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Abstract

In the field of natural language processing, hierarchical text classification (HTC) has
emerged as a critical task for organizing and analyzing large volumes of text data. The
previous work of HTC often falls short in fully leveraging the hierarchical structure of la-
bels, resulting in suboptimal performance. In addition, it is difficult to capture nuanced
relationships between parent and child classes, leading to inaccurate predictions and in-
sufficient differentiation between sibling classes under the same parent category. This gap
underscores the need for approaches that can more effectively integrate and utilize both hi-
erarchical and corpus-specific information to improve HTC performance. To address these
issues, Concept-aware Prompt Mechanism (CPM) is proposed for HTC, which leverages
concept information embedded within hierarchical labels to enhance the representation of
these labels and improve classification accuracy. Specifically, we introduce a concept initial-
ization module that extracts concept features from hierarchical labels and a novel concept
prompt template to integrate these features into the classification process. Our experi-
mental results demonstrate that the proposed CPM achieves state-of-the-art performance
on two benchmark datasets, improving Micro-F1 and Macro-F1 scores to varying degrees,
particularly in datasets with complex label hierarchies.

1. Introduction

Text classification, as a significant task in the field of Natural Language Processing (NLP),
aims to categorize textual data into different classes or labels, thereby facilitating informa-
tion retrieval, data analysis, and decision-making processes. Moreover, the applications of
text classification are extensive, spanning areas such as spam filtering, sentiment analysis,
news classification, and legal document archiving. However, with the increasing volume of
information, traditional text classification methods may face certain challenges, especially
when it is necessary to subdivide text into multiple hierarchical categories.

Hierarchical Text Classification (HTC), a subfield of text classification, emphasizes a
more granular and layered classification system (Silla & Freitas, 2011). Specifically, in
HTC, a single data sample can correspond to multiple labels, and these labels possess a
clear hierarchical structure, typically represented as a tree structure (as shown in Figure
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Figure 1: Tree label hierarchy in news hierarchical text classification

1). For instance, an NBA news article can be mapped to both the sports and basketball
categories, with basketball evidently being a subclass of sports. Therefore, the importance of
HTC lies in its ability to better capture the complex relationships between textual data and
the hierarchical structure of labels, thereby providing more accurate and useful classification
results. From an application perspective, HTC has been widely utilized in various domains,
including news classification (Lewis et al., 2004), advertising systems (Agrawal et al., 2013),
information retrieval (Liu et al., 2015), and fine-grained entity typing (Xu & Barbosa, 2018).

Existing HTC models often utilize both text encoder and structure encoder to obtain
embeddings for documents and hierarchies, respectively. These embeddings are then in-
tegrated through various methods to achieve a composite representation of the text and
hierarchical labels (Zhou et al., 2020; Deng et al., 2021; Chen et al., 2021). Although
this approach has proven effective, identifying a more suitable method for combining text
embeddings and structured label embeddings remains a topic of significant research interest.

In light of this, some scholars have attempted to introduce prompt learning into HTC
tasks (Wang et al., 2022b). This approach leverages the flexibility and naturalness of
prompt learning, which surpasses traditional fine-tuning in its ability to adapt to a variety
of complex text processing tasks, to seamlessly incorporate structured labels into the text.
While this method cleverly integrates the hierarchical structure of labels into the prompts,
achieving a natural fusion of structural and text embeddings, it fails to account for finer-
grained information relationships between parent and child classes. This oversight directly
impacts the model’s ability to predict classifications accurately, as it does not capture the
semantic nuances among sibling classes under the same parent class. Consequently, in
some cases, the model struggles to distinguish between similar sibling classes, leading to
difficulties in emphasizing different focal points correctly.

Inspired by Wang et al. (2021), we recognize that the integration of conceptual informa-
tion aids the classifier in better understanding the relationships between parent and child
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classes as well as among sibling classes if there is a shared concept between subclasses, with
a granularity that falls between the subclasses and their parent class.

In this regard, a concept initialization module designed to extract conceptual features
embedded within the structured labels is constructed in this work. Wherein, a class’s con-
ceptual representation based on the embeddings of high-frequency keywords from documents
mapped to the label, along with the embeddings of all its child labels is jointly constructed
rather than using a dynamic routing mechanism to derive these concepts. It enables the
classifier to more distinctly differentiate the focal points among sibling classes sharing the
same parent class, thereby enhancing classification accuracy.

