representation of the “optimal” interpretation that will be computed by

the measure. For each atom X ∈ At(K), we add a new atom Xo that represents this atom’s
value assignment in the “optimal interpretation” (SDM1). Let AtO be the set of atoms of
the optimal interpretation, i. e., AtO = {Xo | X ∈ At(K)}.

With the exception of the case that Imax
d (K) = ∞ (i. e., the case in which at least one of

the formulas is contradictory), all formulas in K must be satisfied by some interpretation.
For every formula A ∈ K, we create a clone Ai with i ∈ {1, . . . , |K|}. For every i, all
atoms X that appear in a formula Ai are replaced with new atoms Xi (SDM2). We add
the modified clones Ai to the encoding (SDM4). This models that the formulas are all
satisfiable individually and allows us to put their models and the optimal interpretation in
relation in the next step.

For each formula, the distance between at least one model of the formula and the optimal
interpretation consists of at most u differing atom assignments. We now aim to model that
the minimum distance between some model of each formula and the optimal world is at
most u. This can also be formulated as “for each formula, there is some model that can
be converted into the optimal world by inverting at most u value assignments” (excluding
the ∞ case). To represent this, we create new atoms invX,i with i ∈ {1, . . . , |K|} for all
Xi ∈ At(Smax

d (K, u)) \ AtO that model the inverted value assignments (SDM3). Then, we
add the following formulas for every Xi, using the optimal interpretation atoms Xo ∈ AtO:

Xi → Xo ∨ invX,i (SDM5)

¬Xi → ¬Xo ∨ invX,i (SDM6)

The above formulas represent that for every atom Xi of a model of a formula, the corre-
sponding atom in the optimal interpretation has the same value unless it is inverted by
setting invX,i to true. We then represent the upper bound by adding at-most-u constraints
for all invX,i. Let INVi denote the set containing all invX,i for a fixed i:

at most(u, INVi) (SDM7)

In total, the SAT encoding Smax
d (K, u) comprises (SDM1)–(SDM7). The following result

establishes that the above encoding faithfully implements Imax
d .

Theorem 4. For a given value u, the encoding Smax
d (K, u) is satisfiable if and only if

Imax
d (K) ≤ u. Smax

d (K, u) is unsatisfiable for all u ∈ {0, . . . , |At(K)|} if and only if
Imax
d (K) = ∞.

The proof of the above theorem, as well as Encoding 4, which contains a complete
overview of Smax

d (K, u), are provided in Appendix A.1.4.
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Example 13. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Smax

d (K7, 1), i. e., a SAT encoding which returns true
if and only if 1 is an upper bound of the max-distance inconsistency value of K7.

At first, we create the variables xo, yo for the atoms in At(K7) = {x, y} (SDM1). We
create additional variables for each atom in At(K7) wrt. indices i ∈ {1, . . . , |K7|} with |K7| =
3 via (SDM2) and (SDM3):

x1, x2, x3, y1, y2, y3

invx,1, invx,2, invx,3, invy,1, invy,2, invy,3

We add indexed copies of the formulas in K7 to Smax
d (K7, 1) (SDM4):

x1 ∧ y1, x2 ∨ y2, ¬x3

We now add the following constraints conforming to (SDM5) and (SDM6) to Smax
d (K7, 1):

x1 → xo ∨ invx,1, ¬x1 → ¬xo ∨ invx,1,

y1 → yo ∨ invy,1, ¬y1 → ¬yo ∨ invy,1,

x2 → xo ∨ invx,2, ¬x2 → ¬xo ∨ invx,2,

y2 → yo ∨ invy,2, ¬y2 → ¬yo ∨ invy,2,

x3 → xo ∨ invx,3, ¬x3 → ¬xo ∨ invx,3,

y3 → yo ∨ invy,3, ¬y3 → ¬yo ∨ invy,3

Lastly, the following at-most-u constraints are added:

at most(1, {invx,1, invy,1}), at most(1, {invx,2, invy,2}), at most(1, {invx,3, invy,3})

3.7 The Sum-Distance Inconsistency Measure

The definition of the sum-distance measure IΣ
d is quite similar to the definition of the

previously addressed max-distance measure Imax
d . The only difference is the notion of

optimality—while Imax
d seeks the interpretation with the smallest maximum distance to the

models of the formulas in a given knowledge base K, IΣ
d seeks an interpretation such that

the sum of its distances to the models of the formulas in K is minimal.
Let once again u be an integer representing a candidate for an upper bound of IΣ

d (K).
In the following, we construct a SAT encoding SΣ

d (K, u) for the problem upperIΣ
d
.

The constraints (SDS1)–(SDS6) of the encoding SΣ
d (K, u) are identical to constraints

(SDM1)–(SDM6) of Smax
d (K, u). Only the use of the at-most-u constraints is changed—

we represent the upper bound for the sum of the distances by adding a single at-most-u
constraint for all invX,i with i ∈ {1, . . . , |K|}. Let INV be the set containing all invX,i:

at most(u, INV) (SDS7)
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Altogether, Smax
d (K, u) is comprised of (SDS1)–(SDS7) (for an overview, see Encoding 5

in Appendix A.1.5). The following result establishes that the above encoding faithfully
implements IΣ

d . The corresponding proof can likewise be found in Appendix A.1.5.

Theorem 5. For a given value u, the encoding SΣ
d (K, u) is satisfiable if and only if IΣ

d (K) ≤
u. SΣ

d (K, u) is unsatisfiable for all u ∈ {0, . . . , |At(K)| · |K|} if and only if IΣ
d (K) = ∞.

Example 14. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct SΣ

d (K7, 2), i. e., a SAT encoding which returns true if
and only if 2 is an upper bound of the sum-distance inconsistency value of K7.

The variables we require (defined by (SDS1)–(SDS3)) are the same as those in Example
13. Furthermore, the constraints we need to add to SΣ

d (K7, 2) via (SDS4)–(SDS6) correspond
exactly to those defined by (SDM4)–(SDM6) in Example 13. However, we use a different
at-most-u constraint following (SDS7):

at most(2, {invx,1, invy,1, invx,2, invy,2, invx,3, invy,3})

3.8 The Hit-Distance Inconsistency Measure

Let K once again be a knowledge base and u an integer representing a possible upper bound
of Ihit

d (K). In the following, we construct a SAT encoding Shit
d (K, u) for upperIhit

d
.

In contrast to the other distance-based measures, the value of Ihit
d (K) is not a distance

value, but a count of distances greater than 0. In other words, Ihit
d (K) is the maximum

number of formulas in K that can be satisfied by one interpretation, or the minimum number
of formulas that need to be removed in order to make K consistent. To represent this, we
add one new variable hitA for every formula A ∈ K (SDH1). Let HITK = {hitA | A ∈ K}.
For each A ∈ K, we also add a disjunction that uses one of the new variables:

A ∨ hitA (SDH3)

This formula represents that if A is not true, then the new variable hitA is set to true.
Note that all atoms of the input knowledge base K still appear in the encoding as part of
A (SDH2). We then represent the upper bound for the number of models with distances
> 0 by adding one at-most-u constraint that restricts the number of hitA ∈ HITK that are
allowed to be set to true:

at most(u,HITK) (SDH4)

In total, Shit
d (K, u) is defined by (SDH1)–(SDH4). Appendix A.1.6 provides an overview

of Shit
d (K, u) (i. e., Encoding 6), as well as the correctness proof of the theorem below.

Theorem 6. For a given value u, the encoding Shit
d (K, u) is satisfiable if and only if

Ihit
d (K) ≤ u.
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Example 15. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Shit

d (K7, 1), i. e., a SAT encoding which returns true
if and only if 1 is an upper bound of the hit-distance inconsistency value of K7.

First, following (SDH1), we define the variables hitα1 , hitα2 , hitα3 wrt. the formulas in
K7. Moreover, we require the variables At(K7) = {x, y} (SDH2). Following (SDH3), we
add the subsequent constraints to Shit

d (K7, 1):

(x ∧ y) ∨ hitα1 , (x ∨ y) ∨ hitα2 , (¬x) ∨ hitα3

At last, we add at most(1, {hitα1 , hitα2 , hitα3}) via (SDH4).

4. ASP-Based Algorithms for Selected Inconsistency Measures

After the introduction of a general SAT-based approach for computing inconsistency de-
grees, as well as specific encodings for the problem upperI wrt. all six inconsistency mea-
sures addressed in this work, we now introduce answer set programming as an alternative
method to compute inconsistency values.

4.1 Answer Set Programming

Answer Set Programming (ASP) (Lifschitz, 2019; Gebser, Kaminski, Kaufmann, & Schaub,
2012; Lifschitz, 2008; Brewka, Eiter, & Truszczynski, 2011) is a declarative problem solving
approach targeted at difficult search problems. Thus, rather than modeling instructions
on how to solve a problem, a representation of the problem itself is modeled. The goal is
to represent a problem in a logical format (a logic program) such that the models of this
representation describe solutions of the original problem. These models are called answer
sets.

In short, a logic program is a finite set of rules of the form

r = a0 :- a1, . . . , an, not an+1, . . . , not am.

with each ai (0 ≤ i ≤ n ≤ m) being atoms, and “not” denoting the default negation in the
sense of Reiter (1980). In ASP, an atom has the form p(t1, . . . , tn), with p being a predicate
symbol, and t1, . . . , tn being terms. Terms are either constants, variables, arithmetic terms
(i. e., −t1 or t1 ◦ t2 with ◦ ∈ {+,−, ∗, /} wrt. some terms t1, t2), or functional terms (i. e.,
φ(t1, . . . , tm) with φ being a functor, t1, . . . , tm being terms, and m > 0) (Calimeri, Faber,
Gebser, Ianni, Kaminski, Krennwallner, Leone, Maratea, Ricca, & Schaub, 2020). Moreover,
we express the arity n of a predicate or function φ as φ/n, and an ASP literal ℓ is either
an atom or a default-negated atom.

The head of a rule r (as shown above) is head(r) = {a0} and the body is body(r) =
{a1, . . . , an, not an+1, . . . , not am}. If body(r) = ∅, then r is a fact, and if head(r) = ∅, then
r is a constraint. We further divide the body elements of r into body+(r) = {a1, . . . , an}
and body−(r) = {an+1, . . . , am}.
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An atom/rule/program is ground if it does not contain any variables.3 Let X be a set
of ground atoms. We define X to be a model of a ground logic program P if for all r ∈ P ,
head(r) ∈ X whenever body+(r) ⊆ X and body−(r) ∩ X = ∅. The reduct (Gelfond &
Lifschitz, 1988) of P wrt. X is defined as

PX = {head(r) :- body+(r) | body−(r) ∩X = ∅ with r ∈ P}

Moreover, X is an answer set of P if it is a subset-minimal model of PX .
Another language concept we make use of is the conditional literal, which is of the

form ℓ0 : ℓ1, . . . , ℓn, with ℓ0, . . . , ℓn being literals. The idea behind a conditional literal
is to regulate the instantiation of ℓ0 by means of ℓ1, . . . , ℓn. In other words, we can view
a conditional literal as the set {ℓ0 | ℓ1, . . . , ℓn}. Moreover, we use cardinality constraints.
A cardinality constraint is of the form l{c1; . . . ; cm}u, with c1, . . . , cm being conditional
literals, l constituting an optional lower bound, and u an optional upper bound. Intuitively,
this can be read as “at least l, and at most u of the literals specified by c1, . . . , cm must be
satisfied”.

It is possible to use cardinality constraints not only in rule bodies, but also in heads.
A rule with a cardinality constraint as the head is referred to as an (extended) choice rule.
Formally, a choice rule has the form

rc = l{a1, . . . , am}u :- am+1, . . . , an, not an+1, . . . , not ao

with 0 ≤ m ≤ n ≤ o, a1, . . . , ao being atoms, 0 ≤ l ≤ u, and l, u being (optional) lower and
upper bounds, respectively. The intuition behind such a rule is that any subset of the head
atoms (which complies with the upper and lower bound, if specified) can be included in the
answer set. Note that choice rules can be transformed into sets of normal rules (Gebser
et al., 2012).

Furthermore, we use aggregates and optimization statements. The former are used
to reason about minima, maxima, sums, and counts over sets of literals. Let an ag-
gregate element g be defined as g = t1, . . . , tm : ℓ1, . . . , ℓn with t1, . . . , tm being terms,
and ℓ1, . . . , ℓn being literals. An aggregate is then defined as #agg{g1, . . . , gn} ≺ t, with
#agg ∈ {#count,#min,#max,#sum} being an aggregate function name, g1, . . . , gn be-
ing aggregate elements, ≺ ∈ {<,>,≤,≥,=, ̸=} being an aggregate relation, and t being a
term (Calimeri et al., 2020). Optimization statements serve the purpose of expressing cost
functions that are subject to minimization or maximization. In this work, we only use a spe-
cific form of minimize statements, which are of the form #minimize{t1, . . . , tm : ℓ1, . . . , ℓn}.,
with t1, . . . , tm being terms and ℓ1, . . . , ℓn being literals. We refer to a set that complies
with the minimization as an optimal answer set.

We further make use of the interval (“..”) and pooling (“;”) operators to abbreviate
notation. Intervals let us create multiple instances of a predicate determined by an interval
of numerical values, and pooling lets us create multiple instances of a predicate by sepa-
rating elements by “;”. For more details on ASP we refer the reader to the ASP-Core-2
standard (Calimeri et al., 2020).

3. Note that, following the Clingo syntax, all variable names we use start with an uppercase letter, and
all constant names start with a lowercase letter. We also make use of anonymous variables. Those are
variables that do not recur within a rule, and that are denoted by “ ”.
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4.2 The Contension Inconsistency Measure

Given a knowledge base K, we construct an extended logic program Pc(K) to determine
the contension inconsistency value Ic(K) as described in the following. Note that, like the
SAT-based approach for Ic, the ASP-based method was already proposed in (Kuhlmann
et al., 2022), but is covered again for the sake of completeness.

At first, we declare some facts describing the overall composition of the knowledge base,
i. e., we describe which formulas are elements of the knowledge base, which atoms are in
the knowledge base’s signature, and whether a (sub)formula is a conjunction, disjunction,
negation, or atom. We define for every formula A ∈ K

kbMember(A). (AC1)

and for every atom X ∈ At(K)

atom(X). (AC2)

Note that the A in K and the A in kbMember/1 are formally not the same—in K it is a
propositional formula, while in kbMember/1 it is a string representation of that formula.
More precisely, a formula A is “translated” to a uniquely defined ASP constant, i. e., a
string starting with a lowercase letter.4 The same applies to the X in At(K) and the X in
atom/1. In the following, whenever a propositional logic symbol appears in an ASP rule, it
is to be interpreted as a uniquely defined ASP constant.

Every conjunction Φc = Ψc,1 ∧Ψc,2 is encoded as

conjunction(Φc,Ψc,1,Ψc,2). (AC3)

In the same fashion, we define disjunctions Φd = Ψd,1 ∨Ψd,2 as

disjunction(Φd,Ψd,1,Ψd,2). (AC4)

For each negated formula, i. e., for each Φn = ¬Ψn, we define

negation(Φn,Ψn). (AC5)

Further, we need to encode subformulas which consist of individual atoms. Hence, for each
formula Φa which is equal to an atom X we define

formulaIsAtom(Φa,X). (AC6)

Additionally, we need to declare the truth values of Priest’s three-valued logic (t, f , b) as
facts:

tv(t;f;b). (AC7)

To encode how the contension inconsistency measure actually works, we first need to
ensure that an atom is not assigned multiple truth values at the same time, i. e., we need to
ensure that each atom gets a distinct evaluation. To this end, we introduce the predicate

4. For example, a given formula α1 could be represented as alpha 1.
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truthValue/2 and define that an atom has exactly one truth value by making use of a
cardinality constraint:

1{truthValue(A,T) : tv(T)}1 :- atom(A). (AC8)

In order to encode the evaluation of formulas, we need to model the role of the connec-
tives ∧, ∨, and ¬ in Priest’s three-valued logic (see Table 1). For a conjunction to be true
in Priest’s three-valued logic, both of its conjuncts have to be true:

truthValue(F,t) :- conjunction(F,G,H),

truthValue(G,t),

truthValue(H,t). (AC9)

For a conjunction to be false, it is sufficient if at least one of its conjuncts is false:

truthValue(F,f) :- conjunction(F,G,H),

1{truthValue(G,f); truthValue(H,f)}. (AC10)

A conjunction is b in three-valued logic if it is neither t nor f :

truthValue(F,b) :- conjunction(F, , ),

not truthValue(F,t),

not truthValue(F,f). (AC11)

Analogously, we define that a disjunction is false if both its disjuncts are false, and true if
at least one of its disjuncts is true. Again, if a disjunction is neither t nor f , it is b.

truthValue(F,f) :- disjunction(F,G,H),

truthValue(G,f),

truthValue(H,f). (AC12)

truthValue(F,t) :- disjunction(F,G,H),

1{truthValue(G,t); truthValue(H,t)}. (AC13)

truthValue(F,b) :- disjunction(F, , ),

not truthValue(F,t),

not truthValue(F,f). (AC14)

A negation is t in three-valued logic if its base formula is f and vice versa. A negation
is b if its base formula is b as well. Thus, we can formulate the following rules to model
three-valued negation in ASP:

truthValue(F,t) :- negation(F,G), truthValue(G,f). (AC15)

truthValue(F,f) :- negation(F,G), truthValue(G,t). (AC16)

truthValue(F,b) :- negation(F,G), truthValue(G,b). (AC17)
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Moreover, if a (sub)formula only consists of a single atom, it must have the same truth
value:

truthValue(F,T) :- formulaIsAtom(F,G),

truthValue(G,T),

tv(T). (AC18)

Further, all formulas A ∈ K need to be either t or b wrt. Priest’s three-valued logic.
Thus, no formula is allowed to be evaluated to f . We accomplish this by introducing the
following integrity constraint:

:- truthValue(F,f), kbMember(F). (AC19)

At last, to actually compute Ic(K), we require the minimal number of atoms in K
evaluated to b. This is achieved by means of a minimize statement:

#minimize{1,A: truthValue(A,b), atom(A)}. (AC20)

Now Pc(K) is the union of all rules defined in (AC1)–(AC20) (for an overview, see
Encoding 7 in Appendix A.2.1). Further, let ω3

M be the three-valued interpretation repre-
sented by an answer set M of Pc(K). To be precise, if M is an answer set of Pc(K) then
the three-valued interpretation ω3

M defined as

ω3
M (X) =


t truthValue(X,t) ∈ M

f truthValue(X,f) ∈ M

b truthValue(X,b) ∈ M

is a model of K with X ∈ At(K). The proofs regarding the well-definedness of the previous
definition as well as the following theorem are provided in Appendix A.2.1.

Theorem 7. Let Mo be an optimal answer set of Pc(K). Then |(ω3
Mo

)−1(b)| = Ic(K).5

Example 16. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


We aim to construct Pc(K7), i. e., an ASP encoding which allows us to retrieve Ic(K7).
First, we represent the formulas and atoms in K7 by applying (AC1) and (AC2):

kbMember(α1). atom(x).

kbMember(α2). atom(y).

kbMember(α3).

We use (AC3) to represent the only conjunction in K7 (α1) as conjunction(α1, ϕ1,1, ϕ1,2).
In the same fashion, we apply (AC4) to α2, the only disjunction occurring in K7, and get

5. For any function φ : X 7→ Y and y ∈ Y we define φ−1(y) = {x ∈ X | A(x) = y}
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disjunction(α2, ϕ2,1, ϕ2,2). Now, the only formula that is not represented in ASP yet is
α3, so we represent it as negation(α3, ϕ3) via (AC5). To represent the subformulas which
consist of individual atoms, we use (AC6):

formulaIsAtom(ϕ1,1, x). formulaIsAtom(ϕ1,2, y).

formulaIsAtom(ϕ2,1, x). formulaIsAtom(ϕ2,2, y).

formulaIsAtom(ϕ3, x).

The remainder of the logic program, i. e., (AC7)–(AC20), is static.

