
Journal of Artificial Intelligence Research 82 (2025) 169-208 Submitted 08/2024; published 01/2025

Decentralized, Decomposition-Based Observation Scheduling
for a Large-Scale Satellite Constellation

Itai Zilberstein itai.m.zilberstein@jpl.nasa.gov
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91011, USA

Ananya Rao ananyara@andrew.cmu.edu
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91011, USA
Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Matthew Salis matthew.salis@jpl.nasa.gov

Steve Chien steve.a.chien@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, CA 91011, USA

Abstract

Deploying multi-satellite constellations for Earth observation requires coordinating po-
tentially hundreds of spacecraft. With increasing onboard capability for autonomy, we can
view the constellation as a multi-agent system (MAS) and employ decentralized schedul-
ing solutions. We analyze the multi-satellite constellation observation scheduling problem
(COSP) and formulate it as a distributed constraint optimization problem (DCOP). COSP
requires scalable inter-agent communication and computation and consists of millions of
variables which, coupled with the assumptions and structure, make existing DCOP algo-
rithms inadequate for this application. We develop a scheduling approach that employs a
carefully constructed heuristic, referred to as the Geometric Neighborhood Decomposition
(GND) heuristic, to decompose the global DCOP into sub-problems to enable the appli-
cation of DCOP techniques. We present the Neighborhood Stochastic Search (NSS) algo-
rithm, a decentralized algorithm to effectively solve COSP and other large-scale distributed
problems, using decomposition. The experiments confirm the efficacy of the approach
against baseline algorithms, and we discuss the generality of NSS, GND, and properties of
COSP to other domains.

1. Introduction

Large-scale, Earth-observing satellite constellations with hundreds of spacecraft are be-
coming increasingly prominent in order to monitor Earth phenomena. The first satellite
constellations started with just a couple spacecraft (e.g. Maxar, Spot Image). More re-
cently, constellations have grown to operate with tens of spacecraft (e.g. SkySat, IceEye,
Capella, Satellogic). With reduced launch costs, constellations are trending towards even
larger scales with hundreds or thousands of spacecraft (e.g. Spire, Canon, SatRev, Spacety,
Planet Lab’s Dove, and the Space Development Agency) (NewSpace, 2023). Observation
scheduling for a large-scale constellation requires fusing information from many sources and

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Zilberstein, Rao, Salis & Chien

tasking space assets with varying constraints, capabilities, and visibility of Earth targets. In
addition to Earth observation, satellites are deployed for a variety of applications, including
forming large internet constellations (SpaceX, 2023). Any multi-satellite constellation that
requires coordinating agents poses a challenging planning and scheduling problem.

In practice, satellite observation scheduling is typically done in a centralized fashion, in
which a single controller develops a single schedule that specifies the actions of every satel-
lite (Shah et al., 2019). Even most research efforts focus on centralized solutions (Boerkoel
et al., 2021; Nag et al., 2018). While centralized approaches can provide high-quality solu-
tions, reliance on a single computing node makes them vulnerable to single-point failures
and can increase the communications burden when the spacecraft state constantly needs
to be monitored and shared with the controller. Many centralized approaches rely on local
search or divide-and-conquer algorithms, making distributed solutions natural. In addition,
scheduling for satellite constellations may require handling shifting objectives or a dynam-
ically changing problem. Satellites leave and join the constellation, and requests are added
and removed from the scheduling campaign. For example, commercial satellite constella-
tions typically deploy portions of a larger constellation progressively over time. We can also
aggregate multiple constellations into one federated observation system, which inherently
requires distributed control when spacecraft are operated by multiple institutions. The
increasing number of constellation providers opens the door to larger and larger federated
systems.