In previous work, HPT (Wang et al., 2022b) has been dedicated to integrating hier-
archical information into the prompt template by constructing additional nodes. Inspired
by this, we design conceptual nodes for structured labels and inject them into the original
label structure. Unlike HPT , the newly generated nodes are not initialized in a random
way, because it focuses more on the connection information contained in the tag structure,
rather than the simple hierarchical information. Based on this, we use the concept initial-
ization template constructed before to initialize the new node, and then use the method
similar to HPT to form the soft prompt template containing the concept information, so as
to complete the hierarchical text classification task by using the prompt learning.

The contributions of the work can be summarized as follows:

• Concept-aware Prompt Mechanism (CPM) is proposed for Hierarchical Text Classifi-
cation (HTC) in this work. To the best of our knowledge, this is the first attempt to
combine the conceptual granularity information inherent in hierarchical label struc-
tures with prompt learning in the HTC domain.

• A concept initialization module to extract and initialize the implicit concepts within
structured labels is proposed. Which enables subsequent structure encoders to explic-
itly obtain structured label embeddings enriched with these conceptual representa-
tions, thereby enhancing the model’s understanding of relationships between parent,
child, and sibling classes, ultimately improving classification accuracy and hierarchical
awareness. We constructed a concept initialization module to extract and initialize
the

The rest of the paper is organized as follows: Section 2 introduces related work. The
proposed method is introduced in detail in Section 3. Finally, the paper is concluded in
Section 4.

2. Related Work

2.1 Hierarchical Text Classification

Existing work on HTC is often categorized based on how they handle label hierarchies into
local and global approaches (Wehrmann et al., 2018).

Local approaches construct multiple classifiers according to the hierarchy, combining
them into a classifier chain (Cerri et al., 2011). Due to the hierarchical nature inherent
in hierarchical multi-label text classification, local approaches typically employ recursive
classification methods. This means predicting the top-level labels first, then predicting the
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next level based on their child labels, and so on, until reaching leaf nodes or final labels.
Thus, hierarchical multi-label classification can be seen as a multi-level classification prob-
lem, where each level’s predictions influence the next. In earlier work, Cerri et al. (2016)
proposed using a cascaded multi-layer perceptron model for hierarchical multi-label classifi-
cation tasks, where each layer of the perceptron corresponds to a layer of the label hierarchy.
However, this method, like subsequent local methods, suffers from the problem of exposure
bias, where accuracy decreases as the hierarchical depth increases. In recent years, Lok
et al. (2023) introduced HJCL, a hierarchical-aware joint supervised contrastive learning
method. It uses instance-level and label-level contrastive learning techniques, along with
carefully constructed batches, to achieve contrastive learning objectives, indirectly address-
ing some challenges of local methods such as label hierarchy dependencies and exposure
bias. Ma et al. (2023) introduced the Label Correlation Enhanced Decoder (LED), which
predicts the presence of class labels in parallel through multi-task learning and captures
hierarchical dependencies among labels using hierarchical-aware masks. Wang et al. (2021)
enhanced the structural information and relationships among labels by making each layer’s
classifier obtain further insights through label concepts. In summary, local methods can
conveniently extend existing classifiers to hierarchical multi-label classification tasks. How-
ever, constructing classifiers this way exposes them to bias, meaning errors in higher-level
classifiers propagate to lower levels, causing increasing classification errors as the hierarchy
deepens. Current research on local methods aims to provide more information to deep
classifiers or reduce errors in shallow classifiers to minimize this bias.

Global approaches treat all categories as a whole, typically constructing only one classi-
fier. Traditional algorithms cannot be directly applied to hierarchical multi-label classifica-
tion tasks and require redesigning classifiers. Early global methods ignored the hierarchical
structure of labels, treating the problem as flat multi-label classification (Johnson & Zhang,
2015). For a long time, simplifying the task to flat multi-label text classification was a
mainstream method for addressing HTC issues. However, as research progressed, it be-
came apparent that this approach could lead to label prediction inconsistencies. Recent
global method research focuses more on directly encoding the entire label structure through
structure encoders to enhance performance. For example, Zhou et al. (2020) designed a
structure encoder that integrates prior hierarchical label knowledge to learn label repre-
sentations. Chen et al. (2020) jointly embedded words and label hierarchies in hyperbolic
space. Zhang et al. (2022b) extracted text features according to different hierarchical levels.
Deng et al. (2021) introduced information maximization to constrain label representation
learning. Zhao et al. (2021) designed an adaptive fusion strategy to extract features from
both text and labels. Wang et al. (2022a) proposed a cognitive structure learning model
for HTC.