4.3 The Forgetting-Based Inconsistency Measure

The forgetting-based inconsistency measure If is determined by the number of atom occur-
rences that need to be “forgotten” in order to make the knowledge base K consistent. In
the following , we construct an extended logic program Pf(K) which computes If(K). Just
as described in the preceding section, we begin with the definition of facts. Again, every
formula A ∈ K is represented as kbMember(A) (AF1). Conjunctions (AF3), disjunctions
(AF4), and negations (AF5) are also represented in exactly the same form as introduced
in Section 4.2. On the other hand, formulas which consist of individual atoms have to be
handled differently. Since the forgetting-based inconsistency measure does not only con-
sider each atom, but each atom occurrence, we have to represent this in our ASP encoding.
Therefore, we define the predicate formulaIsAtomOcc/3 which contains the formula Φ, the
atom X it consists of, and the atom’s label l:

formulaIsAtomOcc(Φ,X,l). (AF2)

The representation of an atom occurrence can be extracted from the above rule as follows:

atomOcc(A,L) :- formulaIsAtomOcc( ,A,L). (AF7)

Moreover, we can gain the representation of an atom by applying the following rule:

atom(A) :- atomOcc(A, ). (AF8)

We model the truth values in the usual manner:

tv(t;f). (AF6)

Next, we include a rule that ensures unique atom evaluation. With regard to If , this
means that an atom as a whole must be evaluated to either t or f , even though individual
occurrences of that atom might be replaced by ⊤ or ⊥:

1{truthValue(A,T) : tv(T)}1 :- atom(A). (AF9)

The connective encodings simply model propositional entailment. Thus, the evaluation
of a conjunction Φc = Ψc,1 ∧Ψc,2 is modeled as follows:

truthValue(F,t) :- conjunction(F,G,H),

truthValue(G,t),

truthValue(H,t). (AF10)

truthValue(F,f) :- conjunction(F, , ),

not truthValue(F,t). (AF11)
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In the same fashion, we define the evaluation of a disjunction Φd = Ψd,1 ∨Ψd,2:

truthValue(F,f) :- disjunction(F,G,H),

truthValue(G,f),

truthValue(H,f). (AF12)

truthValue(F,t) :- disjunction(F, , ),

not truthValue(F,f). (AF13)

At last we define the evaluation of a negation Φn = ¬Ψn:

truthValue(F,t) :- negation(F,G),

truthValue(G,f). (AF14)

truthValue(F,f) :- negation(F,G),

truthValue(G,t). (AF15)

If a formula Φa consists of a single atom occurrence X l, we need to consider that the
forgetting operation might be applied. To model this, we first guess for each atom occurrence
whether it is being forgotten:

{atomOccForgotten(A,L)} :- atomOcc(A,L). (AF16)

If X l is not forgotten, it needs to evaluate to the truth value of X itself:

truthValue(F,T) :- formulaIsAtomOcc(F,A,L),

truthValue(A,T),

not atomOccForgotten(A,L). (AF17)

If, on the other hand, X l needs to be forgotten, it means that the (sub)formula consisting
of X l evaluates to the opposite truth value:

truthValue(F,t) :- formulaIsAtomOcc(F,A,L),

truthValue(A,f),

atomOccForgotten(A,L). (AF18)

truthValue(F,f) :- formulaIsAtomOcc(F,A,L),

truthValue(A,t),

atomOccForgotten(A,L). (AF19)

All formulas A ∈ K must evaluate to t after the forgetting operation is applied. Hence,
we add the following integrity constraint which corresponds exactly to the one we used for
the contension inconsistency measure (see (AC19) in Section 4.2):

:- truthValue(F,f), kbMember(F). (AF20)

Lastly, we need to minimize the number of atom occurrences which are forgotten:

#minimize{1,A,L : atomOccForgotten(A,L)}. (AF21)
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The union of the rules (AF1)–(AF21) defined above (see Encoding 8 in Appendix A.2.2
for an overview) constitute the extended logic program Pf(K). With M being an answer
set of Pf(K), we denote the set of atom occurrences that are forgotten as

FM = {X l | X ∈ At(K), atomOccForgotten(X,l) ∈ M}

Theorem 8. Let Mo be an optimal answer set of Pf(K). Then |FMo | = If(K).

The proof of the above theorem is provided in Appendix A.2.2.

Example 17. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


We aim to construct Pf(K7), i. e., an ASP encoding which allows us to retrieve If(K7). To
begin with, the formulas α1, α2, and α3 are represented using kbMember/1 (AF1), exactly as
in Example 16. Likewise, the representation of the conjunction (AF3), disjunction (AF4),
and negation (AF5) is the same as in Example 16. We label each atom occurrence to get
Kl

7 = {x1 ∧ y1, x2 ∨ y2,¬x3}, and represent each atom occurrence via (AF2):

formulaIsAtomOcc(ϕ1,1, x, 1). formulaIsAtomOcc(ϕ1,2, y, 1).

formulaIsAtomOcc(ϕ2,1, x, 2). formulaIsAtomOcc(ϕ2,2, y, 2).

formulaIsAtomOcc(ϕ3, x, 3).

The remainder of the logic program, i.e., (AF6)–(AF21), is static.

4.4 The Hitting Set Inconsistency Measure

The hitting set inconsistency measure Ih(K) is defined by the size of the minimal hitting
set wrt. a knowledge base K, subtracted by 1. The maximal size of such a hitting set is
determined by the number of formulas in K. Further, ωi refers to the i-th interpretation out
of the |K| possible interpretations we need to consider, assuming that the interpretations
have an arbitrary, but fixed order. We construct an extended logic program Ph(K) which
computes Ih(K) as follows.

We begin by representing each element A ∈ K (AH1) as well as each conjunction (AH4),
disjunction (AH5), and negation (AH6) in the same manner described in the two preceding
sections. Atoms are represented as atom/1 (AH2), and formulas consisting of individual
atoms are represented as formulaIsAtom/2 (AH7). The two classical truth values are en-
coded in the same fashion as shown in Section 4.3 (AH9). In addition, the hitting set
inconsistency measure requires the use of interpretations. Therefore, we add |K| interpre-
tations as follows:

interpretation(1..|K|). (AH3)

Again, we need to model that each atom takes exactly one (classical) truth value. How-
ever, as opposed to the two previously discussed measures, wrt. Ih we need to take into

592



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

account the formulas’ interpretations. Consequently, each atom requires a unique evalua-
tion wrt. each interpretation. We model this by introducing the predicate truthValueInt/3
which represents the truth value of an atom wrt. a specific interpretation:

1{truthValueInt(A,I,T) : tv(T)}1 :- atom(A),

interpretation(I). (AH10)

The connective encodings for each (sub)formula follow classical propositional entailment.
Hence, the rules which model conjunction, disjunction, and negation wrt. Ih are essentially
the same as those wrt. If , but with an additional reference to an interpretation:

truthValueInt(F,I,t) :- conjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,t),

truthValueInt(H,I,t). (AH11)

truthValueInt(F,I,f) :- conjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,t). (AH12)

truthValueInt(F,I,f) :- disjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,f),

truthValueInt(H,I,f). (AH13)

truthValueInt(F,I,t) :- disjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,f). (AH14)

truthValueInt(F,I,t) :- negation(F,G),

truthValueInt(G,I,f). (AH15)

truthValueInt(F,I,f) :- negation(F,G),

truthValueInt(G,I,t). (AH16)

If a formula is composed of an individual atom, it needs to be assigned the same truth value
as the atom itself wrt. an interpretation:

truthValueInt(F,I,T) :- formulaIsAtom(F,G),

truthValueInt(G,I,T),

interpretation(I),

tv(T). (AH17)

In order to meet the definition of the hitting set measure, each formula A ∈ K must
evaluate to t wrt. at least one interpretation included in the hitting set. We model this by
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using the predicate truthValue/2 as follows:

truthValue(F,t) :- truthValueInt(F,I,t),

kbMember(F),

interpretation(I),

interpretationActive(I). (AH18)

The predicate interpretationActive/1 serves the purpose of marking which interpreta-
tions are included in the final hitting set. Later on, we minimize the number of those “active
interpretations”. However, to ensure that at least one (and at most |K|) interpretations are
included in the hitting set, we require the following cardinality constraint:

1{interpretationActive(I) : interpretation(I)}|K|. (AH8)

To avoid symmetries introduced by (AH8), we add another integrity constraint:

:- interpretationActive(I), 1 < I, not interpretationActive(I-1). (AH20)

If a formula A ∈ K is not t wrt. any interpretation, it is f . In other words, if
truthValue(A,t) is not included in the answer set, then A is false with regard to all
interpretations:

truthValue(F,f) :- kbMember(F), not truthValue(F,t). (AH19)

However, since every formula in K must be satisfied by at least one interpretation, we need
to include the following integrity constraint:

:- truthValue(F,f),kbMember(F). (AH21)

At last, we minimize the number of interpretations that are required to be “active” in
order to satisfy all formulas in the given knowledge base:

#minimize{1,I : interpretationActive(I)}. (AH22)

We define Ph(K) to be the extended logic program specified by the union of all rules
defined in (AH1)–(AH22) (see Encoding 9 in Appendix A.2.3 for a complete list of all rules).
LetM be an answer set of Ph(K). We define the set of interpretations ωi represented inM as
Ω(M) = {ωi | interpretationActive(ωasp

i ) ∈ M}, with ωasp
i being an ASP representation

of ωi. The proof of the following theorem can be found in Appendix A.2.3.

Theorem 9. Let Mo be an optimal answer set of Ph(K). Then |Ω(Mo)| − 1 = Ih(K). If
no answer set of Ph(K) exists, Ih(K) = ∞.

Example 18. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3
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Our aim is to construct Ph(K7), i. e., an ASP encoding which allows us to retrieve the
Ih(K7). The formulas in K7 are represented the same way as in Example 16 and 17, using
kbMember/1 (AH1). Atoms are represented like in Example 16 as well (by using atom/1).
Likewise, subformulas consisting of individual atoms (AH7) are modeled as in Example 16.
Moreover, the conjunction (AH4), disjunction (AH5), and negation (AH6) are also defined
as before. However, we now need to define |K7| = 3 interpretations via (AH3):

interpretation(1..3).

Also, we ensure that at least one and at most |K7| = 3 interpretations are included in the
hitting set (AH8):

1{interpretationActive(X) : interpretation(X)}3.

The remainder of the logic program, i.e., (AH9)–(AH22), is static.

4.5 The Max-Distance Inconsistency Measure

Recall that, given a knowledge base K, the max-distance inconsistency measure Imax
d aims to

find an interpretation that has a minimal maximum distance to the models of the formulas
A ∈ K. We construct an extended logic program Pmax

d (K) that calculates Imax
d (K) as

described in the following.
Atoms are represented as atom/1, as described previously in the context of Ic, If ,

and Ih (see also (ADM2) in Encoding 10). Conjunctions, disjunctions, negations, and
formulas consisting of single atoms are handled exactly as presented in the previous section
(see (ADM4)–(ADM7) and (ADM11)–(ADM17) in Encoding 10). Truth values are again
defined by tv/1 (ADM9), and unique atom evaluation is also expressed as for Ih (ADM10).
Moreover, we use the predicate interpretation/1 to represent |K|+ 1 interpretations:

interpretation(0..|K|). (ADM3)

As opposed to the encoding of Ih, which only requires |K| interpretations, the encoding of
Imax
d requires |K| + 1 interpretations. This is due to the fact that for Imax

d we first need
to provide |K| interpretations in order to ensure that each formula is satisfied by at least
one interpretation (i. e., that we have at least one model for each formula). However, the
interpretation with the smallest maximum distance to the formulas’ models is not necessarily
a model of one of the formulas itself. Thus, we need to provide one additional interpretation
and end up with a total of |K|+ 1 interpretations.

As stated previously, each A ∈ K must be satisfied by at least one interpretation. To
achieve this, we demand that the i-th formula in K must be satisfied by the i-th interpreta-
tion. In order to model this in ASP, we first add a fact for every A ∈ K which additionally
incorporates an index i:

kbMember(A,i). (ADM1)

Further, we need to add an integrity constraint which ultimately ensures that the formula
with index i cannot be set to f (i.e., must evaluate to t) under the i-th interpretation:

:- truthValueInt(F,I,f),

kbMember(F,I). (ADM18)
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We know that the i-th formula in K must be satisfied by the i-th interpretation. Thus,
each interpretation ωi with i ∈ {0, . . . , |K| − 1} is a model of at least one formula in K.
We are now looking for an interpretation ω|K| with the smallest maximum distance to the
models of each formula. In the worst case, Imax

d (K) = |At(K)|. We represent each possible
value as follows.

diff(1..X) :- X = #count{A: atom(A)}. (ADM19)

By means of the #count aggregate above, we count the number of (ground) atom/1 in-
stances. We can now calculate the distance between ω|K| and the models of each formula
using another #count aggregate:

d(X) :- diff(X),

interpretation(I),

X <= #count{A: atom(A),

truthValueInt(A,I,T),

not truthValueInt(A,|K|,T)}. (ADM8)

Essentially, d/1 checks how many different values the distance between ω|K| and each model
corresponding to a formula can take. Since diff/1 ensures that d/1 is only derived once
for a given value, we can count how many different values (i. e., different distances) are
calculated. By minimizing this value, we indirectly get the minimal maximum distance:

#minimize{1,X : d(X)}. (ADM20)

Let Pmax
d be the extended logic program specified by the union of rules (ADM1)–

(ADM20) (see Encoding 10 in Appendix A.2.4 for a complete overview). Further, let
Dmax

M = {n | d(n) ∈ M,n ∈ N} wrt. an answer set M . The proof of the theorem be-
low is given in Appendix A.2.4 as well.

Theorem 10. Let Mo be an optimal answer set of Pmax
d (K). Then |Dmax

Mo
| = Imax

d (K). If
no answer set of Pmax

d (K) exists, Imax
d (K) = ∞.

Example 19. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct Pmax

d (K7), i. e., an ASP encoding which allows us
to retrieve Imax

d (K7). Following (ADM1), we assign each formula in K7 an index i ∈
{0, . . . , |K7| − 1}, i. e., i ∈ {0, . . . , 2}:

kbMember(α1, 0). kbMember(α2, 1). kbMember(α3, 2).

Moreover, we need to define |K7|+ 1 (i.e., 4) interpretations (ADM3):

interpretation(0..3).

Atoms are represented using atom/1 (ADM2), as we saw in Example 16 and 18. The same
applies to the conjunction (ADM4), disjunction (ADM5), and negation (ADM6), as well
as all (sub)formulas consisting of individual atoms (ADM7).

The remainder of the program, i. e., (ADM8)–(ADM20), is static.
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4.6 The Sum-Distance Inconsistency Measure

The difference between the sum-distance inconsistency measure IΣ
d and the max-distance

inconsistency measure Imax
d is the definition of the “optimal” distance. While Imax

d aims
to find the smallest maximum distance, IΣ

d seeks to find the smallest sum of all distances
between an interpretation ω|K| and the models of all A ∈ K (i. e., ωi with 0 ≤ i < |K|). As
opposed to Imax

d , we do not need to model the different distances explicitly—we can model
the summation directly by means of the following minimize statement:

#minimize{1,A,I: atom(A),

truthValueInt(A,I,T),

not truthValueInt(A,|K|,T)}. (ADS8)

Intuitively, we consider all models ωi and sum up the number of differing atom valuations
wrt. ω|K|. (Each differing atom valuation per ωi is counted as 1.) Due to the minimization,
we get the minimal sum of distances.

Let PΣ
d be the extended logic program specified by the union of rules (ADS1)–(ADS18)

(see Encoding 11 in Appendix A.2.5 for a complete overview). Further, let M be an answer
set of PΣ

d , and let θ ∈ {t, f}. We define

DΣ
M = {diffM (X, i) | truthValueInt(X, i, θ) ∈ M, truthValueInt(X, |K|, θ) /∈ M}.

The proof of the following theorem is provided in Appendix A.2.5.

Theorem 11. Let Mo be an optimal answer set of PΣ
d (K). Then |DΣ

Mo
| = IΣ

d (K). If no

answer set of PΣ
d (K) exists, IΣ

d (K) = ∞.

Example 20. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3


In this example, we aim to construct PΣ

d (K7), i. e., an ASP encoding which allows us to
retrieve the sum-distance inconsistency value of K7. The formulas in K7, the atoms in
At(K7), the interpretations, the conjunction, the disjunction, the negation, and the sub-
formulas consisting of individual atoms are encoded as described in (ADS1)–(ADS7) (see
Encoding 11), which corresponds exactly to (ADM1)–(ADM7) wrt. Imax

d (see Example 19).
Since |K| = 3, the minimize statement (ADM8) is expressed as follows.

#minimize{1,A,I: atom(A),

truthValueInt(A, I, T),

nottruthValueInt(A, 3, T)}.

The remaining rules, i.e., (ADS9)–(ADS18), are static.
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4.7 The Hit-Distance Inconsistency Measure

As for the SAT-based approach, in order to model the hit-distance inconsistency measure
Ihit
d in ASP, we use the characterization that Ihit

d (K) is equal to the minimal number of
formulas that need to be removed from the given knowledge base K in order to render it
consistent. Utilizing the latter characterization, we construct an extended logic program
P hit
d which calculates Ihit

d (K) as described below.
To start with, atoms, conjunctions, disjunctions, negations, and formulas consisting

of single atoms are represented exactly as presented before wrt. Imax
d and IΣ

d (see also
(ADH2)–(ADH6) in Encoding 12). Likewise, we define the two truth values via tv/1

(ADH7). Moreover, we need to ensure once again that each atom is assigned a distinct
truth value. This is realized in the same manner as for Ic and If (ADH8).

As we do not need to take into account multiple interpretations at the same time, the
assignment of truth values as well as the functionality of the connectives does not need to in-
clude a representation of the concept of interpretations. Thus, conjunction, disjunction, and
negation are therefore modeled in the same manner as presented for If (ADH9)–(ADH14).
If a formula consists of an individual atom, its evaluation is modeled in the same way as
presented for Ic (ADH15).

As opposed to the encodings of the other two distance-based measures, elements of the
given knowledge base K do not require an index in the encoding of Ihit

d . Thus, instead
of representing A ∈ K in combination with an index i as kbMember(A,i), we simply use
kbMember(A) (ADH1), like we saw previously in the encodings of Ic, If , and Ih.

The objective is to minimize the number of formulas in K which are evaluated to f . To
achieve this, we first define a rule that extracts the truth values of those formulas which are
elements of K.

truthValueKbMember(F,T) :- kbMember(F),

tv(T),

truthValue(F,T). (ADH16)

Now we can minimize the number of formulas which are evaluated to f—i.e., we minimize
the number of formulas which need to be removed in order to make K consistent.

#minimize{1,F : truthValueKbMember(F,f)}. (ADH17)

Let P hit
d be the extended logic program specified by the union of rules (ADH1)–(ADH17)

(see Encoding 12 in Appendix A.2.6 for a complete overview). Further, with M being an
answer set, we define KM = {Aasp | A ∈ K, truthValueKbMember(Aasp, f) ∈ M} with Aasp

being an ASP representation of A. The proof of the theorem below can also be found in
Appendix A.2.6.

Theorem 12. Let Mo be an optimal answer set of P hit
d (K). Then |KMo | = Ihit

d (K).

Example 21. Consider again the knowledge base K7 from Example 10:

K7 =


ϕ1,1︷︸︸︷
x ∧

ϕ1,2︷︸︸︷
y︸ ︷︷ ︸

α1

,

ϕ2,1︷︸︸︷
x ∨

ϕ2,2︷︸︸︷
y︸ ︷︷ ︸

α2

, ¬
ϕ3︷︸︸︷
x︸ ︷︷ ︸

α3
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In this example, we aim to construct P hit
d (K7), i. e., an ASP encoding which allows us to

retrieve Ihit
d (K7). At first, we use kbMember/1 (ADH1) to represent the formulas α1, α2,

and α3 in the same fashion as wrt. Ic, If , and Ih (see Example 16). Further, the atoms,
the conjunction, the disjunction, the negation, and the subformulas consisting of individual
atoms (see (ADH2)–(ADH6)) are represented exactly as wrt. Ic, Ih, Imax

d and IΣ
d (see

again Example 16). The remaining rules, i.e., (ADS7)–(ADS17), are static.