We also desire satellites that are capable of critical tasking, such as tracking a natural
disaster, which requires real-time response. New onboard capabilities for edge computing
enable data analysis onboard, meaning dynamic, rapid decision-making can happen without
ground control on much faster timelines (Chien et al., 2005; Kangaslahti et al., 2024; Chien
et al., 2024; Zilberstein et al., 2024a). Other commercial applications, such as Planet’s
SkySat, require continuous planning to provide timely completion of user observation re-
quests (Planet, 2023). Re-scheduling for an entire large-scale constellation is computation-
ally intensive and may be required at an unrealistic frequency for a single computing source.
All these factors point towards decentralized, onboard control.

Treating the constellation as a multi-agent system (MAS) enables the application of
decentralized scheduling solutions. Decentralized scheduling addresses both the system’s
robustness and the vulnerabilities of a central controller (Bonnet & Tessier, 2008; Phillips
& Parra, 2021). Many MAS problems are designed to optimize a global cost function in
which agents control the parameters of the function and must communicate to coordinate
their parameter assignments (Dorri, Kanhere, & Jurdak, 2018).

In many applications, computational resources are limited and communication may be
unreliable for large message volumes. Satellites are typically constrained by RAM and CPU
cycles, and share these resources with other, critical flight software, requiring any schedul-
ing software to be lightweight. While the capabilities of onboard computation have been
increasing, any exponential cost search is still infeasible, especially for scheduling applica-
tions that require continual re-planning (Clement et al., 2007; Swope et al., 2023; Dunkel
et al., 2023). When it comes to communication, satellite cross-links are expensive and not
always maintainable. For example, orbiters around a comet or the sun may experience com-
munication interference or infrequent lines of sight with each other. For an Earth-orbiting
constellation, satellites have limited cross-link capability. Bandwidth limits the rate of com-

170

Decentralized, Decomposition-Based Observation Scheduling

munication, and visibility between two spacecraft constrains the duration of a transmission
(Lin et al., 2024). For this reason, we desire algorithms that procure a limited amount of
messaging.

We present the multi-satellite constellation observation scheduling problem (COSP), as
well as formulate the problem as a distributed constraint optimization problem (DCOP).
The assumptions of COSP differ from those of a DCOP, making current DCOP solvers
inadequate. COSP assumes agents are unaware of the capabilities of other agents, yet know
their existence. In contrast to DCOPs, agents typically know these capabilities, and this
knowledge is key to many solution techniques. This assumption also does not hold for
federated systems operated by multiple institutions. In addition, DCOP solutions tend to
rely heavily on computation and communication, however, a desired decentralized solution
of COSP is both effective in solution quality and cheap in computation and communication.

COSP requires agents to coordinate the assignments of millions of variables, and do
so within stringent time, memory, and messaging constraints. These variables are deter-
mined by the observation requests of the system and the satellite overflights of requested
targets. Most satellites can satisfy most requests on multiple occasions leading to the total
number of variables being polynomial in the number of agents and requests. By decompos-
ing the global problem, we can employ DCOP techniques to solve smaller sub-problems,
producing global solutions more efficiently. We construct a heuristic, called the Geometric
Neighborhood Decomposition (GND) heuristic, that partitions the agents and requests in a
coordinated fashion to instantiate sub-problems that are advantageous to solve. Each agent
individually computes the heuristic using only knowledge of the requests to schedule and the
configuration of the constellation. GND addresses the assumptions of COSP and enables
efficient, high-quality scheduling despite limited knowledge through aggregated estimation
of agent capabilities.

Satellite constellations are typically designed to optimize the supply (e.g. volume of
satellite capability to view a target) given the expected demand (e.g. how much a target
is expected to be requested for observation) for a target set (Lo, 1999). This couples
the scheduling problem with the constellation configuration and can be solved as another
search problem (Schaffer et al., 2018). Constellations are typically fixed relative to the
number of scheduling runs they execute. GND is grounded in geometric computation and
designed to leverage this supply and demand relationship. GND is composed of three layers
that partition the agents and requests into sub-problems. The goal is for the constellation
to maximize the number of requests satisfied while adhering to downlinks and memory
constraints.