In general, global approaches predominantly rely on the direct encoding of the label
hierarchical structure, which represents a notable distinction between CPM and other
global methodologies. CPM enhances the model’s comprehension of inter-label relation-
ships through conceptual prompts. This divergence confers upon CPM a superior capability
in handling texts with intricate hierarchical structures, particularly when shared concepts
exist among labels.
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2.2 Prompt Tuning

The core idea of prompt-tuning (Schick & Schütze, 2021) is to guide a model to produce
more accurate and appropriate outputs by adjusting the prompts given to the model, such
as instructions or questions. This method typically involves modifying the model’s input to
better suit the desired task or context. It can be achieved by altering the input encoding,
adding additional contextual information, or adjusting the model’s output strategy. In the
field of NLP, this approach is frequently used in Masked Language Modeling (MLM) tasks
(Devlin et al., 2019).

Specifically, prompt fine-tuning changes the input text or encoding fed into a pretrained
language model by constructing and inserting prompt templates. This guides the pretrained
language model to more accurately predict the masked words in MLM. During this process,
prompts can be presented in various forms, such as hard prompts (Gao et al., 2021) and
soft prompts (Qin & Eisner, 2021; Hambardzumyan et al., 2021). Hard prompting is very
straightforward, typically involving manually designed fixed templates inserted into the
input. For example, manually crafted prompts have been used in sentiment (Zhang et al.,
2022a) and medical text (Wang et al., 2023) classification tasks.

In contrast, soft prompting was developed to address the labor-intensive nature of hard
prompting. This method either designs algorithms to let the model automatically find some
linguistic phrases to form prompts (Shin et al., 2020; Schick et al., 2020) or directly uses
learnable vectors as prompts (Liu et al., 2022; Su et al., 2022; Zhu et al., 2024). This allows
for more flexibility and efficiency in adapting prompts to the specific requirements of the
task, thereby improving the model’s performance in various NLP applications.

3. The Proposed Method

In this section, the proposed CPM designed to enhance HTC is introduced in detail. Our
method leverages conceptual information derived from hierarchical label structures and
integrates it into a pretrained BERT model. This integration is achieved through the
construction of virtual nodes initialized with concept representations and their incorporation
into soft prompt templates. The following subsections provide a detailed breakdown of the
CPM approach, starting with the extraction of concept representations, followed by the
construction of the concept prompt template, and finally, the classification process. By
systematically embedding conceptual and hierarchical knowledge into the text classification
framework, CPM aims to improve the model’s understanding and handling of complex label
structures. An overview of CPM is given in Figure 2.

3.1 Concept Representation Extraction

In a hierarchical classification structure, concepts serve as granularity information situated
between parent and child categories. For a given parent category, its child categories share
common “concepts” inherited from the parent. As shown in Figure 3, within the Web of
Science (WOS) dataset(Kowsari et al., 2017), the parent label “Medical” encompasses six
child category labels: “Diabetes”, “Parkinson’s Disease”, “Alzheimer’s Disease”, “Anxiety”,
“Depression”, and “Bipolar Disorder.” Among these, certain similarities exist between the
first three and the last three categories. Specifically, “Diabetes”, “Parkinson’s Disease” and
“Alzheimer’s Disease” share the concept of “Chronic disease” while “Anxiety”, “Depression”
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Figure 2: An overview of CPM. CPM integrates conceptual information from label hier-
archies into a pretrained BERT model, enhancing its ability to classify texts
according to hierarchical structures.

and “Bipolar Disorder” share the concept of “Mental Health”. These concepts occupy an
intermediate position between the parent label and the child labels.

In the above example, the concepts of “Chronic disease” and “Mental health” are nei-
ther as broad as the parent category “Medical” nor as specific as the child categories like
“Diabetes” or “Bipolar Disorder”. Instead, these concepts provide a common theme or
characteristic for the related subcategories. Such labels help capture the commonalities
and subtle differences between categories, aiding in the understanding and organization of
complex hierarchical structures.

To obtain the “concepts” corresponding to a parent node’s category, we extract keywords
from the corpus associated with that category and use the top-ranked keywords as the
representation for that category. For the WOS, where each document is annotated with
several keywords, we simply rank these keywords by their frequency within each category.
For datasets without annotated keywords, such as New York Times (NYT) (Sandhaus,
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Figure 3: Tree label hierarchy in news hierarchical text classification

2008), we use the TF-IDF algorithm to extract them. In our work, we selected the top 4
keywords.

Once the keywords are obtained, we generate or retrieve their embeddings using a pre-
trained word embedding model, such as Word2Vec, GloVe, or BERT. In our study, we
chose BERT as the pretrained model for obtaining embeddings. For each child category
embedding, we calculate its cosine similarity with each concept embedding. Cosine simi-
larity measures the degree of similarity between two vectors based on their direction.Then,
for a given keyword, we create a composite representation of each concept by performing
a weighted average of the child category embeddings, where the weights are determined by
the similarity scores. In this manner, more similar child categories contribute more sig-
nificantly to the concept representation. This approach allows us to effectively integrate
conceptual information into the hierarchical classification model, enhancing its ability to
capture relationships and distinctions within the hierarchy.