5. Evaluation

The aim of our experimental evaluation is to compare the proposed SAT-based and ASP-
based approaches to each other wrt. all six inconsistency measures considered in this work.
We additionally compare our methods to naive baseline algorithms (see Section 5.2) in terms
of runtime. Although we can expect both the SAT-based and the ASP-based approaches to
be superior to the baseline methods (regarding ASP this has already been demonstrated for
Ic, If , and Ih (Kuhlmann & Thimm, 2021), and regarding SAT this has been shown for Ic

in (Kuhlmann et al., 2022)), we still draw this comparison in order to concretely quantify
this assumption. Besides, the baseline algorithms are, to the best of our knowledge, the
only existing implementations for the inconsistency measures in question. However, as the
result of comparing the SAT and ASP methods is far less predictable (both SAT and ASP
are established formalisms for dealing with problems on the first level of the polynomial
hierarchy), we examine the two approaches more closely.

5.1 Experimental Setup

Due to the unavailability of standard benchmarking sets for inconsistency measurement, we
compiled a series of different data sets, either by artificially generating knowledge bases or
by translating benchmark data from other fields. For all these data sets the goal was to
have benchmark instances that are (mostly) inconsistent and feature a structure that can
be expected in real-world applications. We compiled five data sets in total that we briefly
describe in the following. Note that the SRS data set and the ML data set were already
used in (Kuhlmann et al., 2022); the remaining three data sets are novel.6

SRS Data set SRS consists of knowledge bases randomly generated using the SyntacticRan-
domSampler provided by TweetyProject7. This generator randomly generates a single
propositional formula Φ as follows. Given input parameters pd, pc, pn ∈ [0, 1] with
pd + pc + pn ≤ 1, it is randomly chosen whether Φ is a disjunction Φ = Ψ1 ∨Ψ2 (with
probability pd), a conjunction Φ = Ψ1∧Ψ2 (with probability pc), a negation Φ = ¬Ψ1

(with probability pn), or a proposition Φ = X (with probability 1− pd − pc − pn; the
exact proposition is chosen uniformly at random from some given set of propositions).
If Φ is not a proposition then this process is repeated for the subformula Ψ1 (and
additionally Ψ2 in the first two cases), where the probabilities for the first three cases
are multiplied by some discount parameter d ∈ (0, 1) (in order to ensure that the
process will, in practice, terminate at some point).

6. Download (all data sets): https://fernuni-hagen.sciebo.de/s/sML2faFBiCib1nm
7. http://tweetyproject.org/api/1.19/org/tweetyproject/logics/pl/util/

SyntacticRandomSampler.html
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Signature
size

Formulas /
KB

Mean sig.
size /

formula

Max. sig.
size /

formula

Mean
#atom occ.
/ formula

Max
#atom occ.
/ formula

3 5–15 1.69 3 2.23 6

5 15–25 2.32 5 3.11 11

10 15–25 2.70 8 3.13 10

15 15–25 2.80 9 3.11 11

15 25–50 2.81 9 3.11 11

20 25–50 2.88 11 3.11 11

25 25–50 2.91 12 3.09 13

25 50–100 2.92 10 3.11 11

30 50–100 2.94 11 3.10 13

Table 3: Overview of the sets of knowledge bases making up data set SRS. Each row
represents a set of 200 knowledge bases. The columns describe (from left to right) the
signature size, the number of formulas per knowledge base, the mean (resp. maximum)
signature size per formula, and the mean (resp. maximum) number of atom occurrences per
formula.

We created a total of 1800 knowledge bases using the SyntacticRandomSampler. In
order to include instances of varying complexity, we used different parameter settings
to create nine sets which each consist of 200 knowledge bases. To be specific, we used
different signature sizes and different numbers of formulas per knowledge base. The
parameters pd, pc, and pn were always set to 0.3. A more detailed overview of the
composition of the SRS data set is given in Table 3.

ML The ML data set consists of knowledge bases containing formulas learnt from ma-
chine learning data (Thimm & Rienstra, 2020). More precisely, the data set “Animals
with attributes”8 describes 50 animals, e. g. ox, mouse, or dolphin, using 85 binary
attributes such as “swims”, “black”, and “arctic”. We used the Apriori algorithm
(Agrawal & Srikant, 1994) to mine association rules from this data set for a given
minimal confidence value c and minimal support value s. All these rules were then
interpreted as propositional logic implications. Finally, we selected one animal at ran-
dom and added all its attributes as facts (thus making the knowledge base inconsistent
as even rules with low confidence values were interpreted as strict implications). We
set

c ∈ {0.6, 0.65, 0.70, 0.75, 0.8, 0.85, 0.90, 0.95},
s ∈ {0.6, 0.65, 0.70, 0.75, 0.8, 0.85, 0.90, 0.95},

and allowed maximally 4 literals per rule. The final data set contains 1920 instances.

ARG Data set ARG consists of a total of 326 knowledge bases extracted from benchmark
data of the International Competition on Computational Models of Argumentation

8. http://attributes.kyb.tuebingen.mpg.de

600



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

Name #KBs
#Formulas Sig. size #Con./formula

Mean Std. Mean Std. Mean Std.

SRS 1800 36 24 16 9 3.1 2.0

ML 1920 7506 17984 76 0 5.5 1.4

ARG 326 989 2133 827 1781 198.3 455.1

SC 100 14254 12788 2559 2616 4.5 3.9

LP 45 9150 4683 10097 4834 11.0 905.1

Table 4: Overview of some properties of the data sets used in the evaluation, which include
(from left to right) the total number of knowledge bases, the number of formulas per knowl-
edge base (mean and standard deviation), the signature size per KB (mean and standard
deviation), and the number of connectives per formula (mean and standard deviation).

2019 (ICCMA’19)9. An abstract argumentation framework (Dung, 1995) is a directed
graph F = (A,R) where A is a set of arguments, and R models a conflict relation
between such arguments. A computational task here is to find a stable extension, i. e.,
a set E ⊆ A with (a, b) /∈ R for all a, b ∈ E and (a, c) ∈ R for all c ∈ A \ E and some
a ∈ E. For each instance from ICCMA’19, we encoded the instance and the problem
of finding such a stable extension via the approach from (Besnard, Doutre, & Herzig,
2014) and, additionally, added constraints to ensure that 20% of randomly selected
arguments have to be contained in E. Note that the latter constraints usually make
the knowledge base inconsistent.

SC Data set SC consists of the 100 smallest (in terms of file size) instances of the benchmark
data set from the main track of the SAT competition 2020.10

LP Data set LP is generated from benchmark data for answer set programming. More
specifically, we used the problems 15-Puzzle (11 instances), Hamiltonian Cycle (20
instances), and Labyrinth (14 instances). available from the Asparagus website11.
Each problem specification and a single instance was first grounded and then converted
to a propositional logic knowledge base using Clark completion (Clark, 1978), i. e., a
procedure that, basically, translates rules L0 :- L1, . . . ., L0 :- Ln. with identical head
to a single formula L0 ↔

∧
L1 ∨ . . . ∨

∧
Ln (where each Li, i ∈ {1, . . . , n}, may be a

set of literals). Both classical negation and default negation in the rules are converted
to logical negation in the resulting propositional formula.12

An overview of some basic statistics (including the number of instances, the mean num-
ber of formulas, the mean signature size, and the mean number of connectives per formula)
of all five data sets is provided in Table 4.

9. http://argumentationcompetition.org/2019/
10. https://satcompetition.github.io/2020/downloads.html
11. https://asparagus.cs.uni-potsdam.de
12. Note that this procedure does not maintain the semantics of the original logic program. However, since

we are not interested in computing solutions to the original problems but only require benchmarks that
feature a similar structure as application scenarios, we believe that this does not pose an issue.
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Both the SAT-based and the ASP-based approaches are implemented in C++. The
SAT solver we use is CaDiCal sc202113 (Biere, Fazekas, Fleury, & Heisinger, 2020), and the
ASP solver we use is Clingo 5.5.114 (Gebser, Kaminski, Kaufmann, & Schaub, 2019). For
the computation of cardinality constraints in SAT we use sequential counter encoding (Sinz,
2005), and for transforming formulas to CNF we use Tseitin’s method (Tseitin, 1968).

Due to the significant amount of time required to complete the evaluation, two different
servers were used to facilitate the evaluation of multiple data sets in parallel. The experi-
ments regarding the SRS data set were run on a computer with 128GB RAM and an Intel
Xeon E5-2690 CPU which has a basic clock frequency of 2.90GHz. The other data sets
(ML, ARG, SC, and LP) were evaluated on server instances with 32GB RAM and an Intel
Xeon Platinum 8260M CPU with a basic clock frequency of 2.40GHz.

5.2 Baseline Approaches

We will compare our two families of approaches against existing baseline implementations
of the respective measures from TweetyProject. These are quite simple computational ap-
proaches mainly relying on brute force methods which are written in Java. We briefly
explain these baseline approaches as follows:

• The contension inconsistency measure.15 On input K this approach first converts K
into conjunctive normal form K′ (exploiting the fact that the contension inconsistency
value does not change when applying syntactic transformations). Then a SAT solver
is used to check whether K′ is satisfiable. If it is, the inconsistency value is 0 and
the algorithm terminates. Otherwise, for some atom X appearing in K′, all clauses
containing X or ¬X are removed (this is equivalent to setting the truth value of X to
b). If the resulting knowledge base is satisfiable, the inconsistency value 1 is returned.
Otherwise, every other atom appearing in K′ is tested in the same way. If none of the
resulting knowledge bases is satisfiable, the procedure is continued with all pairs of
atoms appearing in K′, and so forth.

• The forgetting-based inconsistency measure.16 This approach works similar as the
approach for the contension inconsistency measure. First, satisfiability of the input
K is tested using transformation into conjunctive normal form and application of a
SAT solver. Then, all possible substitutions of forgetting a single atom occurrence
are applied on the input and it is checked whether the resulting knowledge base is
consistent (again by using a SAT solver). Then, all pairs of possible substitutions are
tested, and so on.

• The hitting set inconsistency measure.17 This approach first checks whether there
is a single interpretation that satisfies the input K (by exhaustive enumeration) and
returns the inconsistency value 0 in that case. Then, we check whether there is any
pair of interpretations (by exhaustively enumerating all possible combinations) such

13. https://github.com/arminbiere/cadical
14. https://potassco.org/clingo/
15. http://tweetyproject.org/r/?r=base_contension
16. http://tweetyproject.org/r/?r=base_forget
17. http://tweetyproject.org/r/?r=base_hs
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that every formula is satisfied by at least one of them. If such a pair can be found,
the inconsistency value 1 is returned. Otherwise, the process is repeated with three
interpretations, and so on.

• The max-distance inconsistency measure.18 This approach simply iterates over all
possible interpretations and calculates the distances to each formula (i. e., the minimal
distance to all models of the formula). The maximum value found is returned.

• The sum-distance inconsistency measure.19 This approach is analogous to the max-
distance inconsistency measure, but sums are calculated rather than maxima.

• The hit-distance inconsistency measure.20 This approach is analogous to the max-
distance inconsistency measure, but only the number of unsatisfied formulas is checked.

It is apparent that theses approaches solve the corresponding problems in quite a naive
fashion, but they are still able to produce results for small (toy) examples.

5.3 Results

In this section, we present the results of our experimental analysis. To begin with, we
compare the overall runtime of the SAT-based, ASP-based, and baseline approaches. Af-
terwards, we analyze more specific aspects, namely the runtime composition of the SAT-
and ASP-based methods, the choice of search strategy used in the SAT-based approaches,
the use of MaxSAT, and a comparison of previous versions of ASP encodings for Ic with
the current version.

5.3.1 Overall Runtime Comparison

Our first goal of the evaluation is to obtain an overview of the runtimes of the different
approaches. To get a most thorough overview, we consider all three approaches for each of
the six measures, and use all five previously described data sets (see Section 5.1).

A timeout was set to 600 seconds (i. e., 10 minutes) for instances from the SRS, ML, and
ARG data sets. For instances from the SC and LP data sets, which are overall more chal-
lenging compared to those instances from the previously mentioned data sets, we increased
the timeout to 5000 seconds (i. e., 83.3 minutes). This corresponds to the time limit used
in the SAT competition 2020, from which the instances in the SC data set were selected.

SRS First we consider the SRS data set, which has been used previously in (Kuhlmann
& Thimm, 2021; Kuhlmann et al., 2022). Table 5 provides the number of solved instances
as well as the cumulative runtime of each approach wrt. each measure and each data set.
(For a more detailed overview, see also the plots in B.1 and B.3.) Looking at the SRS
part of Table 5, a first noticeable observation is that, overall, the ASP-based approaches
perform best, while the naive approaches perform, as expected, poorest. More precisely, the
ASP-based approaches only time out in 175 out of 10,800 cases (1.62%). To set this into
perspective: the SAT approaches time out in 1552 cases (14.37%), and the naive ones in

18. http://tweetyproject.org/r/?r=base_dmax
19. http://tweetyproject.org/r/?r=base_dsum
20. http://tweetyproject.org/r/?r=base_dhit
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5703 cases (52.81%). The only exception to this pattern is the sum-distance inconsistency
measure (IΣ

d )—here, the naive approach outperforms the SAT-based one. This might be
due to the fact that the search space for IΣ

d is quite large compared to most other measures21

(see Table 2). As the maximum non-∞ value for IΣ
d is |At(K)| × |K|, the search procedure

consists of log(|At(K)| × |K| + 1) steps, and we also need to calculate a new cardinality
constraint exactly as many times. This results in the SAT method for IΣ

d being slower than
those for the other two distance-based measures, while the respective naive methods are
about equally fast for all three measures.

From concrete comparisons between each pair of approaches (see Appendix B.3 for some
visualizations) we learn that all ASP-based approaches outperform the SAT-based ones in
almost all cases (see Figure 17). The only exception worth mentioning are a few knowledge
bases for which the SAT approach for Ih was faster. With regard to the comparison of the
ASP-based and naive methods we observe a similar pattern—again, the ASP methods are
faster than the naive ones in most cases (see Figure 18). There are again a few instances
for which Ih is computed faster by the naive method. Overall, these results reinforce the
perception conveyed by Table 5 that ASP performs strongest across this data set.

The comparison between the SAT-based and the naive approaches shows that the naive
approach to solving IΣ

d is faster than its SAT-based counterpart in the majority of cases
(see Figure 19), and in addition, there are numerous instances for which the SAT-based
method could not return a result within the time limit, while the naive method could. Wrt.
all other measures (with the exception of Ic), there exist some instances for which the naive
approach was faster as well. However, in total, the SAT-based approaches perform superior
to the naive ones.

ML A first glance at the ML part of Table 5 immediately reveals that this data set
appears to be more challenging than the SRS data set, as there are significantly more
timeouts across the three approaches wrt. all six inconsistency measures. To be precise,
the ASP approaches time out in 3666 out of 11,520 cases (31.82%), the SAT approaches
time out in 7760 cases (67.36%), and the naive approaches in 9831 cases (85.34%). Thus,
overall, the relationships between the approaches are again similar to those for the SRS
data set—the ASP approaches achieve the strongest results, the naive ones, as expected,
the weakest.

Particularly noticeable are the results regarding the three distance-based measures. The
naive methods did not solve a single instance for any one of the three measures within the
time limit. The SAT approaches did not yield any results for Imax

d and IΣ
d either; only for

Ihit
d , a total of 770 instances could be solved. The ASP approach was the only one that

could actually solve a number of instances for both Imax
d and IΣ

d .
Another noticeable observation is that the naive approach for If slightly outperforms its

SAT-based equivalent—which was clearly not the case wrt. the SRS data set. This is most
likely due to the fact that the SRS data set contains significantly fewer instances that are
consistent, i.e., have an inconsistency degree of 0, than the ML data set (19 vs. 548 instances;
see Figures 12 and 13 for more information). Since the naive approach first checks whether

21. The only other measure that could possibly result in a higher value wrt. a given knowledge base K is If .
However, since If depends on the number of atom occurrences in K, and IΣ

d depends on the number of
formulas in K as well as the signature size At(K), a general assessment of which measure has a larger
search space is not possible.
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Naive SAT ASP

#solved CRT (s) #solved CRT (s) #solved CRT (s)

S
R
S
(1
80

0)
Ic 1162 49237 1800 793 1800 48

If 271 22230 1580 103172 1667 16482

Ih 647 16176 1792 57644 1792 1612

Imax
d 1006 27156 1618 97589 1800 3919

IΣ
d 1006 27188 658 67065 1766 11785

Ihit
d 1005 26557 1800 4585 1800 63

M
L
(1
9
20

)

Ic 1134 19075 1763 99260 1920 9013

If 555 3373 523 33994 1467 67220

Ih 0 − 704 76745 1163 58203

Imax
d 0 − 0 − 733 89206

IΣ
d 0 − 0 − 651 18818

Ihit
d 0 − 770 38730 1920 7803

A
R
G

(3
26

)

Ic 103 3045 196 10252 246 9071

If 70 1175 68 6395 143 1908

Ih 47 1412 157 8539 218 12975

Imax
d 23 762 85 6222 145 8408

IΣ
d 23 773 30 3694 133 2644

Ihit
d 23 772 164 3340 157 1382

S
C

(1
00

)

Ic 11 15481 13 21244 7 8619

If 11 11859 1 111 4 285

Ih 0 − 2 153 3 1461

Imax
d 0 − 1 313 2 1172

IΣ
d 0 − 0 − 3 322

Ihit
d 0 − 3 2513 5 2347

L
P

(4
5)

Ic 0 − 0 − 45 15869

If 0 − 0 − 11 36315

Ih 0 − 0 − 0 −
Imax
d 0 − 0 − 0 −

IΣ
d 0 − 0 − 0 −

Ihit
d 0 − 0 − 31 7983

Table 5: Overview of the number of solved instances and cumulative runtime (CRT) per
data set, measure, and approach. The total number of instances contained in each data set
is provided in braces after the data set name. Timeout: 600 seconds (10 minutes) for SRS,
ML, and ARG, and 5000 seconds for SC and LP.
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the given knowledge base is consistent (by means of a SAT solver), consistent instances
can be solved rather fast, in particular when compared to the SAT-based approach, where
log(|Occ(K)| + 1) calls to a SAT solver are required. Besides, the SAT approach requires
the computation of a SAT encoding for upperIf (including the computation of an at-most-
k constraint in each step), which leads to an additional overhead. The same applies to
the naive approach for Ic. Furthermore, the naive approaches for Ic and If might also
yield a result rather quickly if the corresponding inconsistency value is not 0, but still
very low, as they both search for the correct value from low to high in a linear manner.
Deeper analysis revealed that the naive approach for Ic was faster than the corresponding
SAT-based approach in a total of 895 cases. In 507 out of these 895 cases, the contension
inconsistency degree of the respective instances was in fact 0. Moreover, the inconsistency
degree was 1 in 340 cases, and 2 in 48 cases. Whenever the inconsistency degree was > 2,
the naive approach for Ic was slower than the SAT-based approach. Regarding If , the naive
approach was also faster than the SAT-based one in 507 cases in which the inconsistency
value is 0. Further, there are 19 instances K with If(K) = 1 which could be solved faster
by the naive approach; there are no instances with If(K) > 1 where this is the case.

Wrt. ASP, the picture looks a bit different: the naive method was faster than the ASP-
based method in only 65 cases for Ic, and 57 cases for If . In 45 of the cases regarding Ic,
the inconsistency value is 0, and in the remaining 20 cases it is 1. With regard to If , in 56
out of the 57 cases in which the naive approach was faster, the corresponding inconsistency
value is 0, and in the single remaining case it is 1.

A comparison between the runtimes of the ASP-based and the SAT-based approaches
(see Figure 20) shows that the former are faster wrt. all instances. When comparing the
ASP approaches with the naive ones (see also Figure 21), we can see that there is a number
of instances which could be solved by the naive method for If , while the ASP-based one
resulted in a timeout. Yet overall, the ASP methods perform significantly superior compared
to the naive ones. The comparison between the SAT approaches and the naive ones looks
similar, however the naive approaches overall perform a bit stronger than when compared
to the ASP-based versions. However, although the SAT-based methods are outperformed
by the naive ones in a total of 1465 cases, the former still solve 1799 instances more than
the latter (across all inconsistency measures).