Formally, for a non-leaf node c in the structured labels of a given dataset, with a set of
subclasses Sub = {c1, c2, . . . , cn} and 4 keywords K = {k1, . . . , k4}, where n is the number
of subclasses of c. For ease of understanding, we take the “Civil” category from the WOS
dataset as an example. After extraction, we obtained several of its subclasses along with
four keywords, as detailed in Table 1 below. Then, we compute the cosine similarity for
each of subclass ci and keyword kj as follows:

sim(ci,kj) =
ci · kj

∥ci∥∥kj∥
(1)

where ci is the embedding of ci, and kj is the embedding of kj , obtained through a
BERT encoder. The weight wi,j of each subclass ci for keyword kj is determined by the
cosine similarity:

wi,j =
sim(ci,kj)∑n

k=1 sim(ck,kj)
(2)
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Subclasses Keywords

Water Pollution, Suspension Bridge, Geotex-
tile, Green Building, Smart Material, Stealth
Technology, Ambient Intelligence, Solar En-
ergy, Remote Sensing, Construction Manage-
ment, Rainwater Harvesting

water, management, construction, energy

Table 1: Subclasses and keywords for the Civil category in WOS

Next, we create the representation of each keyword by taking the weighted average of
the subclass embeddings:

Rj =
m∑
i=1

wi,j · ci (3)

We then concatenate the representations of all keywords and perform pooling to obtain
the concept representation of class c:

Rkey = [R1,R2, . . . ,Rn] (4)

rconcept = AvgPool(Rkey) (5)

Here, AvgPool() denotes the average pooling operation. We repeat the above steps for
every non-leaf node to obtain the concept representations for all non-leaf node labels. These
concept representations are used to initialize the virtual nodes constructed in the next step.

Specifically, for the topmost nodes in the label structure, since they do not share a
common parent, we artificially assume a class named “root” as their parent node and define
the concept representation of the root using random initialization.

3.2 Constructing the Concept Prompt Template

As previously mentioned, conceptual information should provide significant support for
HTC tasks. To utilize this conceptual information, we need to integrate the concepts into
the original label graph structure. In HPT, researchers integrate hierarchical information
into virtual nodes by creating one virtual node for each level of the label structure. Inspired
by this, we have adopted the approach of creating virtual nodes. However, unlike HPT,
which primarily aims for hierarchical awareness, we leverage the concept representations
obtained earlier. Therefore, we create a virtual node t for each non-leaf node, initialized
with the concept representation derived from equation (5). Node t is not only connected to
the non-leaf node but also to all its child nodes.

After obtaining the virtual nodes initialized with concept representations, we input the
new graph, which includes these virtual nodes, into a graph encoder to obtain the repre-
sentations of all virtual nodes. Each virtual node learns hierarchical knowledge integrated
with the concept:

econcepti = GAT(rconcepti , G : rconcepti ∈ G) (6)
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where G is the label graph structure with the virtual nodes added, rconcepti is the initial
feature of virtual node i, and econcepti is its representation updated by the Graph Atten-
tion Network (GAT) (Velickovic et al., 2018). GAT is a type of Graph Neural Network
that employs an attention mechanism to assign different weights to nodes in the graph,
allowing it to capture the complex relationships between nodes. Essentially, GAT computes
attention coefficients between nodes to weight the features of neighboring nodes, which are
learned and reflect the importance of these neighbors. This makes GAT particularly suitable
for processing graph-structured data, such as our label hierarchy, where the relationships
between nodes are crucial for understanding the overall structure.

The representations of the virtual nodes are used as the soft prompt template in this
study. For a text x, the soft prompt attaches a fixed number of learnable virtual template
words to the text as a template, e.g., “[CLS] x [SEP] [V1] [MASK] [V2] [MASK] ... [Vn]
[MASK] [SEP],” where {[V 1], [V 2], . . . , [V n]} are virtual template words, n is the number
of virtual nodes, and [MASK] are the masked words to be predicted. During training, the
pretrained language model learns to predict “[MASK]” and adjust the virtual template
words.

In practice, we cannot directly define the virtual template words, but we can obtain
the concept representations corresponding to these virtual template words from equation
(5). Thus, we can concatenate the embeddings of the original text with the concept repre-
sentations, indirectly achieving the concatenation of the prompt template with the original
text:

T = [x1, . . . ,xN , econcept1 , eMASK, e
concept
2 , . . . , econceptM+1 , eMASK, . . .] (7)

where X = {x1, . . . ,xN} are the word embeddings of the original text, M is the number
of shared concepts in the second layer of the label structure, which is equal to the number
of parent nodes in that layer. For simplicity, equation (7) only denotes the concept rep-
resentations shared by the first and second layers. eMASK is the embedding of [MASK],
initialized by the BERT [MASK] token.

Then, we encode T through the BERT encoding layer to obtain their hidden states:

H = [h1, . . . ,hN ,hconcept
1 ,hMASK,h

concept
2 , . . . ,hconcept

M+1 ,hMASK, . . .] (8)

where hconcept
i is the hidden state of the i-th rconcept, corresponding to the i-th layer of the

label hierarchy.

3.3 Classification

As in the previous work, we restrict each [MASK] token to predict only the labels at its
respective hierarchical level. Specifically, during the prediction phase, we compare the
hidden state vector hi

MASK at the [MASK] position with the label embedding vectors eij of
the corresponding layer in the label structure. The score vector s is calculated through a
dot product operation, where the elements sj of the score vector are computed as follows:

sj = hi
MASK · eij (9)
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Here, hi
MASK is the hidden state vector at the [MASK] position in layer i, eij is the

embedding vector of the j-th label in layer i, and n is the dimension of the vectors.
Each element sj in the score vector s represents the degree of match for the j-th label

word in the given context at that layer. The word corresponding to the highest-scoring
element in the score vector s is the model’s predicted [MASK] word. This indicates that
the model believes this word best fits the [MASK] position in the given context. The
classification process is shown in Figure 4.
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Hidden State of 

[MASK] Token

Embedding of Label

1st  Layer 

Classification

2nd Layer 

Classification

⊙

Classification 

Scores of Layer 1
Classification 
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Figure 4: The process of the classification mechanism using hidden state vectors and label
embeddings. The score vectors are computed using a dot product operation to
predict the best fitting label words for the [MASK] position.

4. Evaluation and Analysis

4.1 Datasets

To comprehensively evaluate the performance of our model, we conducted experiments
and analysis on two datasets: Web-of-Science (WOS) and New York Times (NYT). Both
datasets are publicly available, with their original versions obtainable from the following
sources: the WOS dataset can be accessed at https://github.com/kk7nc/HDLTex, and the
NYT dataset is available at https://catalog.ldc.upenn.edu/LDC2008T19. The reason
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why we selected them is that both of them have diverse label structures, which allow us to
test the model’s ability to handle both simple and complex hierarchical relationships. In
addition, the WOS dataset contains abstracts of published papers from the Web of Science,
while the NYT dataset is used for news classification. Some details about WOS and NYT
are given in Table 2.

Dataset Depth level number Train (#) Val (#) Test (#) Label number

WOS 2 30070 7518 9397 141
NYT 8 23345 5834 7292 166

Table 2: Some details about WOS and NYT datasets. In which, depth level indicates the
maximum number of levels in the hierarchical label structure, while label number
denotes the total count of unique labels within the dataset, # stands for the
number of document.

From Table 2, it can be seen that NYT has more depth level number than WOS, in
other words, NYT has more complex structure than that of WOS.

4.2 Evaluation Metrics

To facilitate comparison with other HTC works, we adopted the most commonly used
evaluation metrics, Micro-F1 and Macro-F1 scores, as standard evaluation metrics (Sun
et al., 2024; Yan et al., 2024). Micro-F1 score is calculated by aggregating the total true
positives (TP), false positives (FP), and false negatives (FN) across all labels to compute a
global average F1 score, reflecting the model’s overall performance on all labels. However,
this metric may favor frequently occurring labels, making it less effective in accurately
reflecting the model’s performance on less frequent labels. On the other hand, Macro-F1
score calculates the F1 score for each label and averages them, giving equal importance to
all labels, which is suitable for handling label imbalance issues. These two metrics help
in comprehensively evaluating the model’s performance across different tasks and datasets.
Their calculations are as follows:

Micro-F1 =
2× TP

2× TP + FP + FN
(10)

Macro-F1 =
1

n

n∑
i=1

(
2× TPi

2× TPi + FPi + FNi

)
(11)

where TP (True Positive), FP (False Positive), and FN (False Negative) represent the
number of correct classifications, incorrect classifications, and missed classifications made
by the model, respectively. In the calculation of Macro-F1, TPi, FPi and FNi denote the
true positives, false positives, and false negatives for the i-th label. n represents the total
number of labels in the dataset. By averaging the F1 scores of each label, Macro-F1 gives
equal importance to all labels.
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4.3 Implementation Details

We implemented our model in an end-to-end manner using PyTorch and conducted a series
of experiments on an NVIDIA 3090 GPU. Following the approach of previous work (HPT),
we used bert-base-uncased as our base architecture. The batch size was set to 16, the
optimizer was Adam, and the learning rate was 3e-5. Typically, for each parent class, we
selected the top 4 extracted keywords to generate concepts. Unless we were specifically
evaluating the impact of the number of selected keywords, we did not adjust any other
hyperparameters in other experiments. During training, we set the stopping criteria to halt
the training process if both Macro-F1 and Micro-F1 scores did not improve over 5 epochs.