ARG From the ARG part of Table 5 we can observe that all three approaches wrt. all six
inconsistency measures can solve some instances, but none can solve all instances from the
data set. In total, the ASP-based approaches time out in 914 out of 1956 cases (46.73%),
the SAT-based approaches time out in 1256 cases (64.21%), and the naive ones in 1667
cases (85.22%). Once again, the ASP approaches overall clearly perform strongest, and
the naive ones weakest. However, similarly to what we observed for the ML data set, the
naive approach for If performs a bit stronger than the SAT-based one. Another exception
to the overall pattern is that the SAT-based and the ASP-based approaches for Ihit

d solve
a quite similar number of instances; in fact, the ASP-based approach produces a few more
timeouts than the SAT-based one. This has not been the case for any measure with regard
to the SRS or ML data set. However, it should also be mentioned that the ASP approach
is clearly faster in the majority of cases (see also the scatter plot in Figure 23f). Further,
wrt. IΣ

d , the naive method and the SAT-based method perform similarly. Nevertheless,
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although the SAT-based approach is a bit slower on average, the naive one still produces 7
more timeouts.

The results of a comparison regarding the individual runtimes per knowledge base be-
tween the ASP-based, SAT-based, and naive approaches underline the proposition that the
ASP-based approaches perform superior to the SAT-based and naive ones on the ARG data
set. The comparison to the SAT-based approaches (see Figure 23) shows that ASP is faster
in all cases, except for a few instances wrt. Ic and Ihit

d . Compared to the naive approaches
(see Figure 24), the ASP-based ones were faster in all cases, except for one instance in which
the naive version was slightly faster wrt. If .

The comparison between the SAT-based and the naive approaches (see Figure 25) shows
that the naive ones outperformed the SAT-based ones in multiple cases. More precisely, wrt.
all inconsistency measures (except Ihit

d ) there are instances for which the naive approach
was faster. In particular, there are some instances for which the SAT-based versions of If
or IΣ

d time out, but their naive counterparts do not. At large, the SAT approaches still
perform superior to the naive ones. This becomes particularly clear on inspection of the
number of instances that the SAT-based methods can solve within the time limit, but the
naive versions cannot.

SC To begin with, we would like to recall the fact that we increased the timeout for the
data sets SC and LP to 5000 seconds (83.3minutes). However, even with this increased
timeout, the data set still poses a great challenge for all three approaches wrt. all six
inconsistency measures. On the other hand, this is not entirely surprising—in a SAT com-
petition, the problem at hand is to decide whether a given knowledge base is satisfiable
or not (which is NP-complete), while the problem we are dealing with in this work is to
determine an inconsistency value (which is in FPNP[logn] wrt. Ih and Imax

d , and proven to

be FPNP[logn]-complete wrt. Ic, If , IΣ
d , and Ihit

d (Thimm & Wallner, 2019)).
In summary, all three approaches time out in most cases—the ASP approaches in 576

out of 600 cases, the SAT approaches in 580, and the naive approaches in 578 cases (see
Table 5 for more details). It should be noted that wrt. the naive methods, only the those
for Ic and If could solve any instances whatsoever. The reason for this behavior is most
likely the previously mentioned fact that the naive approaches for both Ic and If use a
SAT solver to check whether the given knowledge base is consistent as a first step, which
allows for retrieving the inconsistency value fast in case it is 0. If the inconsistency value is
1, both approaches can still yield a result rather fast if the “correct” atom (in the case of
Ic) or atom occurrence (in the case of If) is removed at an early stage. Our analysis (see
Figure 15) shows that, in fact, all instances from the SC data set that could be solved have
either inconsistency value 0 or 1 (wrt. all measures).22 Furthermore, all knowledge bases in
the data set at hand are already provided in CNF—hence, as opposed to all other data sets
considered in this work, the formulas do not require any additional transformation steps for
the SAT approaches.

LP At last we inspect the runtime results regarding the LP data set. Again, the timeout
is set to 5000 s. The results (see Table 5) show that neither one of the SAT-based or naive
approaches could solve any instance for any of the six measures within the time limit. As

22. This is a quite reasonable result, as the knowledge bases in this data set were designed for a SAT
competition. Hence, it is supposed to be challenging to decide whether they are unsatisfiable at all.
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for the ASP-based approaches, some instances could be solved wrt. Ic, If , and Ihit
d , but

wrt. Ih, Imax
d , and IΣ

d , again, not a single inconsistency value could be determined within
the time limit. To be exact, we can observe that the ASP-based method for Ic could, in
fact, solve all 45 instances, while the one for If could solve 11 instances, but timed out
34 times. The ASP method for Ihit

d solved 31 instances, and consequently timed out in 14
cases. A closer look at the runtimes (see also Figure 7) reveals that, although the ASP-based
approaches for Ic, If , and Ihit

d could solve a number of instances, they did require a rather
large amount of time in a lot of cases, in particular wrt. If . More precisely, the ASP-based
method for Ic still solved 16 instances between 10 and 100 s, however, the remaining 29
instances took between 100 and 1000 s, with 12 of them exceeding the 500 s mark. With
regard to the ASP method for If , all instances (except one) even require > 1700 s. These
comparatively long runtimes might be an indicator of why none of the SAT-based or naive
approaches could solve even a single instance.

5.3.2 Runtime Composition

The experiments illustrated in the preceding section revealed that the ASP-based ap-
proaches overall outperform their SAT-based and naive counterparts. Whereas this is not
surprising wrt. the naive methods, it is not immediately clear why the SAT methods are
outperformed as well. The objective of this section is to explore the reasons for this in
more detail by investigating how the runtimes of both the SAT and the ASP methods are
composed on average.

Because both the ASP and the SAT approaches solved a significant number of instances
from the SRS data set, and, respectively, the ARG data set, wrt. all six inconsistency mea-
sures, we selected those two data sets for further analysis. More specifically, we examined
the average runtime composition, meaning we defined a number of categories representing
the main elements of the approaches and measured how much of the overall runtime is spent
on each of them. The categories are “encoding generation”, “solving”, and for the SAT ap-
proaches additionally “transformation to CNF”. Moreover, we defined the category “other”
for any remaining tasks, such as loading the given knowledge base. Note that “solving”
does not only include the plain solving time, but also the solver initialization for both ASP
and SAT methods.

Furthermore, we compare the average runtimes of the SAT and ASP approaches wrt.
each measure and regarded data set. For the SAT methods, this includes all required
search steps, i.e., multiple encoding generation steps (this particularly affects cardinality
constraints), multiple solver calls, and multiple transformations to CNF.

To begin with, we consider the results wrt. the SRS data set. In total, the ASP ap-
proaches take between 0.03 s (Ic and Ihit

d ) and 9.89 s (If), and the SAT approaches between
0.44 s (Ic) and 101.92 s (IΣ

d ) on average. Figure 1 visualizes the runtime composition of
the ASP-based and the SAT-based approach for Ic. We see that the encoding generation
covers the largest fraction of the overall average runtime of the SAT-based approach. Wrt.
the ASP-based approach on the other hand, encoding generation merely takes a very small
fraction of a second (and is thus not even visible in the figure). Solving makes up the
second-largest share of the overall runtime of the SAT-based method; the other two cate-
gories (i.e., the transformation to CNF, and “other”) only have a relatively minor impact.
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Figure 1: Overview of the average runtime composition of the ASP-based and SAT-based
approaches for Ic wrt. the SRS data set.

Figure 2: Overview of the average runtime composition of the ASP-based and SAT-based
approaches for If wrt. the SRS data set.

Regarding the ASP-based method, both solving and “other” contribute significantly to the
overall runtime. A probable reason for the relatively large proportion of “other” is the
overall very short average runtime of the ASP-based approach.

The previously described findings do not, however, reflect the results regarding the
remaining five inconsistency measures on the SRS data set. More precisely, wrt. the SAT-
based approaches for the latter measures (i.e., If , Ih, Imax

d , IΣ
d , and Ihit

d ), the encoding part
does not make up the largest fraction of the overall average runtime—in fact, it makes up
a significantly smaller proportion than solving or CNF transformation in all cases (see also
Figure 33). The transformation to CNF, which represents the smallest runtime component
for Ic, plays a more prominent role for the other measures. In the case of Ih, it even
represents the largest fraction. Regarding the forgetting-based, as well as all three distance-
based measures, the largest runtime component is comprised by solving. Figure 2 shows the
runtime composition with regard to If , which represents the previously described pattern
that can also be applied to Imax

d , IΣ
d , Ihit

d , and (under the restriction that the solving-to-
CNF transformation ratio does not quite fit) also to Ih. Moreover, this figure shows that
the only relevant runtime component of the ASP-based approach for If is the solving part.
The same applies to the four remaining measures (Ih, Imax

d , IΣ
d , Ihit

d ) as well.

As mentioned in the beginning of this section, the total runtime of both ASP and SAT
approaches differs from measure to measure. Moreover, the ratio of the average ASP runtime
to the average SAT runtime differs wrt. the inconsistency measures as well. For example,
wrt. Ihit

d , ASP is roughly 73 times as fast as SAT (0.03 s vs. 2.55 s), however, wrt. If , ASP
is only about 7 times as fast (9.89 s vs. 65.30 s).

Some observations we made wrt. the SRS data set also apply to the ARG data set:

• For the ASP-based approaches, the solving part is essentially the only relevant com-
ponent regarding the overall runtime.
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• For the SAT-based approaches, solving overall makes up the most relevant part of the
runtime composition.

• Wrt. the SAT approach for Ic, the encoding generation part takes up a larger share
of the overall runtime than wrt. the SAT approaches for the other five measures.

• Wrt. the SAT approach for Ih, the transformation to CNF takes up a larger fraction
of the overall runtime than wrt. the SAT approaches for the other measures.

On the other hand, the runtime composition wrt. the ARG data set also provides some
new insights (see Figure 34 for an overview of all six measures). To begin with, the ratio
between the average ASP runtime and the average SAT runtime is smaller than wrt. the
SRS data set. More precisely, an ASP approach is at most roughly 7 times as fast as its
corresponding SAT version (If). Moreover, in the case of Ih, the SAT-based method is on
average even a bit faster than the ASP-based one. However, this observation has to be taken
with a grain of salt—the number of instances the ASP-based method could solve is higher
than the number of instances the SAT-based approach could solve, and when considering
individual knowledge bases, the ASP method was faster in each case (see Figure 23c).

5.3.3 Linear Search in SAT Approaches

In addition to the runtimes of the different approaches considered in this work we logged
the inconsistency values wrt. the different measures and data sets (in Appendix B.2, we
include histograms over all inconsistency values that could be retrieved for each data set and
measure). From the results we can see that the range of inconsistency values varies greatly,
in particular when considering the size of the search space. For instance, the contension
inconsistency values range from 0 to 25 on the SRS data set, with a maximum possible
value of |At(K)| = 30 (for the largest fraction of instances). In contrast, the max-distance
inconsistency measure has the same search space as Ic, but the values we actually measured
in our experiments are only ranging from 0 to 2, with roughly 1000 instances resulting in
the value 1. Another example is the sum-distance measure—here, the values are ranging
from 0 to 42. However, the search space is much larger, with a maximum possible value
of |At(K)| · |K| = 30 · 100 = 3000 (again, for the largest instances). These observations
raise the question of whether the binary search approach used in the SAT-based methods
is the most practical solution in all cases. We therefore conduct an experiment to compare
the previously used SAT approach which includes a binary search procedure to an adapted
version which uses linear search instead.

In our experiment, we focus on the three previously mentioned inconsistency measures
(Ic, Imax

d , and IΣ
d ) wrt. the SRS data set. Table 6 displays the results (see also Figures

8, 29, and 30 for further visualizations). We can see that with regard to Ic, the linear
search variant of the SAT approach is on average a bit slower than the binary search
variant. Nevertheless, the two methods perform quite similarly. Concerning Imax

d , the
two approaches perform again similarly. However, despite being a bit faster on average,
the linear search version times out in 33 cases more than its binary search counterpart.
Regarding IΣ

d , the results look quite different than those described before—the linear search
variant performs clearly superior, exhibiting 410 fewer timeouts than the binary search

610



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

Binary search Linear search

#solved CRT (s) #solved CRT (s)

Ic 1800 793 1800 1670

Imax
d 1618 97589 1585 43506

IΣ
d 658 67065 1068 77712

Table 6: Comparison between binary search and linear search in the SAT approach. Dis-
played are the number of solved instances and the cumulative runtime (CRT) per measure
on the SRS data set (1800 knowledge bases). Timeout: 10 minutes.

version. Thus, although binary search is in theory a more efficient search strategy than
linear search, it is not necessarily the superior option in practice.

5.3.4 MaxSAT Approaches

Another aspect we aim to investigate regarding SAT is the use of a MaxSAT solver. The
maximum satisfiability problem (MaxSAT) is the problem of finding an assignment of truth
values that satisfies a maximum number of clauses (for an overview on this topic, see, e. g.,
(Bacchus, Järvisalo, & Martins, 2021; Li & Manya, 2021)). Hence, our proposed technique
of using iterative SAT checks is essentially a naive method of solving a MaxSAT problem. In
the following, we use the contension measure as an example to show how our SAT encodings
can be modified to become MaxSAT encodings.

A (partial) MaxSAT encoding consists of hard clauses and soft clauses. While the hard
clauses must be satisfied, the soft clauses do not. Nevertheless, the goal is to satisfy as many
soft clauses as possible. Recall the SAT encoding for Ic being determined by (SC1)–(SC17)
in Section 3.3. The signature, defined by (SC1)–(SC2), remains the same in the MaxSAT
case, and we use the constraints defined via (SC3)–(SC16) as hard clauses. Only (SC17),
the at-most-u constraint, is not required anymore. Instead, we define a soft clause ¬Xb for
each X ∈ At(K). The intuition behind this is that as many atoms as possible are supposed
to be not set to b. Note that the SAT-based approaches for the other inconsistency measures
can be adapted to MaxSAT in a similar fashion.

We perform an experiment to compare the MaxSAT approach with the previously dis-
cussed approaches for Ic. To achieve this, we use the SRS data set, and as a MaxSAT
solver, we use EvalMaxSAT 23 (Avellaneda, 2020). The runtime results are presented in
Table 7 (see also Figures 10 and 31). We can observe that the MaxSAT approach is indeed
overall faster than the iterative SAT approach. However, it is, in total, still a bit inferior to
the ASP-based method. On the other hand, it should be noted that the runtimes for both
the MaxSAT and the ASP approach are quite short (< 1 s for each instance). Altogether,
the results of this experiments show that the use of MaxSAT has potential and is worth
being investigated in future work.

23. https://github.com/FlorentAvellaneda/EvalMaxSAT
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SAT binary search SAT linear search MaxSAT

#solved CRT (s) #solved CRT (s) #solved CRT (s)

1800 793 1800 1670 1800 221

Table 7: Comparison between the two variants of the iterative SAT approach for Ic and their
MaxSAT counterpart. Displayed are the number of solved instances and the cumulative
runtime (CRT) per measure on the SRS data set (1800 knowledge bases). Timeout: 10
minutes.

5.3.5 Core-Guided Optimization in ASP

Modern ASP systems, such as Clingo, allow for the use of different optimization strategies.
Clingo’s default option (which is used in all experiments described above) is a branch-and-
bound approach (Gebser, Kaufmann, & Schaub, 2012). In this approach, we first search
for an initial solution, i. e., an initial stable model, and (in case a solution exists) obtain
its objective value. The next step consists of a loop in which we try to find a solution
with a strictly “better” objective value—i. e., in the case of minimization, a strictly lower
value, and in the case of maximization, a strictly higher value. This is achieved by adding
constraints which ensure that any new solution must have a lower (resp. higher) objective
value than the solution derived before. If no “better” solution can be found, we know that
the previous solution corresponds to an optimum (Kaminski, Schaub, & Wanko, 2017).

Although the branch-and-bound optimization approach led to promising results in our
previous experiments, Clingo has further optimization techniques to offer, which we have yet
to explore. As an example, we perform an experiment in which we set Clingo’s optimization
strategy to “usc” (Gebser, Kaminski, Kaufmann, Romero, & Schaub, 2015), employs a core-
guided approach (Andres, Kaufmann, Matheis, & Schaub, 2012). The latter emerged in the
area of MaxSAT solving (Fu & Malik, 2006; Marques-Silva & Manquinho, 2008) and is
based on the following procedure. We first check if all soft clauses can be satisfied, i. e., we
implicitly introduce a lower bound of 0 soft clauses that are allowed to be falsified. If this
is not the case, we allow for at most one soft clause to be falsified (i. e., we increase the
lower bound to 1), and check for satisfiability again. This process is repeated until we find
a satisfiable solution. In order to guide this process, at each step an unsatisfiable core (an
unsatisfiable set of clauses) is extracted and only soft clauses from that a core are allowed
to be falsified (Fu & Malik, 2006). This approach has been transferred to ASP (Andres
et al., 2012), with the literals of ASP optimization statements being interpreted as the soft
clauses of a MaxSAT problem.

Since, in the case of minimization, core-guided optimization is useful when the target
values are close to 0, we selected inconsistency measures and data sets for which this applies
(see the histograms in Appendix B.2). To be precise, we performed an experiment with the
ASP approach for Ih on the ML data set; here, the inconsistency values tend to be very low
(either 0 or 1; see Figure 13), while the search space (i. e., the number of formulas) is still
quite large (the mean number of formulas is 7506; see Table 4). In addition, we considered
the ARG data set in combination with Ih and Imax

d , as the inconsistency values are likewise
always 0 or 1.
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ASP core-guided ASP

#solved CRT (s) #solved CRT (s)

ML Ih 1220 51441 1163 58203

ARG Ih 221 11146 218 12975

ARG Imax
d 176 7266 145 8408

Table 8: Comparison between a core-guided optimization strategy for the ASP approach and
the default optimization strategy (branch-and-bound). Displayed are the number of solved
instances and the cumulative runtime (CRT) for Ih on the ML data set (1920 knowledge
bases), as well as Ih and Imax

d on the ARG data set (326 knowledge bases). Timeout:
10 minutes.

The results in Table 8 show that the core-guided optimization strategy can indeed
lead to improved runtimes (see also Figure 9 in Appendix B.1 for the cactus plots and
Figure 32 in Appendix B.3 for the corresponding scatter plots). The core-guided variant
solves more instances while also maintaining a lower cumulative runtime in all three cases.
More specifically, the core-guided approach solves between 1.36% (ARG/Ih) and 17.61%
(ARG/Imax

d ) more instances.

5.3.6 Previous ASP Approaches

There already exist two ASP-based approaches for Ic, and one for If , and Ih, respectively, in
the literature. To be precise, in (Kuhlmann & Thimm, 2020), the authors propose a method
similar to our overall SAT approach, which uses ASP encodings for the problem upperIc

in order to find valueIc via binary search. A revised version of this approach, which
calculates valueIc directly within ASP by means of a minimize statement, is introduced in
(Kuhlmann & Thimm, 2021). Note that in the latter version, only propositional language
concepts are used, which leads to a program that is already ground. The authors also
propose ASP encodings for If and Ih in the same manner. In contrast, the ASP approach
presented in (Kuhlmann et al., 2022) (which is also used in the work at hand) makes use of
first-order predicates and variables, which enables an automated, and internally optimized,
grounding procedure. In order to determine whether this actually has a positive effect on
the runtime, we compare the different versions with each other using the contension measure
as an example. Note that we apply exactly those implementations which were used in the
two corresponding papers (Kuhlmann & Thimm, 2020, 2021).

The results of this experiment, presented in Table 9 (see Figure 11 for an additional
visualization), confirm that the newest version of the ASP-based method in fact outperforms
its predecessors. The first ASP approach (Kuhlmann & Thimm, 2020), which is based on a
binary search procedure, clearly performs the poorest, and hits the timeout of 10 minutes in
precisely 600 cases. The second version of the approach (Kuhlmann & Thimm, 2021) solves
all 1800 instances within the time limit, nevertheless it performs on average roughly 10
times slower than the current version (0.266 vs. 0.027 seconds). Although the new version
might have an advantage by being implemented in C++, both rely on the same ASP solver
(Clingo 5.5.1). In fact, the solving time itself is around 3 times shorter wrt. the new ASP
version compared to the previous one (0.009 vs. 0.028 seconds on average).
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ASP binary search ASP minimize v1 ASP

#solved CRT (s) #solved CRT (s) #solved CRT (s)

1200 59618 1800 479 1800 48

Table 9: Runtime comparison of the different versions of the ASP approach for Ic on the
SRS data set. “ASP binary search” refers to the version from (Kuhlmann & Thimm, 2020),
“ASP minimize v1” to the version from (Kuhlmann & Thimm, 2021), and “ASP” to the
current one. Displayed are the number of solved instances and the cumulative runtime
(CRT). Timeout: 10 minutes.