4.4 Experimental Results and Analysis

The experimental results across different layers and the overall results on the WOS and
NYT datasets in terms of Micro-F1 and Macro-F1 are presented in Table 3.

Dataset Layer Micro-F1 (%) Macro-F1 (%)

WOS
Layer 1 90.41 89.03
Layer 2 84.28 75.59
Overall 87.33 81.96

NYT

Layer 1 90.77 89.97
Layer 2 83.01 77.58
Layer 3 76.57 73.21
Layer 4 74.93 69.42
Layer 5 76.01 71.06
Layer 6 74.41 68.95
Layer 7 73.86 62.68
Layer 8 71.87 62.02
Overall 81.54 72.12

Table 3: The experimental results of CPM for each layer and the overall results on the
WOS and NYT datasets in terms of Micro-F1 and Macro-F1, respectively.

From Table 3, several conclusions can be drawn:

• The proposed method can give good performance across various hierarchical levels,
which demonstrates the proposed CPM has strong classification ability in both simpler
hierarchical structures such as WOS and more complex ones such as NYT.

• On the WOS dataset, CPM achieves a high Micro-F1 score of 90.41% and a Macro-F1
score of 89.03% at the first layer, indicating the model’s capability to handle top-level
categories with high precision and recall. However, as we move to the second layer,
there is a noticeable drop in both Micro-F1 and Macro-F1 scores, which fall to 84.28%
and 75.59%, respectively. The reason may be that the classification task becomes more
challenging with more specific categories. The overall scores for WOS are 87.33% and
81.96%, reflecting robust overall performance across the hierarchical structure.
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• In contrast, the performance on the NYT dataset reveals a more complex scenario. At
the first layer, the performance is comparable to WOS, with Micro-F1 and Macro-F1
scores of 90.77% and 89.97%, respectively, suggesting that the model effectively dis-
tinguishes high-level categories in both datasets. However, there is a more pronounced
decline in performance with increasing layers in the NYT dataset, especially beyond
the third layer. For instance, at layer 3, the scores drop to 76.57% and 73.21% and
further decrease at deeper layers, such as layer 8, with scores of 71.87% and 62.02%.
The overall scores for NYT are 81.54% and 72.12%, respectively. These lower scores
compared to WOS are attributed to the more complex hierarchical structure of the
NYT dataset, which presents a greater challenge for hierarchical classification.

• The results also reveal the exposure bias issue, where accuracy tends to decrease as the
hierarchical depth increases. This is evident in both datasets but is more pronounced
in NYT due to its deeper and more intricate hierarchy. Despite this, the method’s
ability to maintain relatively high scores even at deeper layers, such as layers 5 and 6
in NYT, indicates its effectiveness in capturing hierarchical dependencies.

• In summary, the experimental results affirm the efficacy of our proposed method
across various hierarchical levels, showcasing its capability to adapt to both simple
and complex hierarchical structures.

4.5 Performance Comparison

During the process of model performance evaluation, we conducted various experiments to
comprehensively understand the characteristics of the model, including ablation experiments
and experiments on the impact of the number of keywords on model performance, which
will be elaborated in detail below.

The main distinction between our work and previous works lies in injecting implicit
conceptual information from the label hierarchy into virtual nodes to form prompts with
more integrated label structure information. To illustrate the effectiveness of conceptual
information and virtual nodes, ablation study is performed and the corresponding results
on WOS and NYT in terms of Micro-F1 and Macro-F1 are given in Table 4. Wherein the
first line and the second line in Table 4 are about concept and concept plus virtual node,
respectively, which can be used to observe the performance of the modules of conceptual
information and virtual nodes.

Method WOS NYT

Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%)

w/o concept 86.98 81.12 80.38 70.51
w/o concept & virtual node 85.21 79.90 78.21 69.02
Ours 87.33 81.96 81.54 72.12

Table 4: The ablation study results about the modules of conceptual information and vir-
tual nodes on WOS and NYT in terms of Micro-F1 and Macro-F1. In which, the
bold values indicate the best-performing results for each metric on both datasets.
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According to Table 4, when the concept module is removed (w/o concept), both Micro-
F1 and Macro-F1 metrics decrease, with a more pronounced decline on the NYT dataset,
which has deeper and more complex label structures. This demonstrates the importance of
conceptual information in complex label structures. When virtual nodes are further removed
(w/o concept & virtual node), both Micro-F1 and Macro-F1 further decrease, indicating
that virtual nodes play a crucial role in deep label structures by enhancing connections and
feature sharing among sibling nodes, significantly improving classification performance.

In addition to the ablation experiment, we also investigated the influence of the number
of keywords on the model performance.

Regarding the selection of the number of keywords, we tested our model on both datasets
within the range of 1 to 10 keywords. The experimental results are shown in Figure 5.

From Figure 5, it can be found that the two evaluation metrics on both datasets show
a trend of first rising and then falling. This demonstrates that the number of selected
keywords has a significant impact on the model performance. With a moderate number
of keywords (e.g., 4), the model can fully utilize conceptual information to improve Micro-
F1 and Macro-F1 metrics. In both WOS and NYT datasets, 4 keywords showed the best
performance, indicating that 4 keywords provide sufficient conceptual information without
introducing too much redundancy and noise. When the number of keywords exceeds 4,
the model’s performance slightly declines, possibly due to the introduction of redundant
information, which adversely affects classification performance.
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Figure 5: Line charts of performance metrics for different numbers of keywords on WOS
and NYT datasets.

4.6 Comparison with Some Known Systems

Table 5 gave the experimental results on WOS and NTT in terms of Micro-F1 and Macro-F1
among the proposed method and some known systems.

• HiLAP (Mao et al., 2019): This method formulates the HTC problem as a Markov
decision process and proposes a label assignment strategy learned through deep re-
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inforcement learning. It determines the placement of objects and when to stop the
assignment process.

• HiAGM (Zhou et al., 2020): Utilizing a structure encoder, HiAGM models label
dependencies both top-down and bottom-up based on prior hierarchical knowledge.
This enables a comprehensive understanding and efficient classification of hierarchical
label structures.

• BERT (Devlin et al., 2019): BERT is a widely used pretrained model that employs
bidirectional encoder representations from massive textual data. It captures deep se-
mantic relationships through masked language modeling and next sentence prediction
tasks, achieving significant performance improvements across various natural language
processing tasks.

• HPT (Wang et al., 2022b): This method introduces a hierarchical prompt tuning
approach by constructing dynamic virtual templates. It integrates label hierarchy
knowledge into a multi-label masked language model and introduces a zero-boundary
multi-label cross-entropy loss to align HTC and MLM task objectives.

• HGCLR (Wang et al., 2022a): It embeds the label hierarchy structure directly into
the text encoder for modeling. During training, HGCLR constructs positive samples
for the input text under the guidance of the label hierarchy. By bringing the input
text closer to its positive samples, the text encoder independently generates hierarchy-
aware text representations.

• LSE+HiAGM (Sun et al., 2024): This approach defines a common density coef-
ficient to measure the importance of label pairs and uses this coefficient to update
topological structure features, enabling global label association. By integrating topo-
logical structure features, textual features, and hierarchical label features, it improves
the embedding quality of lower-level labels.

• Seq2Label (Yan et al., 2024): It utilizes a label sequence random shuffling mechanism
to map text to multiple different sequences of labels during training. This avoids the
limitations of using only one specific sequence order.

From Table 5, several conclusion can be drawn:

• On the WOS, the proposed CPM performs a little better than the traditional meth-
ods. For instance, the Micro-F1 can be increased 0.17% and 0.02% compared with
HPT (87.16%) and Seq2Label (87.31%), respectively. This may be due to the WOS
dataset’s label structure having only 2 levels, where the conceptual information within
the label hierarchy is relatively simple. Therefore, our concept-based prompt method
does not significantly improve over the existing best models in this case.

• On the NYT, the CPM performs much better than the traditional methods. For
example, the Micro-F1 can be improved 1.12% and 2.68% compared with HPT and
HGCLR, respectively. It indicates better classification capability of CPM for global
labels. The significant increase in Macro-F1 (72.12%) further validates our method’s
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Model WOS NYT

Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%)

HiLAP 82.76 59.94 73.52 51.47
HiAGM 85.82 80.28 74.97 60.83
BERT+HiAGM 86.04 80.19 78.64 66.76
HGCLR 87.11 81.20 78.86 67.96
HPT 87.16 81.93 80.42 70.42
LSE+HiAGM 86.01 80.01 75.01 61.29
Seq2Label 87.31 81.86 - -
Ours 87.33 81.96 81.54 72.12

Table 5: Experimental results comparison among the proposed systems with the state-of-
the-art systems on WOS and NYT in terms of Micro-F1 and Macro-F1. The
experimental data for these systems all come from their original papers.

advantage in handling label imbalance issues. The NYT dataset’s label structure
reaches a maximum depth of 8 levels, making the hierarchical concepts more com-
plex and rich. Therefore, our concept-based prompt method shows more significant
performance improvement on this dataset.