5.4 Discussion

In the experiments presented above, we investigated three approaches for the calculation
of six different inconsistency measures on five different data sets. Overall, we focused our
analysis on the comparison of runtimes; however, we took additional aspects into account,
such as the distribution of measured inconsistency values with regard to the different mea-
sures and data sets. As a first step, we compared the runtimes of all three approaches per
inconsistency measure and data set. Our results confirmed that both the SAT-based and
the ASP-based approaches perform, as expected, superior to the naive baseline algorithms.
Moreover, the results showed that altogether, the ASP methods are faster than the SAT
variants. Only in very isolated cases can the SAT-based or naive approaches retrieve incon-
sistency values faster than the ASP-based ones or result in fewer timeouts. Furthermore,
the ASP-based methods are not only faster than the other two approaches on average, but
also wrt. the vast majority of individual instances.

Two factors that presumably play a role in the performance differences between the
SAT approaches and the ASP approaches are the following. First, in each SAT-based
approach, we need to generate a new at-most-k constraint in each iteration (note that this
has been addressed in Section 5.3.2 as well). Second, the SAT solver does not reuse learned
clauses from previous calls, i. e., each instance has to be constructed from scratch. The
ASP encodings, on the other hand, only have to be constructed and solved once for each
knowledge base.

We could further observe that the naive baseline methods for the contension and the
forgetting-based measure outperformed the ASP-based and SAT-based approaches in some
cases. The most likely reason for this is the fact that the particular instances for which this
effect was observed had a very low inconsistency value—in fact, most of these instances were
consistent. The baseline methods for both the contension measure and the forgetting-based
measure include a satisfiability check (via a SAT solver) as a first step. Hence, consistent
knowledge bases can be identified rather quickly. Very small inconsistency values might
also be retrieved rather fast by the two naive methods, as they both search for the correct
value in a linear manner, starting from the lowest possible value. Another factor that can
further decrease the runtime of the two methods is if the given knowledge base is already in
CNF, so that no additional transformation steps are required in order to guarantee a valid
input for the SAT solver.

A general observation from the evaluation results is that none of the three approaches for
either one of the considered inconsistency measures could solve all instances from all data
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sets. Hence, even the ASP approaches, which altogether performed superior, clearly reached
their limits. In the following, we aim to identify factors that make the computation of
inconsistency values for a given knowledge base “difficult” (either for individual approaches
or in general).

• A rather obvious factor is the size of the given knowledge base in terms of the number
of formulas, number of atoms in the signature, and number of connectives per formula
(see Table 4 for an overview regarding the data sets used in our experiments). A larger
knowledge base consequently leads to larger encodings, as well as a larger range of
possible inconsistency values, which in turn leads to a more difficult problem that the
SAT or ASP solver has to solve, as well as to more search steps wrt. the SAT-based
approaches. The SAT/ASP solver having to deal with a more difficult problem is
directly connected to an increase in runtime, as the results in Section 5.3.2 indicated
that the solving process overall makes up the largest fraction of the runtimes of both
the SAT-based and ASP-based methods.

• Although all six measures considered in this paper lie on the same level of the poly-
nomial hierarchy (Thimm, 2016a), the ranges of their possible values vary greatly.
A larger search space particularly influences the SAT-based approaches. This is re-
flected, e.g., in the fact that for the sum-distance measure, fewer instances could be
solved by the SAT-based approach than for any of the other measures.

• The range of the resulting inconsistency values may also be a relevant factor to take
into account. If the inconsistency values are close to 0, a SAT check as a prepro-
cessing step could prove useful—we observed this effect with the naive approaches for
the contension measure and the forgetting-based measure, in particular if the given
knowledge base is already in CNF. Moreover, the range of the inconsistency values
is also relevant for the choice of search strategy regarding the SAT-based approaches
(see Section 5.3.3).

Although the previously discussed points hint at which measures might be more suitable
in practice in terms of runtime, the choice of an appropriate inconsistency measure for a
specific practical application still depends on other factors as well. For instance, in some
scenarios it could be useful to look for conflicting formulas (which could be done by using
the hitting set measure or the hit-distance measure), while in other scenarios it could be of
greater interest to look for the atoms involved in a conflict (which could be done by using
the contension or forgetting-based measure). Moreover, the granularity of the measured
inconsistency could be of interest (e. g., the forgetting-based measure has a finer granularity
than the contension measure). Yet another aspect that should be taken into consideration
when dealing with a practical application is the usefulness of the inconsistency measure for
resolving the conflicts in the given knowledge base.

6. Conclusion

In the course of this work, we proposed a SAT-based and an ASP-based approach for each of
six different inconsistency measures (i. e., the contension, the forgetting-based, the hitting
set, the max-distance, the sum-distance, and the hit-distance inconsistency measure). With
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the SAT-based approaches, we encode the problem of whether a given value is an upper
bound of the inconsistency degree, and retrieve the actual inconsistency value by means
of iterative SAT solver calls in a (binary) search procedure. In ASP, we can encode the
problem of finding an inconsistency value directly by utilizing optimization statements.

In an extensive experimental evaluation we compared the ASP-based to the SAT-based
approaches, focusing on runtime. To achieve this, we used a total of five different data sets,
two of which were used in preceding works (Kuhlmann & Thimm, 2021; Kuhlmann et al.,
2022), while the remaining three are novel. All data sets are publicly available for use in
future work. The results of our experiments first of all demonstrated that both the SAT-
based and the ASP-based methods overall clearly outperform the naive implementations we
used as a baseline—which, to the best of our knowledge, are the only previously existing
implementations for the inconsistency measures considered. Moreover, the ASP approaches
performed superior to the SAT approaches (with only very few exceptions).

Nonetheless, the results also showed that even the ASP methods are by far not able to
solve all instances from all data sets wrt. all considered inconsistency measures. Some data
sets turned out to be generally challenging; an example of this is the SC data set, which
contains benchmark data from the SAT competition 2020. A reason for this lies in the sheer
size of the individual knowledge bases, i. e., the number of formulas contained in a knowledge
base, its signature size, and the number of connectives per formula. A large knowledge base
requires a large SAT/ASP encoding (in terms of variables and clauses/rules), which in turn
leads to an increased solving time and therefore an increased runtime—our results also
showed that the solving process altogether makes up the largest fraction of the runtime
composition of both the SAT and the ASP approaches.

In order to use approaches to inconsistency measurement in a practical application in
a sensible fashion, an analysis of the given data is vital. Information about signature sizes
or numbers of formulas per knowledge base can be an indicator for which inconsistency
measure will likely be a reasonable choice in terms of runtime. Moreover, if there is any
information available about what degrees of inconsistency can roughly be expected, an
adjusted search strategy can be used. Such information can further be used to develop
preprocessing techniques. For instance, if there is a certain probability that the knowledge
bases at hand might be consistent, an initial satisfiability check by means of a SAT solver
(as we saw with the naive implementations of the contension and the forgetting-based
measure) could prove useful. Certainly there are many other options regarding the topic of
preprocessing; however, this is subject to future work.

Another issue to contemplate in terms of future work is a more in-depth examination
of MaxSAT approaches. We have already observed in our experiments that a MaxSAT
approach for the contension inconsistency measure performs superior to its iterative SAT
counterpart. Moreover, there are numerous problem solving paradigms that have not been
explored yet in the field of inconsistency measurement. Examples include Integer Linear
Programming, Quantified Boolean Formulas, and Counterexample-Guided Abstraction Re-
finement approaches. The choice of problem solving paradigm depends on the complexity of
the measure at hand—which is related to yet another possible topic of future work: the in-
vestigation of algorithms for inconistency measures beyond the first level of the polynomial
hierarchy. Furthermore, we merely covered inconsistency measures designed for proposi-
tional knowledge bases. The development of approaches for computing inconsistencies in
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other domains, such as different logics, data bases, or business process models, constitutes
another open problem. In addition, our evaluation showed that all approaches introduced
in this work hit their limit at some point during the experiments. To counteract this effect,
i. e., to develop more scalable approaches, we already mentioned the possibility of apply-
ing preprocessing methods. A different strategy to improve scalability could be to apply
approximation techniques.
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Appendix A. Proofs

This appendix contains the correctness proofs for the SAT-based approaches introduced in
Section 3, and the ASP-based approaches introduced in Section 4.

A.1 SAT-based Algorithms

Each of the following sections comprises a correctness proof corresponding to the SAT
encoding for one of the six inconsistency measures considered in this work.

A.1.1 The Contension Inconsistency Measure

Signature

For every atom X ∈ At(K):

Create atoms Xt, Xf , Xb (SC1)

For every formula Φ ∈ sub(K):

Create atoms vtΦ, v
f
Φ, v

b
Φ (SC2)

Constraints

For every atom X ∈ At(K):

(Xt ∨Xf ∨Xb) ∧ (¬Xt ∨ ¬Xf ) ∧ (¬Xt ∨ ¬Xb) ∧ (¬Xb ∨ ¬Xf ) (SC3)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

vtΦc
↔ vtΨc,1

∧ vtΨc,2
(SC4)

vfΦc
↔ vfΨc,1

∨ vfΨc,2
(SC5)

vbΦc
↔ (¬vtΨc,1

∨ ¬vtΨc,2
) ∧ ¬vfΨc,1

∧ ¬vfΨc,2
(SC6)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

vtΦd
↔ vtΨd,1

∨ vtΨd,2
(SC7)

vfΦd
↔ vfΨd,1

∧ vfΨd,2
(SC8)

vbΦd
↔ (¬vfΨd,1

∨ ¬vfΨd,2
) ∧ ¬vtΨd,1

∧ ¬vtΨd,2
(SC9)

For each negation Φn = ¬Ψn appearing in some formula:

vtΦn
↔ vfΨn

(SC10)

vfΦn
↔ vtΨn

(SC11)

vbΦn
↔ vbΨn

(SC12)
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For every formula Φa which consists of a single atom X:

vtΦa
↔ Xt (SC13)

vfΦa
↔ Xf (SC14)

vbΦa
↔ Xb (SC15)

For every formula A ∈ K:

vtA ∨ vbA (SC16)

Let AtKb = {Xb | X ∈ At(K)}. Cardinality constraint:

at most(u,AtKb ) (SC17)

Encoding 1: Overview of the SAT encoding Sc(K, u) of the contension inconsistency measure
Ic. K is a given knowledge base and At(K) its signature. u is a candidate for an upper
limit of Ic(K). Let sub(K) be the set of subformulas of K as defined in Section 3.1. The
signature size of the encoding is |At(K)| · 3 + |sub(K)| · 3.

Theorem 1. For a given value u, the encoding Sc(K, u) is satisfiable if and only if Ic(K) ≤
u.

Proof. Assume Sc(K, u) is satisfiable and let ω be a model of Sc(K, u). Define the three-
valued interpretation ω3 via

ω3(X) =


t if ω(Xt) = t
f if ω(Xf ) = t
b if ω(Xb) = t

Due to (SC3) (see Encoding 1) it is clear that ω3 is well-defined. We now show, via structural
induction, that ω3(Φ) = θ iff ω(vθΦ) = t for all Φ ∈ sub(K):

• Φa = X for X ∈ At: this follows already from the definition of ω3 above and (SC13)–
(SC15).

• Φ = ¬Ψ: by induction hypothesis, ω3(Ψ) = θ iff ω(vθΨ) = t. This implies that exactly

one of vtΨ, vfΨ, vbΨ is true. Due to (SC10)–(SC12), it follows that exactly one of

vt¬Ψ, v
f
¬Ψ, v

b
¬Ψ is true. Observe that (SC10)–(SC12) models exactly the semantics of

negation in three-valued logic. It follows ω3(¬Ψ) = θ iff ω(vθ¬Ψ) = t.

• Φ = Ψ1 ∧ Ψ2: by induction hypothesis, ω3(Ψ1) = θ iff ω(vθΨ1
) = t and ω3(Ψ2) = θ

iff ω(vθΨ2
) = t. This implies that exactly one of vtΨ1

, vfΨ1
, vbΨ1

and exactly one of

vtΨ2
, vfΨ2

, vbΨ2
is true. Due to (SC4)–(SC6), it follows that exactly one of vtΨ1∧Ψ2

,

vfΨ1∧Ψ2
, vbΨ1∧Ψ2

is true. Observe that (SC4)–(SC6) models exactly the semantics of
conjunction in three-valued logic: (SC4) models the case that both Ψ1 and Ψ2 are
true (then Ψ1 ∧Ψ2 is also true), (SC5) models the case that one of Ψ1 and Ψ2 is false
(then Ψ1 ∧ Ψ2 is also false), and (SC6) covers all remaining cases (then Ψ1 ∧ Ψ2 is
both).

• Φ = Ψ1 ∨Ψ2: by induction hypothesis, ω3(Ψ1) = θ iff ω(vθΨ1
) = t and ω3(Ψ2) = θ iff

ω(vθΨ2
) = t. This implies that exactly one of vtΨ1

, vfΨ1
, vbΨ1

and exactly one of vtΨ2
,

618



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

vfΨ2
, vbΨ2

is true. Due to (SC7)–(SC9), it follows that exactly one of vtΨ1∨Ψ2
, vfΨ1∨Ψ2

,

vbΨ1∨Ψ2
is true. Observe that (SC7)–(SC9) models exactly the semantics of disjunction

in three-valued logic: (SC7) models the case that at least one of Ψ1 and Ψ2 is true
(then Ψ1 ∨ Ψ2 is also true), (SC8) models the case that both Ψ1 and Ψ2 are false
(then Ψ1 ∨ Ψ2 is also false), and (SC9) covers all remaining cases (then Ψ1 ∨ Ψ2 is
both).

So it follows that ω3(Φ) = θ iff ω(vθΦ) = t for all Φ ∈ sub(K). Note that this includes
all Φ ∈ K as well. Due to (SC16), for all Φ ∈ K we have ω3(Φ) ∈ {t, b} and therefore
ω3 ∈ Mod3(K). Due to (SC17), we also have |Conflictbase(ω3)| ≤ u and it follows Ic(K) ≤ u.

For the other direction, assume Ic(K) ≤ u. Then there exists a three-valued interpre-
tation ω3 with ω3 ∈ Mod3(K) and |Conflictbase(ω3)| ≤ u. Define ω on the signature of
Sc(K, u) via

ω(xt) =

{
t if ω3(X) = t
f otherwise

ω(xf ) =

{
t if ω3(X) = f
f otherwise

ω(xb) =

{
t if ω3(X) = b
f otherwise

ω(vtΦ) =

{
t if ω3(Φ) = t
f otherwise

ω(vfΦ) =

{
t if ω3(Φ) = f
f otherwise

ω(vbΦ) =

{
t if ω3(Φ) = b
f otherwise

for all X ∈ At(K) and Φ ∈ sub(K). Using the same argumentation as above, it can be
shown that ω satisfies Sc(K, u).

A.1.2 The Forgetting-Based Inconsistency Measure

Signature

We make use of the original signature At(K).

For every occurrence X l ∈ Occ(K):

Create atoms tX,l, fX,l (SF1)

Constraints

For every formula A ∈ K, replace every atom occurrence X l with:

(tX,l ∨X) ∧ ¬fX,l (SF2)

Let Atforget be the set of all atoms defined by (SF3).

For each pair tX,l, fX,l ∈ Atforget:

¬tX,l ∨ ¬fX,l (SF4)

Cardinality constraint:
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at most(u,Atforget) (SF4)

Encoding 2: Overview of the SAT encoding Sf(K, u) of the forgetting-based inconsistency
measure If . K is a knowledge base and At(K) its signature. u is a candidate for an upper
limit for If(K). Let Occ(K) be the set of all atom occurrences in K as defined in Section
3.1. The signature size of the encoding is |At(K)|+ 2 · |Occ(K)|.

Let K be an arbitrary knowledge base and Sf(K, u) the corresponding SAT encoding
defined via (SF1)–(SF4). Assume that Sf(K, u) is satisfiable, and let ω be a model of
Sf(K, u). We define

TSf(K,u)(ω) ={tX,l | ω(tX,l) = t}
FSf(K,u)(ω) ={fX,l | ω(fX,l) = t}

Due to (SF3) (i. e., ¬tX,l∨¬fX,l), TSf(K,u)(ω)∩FSf(K,u)(ω) = ∅ for every model ω of Sf(K, u).

Lemma 1. If ω is a model of Sf(K, u) then (
∧
K)[X1

1 → ⊤; . . . ;Xn
p → ⊤;Y 1

1 → ⊥; . . . ;Y m
q →

⊥] is consistent with TSf(K,u)(ω) = {tX1,1, . . . , tXp,n} and FSf(K,u)(ω) = {fY1,1, . . . , fYq ,m}.

Proof. To begin with, each X l represents exactly the l-th occurrence of an atom X. More-
over, each X l gets a distinct pair of atoms tX,l and fX,l (SF1). Thus, tX,l and fX,l represent
exactly the l-th occurrence of X.

Following (SF2), each atom occurrence X l is replaced by the term (tX,l ∨X)∧¬fX,l. If
ω(tX,l) = t (and ω(fX,l) = f due to (SF3)), the term becomes true, regardless of whether
ω(X) = t or ω(X) = f . Hence, this corresponds exactly to replacing the l-th occurrence
of X in the original formula by ⊤. On the other hand, if ω(fX,l) = t (and ω(tX,l) = f
due to (SF3)), the term becomes false, regardless of the truth value of X. Consequently,
this corresponds to replacing the l-th occurrence of X in the original formula by ⊥. If
ω(tX,l) = f and ω(fX,l) = f , the right part of the conjunction is true, and the left part is
true if ω(X) = t and false if ω(X) = f . Thus, the term evaluates to the truth value of X l,
i. e., the truth value of the l-th occurrence of X in the original formula.

Theorem 2. For a given value u, the encoding Sf(K, u) is satisfiable if and only if If(K) ≤
u.

Proof. From Lemma 1 we know that TSf(K,u)(ω) and FSf(K,u)(ω) contain exactly those tX,l

and fX,l which correspond to those occurrences of X that are being forgotten (i. e., re-
placed by ⊤, and ⊥, respectively). Moreover, the cardinality constraint (SF4) ensures that
|TSf(K,u)(ω)∪FSf(K,u)(ω)| ≤ u. Thus, if more than u atom occurrences must be forgotten in
order for K to be satisfiable, then Sf(K, u) is unsatisfiable. Otherwise, i. e., if a minimum
of ≤ u atom occurrences must be forgotten, Sf(K, u) is satisfiable.
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A.1.3 The Hitting-Set Inconsistency Measure

Signature

For every atom X ∈ At(K):

Create variables Xi with i ∈ {1, . . . , u} (SH1)

For every formula A ∈ K:

Create variables pA,i with i ∈ {1, . . . , u} (SH2)

Constraints

For every formula A ∈ K and i ∈ {1, . . . , u}, create Ai, which is a copy of A

where each instance of atom X is replaced by Xi, and add:

pA,i → Ai (SH3)

For every formula A ∈ K:∨
1≤i≤u pA,i (SH4)

Encoding 3: Overview of the SAT encoding Sh(K, u) of the hitting set inconsistency measure
Ih. K is a knowledge base and At(K) its signature. u is a candidate for an upper limit for
Ih(K). The signature size of the encoding is u · |At(K)|+ u · |K|.

Let K be an arbitrary knowledge base and Sh(K, u) the corresponding SAT encoding
defined via (SH1)–(SH4).

Lemma 2. If K contains at least one contradictory formula, Sh(K, u) is unsatisfiable for
all u ∈ {1, . . . , |K|}.

Proof. Let u ∈ {1, . . . , |K|} be arbitrary, and let some A⊥ ∈ K be contradictory. Then there
exists no interpretation which could satisfy a copy A⊥

i (i ∈ {1, . . . , u}) of A⊥. Hence, in
order to satisfy the constraints defined by (SH3) (i. e., pA⊥,i → A⊥

i ), each pA⊥,i would need
to evaluate to false. However, due to (SH4), at least one pA⊥,i must be true. Thus, Sh(K, u)
is unsatisfiable, regardless of the value of u.