• From the perspective of the graph encoder, the introduction of virtual nodes poten-
tially enhances the connections between sibling nodes. In traditional GAT models,
node feature updates primarily rely on features from directly connected neighbors, and
the influence of indirectly connected nodes is relatively small. By introducing virtual
nodes, these sibling nodes can be indirectly connected and share features through the
virtual nodes, enhancing their interconnections. This enhanced connection captures
richer hierarchical information. In the WOS dataset, although our model shows only
minor improvements in Micro-F1 and Macro-F1, it indicates that the hierarchical
awareness enhancement is limited in simpler label structures. However, this approach
demonstrates significant advantages in datasets with complex label structures, such
as NYT.

• Compared to HPT, the increase in the number of virtual nodes might be one reason
for our method’s superior performance. In HPT, only one virtual node is added for
each layer in the label hierarchy, whereas our method adds a virtual node for each
non-leaf node. As the depth of the label hierarchy increases, the number of non-leaf
nodes often increases significantly, and accordingly, the number of virtual nodes we
construct also increases. This extensive introduction of virtual nodes enhances the
propagation of hierarchical information, resulting in better performance on datasets
with deeper label structures.

• Our comparative analysis encompasses a variety of models that represent the spectrum
of approaches to hierarchical text classification. These models range from established
methods in reinforcement learning to modern techniques involving structural encoding
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and prompt tuning. The selection spans different years, illustrating the progression
of methodologies in the field. This comparison not only benchmarks our proposed
CPM against both classical and contemporary approaches but also highlights its con-
sistent performance advantages, regardless of the evolving nature of NLP research and
applications.

5. Conclusion

In this paper, we introduced CPM, an innovative concept-aware prompt mechanism aimed
at improving hierarchical text classification. By extracting and utilizing granular concept-
level information from hierarchical label structures, we enhance the understanding of parent-
child and sibling relationships. Our approach involves constructing virtual nodes initialized
with concept representations and integrating them into soft prompt templates to guide the
classification process.

Our experimental results on the WOS and NYT datasets highlight the effectiveness of
CPM. The method achieves improvements in Micro-F1 and Macro-F1 scores, particularly on
the NYT dataset, which has a deeper and more complex label hierarchy. This indicates that
our approach has advantages in capturing complex hierarchical relationships and handling
label imbalances. However, we also observed that CPM’s improvements are more limited
when the label hierarchy is shallow, as seen with the WOS dataset. This suggests that in
simpler label structures, the hierarchical awareness enhancement is less pronounced. This is
because the conceptual information embedded in such label structures is relatively simple,
and the concept-based prompting method does not significantly outperform existing best
models.

Future work will focus on the following aspects to improve CPM’s performance on
datasets with simpler label structures.

• Further refining the concept initialization module to better adapt to varying depths
of label hierarchies, thereby enhancing performance on datasets with shallow label
hierarchies. In addition, CPM can dynamically adjust to different levels of hierarchical
complexity by improving the prompt template design.

• Further optimization and extension of CPM have the potential to showcase robust
performance across a broader range of applications.

Acknowledgments

We would like to extend our sincere gratitude to all collaborators who have participated in
this study. We also thank our anonymous reviewers for their comments. Both Biqing Zeng
and Jichen Yang are corresponding authors.

References

Agrawal, R., Gupta, A., Prabhu, Y., & Varma, M. (2013). Multi-label learning with millions
of labels: recommending advertiser bid phrases for web pages. In 22nd International

383



Zeng, Peng, Yang, Hong & Liang

World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
pp. 13–24. International World Wide Web Conferences Steering Committee / ACM.

Cerri, R., Barros, R. C., de Carvalho, A. C. P. L. F., & Jin, Y. (2016). Reduction strate-
gies for hierarchical multi-label classification in protein function prediction. BMC
Bioinform., 17, 373.

Cerri, R., Barros, R. C., & de Leon Ferreira de Carvalho, A. C. P. (2011). Hierarchical
multi-label classification for protein function prediction: A local approach based on
neural networks. In Ventura, S., Abraham, A., Cios, K. J., Romero, C., Marcelloni,
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