Assume that K does not contain any contradictory formulas and that Sf(K, u) is satis-
fiable, and let ω be a model of Sf(K, u). We define

ISh(K,u)(ω) = {ia | ∃ω(pA,ia) = t}

with A ∈ K, and ia ∈ {1, . . . , u}.

Lemma 3. ISh(K,u)(ω) corresponds to a hitting set of K.

Proof. For each formula A ∈ K we have at least one pA,ia that evaluates to true, because of
(SH4). Consequently, wrt. that pA,ia , Aia must be true as well (SH3). Hence, at least one
copy Aia of each A ∈ K is satisfied.

Further, each i ∈ {1, . . . , u} corresponds to an interpretation, since each Ai uses the i-th
copy of At(K). Moreover, each ia ∈ ISh(K,u) corresponds to an “active” interpretation, i. e.,
one that is actually used to satisfy one or more formulas. Thus, ISh(K,u)(ω) corresponds to
a hitting set of K.

621



Kuhlmann, Gessler, Laszlo & Thimm

Theorem 3. For a given value u, the encoding Sh(K, u) is satisfiable if and only if Ih(K) ≤
u− 1. Sh(K, u) is unsatisfiable for all u = 1, . . . , |K| if and only if Ih(K) = ∞.

Proof. Lemma 2 shows that Sh(K, u) is unsatisfiable for all u ∈ {1, . . . , |K|} if K contains a
contradictory formula, i. e., if Ih(K) = ∞. Lemma 3 shows that, if K does not contain any
contradictory formula, ISh(K,u)(ω) = {ia | ∃ω(pA,ia) = t} corresponds to a hitting set of K.
Since the maximum cardinality of ISh(K,u)(ω) is restricted by u, Sh(K, u) is unsatisfiable if
more than u copies of each formula are required, i. e., if more than u different interpretations
are required to satisfy each formula in K. Otherwise, Sh(K, u) is satisfiable.

Thus, if a hitting set of size ≤ u exists, Sh(K, u) is satisfiable. Otherwise, i. e., if no
hitting set of size ≤ u exists, Sh(K, u) is unsatisfiable. Since we have to subtract 1 from the
cardinality of the hitting set in order to get Ih(K), it follows that if Ih(K) ≤ u − 1, then
Sh(K, u) is satisfiable, and if Ih(K) > u− 1, then Sh(K, u) is unsatisfiable.

A.1.4 The Max-Distance Inconsistency Measure

Signature

For every atom X ∈ At(K):

Create variable Xo (SDM1)

For every atom X ∈ At(K) and i ∈ {1, . . . , |K|}:
Create variables Xi (SDM2)

Create variables invX,i (SDM3)

Constraints

For every formula A ∈ K and i ∈ {1, . . . , |K|}:
Create Ai, which is a copy of A where each instance of atom X is
replaced by Xi

(SDM4)

For every Xi with i ∈ {1, . . . , |K|}:
Xi → Xo ∨ invX,i (SDM5)

¬Xi → ¬Xo ∨ invX,i (SDM6)

Let INVi be the set containing all invX,i for a fixed i.

For every i ∈ {1, . . . , |K|}:
at most(u, INVi) (SDM7)

Encoding 4: Overview of the SAT encoding Smax
d (K, u) of the max-distance inconsistency

measure Imax
d . K is a knowledge base and At(K) its signature. u is a candidate for an upper

limit for Imax
d (K). The signature size of the encoding is |At(K)|+ 2 · |K| · |At(K)|.

Let K be an arbitrary knowledge base and Smax
d (K, u) the corresponding SAT encoding

defined via (SDM1)–(SDM7).

Lemma 4. If K contains at least one contradictory formula, Smax
d (K, u) is unsatisfiable for

all u ∈ {0, . . . , |At(K)|}.

Proof. Let some A⊥ ∈ K be contradictory. Following (SDM4), we add indexed copies of all
formulas A ∈ K to Smax

d (K, u). Thus, we also have an indexed copy A⊥
i of A⊥. Since adding

an index i to each atom in A does not resolve the conflict within the formula, A⊥
i is still
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contradictory. Therefore, Smax
d (K, u) contains an unsatisfiable formula and is consequently

itself unsatisfiable, regardless of the value of u.

Assume that K does not contain any contradictory formulas and that Smax
d (K, u) is

satisfiable, and let ω be a model of Smax
d (K, u). For each i ∈ {1, . . . , |K|} we create variables

Xi (SDM2) and variables invX,i (SDM3) for each X ∈ At(K). We define

Imax(ω, i) = {invX,i | ω(invX,i) = t}

Recall that we represent an “optimal” interpretation by introducing a variable Xo for
each X ∈ At(K) (SDM1). The truth values assigned to each Xo then correspond to the
“optimal” interpretation.

Lemma 5. If ω(Xi) ̸= ω(Xo) then invX,i ∈ Imax(ω, i).

Proof. Xi must be either true or false. If ω(Xi) = t, then the left part of the implication
Xi → Xo ∨ invX,i (SDM5) is true. Thus, in order to satisfy the implication, the right
part must be true as well. If Xo is false, i. e., ω(Xi) ̸= ω(Xo), then invX,i must be true.
Consequently, invX,i ∈ Imax(ω, i). Moreover, the implication ¬Xi → ¬Xo ∨ invX,i, defined
via (SDM6), evaluates to true as well, because the left part (¬Xi) is false.

If ω(Xi) = f , the left part of the implication defined by (SDM6), i. e., ¬Xi → ¬Xo ∨
invX,i, is true. Thus, to satisfy this implication, ¬Xo ∨ invX,i must evaluate to true. If
ω(Xo) = t, meaning if ω(Xi) ̸= ω(Xo), then ¬Xo is false, and invX,i must be true. Hence,
invX,i ∈ Imax(ω, i). In addition, the implication Xi → Xo ∨ invX,i, defined by (SDM5), is
also satisfied, because the left part (Xi) is false.

Theorem 4. For a given value u, the encoding Smax
d (K, u) is satisfiable if and only if

Imax
d (K) ≤ u. Smax

d (K, u) is unsatisfiable for all u ∈ {0, . . . , |At(K)|} if and only if
Imax
d (K) = ∞.

Proof. Lemma 4 shows that Smax
d (K, u) is unsatisfiable for all u ∈ {1, . . . , |At(K)|} if K

contains a contradictory formula, i. e., if Imax
d (K) = ∞.

Let us now assume that K does not contain any contradictory formulas, i. e., Imax
d (K) ̸=

∞. From Lemma 5 we know that for each i ∈ |K|, if ω(Xi) ̸= ω(Xo), then the corresponding
invX,i must be included in Imax(ω, i) (i. e., ω(invX,i) = t). This means that if a formula A ∈ K
with index i requires an interpretation that differs from the “optimal” interpretation, then
for each Xi ∈ At(Ai) with ω(Xi) ̸= ω(Xo), invX,i ∈ Imax(ω, i). Further, (SDM7) restricts
|Imax(ω, i)| to u (for each i). If Imax

d (K) ≤ u, there exists a solution for which |Imax(ω, i)| ≤ u
for each i ∈ {1, . . . , |K|}.

Hence, the constraints defined by (SDM7) are satisfied, and Smax
d (K, u) is satisfiable. If

Imax
d (K) > u, then for at least one i we have |Imax(ω, i)| > u. Consequently, at least one

constraint defined by (SDM7) cannot be satisfied, which makes Smax
d (K, u) unsatisfiable.
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A.1.5 The Sum-Distance Inconsistency Measure

Signature

For every atom X ∈ At(K):

Create variable Xo (SDS1)

For every atom X ∈ At(K) and i ∈ {1, . . . , |K|}:
Create variables Xi (SDS2)

Create variables invX,i (SDS3)

Constraints

For every formula A ∈ K and i ∈ {1, . . . , |K|}:
Create Ai, which is a copy of A where each instance of atom X is
replaced by Xi

(SDS4)

For every Xi with i ∈ {1, . . . , |K|}:
Xi → Xo ∨ invX,i (SDS5)

¬Xi → ¬Xo ∨ invX,i (SDS6)

Let INV be the set containing all invX,i for all i. Cardinality constraint:

at most(u, INV) (SDS7)

Encoding 5: Overview of the SAT encoding SΣ
d (K, u) of the sum-distance inconsistency

measure IΣ
d . K is a knowledge base and At(K) its signature. u is a candidate for an upper

limit for IΣ
d (K). The signature size of the encoding is |At(K)|+ 2 · |K| · |At(K)|.

Let K be an arbitrary knowledge base and SΣ
d (K, u) the corresponding SAT encoding

defined via (SDS1)–(SDS7).

Lemma 6. If K contains at least one contradictory formula, SΣ
d (K, u) is unsatisfiable for

all u ∈ {0, . . . , |At(K)| · |K|}.

Proof. Analogous to the proof of Lemma 4.

Assume that K does not contain any contradictory formulas and that SΣ
d (K, u) is satis-

fiable, and let ω be a model of SΣ
d (K, u). For each i ∈ {1, . . . , |K|} we create variables Xi

(SDS2) and variables invX,i (SDS3) for each X ∈ At(K). We define

IΣ(ω) = {invX,i | ω(invX,i) = t}

Recall that we represent an “optimal” interpretation by introducing a variable Xo for
each X ∈ At(K) (SDS1). The truth values assigned to each Xo then correspond to the
“optimal” interpretation.

Lemma 7. If ω(Xi) ̸= ω(Xo) then invX,i ∈ IΣ(ω).

Proof. Analogous to the proof of Lemma 5, since (SDM1)–(SDM6) is equivalent to (SDS1)–
(SDS6).

Theorem 5. For a given value u, the encoding SΣ
d (K, u) is satisfiable if and only if IΣ

d (K) ≤
u. SΣ

d (K, u) is unsatisfiable for all u ∈ {0, . . . , |At(K)| · |K|} if and only if IΣ
d (K) = ∞.
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Proof. Lemma 6 shows that SΣ
d (K, u) is unsatisfiable for all u ∈ {0, . . . , |At(K)| · |K|} if K

contains a contradictory formula, i. e., if IΣ
d (K) = ∞.

Let us now assume that K does not contain any contradictory formulas, i. e., IΣ
d (K) ̸= ∞.

From Lemma 7 we know that for any i ∈ |K|, if ω(Xi) ̸= ω(Xo), then the corresponding
invX,i must be included in IΣ(ω) (i. e., ω(invX,i) = t). This means that if a formula A ∈ K
with index i requires an interpretation that differs from the “optimal” interpretation, then
for each Xi ∈ At(Ai) with ω(Xi) ̸= ω(Xo), invX,i ∈ IΣ(ω). Further, (SDS7) restricts |IΣ(ω)|
to u. If IΣ

d (K) ≤ u, there exists a solution for which |IΣ(ω)| ≤ u. Hence, the constraint
defined by (SDS7) is satisfied, and SΣ

d (K, u) is satisfiable. If IΣ
d (K) > u, then we have

|IΣ(ω)| > u. Consequently, the constraint defined by (SDS7) cannot be satisfied, which
makes SΣ

d (K, u) unsatisfiable.

A.1.6 The Hit-Distance Inconsistency Measure

Signature

For every formula A ∈ K:

Create variable hitA (SDH1)

For every atom X ∈ At(K):

Create variable X (SDH2)

Constraints

For every formula A ∈ K :

A ∨ hitA (SDH3)

Let HITK be the set containing all variables added in (SDH1).

Cardinality constraint:

at most(u,HITK) (SDH4)

Encoding 6: Overview of the SAT encoding Shit
d (K, u) of the hit-distance inconsistency

measure Ihit
d . K is a knowledge base and At(K) its signature. u is a candidate for an upper

limit for Ihit
d (K). The signature size of the encoding is |At(K)|+ |K|.

Let K be an arbitrary knowledge base and Shit
d (K, u) the corresponding SAT encoding

defined via (SDH1)–(SDH4). Assume that Shit
d (K, u) is satisfiable, and let ω be a model of

Shit
d (K, u). We define

Hhit(ω) = {hitA | ω(hitA) = t}.

Lemma 8. Each hitA ∈ Hhit(ω) corresponds to a formula A ∈ K being removed from K.

Proof. Due to (SDH3), every formula A ∈ K is extended by “∨ hitA”. If ω(hitA) = t, the
term A ∨ hitA will always be true, regardless of the truth value of A under ω. Hence, this
is equivalent to the removal of A from K.

Theorem 6. For a given value u, the encoding Shit
d (K, u) is satisfiable if and only if

Ihit
d (K) ≤ u.

Proof. The cardinality constraint (SDH4) restricts the number of atoms hitA being allowed
to be true, to u. If the minimal number of formulas A ∈ K that need to be removed in
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order to make K consistent is ≤ u (i. e., if Ihit
d (K) ≤ u) then ≤ u atoms hitA can be set

to true (i. e., |Hhit(ω)| ≤ u). From Lemma 8 we know that those atoms correspond to the
formulas that are removed. Thus, there exists a solution in which exactly those atoms hitA
are set to true which correspond to the formulas A ∈ K that need to be removed to make
K consistent. Consequently, the remaining formulas in K are satisfiable, and Shit

d (K, u) is
satisfiable. If more than u formulas need to be removed (i. e., if Ihit

d (K) > u), (SDH4) still
restricts the number of hitA atoms being set to true to u. Hence, there exists no model for
{
⋃
A ∈ K | ω(hitA) = f}, and Shit

d (K, u) is unsatisfiable.

A.2 ASP-based Algorithms

The following sections are each comprised of a correctness proof corresponding to the ASP
encoding for one of the six inconsistency measures considered in this work.

A.2.1 The Contension Inconsistency Measure

For every A ∈ K:

kbMember(A). (AC1)

For every X ∈ At(K):

atom(X). (AC2)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (AC3)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (AC4)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (AC5)

For every formula Φa which consists of a single atom X:

formulaIsAtom(Φa,X). (AC6)

As the static part, we define:

tv(t;f;b). (AC7)

1{truthValue(A,T) : tv(T)}1 :-
atom(A). (AC8)

truthValue(F,t) :-

conjunction(F,G,H),

truthValue(G,t),

truthValue(H,t). (AC9)

truthValue(F,f) :-

conjunction(F,G,H),

1{truthValue(G,f), truthValue(H,f)}. (AC10)

truthValue(F,b) :-

conjunction(F, , ),

not truthValue(F,t),

not truthValue(F,f). (AC11)

626



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

truthValue(F,f) :-

disjunction(F,G,H),

truthValue(G,f),

truthValue(H,f), (AC12)

truthValue(F,t) :-

disjunction(F,G,H),

1{truthValue(G,t), truthValue(H,t)}. (AC13)

truthValue(F,b) :-

disjunction(F, , ),

not truthValue(F,t),

not truthValue(F,f). (AC14)

truthValue(F,t) :-

negation(F,G),

truthValue(G,f). (AC15)

truthValue(F,f) :-

negation(F,G),

truthValue(G,t). (AC16)

truthValue(F,b) :-

negation(F,G),

truthValue(G,b). (AC17)

truthValue(F,T) :-

formulaIsAtom(F,G),

truthValue(G,T),

tv(T). (AC18)

:-

truthValue(F,f),

kbMember(F). (AC19)

#minimize{1,A : truthValue(A,b), atom(A)}. (AC20)

Encoding 7: Overview of the ASP encoding Pc(K) of the contension inconsistency measure
Ic. K is the given knowledge base.

Consider an arbitrary knowledge base K as well as the set of rules listed in Encoding
7 in Section 4.2, which make up the extended logic program Pc(K). Let P ′

c(K) denote the
extended logic program Pc(K) without the minimize statement (AC20).

Lemma 9. If M is an answer set of P ′
c(K) then the three-valued interpretation ω3

M defined
as

ω3
M (X) =


t truthValue(X, t) ∈ M

f truthValue(X, f) ∈ M

b truthValue(X, b) ∈ M
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is a model of K with X ∈ At(K).

Proof. ω3
M is well-defined: As (AC8) states, each answer set of P ′

c(K) will hold exactly one
of truthValue(X,t), truthValue(X,f), truthValue(X,b) for each atom X ∈ At(K):

1{truthValue(X,T) : tv(T)}1 :- atom(X).

Via structural induction, we show that for all (sub)formulas Φ in K, ω3
M (Φ) = θ (with

θ ∈ {t, f, b}) if and only if truthValue(Φ,θ) ∈ M .
Induction Hypothesis (I.H.): ω3

M (Φ) = θ if and only if truthValue(Φ,θ) ∈ M is
true for all subformulas of the considered formula.

1. Let Φ = X for X ∈ At(K).

• “⇒”:
ω3
M (Φ) = θ ⇒ ω3

M (X) = θ
Def.
===⇒ truthValue(X,θ) ∈ M

• “⇐”:
truthValue(X,θ) ∈ M

Def.
===⇒ ω3

M (X) = θ ⇒ ω3
M (Φ) = θ

2. Let Φ = Ψ1 ∧Ψ2.

(a) θ = t:

• “⇒”:

ω3
M (Ψ1 ∧Ψ2) = θ

θ=t
==⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = t

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,t) ∈ M

}
(AC9)
====⇒ truthValue(Ψ1 ∧Ψ2,t) ∈ M

• “⇐”:

truthValue(Ψ1 ∧Ψ2,t) ∈ M ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,t) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = t

}
⇒ ω3

M (Ψ1 ∧Ψ2) = t

(b) θ = b:

• “⇒”:

ω3
M (Ψ1 ∧Ψ2) = θ

θ=b
==⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = b

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,b) ∈ M

}
(AC11)
=====⇒ truthValue(Ψ1 ∧Ψ2,b) ∈ M
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Analogous for the case where ω3
M (Ψ1) = b and ω3

M (Ψ2) = t.

or
θ=b
==⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = b

}
I.H.
==⇒

{
truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,b) ∈ M

}
(AC11)
=====⇒ truthValue(Ψ1 ∧Ψ2,b) ∈ M

• “⇐”:

truthValue(Ψ1 ∧Ψ2,b) ∈ M ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,b) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = b

}
⇒ ω3

M (Ψ1 ∧Ψ2) = b

Analogous for the case where ω3
M (Ψ1) = b and ω3

M (Ψ2) = t.

or ⇒
{

truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,b) ∈ M

}
⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = b

}
⇒ ω3

M (Ψ1 ∧Ψ2) = b

(c) θ = f :

• “⇒”:

ω3
M (Ψ1 ∧Ψ2) = θ

θ=f
===⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψf,f) ∈ M

}
(AC10)
=====⇒ truthValue(Ψ1 ∧Ψ2,f) ∈ M

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = t.

or
θ=f
===⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,f) ∈ M

}
(AC10)
=====⇒ truthValue(Ψ1 ∧Ψ2,f) ∈ M
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Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = b.

or
θ=f
===⇒

{
ω3
M (Ψ1) = f

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,f) ∈ M
truthValue(Ψ2,f) ∈ M

}
(AC10)
=====⇒ truthValue(Ψ1 ∧Ψ2,f) ∈ M

• “⇐”:

truthValue(Ψ1 ∧Ψ2,f) ∈ M ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∧Ψ2) = f

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = t.

or ⇒
{

truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∧Ψ2) = f

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = b.

or ⇒
{

truthValue(Ψ1,f) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = f

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∧Ψ2) = f

3. Let Φ = Ψ1 ∨Ψ2.

(a) θ = t:

• “⇒”:

ω3
M (Ψ1 ∨Ψ2) = θ

θ=t
==⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,f) ∈ M

}
(AC13)
=====⇒ truthValue(Ψ1 ∨Ψ2,t) ∈ M
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Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = t.

or
θ=t
==⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = b

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,b) ∈ M

}
(AC13)
=====⇒ truthValue(Ψ1 ∨Ψ2,t) ∈ M

Analogous for the case where ω3
M (Ψ1) = b and ω3

M (Ψ2) = t.

or
θ=t
==⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = t

}
I.H.
==⇒

{
truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,t) ∈ M

}
(AC13)
=====⇒ truthValue(Ψ1 ∨Ψ2,t) ∈ M

• “⇐”:

truthValue(Ψ1 ∨Ψ2,t) ∈ M ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∨Ψ2) = t

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = t.

or ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,b) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = b

}
⇒ ω3

M (Ψ1 ∨Ψ2) = t

Analogous for the case where ω3
M (Ψ1) = b and ω3

M (Ψ2) = t.

or ⇒
{

truthValue(Ψ1,t) ∈ M
truthValue(Ψ2,t) ∈ M

}
⇒

{
ω3
M (Ψ1) = t

ω3
M (Ψ2) = t

}
⇒ ω3

M (Ψ1 ∨Ψ2) = t

(b) θ = b:
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• “⇒”:

ω3
M (Ψ1 ∨Ψ2) = θ

θ=b
==⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,f) ∈ M

}
(AC14)
=====⇒ truthValue(Ψ1 ∨Ψ2,b) ∈ M

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = b.

or
θ=b
==⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = b

}
I.H.
==⇒

{
truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,b) ∈ M

}
(AC14)
=====⇒ truthValue(Ψ1 ∨Ψ2,b) ∈ M

• “⇐”:

truthValue(Ψ1 ∨Ψ2,b) ∈ M ⇒
{

truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∨Ψ2) = b

Analogous for the case where ω3
M (Ψ1) = f and ω3

M (Ψ2) = b.

or ⇒
{

truthValue(Ψ1,b) ∈ M
truthValue(Ψ2,b) ∈ M

}
⇒

{
ω3
M (Ψ1) = b

ω3
M (Ψ2) = b

}
⇒ ω3

M (Ψ1 ∨Ψ2) = b

(c) θ = f :

• “⇒”:

ω3
M (Ψ1 ∨Ψ2) = θ

θ=f
===⇒

{
ω3
M (Ψ1) = f

ω3
M (Ψ2) = f

}
I.H.
==⇒

{
truthValue(Ψ1,f) ∈ M
truthValue(Ψ2,f) ∈ M

}
(AC12)
=====⇒ truthValue(Ψ1 ∨Ψ2,f) ∈ M
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• “⇐”:

truthValue(Ψ1 ∨Ψ2,f) ∈ M ⇒
{

truthValue(Ψ1,f) ∈ M
truthValue(Ψ2,f) ∈ M

}
⇒

{
ω3
M (Ψ1) = f

ω3
M (Ψ2) = f

}
⇒ ω3

M (Ψ1 ∨Ψ2) = f

4. Let Φ = ¬Ψ.

(a) θ = t:

• “⇒”:

ω3
M (¬Ψ) = θ

θ=t
==⇒ ω3

M (¬Ψ) = t

⇒ ω3
M (Ψ) = f

I.H.
==⇒ truthValue(Ψ,f) ∈ M

(AC15)
=====⇒ truthValue(¬Ψ,t) ∈ M

• “⇐”:

truthValue(¬Ψ,t) ∈ M ⇒ truthValue(Ψ,f) ∈ M

⇒ ω3
M (Ψ) = f

⇒ ω3
M (¬Ψ) = t

(b) θ = b:

• “⇒”:

ω3
M (¬Ψ) = θ

θ=b
==⇒ ω3

M (¬Ψ) = b

⇒ ω3
M (Ψ) = b

I.H.
==⇒ truthValue(Ψ,b) ∈ M

(AC17)
=====⇒ truthValue(¬Ψ,b) ∈ M

• “⇐”:

truthValue(¬Ψ,b) ∈ M ⇒ truthValue(Ψ,b) ∈ M

⇒ ω3
M (Ψ) = b

⇒ ω3
M (¬Ψ) = b

(c) θ = f :
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• “⇒”:

ω3
M (¬Ψ) = θ

θ=f
===⇒ ⇒ ω3

M (¬Ψ) = f

⇒ ω3
M (Ψ) = t

I.H.
==⇒ truthValue(Ψ,t) ∈ M

(AC16)
=====⇒ truthValue(¬Ψ,f) ∈ M

• “⇐”:

truthValue(¬Ψ,f) ∈ M ⇒ truthValue(Ψ,t) ∈ M

⇒ ω3
M (Ψ) = t

⇒ ω3
M (¬Ψ) = f

It has been shown that ω3
M (Φ) = θ if and only if truthValue(Φ,θ) ∈ M . The integrity

constraint (AC23) ensures that truthValue(A,f) is never true wrt. each formula A ∈ K.
In other words, truthValue(A,f) ̸∈ M for all A ∈ K. Consequently, ω3

M (A) ̸= f for
all A ∈ K. Thus, ω3

M (A) evaluates to either t or b in all cases. This corresponds to the
definition of a model in Priest’s three-valued logic. Hence, ω3

M ∈ Models(K).

Lemma 10. If ω3 ∈ Models(K) then P ′
c(K) has an answer set M such that ω3

M = ω3.

Proof. Analogous to the proof of Lemma 9 in reverse.

Theorem 7. Let Mo be an optimal answer set of Pc(K). Then |(ω3
Mo

)−1(b)| = Ic(K).

Proof. From Lemma 9 and Lemma 10 it follows that the answer sets of P ′
c(K) correspond

exactly to the 3-valued models of K. The minimize statement included in Pc(K) (AC20)
then ensures that only a minimal number of instances truthValue(X,b) are included in the
answer set. This corresponds to the minimal number of atoms X ∈ At(K) being evaluated
to b which is exactly the definition of Ic(K). Note that, following (AC2), for all X ∈ At(K),
atom(X) must be included in any answer set of Pc(K).

A.2.2 The Forgetting-Based Inconsistency Measure

For every A ∈ K:

kbMember(A). (AF1)

For every formula Φa which consists of a single atom occurrence X l:

formulaIsAtomOcc(Φ,X,l). (AF2)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (AF3)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (AF4)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (AF5)
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For the static part, we define:

tv(t;f). (AF6)

atomOcc(A,L) :-

formulaIsAtomOcc( ,A,L). (AF7)

atom(A) :-

atomOcc(A, ). (AF8)

1{truthValue(A,T) : tv(T)}1 :-
atom(A). (AF9)

truthValue(F,t) :-

conjunction(F,G,H),

truthValue(G,t),

truthValue(H,t). (AF10)

truthValue(F,f) :-

conjunction(F, , ),

not truthValue(F,t). (AF11)

truthValue(F,f) :-

disjunction(F,G,H),

truthValue(G,f),

truthValue(H,f). (AF12)

truthValue(F,t) :-

disjunction(F, , ),

not truthValue(F,f). (AF13)

truthValue(F,t) :-

negation(F,G),

truthValue(G,f). (AF14)

truthValue(F,f) :-

negation(F,G),

truthValue(G,t). (AF15)

{atomOccForgotten(A,L)} :-
atomOcc(A,L). (AF16)

truthValue(F,T) :-

formulaIsAtomOcc(F,A,L),

truthValue(A,T),

not atomOccForgotten(A,L). (AF17)

truthValue(F,t) :-

formulaIsAtomOcc(F,A,L),

truthValue(A,f),

atomOccForgotten(A,L). (AF18)

truthValue(F,f) :-
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formulaIsAtomOcc(F,A,L),

truthValue(A,t),

atomOccForgotten(A,L). (AF19)

:-

truthValue(F,f),

kbMember(F). (AF20)

#minimize{1,A,L : atomOccForgotten(A,L)}. (AF21)

Encoding 8: Overview of the ASP encoding Pf(K) of the forgetting-based inconsistency
measure If . K is the given knowledge base.

Let K be an arbitrary knowledge base and Pf(K) the extended logic program consisting
of rules (AF1)–(AF21) included Encoding 8. Let P ′

f (K) denote the extended logic program
Pf(K) without the minimize statement (AF21).

For an answer set M we define:

FM = {X l | X ∈ At(K), atomOccForgotten(X,l) ∈ M}

Lemma 11. If M is an answer set of P ′
f (K) then (

∧
K)[X1 f−→ ⊤,⊥; . . . ;Xn f−→ ⊤,⊥] is

consistent with FM = {X1, . . . , Xn}.

Proof. The rules given in (AF10)–(AF15) model classical entailment wrt. ∧, ∨, and ¬. To
be specific, the rules (AF10) and (AF11) model that the conjunction of two subformulas
is only true if both conjuncts are true, and false if it is not true. In the same fashion, a
disjunction is only false if both of its individual disjuncts are false (modeled by (AF12)).
It is true, if it is not false (modeled by (AF13)). Classical negation, i. e., ¬Φ is true if Φ is
false, and vice versa, is represented by (AF14) and (AF15).

Furthermore, rule (AF9) represents that each atom X is evaluated to either t or f . In
other words, since we represent that each atom X ∈ At(K) is assigned a unique truth value,
we automatically represent an interpretation on At(K).

Each atom occurrence X with label l (i, e., X l) is represented as atomOcc(X, l), due to
(AF2) and (AF7). Further, rule (AF16) models that each X l could be forgotten by guessing
a subset of atom occurrences by means of a cardinality constraint. More precisely, (AF16)
assigns a subset of all atom occurrences X l as atomOccForgotten(X, l). Thus, (AF16)
determines FM . For each atom occurrence in this set, the truth value of the subformula
containing the atom occurrence is reversed by (AF18) and (AF19), respectively. Given an
interpretation ω, this results in setting an atom occurrence X l with ω(X) = f to t (AF18),
and vice versa (AF19). If an atom occurrence X l is not in FM (i. e., if an atom is not
forgotten), (AF17) is triggered, and X l must conform to ω.

Finally, all formulas in the given knowledge base must be true. This is ensured by
the integrity constraint (AF20) which forbids elements A ∈ K to be evaluated to f . This
also implies that each X l ∈ FM must be assigned the opposite truth value of X, which
is equivalent to replacing it with ⊤ or ⊥, corresponding on the context. Thus, since all
formulas A ∈ K must be true, the version of K modified by the forgetting operation, i. e.,

(
∧

K)[X1 f−→ ⊤,⊥; . . . ;Xn f−→ ⊤,⊥], must be consistent.
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Theorem 8. Let Mo be an optimal answer set of Pf(K). Then |FMo | = If(K).

Proof. From Lemma 11 it follows that the answer sets of P ′
f (K) correspond exactly to

(
∧

K)[X1 f−→ ⊤,⊥; . . . ;Xn f−→ ⊤,⊥] being consistent with FM = {X1, . . . , Xn}. The min-
imize statement (AF21) included in Pf(K) then ensures that only a minimal number of
instances of atomOccForgotten(X,l) are included in the optimal answer set. Overall, this
corresponds to the minimal number of atom occurrences in K being forgotten, which is
exactly the definition of If(K).

A.2.3 The Hitting Set Inconsistency Measure

For every A ∈ K:

kbMember(A). (AH1)

For every X ∈ At(K):

atom(X). (AH2)

Define |K| interpretations:
interpretation(1..|K|). (AH3)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (AH4)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (AH5)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (AH6)

For every formula Φa which consists of a single atom X:

formulaIsAtom(Φa,X). (AH7)

At least one, and at most |K| interpretations must be included in the hitting set:

1{interpretationActive(I) : interpretation(I)}|K|. (AH8)

For the static part, we define:

tv(t;f). (AH9)

1{truthValueInt(A,I,T) : tv(T)}1 :-
atom(A),

interpretation(I). (AH10)

truthValueInt(F,I,t) :-

conjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,t),

truthValueInt(H,I,t). (AH11)

truthValueInt(F,I,f) :-

conjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,t). (AH12)

truthValueInt(F,I,f) :-
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disjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,f),

truthValueInt(H,I,f). (AH13)

truthValueInt(F,I,t) :-

disjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,f). (AH14)

truthValueInt(F,I,t) :-

negation(F,G),

truthValueInt(G,I,f). (AH15)

truthValueInt(F,I,f) :-

negation(F,G),

truthValueInt(G,I,t). (AH16)

truthValueInt(F,I,T) :-

formulaIsAtom(F,G),

truthValueInt(G,I,T),

interpretation(I),

tv(T). (AH17)

truthValue(F,t) :-

truthValueInt(F,I,t),

kbMember(F),

interpretation(I),

interpretationActive(I). (AH18)

truthValue(F,f) :-

kbMember(F),

not truthValue(F,t). (AH19)

:-

interpretationActive(I),

1 < I,

not interpretationActive(I-1). (AH20)

:-

truthValue(F,f),

kbMember(F). (AH21)

#minimize{1,I : interpretationActive(I)}. (AH22)

Encoding 9: Overview of the ASP encoding Ph(K) of the hitting set inconsistency measure
Ih. K is the given knowledge base.

Let K be an arbitrary knowledge base and Ph(K) the extended logic program consisting
of rules (AH1)–(AH22) listed in Encoding 9 in Section 4.4.
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Lemma 12. Ph(K) does not have an answer set if and only if K contains one or more
contradictory formulas.

Proof. Let some A⊥ ∈ K be contradictory. To begin with, the formulas A ∈ K and the
atoms X ∈ At(K) are represented in ASP via (AH1) and (AH2). Moreover, the operators
of each (sub-)formula in K is encoded using (AH4)–(AH7). Thus, P ′

h(K) contains an ASP
representation of K itself. Additionally, (AH3) adds |K| interpretation constants to P ′

h(K).
By means of (AH10), we assign a distinct truth value (defined by (AH9)) to each atom/1

for each interpretation/1. (AH11)–(AH16) model classical entailment (analogous to
(AF11)–(AF16), but with an additional reference to an interpretation). Besides, (AH17)
models that a formula consisting of an individual atom gets the same truth value as the
atom. Since every atom representation in ASP is connected to a truth value, and the
evaluation of the (sub-)formulas is accomplished via (AH11)–(AH17), every formula A ∈ K
(represented by kbMember/1) evaluates to either t or f . Since we cannot construct an
interpretation which satisfies A⊥, it would always evaluate to f . However, the integrity
constraint (AH21) forbids this, therefore, no answer set can be constructed.

Let P ′
h(K) denote the extended logic program Ph(K) without the minimize statement

(AH22). Let M be an answer set of P ′
h(K). Further, let ωasp

i , i ∈ {1, . . . , |K|}, denote
the ASP constants representing interpretations, and let ωi denote the corresponding in-
terpretations in classical logic. We define the set of interpretations ωi represented in M
as

Ω(M) = {ωi | interpretationActive(ωasp
i ) ∈ M}.

Lemma 13. If M is an answer set of P ′
h(K) then Ω(M) is a hitting set of K.

Proof. Ω(M) is a hitting set if and only if every formula A ∈ K is satisfied by at least one
ωi ∈ Ω(M). We will first show that for any ωi ∈ Ω(M) and A ∈ K, ωi |= A if and only if
interpretationActive(ωasp

i ) ∈ M .

The cardinality constraint (AH8) ensures that the answer set includes at least one in-
stance of interpretationActive(ωasp

i ). According to (AH8), interpretation(ωi) must
be included in M as well, however, this is always the case due to (AH3). Moreover,
interpretationActive(ωasp

i ) must be included in M in order for (AH19) to be sat-
isfied. Further, for each A ∈ K there must be at least one interpretation such that
truthValue(A,t) ∈ M , because otherwise, truthValue(A,f) ∈ M (due to (AH19)),
and this is forbidden by the integrity constraint (AH21).

As mentioned before, rules (AH11)–(AH17) represent entailment in classical proposi-
tional logic wrt. a given interpretation. Finally, an atom X ∈ K can only be either true or
false, but not both, under a given interpretation, as stated in (AH14).

Consequently, for each formula A ∈ K there exists at least one interpretation ωi such
that truthValueInt(A,ωasp

i ,t) ∈ M . It follows that for each A ∈ K, there is also at least
one interpretationActive(ωasp

i ) ∈ M . Hence, for each formula A ∈ K there exists an
ωi ∈ Ω(M) such that ωi |= A. Thus, Ω(M) is a hitting set of K.

Theorem 9. Let Mo be an optimal answer set of Ph(K). Then |Ω(Mo)| − 1 = Ih(K). If
no answer set of Ph(K) exists, Ih(K) = ∞.
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Proof. Lemma 12 shows that Ph(K) does not have an answer set if K contains at least one
contradictory formula, i. e., if Ih(K) = ∞.

Further, in the above proof of Lemma 13 we showed that Ω(M) is a hitting set of
K wrt. some answer set M . The cardinality of Ω(M) is exactly the number of instances
interpretationActive(ωasp

i ), with i ∈ {1, . . . , |K|}, that are included in M . The mini-
mize statement (AH22) selects the minimal number of such instances. This represents the
selection of the smallest possible hitting set wrt. K. At last, subtracting 1 from |Ω(Mo)|
corresponds exactly to the definition of Ih(K).

A.2.4 The Max-Distance Inconsistency Measure

For every Ai ∈ K with i ∈ {0, . . . , |K| − 1}:
kbMember(A,i). (ADM1)

For every X ∈ At(K):

atom(X). (ADM2)

Define |K|+ 1 interpretations:

interpretation(0..|K|). (ADM3)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (ADM4)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (ADM5)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (ADM6)

For every formula Φa which consists of a single atom X:

formulaIsAtom(Φa,X). (ADM7)

Distance between interpretation |K| and the models of each formula:

d(X) :-

diff(X),

interpretation(I),

X <= #count{A: atom(A),

truthValueInt(A,I,T),

not truthValueInt(A,|K|,T)}. (ADM8)

For the static part, we define:

tv(t;f). (ADM9)

1{truthValueInt(A,I,T) : tv(T)}1 :-
atom(A),

interpretation(I). (ADM10)

truthValueInt(F,I,t) :-

conjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,t),

truthValueInt(H,I,t). (ADM11)

truthValueInt(F,I,f) :-
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conjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,t). (ADM12)

truthValueInt(F,I,f) :-

disjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,f),

truthValueInt(H,I,f). (ADM13)

truthValueInt(F,I,t) :-

disjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,f). (ADM14)

truthValueInt(F,I,t) :-

negation(F,G),

truthValueInt(G,I,f). (ADM15)

truthValueInt(F,I,f) :-

negation(F,G),

truthValueInt(G,I,t). (ADM16)

truthValueInt(F,I,T) :-

formulaIsAtom(F,G),

truthValueInt(G,I,T),

interpretation(I),

tv(T). (ADM17)

:-

truthValueInt(F,I,f),

kbMember(F,I). (ADM18)

diff(1..X) :-

X = #count{A: atom(A)}. (ADM19)

#minimize{1,X : d(X)}. (ADM20)

Encoding 10: Overview of the ASP encoding Pmax
d (K) of the max-distance inconsistency

measure Imax
d . K is the given knowledge base.

Let K be an arbitrary knowledge base and Pmax
d (K) the extended logic program con-

sisting of rules (ADM1)–(ADM22) listed in Encoding 10 in Section 4.5.

Lemma 14. Pmax
d (K) does not have an answer set if and only if K contains one or more

contradictory formulas.

Proof. The knowledge base, i. e., its formulas, subformulas, and atoms are modelled by
(ADM1)–(ADM2) and (ADM4)–(ADM7). Note that each A ∈ K gets a label i, and is
represented as kbMember(A, i) (ADM1). The two truth values are represented by (ADM9).
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Moreover, via (ADM3) we represent |K| + 1 interpretations in Pmax
d (K). We denote these

interpretations as follows (note that we represent ωi simply as i in ASP):

ωi(X) =

{
t truthValue(X, i, t) ∈ M

f truthValue(X, i, f) ∈ M

Analogously to (AH10) (wrt. Ih), (ADM10) guesses all |K|+1 interpretations by assign-
ing each atom in each interpretation a distinct truth value. (ADM11)–(ADM17) correspond
exactly to (AH11)–(AH17) (wrt. Ih). Thus, these rules model classical entailment.

Each interpretation ωi is supposed to be a model for formula Ai ∈ K, i ∈ {0, . . . , |K|−1}.
To this end, the integrity constraint (ADM18) ensures that no formula Ai evaluates to f un-
der ωi. If a contradictory formula A⊥

i is included in K, there exists no interpretation ωi that
would satisfy A⊥

i . Hence, the answer set would need to include truthValueInt(A⊥, i, f).
However, (ADM18) does not allow this, so no answer set can be derived.

Let Pmax
d

′(K) denote the extended logic program Pmax
d (K) without the minimize state-

ment (ADM20). Let Dmax
M = {n | d(n) ∈ M,n ∈ N} wrt. an answer set M .

Lemma 15. Let M be an answer set of Pmax
d

′(K). Each n ∈ Dmax
M corresponds to a value

smaller than or equal to the distance between some interpretation ω|K| and one of the models
of the formulas in K, i. e., ωi with i ∈ {0, . . . , |K| − 1}.

Proof. If an atom X ∈ At(K) evaluates to a truth value θ ∈ {t, f} under an interpre-
tation ωi, and not to truth value θ under interpretation ω|K|, with i ∈ {0, . . . , |K| − 1},
then truthValueInt(X, i, θ) ∈ M and truthValueInt(X, |K|, θ) /∈ M . We also have
atom(X) ∈ M , interpretation(i) ∈ M , and interpretation(|K|) ∈ M . Consequently,
if for n cases of atoms X wrt. interpretations ωi and ω|K| we have different truth values, i. e.,
we have truthValueInt(X, i, θ) ∈ M , but truthValueInt(X, |K|, θ) /∈ M , this is counted
by means of the #count aggregate in (ADM8). Note that this also represents the Dalal
distance between ωi and ω|K|. Moreover, {diff(0), . . . , diff(|At(K)|)} ⊂ M (ADM19).
Since the Dalal distance between ωi and ω|K| cannot exceed |At(K)| (except for the ∞ case,
see Lemma 14), diff(n) ∈ M . Moreover, via (ADM8), we do not only derive d(n), but
also d(m) with m ∈ {1, . . . , n − 1}. Thus, we conclude that {d(1), . . . , d(n)} ⊂ M if the
Dalal distance between ωi and ω|K| is n. Further, each interpretation ωi represents a model
of the i-th formula, due to the integrity constraint (ADM18). Hence, each element in Dmax

M

always represents a value smaller than or equal to the Dalal distance between a model of a
formula in K and ω|K|.

Theorem 10. Let Mo be an optimal answer set of Pmax
d (K). Then |Dmax

Mo
| = Imax

d (K). If
no answer set of Pmax

d (K) exists, Imax
d (K) = ∞.

Proof. Lemma 14 shows that Pmax
d (K) does not have an answer set if K contains at least

one contradictory formula, i. e., if Imax
d (K) = ∞.

Furthermore, Lemma 15 shows that the elements in Dmax
M represent the Dalal distances

between an interpretation ω|K| and a model of one of the formulas, represented by ωi,
i ∈ {0, . . . , |K|−1}. Let Mo be an optimal answer set of Pmax

d (K). The minimize statement
(ADM20) finds the interpretation (ω|K|) with the “optimal” distance to the models of the
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formulas of K. More precisely, the objective of the minimize statement is to find as few
different distance values as possible, since it “counts” each distance. Note that each distinct
distance can only be derived once (due to (ADM19)), and for every d(n) ∈ M with n ∈
Dmax

Mo
, we also have d(m) ∈ M with m ∈ {1, . . . , n − 1}. In other words, every distance

that is smaller than n (but at least 1, since diff(0) /∈ M (ADM19)) is also counted, since
(ADM8) derives d(n) for each value that is smaller than or equal to the Dalal distance
(see Lemma 15). Hence, we have Dmax

Mo
= {1, . . . , nmax} with nmax corresponding to the

maximal value in Dmax
Mo

. Due to the minimization in (ADM20), nmax corresponds exactly
to the minimal maximum distance. It is easy to see that |Dmax

Mo
| = nmax. Therefore,

|Dmax
Mo

| = Imax
d (K).

A.2.5 The Sum-Distance Inconsistency Measure

For every Ai ∈ K with i ∈ {0, . . . , |K| − 1}:
kbMember(A,i). (ADS1)

For every X ∈ At(K):

atom(X). (ADS2)

Define |K|+ 1 interpretations:

interpretation(0..|K|). (ADS3)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (ADS4)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (ADS5)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (ADS6)

For every formula Φa which consists of a single atom X:

formulaIsAtom(Φa,X). (ADS7)

Minimize statement:

#minimize{1,A,I: atom(A), truthValueInt(A,I,T),

not truthValueInt(A,|K|,T)}. (ADS8)

For the static part, we define:

tv(t;f). (ADS9)

1{truthValueInt(A,I,T) : tv(T)}1 :-
atom(A),

interpretation(I). (ADS10)

truthValueInt(F,I,t) :-

conjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,t),

truthValueInt(H,I,t). (ADS11)

truthValueInt(F,I,f) :-

conjunction(F, , ),

interpretation(I),
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not truthValueInt(F,I,t). (ADS12)

truthValueInt(F,I,f) :-

disjunction(F,G,H),

interpretation(I),

truthValueInt(G,I,f),

truthValueInt(H,I,f). (ADS13)

truthValueInt(F,I,t) :-

disjunction(F, , ),

interpretation(I),

not truthValueInt(F,I,f). (ADS14)

truthValueInt(F,I,t) :-

negation(F,G),

truthValueInt(G,I,f). (ADS15)

truthValueInt(F,I,f) :-

negation(F,G),

truthValueInt(G,I,t). (ADS16)

truthValueInt(F,I,T) :-

formulaIsAtom(F,G),

truthValueInt(G,I,T),

interpretation(I),

tv(T). (ADS17)

:-

truthValueInt(F,I,f),

kbMember(F,I). (ADS18)

Encoding 11: Overview of the ASP encoding PΣ
d (K) of the sum-distance inconsistency

measure IΣ
d . K is the given knowledge base.

Let K be an arbitrary knowledge base and PΣ
d (K) the extended logic program consisting

of rules (ADS1)–(ADS22) listed in Encoding 11 in Section 4.6.

Lemma 16. PΣ
d (K) does not have an answer set if and only if K contains one or more

contradictory formulas.

Proof. Analogous to the proof of Lemma 14.

We define

DΣ
M = {diffM (X, i) | truthValueInt(X, i, θ) ∈ M, truthValueInt(X, |K|, θ) /∈ M}.

Theorem 11. Let Mo be an optimal answer set of PΣ
d (K). Then |DΣ

Mo
| = IΣ

d (K). If no

answer set of PΣ
d (K) exists, IΣ

d (K) = ∞.

Proof. Lemma 16 shows that PΣ
d (K) does not have an answer set if K contains at least one

contradictory formula, i. e., if IΣ
d (K) = ∞.
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Each formula A ∈ K is connected to one specific interpretation. More precisely, inter-
pretation ωi is a model of formula Ai (ADS18) (see also the proof for Lemma 15). Further,
the inner part of the minimize statement (ADS8) represents the calculation and summation
of the Dalal distance between ω|K| and each interpretation ωi with i ∈ {0, . . . , |K| − 1}. To
be precise, each case in which an atom X evaluates to θ ∈ {t, f} under interpretation ωi,
but ω|K| ̸= θ, i. e., if truthValue(X, i, θ) ∈ M , but truthValue(X, |K|, θ) /∈ M , is counted

as 1. Thus, for any answer set M , |DΣ
M | corresponds to the sum of Dalal distances between

the models of the formulas ωi and ω|K|. For an optimal answer set Mo, yielded by the
#minimize statement in (ADS8), ω|K| becomes the “optimal” interpretation, i. e., the one

with the lowest sum of distances. Hence, |DΣ
Mo

| = IΣ
d (K).

A.2.6 The Hit-Distance Inconsistency Measure

For every A ∈ K:

kbMember(A). (ADH1)

For every X ∈ At(K):

atom(X). (ADH2)

For every conjunction Φc = Ψc,1 ∧Ψc,2 appearing in some formula:

conjunction(Φc,Ψc,1,Ψc,2). (ADH3)

For every disjunction Φd = Ψd,1 ∨Ψd,2 appearing in some formula:

disjunction(Φd,Ψd,1,Ψd,2). (ADH4)

For each negation Φn = ¬Ψn appearing in some formula:

negation(Φn,Ψn). (ADH5)

For every formula Φa which consists of a single atom X:

formulaIsAtom(Φa,X). (ADH6)

For the static part, we define:

tv(t;f). (ADH7)

1{truthValue(A,T) : tv(T)}1 :-
atom(A). (ADH8)

truthValue(F,t) :-

conjunction(F,G,H),

truthValue(G,t),

truthValue(H,t). (ADH9)

truthValue(F,f) :-

conjunction(F, , ),

not truthValue(F,t). (ADH10)

truthValue(F,f) :-

disjunction(F,G,H),

truthValue(G,f),

truthValue(H,f). (ADH11)

truthValue(F,t) :-

disjunction(F, , ),
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not truthValue(F,f). (ADH12)

truthValue(F,t) :-

negation(F,G),

truthValue(G,f). (ADH13)

truthValue(F,f) :-

negation(F,G),

truthValue(G,t). (ADH14)

truthValue(F,T) :-

formulaIsAtom(F,G),

truthValue(G,T),

tv(T). (ADH15)

truthValueKbMember(F,T) :-

kbMember(F),

tv(T),

truthValue(F,T). (ADH16)

#minimize{1,F : truthValueKbMember(F,f)}. (ADH17)

Encoding 12: Overview of the ASP encoding P hit
d (K) of the hit-distance inconsistency

measure Ihit
d . K is the given knowledge base.

Let K be an arbitrary knowledge base and P hit
d (K) the extended logic program consisting

of rules (ADH1)–(ADH17) listed in Encoding 12 in Section 4.7. Let P hit
d

′(K) denote the
extended logic program P hit

d (K) without the minimize statement (ADH17).
For an answer set M of P hit

d
′(K) we define:

KM = {Aasp | A ∈ K, truthValueKbMember(Aasp, f) ∈ M}

with Aasp being an ASP representation of A.

Lemma 17. Each Aasp ∈ KM corresponds to a formula A ∈ K being evaluated to f .

Proof. The knowledge base, i. e., its formulas, subformulas, and atoms are modeled by
(ADH1)–(ADH6). (This corresponds exactly to (AC1)–(AC6) wrt. Ic.) The two truth
values are represented by (ADH7). Analogously to (AF10) (If), (ADH8) guesses an inter-
pretation by assigning each atom a distinct truth value. We denote this interpretation as
follows:

ωM (X) =

{
t truthValue(X,t) ∈ M

f truthValue(X,f) ∈ M

(ADH9)–(ADH14) model the evaluation of conjunctions, disjunctions, and negations wrt.
ωM (this corresponds exactly to (AF11)–(AF16) wrt. If). In addition, (ADH15) models
that a formula consisting of an individual atom gets the same truth value as that atom.
Moreover, (ADH16) essentially extracts the truth values of the formulas A ∈ K. More
precisely, if the atom valuations determined by (ADH8) eventually lead to a formula being
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evaluated to a truth value θ ∈ {t, f}—i. e., if truthValue(Aasp, θ) ∈ M and A is an element
of K (i. e., kbMember(Aasp) ∈ M), then truthValueKbMember(Aasp, θ) ∈ M . Hence, each
Aasp ∈ KM corresponds to a formula A ∈ K with ωM (A) = f .

Theorem 12. Let Mo be an optimal answer set of P hit
d (K). Then |KMo | = Ihit

d (K).

Proof. From Lemma 17 we know that for an answer set M of P hit
d

′(K), each Aasp ∈ KM

corresponds to a formula A ∈ K being evaluated to false (i. e., with ωM (A) = f). In P hit
d (K),

the minimization statement (ADH17) ensures that the resulting optimal answer set Mo

contains a minimal number of instances of truthvalueKbMember(Aasp, f) (with A ∈ K),
i. e., the cardinality of |KMo | gets minimized. Hence, we are computing the minimal number
of formulas in K which evaluate to f (and which would need to be removed in order to render
K consistent), which meets the definition of Ihit

d .

Appendix B. Additional Data

This section includes additional data and visualizations regarding the experimental evalu-
ation (Section 5).

B.1 Runtime Measurements

The following figures display cactus plots24, each corresponding to a comparison between
the three approaches wrt. a specific inconsistency measure and data set.

24. A cactus plot is comprised of time measurements ordered from low to high. Hence, we measure the
runtime of an algorithm wrt. each knowledge base of a given data set, and subsequently order the
measurements from low to high and plot them. If an inconsistency value wrt. a given knowledge base
could not be computed within the given time limit (i.e., if it timed out) or if a memory error occurred,
the corresponding time measurement is not plotted.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 3: Runtime comparison of the ASP-based, SAT-based, and naive approaches on the
SRS data set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 4: Runtime comparison of the ASP-based, SAT-based, and naive approaches on the
ML data set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 5: Runtime comparison of the ASP-based, SAT-based, and naive approaches on the
ARG data set. Timeout: 10 minutes.
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Figure 6: Runtime comparison of the ASP-based, SAT-based, and naive approaches for
the contension inconsistency measure on the SC data set. Timeout: 5000 seconds (83.3
minutes).
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hit-distance inconsistency measure (Ihit
d )

Figure 7: Runtime comparison of the ASP-based, SAT-based, and naive approaches on the
LP data set for the contension and forgetting-based inconsistency measures. Timeout: 10
minutes.
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(a) Contension inconsistency measure (Ic) (b) Max-distance inconsistency measure (Imax
d )

(c) Sum-distance inconsistency measure (IΣ
d )

Figure 8: Runtime comparison of the SAT-based approaches based on linear search (for
Ic, Imax

d , and IΣ
d ) and the corresponding binary search versions, as well as the ASP-based

versions, on the SRS data set. Timeout: 10 minutes.
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(a) ML / Ih

(b) ARG / Ih (c) ARG / Imax
d

Figure 9: Runtime comparison of the ASP approach with core-guided vs. with branch-and-
bound optimization (default) on the ML data set wrt. the hitting set measure (Ih) and on
the ARG data set wrt. Ih and the max-distance measure (Imax

d ). Timeout: 10 minutes.
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Figure 10: Runtime comparison of the MaxSAT approach for Ic and the previously intro-
duced approaches on the SRS data set. Timeout: 10 minutes.

Figure 11: Runtime comparison of the different versions of the ASP approach for Ic on the
SRS data set. “ASP binary search” refers to the version from (Kuhlmann & Thimm, 2020),
“ASP minimize v1” to the version from (Kuhlmann & Thimm, 2021), and “ASP” to the
new one. Timeout: 10 minutes.
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B.2 Inconsistency values

In this section, we present histograms over the inconsistency values regarding all inconsis-
tency measures and all data sets considered in this work. Note that we could only include
inconsistency values wrt. instances for which at least one approach did not time out. To
be precise, the histograms for the SRS data set are included in Figure 12, those for the ML
data set in Figure 13, those for the ARG data set in Figure 14, those for the SC data set
in Figure 15, and those for the LP data set in Figure 16.

Furthermore, the following plots only include non-∞ values. With regard to those
measures that allow for the value ∞ (i.e., Ih, Imax

d , and IΣ
d ), the number of instances

resulting in that value are mentioned in the corresponding captions.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih);
number of ∞ cases: 621

(d) Max-distance inconsistency measure (Imax
d );

number of ∞ cases: 621

(e) Sum-distance inconsistency measure (IΣ
d );

number of ∞ cases: 621
(f) Hit-distance inconsistency measure (Ihit

d )

Figure 12: Histograms of the inconsistency values of the SRS data set wrt. all six inconsis-
tency measures.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih);
number of ∞ cases: 0

(d) Max-distance inconsistency measure (Imax
d );

number of ∞ cases: 0

(e) Sum-distance inconsistency measure (IΣ
d );

number of ∞ cases: 0
(f) Hit-distance inconsistency measure (Ihit

d )

Figure 13: Histograms of the inconsistency values of the ML data set wrt. all six inconsis-
tency measures
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih);
number of ∞ cases: 0

(d) Max-distance inconsistency measure (Imax
d );

number of ∞ cases: 0

(e) Sum-distance inconsistency measure (IΣ
d );

number of ∞ cases: 0
(f) Hit-distance inconsistency measure (Ihit

d )

Figure 14: Histograms of the inconsistency values of the ARG data set wrt. all six incon-
sistency measures
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Figure 15: Histogram of the inconsistency values of the SC data set wrt. all six inconsistency
measures.

Figure 16: Histogram of the inconsistency values of the LP data set wrt. Ic, If , and Ihit
d .

Wrt. the other measures (Ih, Imax
d , IΣ

d ), none of the instances from the ASP data set could
be solved.
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B.3 Scatter Plots

In this section we present scatter plots which compare each pair of approaches wrt. each
inconsistency measure and each data set in terms of runtime per instance. Figures 17, 18,
and 19 refer to the SRS data set, Figures 20, 21, and 22 refer to the ML data set, and
Figures 23, 24, 25 refer to the ARG data set, and Figures 26, 27, 28 refer to the SC data
set. The scatter plots regarding the LP data set are omitted, since both the naive and the
SAT-based approaches exclusively produced timeouts.

Furthermore, Figures 29 and 30 depict the scatter plots regarding the comparison be-
tween a linear search variant of the SAT approach and the other approaches, as described
in Section 5.3.3. Moreover, the scatter plots relating to the comparison of the MaxSAT
approach for the contension inconsistency measure and the corresponding other approaches
(see Section 5.3.4) are shown in Figure 31.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 17: Runtime comparison of the ASP-based and SAT-based approaches on the SRS
data set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 18: Runtime comparison of the ASP-based and naive approaches on the SRS data
set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 19: Runtime comparison of the SAT-based and naive approaches on the SRS data
set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 20: Runtime comparison of the ASP-based and SAT-based approaches on the ML
data set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 21: Runtime comparison of the ASP-based and naive approaches on the ML data
set. Timeout: 10 minutes.

666



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 22: Runtime comparison of the SAT-based and naive approaches on the ML data
set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 23: Runtime comparison of the ASP-based and SAT-based approaches on the ARG
data set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 24: Runtime comparison of the ASP-based and naive approaches on the ARG data
set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 25: Runtime comparison of the SAT-based and naive approaches on the ARG data
set. Timeout: 10 minutes.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 26: Runtime comparison of the ASP-based and SAT-based approaches on the SC
data set. Timeout: 5000 seconds.
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(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 27: Runtime comparison of the ASP-based and naive approaches on the SC data
set. Timeout: 5000 seconds.

672



Comparison of SAT-Based and ASP-Based Algorithms for Inconsistency Measurement

(a) Contension inconsistency measure (Ic) (b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih) (d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d ) (f) Hit-distance inconsistency measure (Ihit

d )

Figure 28: Runtime comparison of the SAT-based and naive approaches on the SC data
set. Timeout: 5000 seconds.
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(a) Contension inconsistency measure (Ic) (b) Max-distance inconsistency measure (Imax
d )

(c) Sum-distance inconsistency measure (IΣ
d ) (d) Contension inconsistency measure (Ic)

(e) Max-distance inconsistency measure (Imax
d ) (f) Sum-distance inconsistency measure (IΣ

d )

Figure 29: Runtime comparison of the SAT-based approaches based on linear search (for
Ic, Imax

d , and IΣ
d ) and the corresponding binary search versions, as well as the ASP-based

versions, on the SRS data set. Timeout: 600 seconds.
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(a) Contension inconsistency measure (Ic) (b) Max-distance inconsistency measure (Imax
d )

(c) Sum-distance inconsistency measure (IΣ
d )

Figure 30: Runtime comparison of the SAT-based approaches based on linear search (for
Ic, Imax

d , and IΣ
d ) and the corresponding naive methods, on the SRS data set. Timeout:

600 seconds.
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Figure 31: Runtime comparison of the MaxSAT approach for Ic and the corresponding
other approaches on the SRS data set. Timeout: 600 seconds.
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(a) ML / Ih

(b) ARG / Ih (c) ARG / Imax
d

Figure 32: Runtime comparison of the ASP approach with core-guided vs. with branch-
and-bound optimization (default) on the ML data set wrt. the hitting set measure (Ih) and
on the ARG data set wrt. Ih and the max-distance measure (Imax

d ). Timeout: 10 minutes.
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B.4 Runtime Composition

This section contains additional bar plots visualizing the average runtime composition of the
SAT-based and ASP-based approaches wrt. each measure and the SRS data set (Figure 33),
as well as the ARG data set (Figure 34).
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(a) Contension inconsistency measure (Ic)

(b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih)

(d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d )

(f) Hit-distance inconsistency measure (Ihit
d )

Figure 33: Comparison between the ASP-based and SAT-based approaches in terms of
runtime composition wrt. the SRS data set.
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(a) Contension inconsistency measure (Ic)

(b) Forgetting-based inconsistency measure (If)

(c) Hitting Set inconsistency measure (Ih)

(d) Max-distance inconsistency measure (Imax
d )

(e) Sum-distance inconsistency measure (IΣ
d )

(f) Hit-distance inconsistency measure (Ihit
d )

Figure 34: Comparison between the ASP-based and SAT-based approaches in terms of
runtime composition wrt. the ARG data set.
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