GND is parameterized such that the sub-problems produced can be of arbitrary size.
Through this decomposition, we can deploy DCOP algorithms on constant-sized sub-problems
rather than the global problem that scales with the number of agents and requests. To
solve each sub-problem, we build on the Broadcast Decentralized algorithm (BD) (Parjan &
Chien, 2023), an adaptation of two incomplete DCOP algorithms, Maximum Gain Messag-
ing (MGM) (Maheswaran et al., 2004) and Distributed Stochastic Search Algorithm (DSA)
(Zhang et al., 2005), for the application of multi-satellite observation scheduling. We refer
to our developed algorithm as Neighborhood Stochastic Search (NSS). Our algorithm ex-
tends the BD algorithm in two major aspects: (1) it is scalable to large problem instances

171

Zilberstein, Rao, Salis & Chien

in both computational complexity and communication complexity and (2) it enables con-
straint reasoning, such as resource-constrained scheduling.

Empirical results demonstrate the efficacy of our approach on small and large problem
instances compared to decentralized and centralized baselines. On small problem instances,
we show the gap to optimal solutions, while large problem instances enforce the performance
at scale, including run-time and message volume results. We aim to close the gap between
decentralized solutions and centralized solutions while precluding an infeasible amount of
computation and messaging. Our contributions are:

1. uncovering the obstacles in applying existing DCOP techniques to the large-scale,
multi-satellite constellation observation scheduling problem (COSP),

2. introducing a decomposition-based heuristic approach to solve the scheduling problem
and presenting the NSS algorithm which utilizes the decomposition scheme, and

3. demonstrating the efficacy of our approach on realistic problem instances.

This article extends on a previously published conference paper (Zilberstein et al.,
2024b). We provide a more in-depth discussion, extended theoretical analysis, broader ex-
perimental results and analysis, and improvements and variations of the initial algorithms
and heuristics published.

2. Related Work

There are many aspects of satellite observation planning ranging from visibility compu-
tation, to downlink scheduling, to constraint-based task allocation. This paper is mostly
concerned with the last subject. Previous work has predominantly focused on centralized so-
lutions to the multi-satellite, resource-constrained scheduling problem (Globus et al., 2004;
Augenstein et al., 2016; Nag et al., 2018; He et al., 2018; Shah et al., 2019; Wang et al.,
2020; Squillaci et al., 2021; Boerkoel et al., 2021; Eddy & Kochenderfer, 2021; Squillaci
et al., 2023; Chatterjee & Tharmarasa, 2024).

More recently, decentralized scheduling approaches have proposed auction-based meth-
ods (Picard, 2021; Phillips & Parra, 2021) and heuristic search-based methods relying on
broadcasting or epidemic protocols (Parjan & Chien, 2023; Bonnet & Tessier, 2007, 2008).

The auction-based methods rely on a centralized controller to act as an auctioneer and
have a prohibitive communication and computational complexity. Each agent exchanges
a polynomial (in the requests) number of messages with the auctioneer. Removing the
central auctioneer is possible, but results in an explosion of the communication complexity
depending on the network topology.

We build on the work from Parjan and Chien, which attempts to address some of the
limitations of the auction-based methods; specifically having a centralized auctioneer. In
their approach, called BD, each agent uses globally communicated satisfaction information
as a search heuristic. The main limitation is that this approach requires each agent to send
a high volume of messages to every other agent, resulting in a communication complexity at
each iteration that is polynomial in the number of agents and requests. Finally, Bonnet and
Tessier propose an approach in which agents continuously communicate to form coalitions,
or groups of agents to schedule specific tasks. The major drawback of this approach is its

172

Decentralized, Decomposition-Based Observation Scheduling

potential to scale. The authors evaluated scenarios with less than ten agents. In a constella-
tion with hundreds or thousands of agents, there will likely be large discrepancies in agents’
believed coalitions, degrading the solution quality. The authors also provide no bound on
the required communication. All the decentralized approaches discussed above rely heavily
on agent computation and communication (at least polynomial in the number of agents
and requests) and most approaches were only evaluated on small problem instances (tens
of agents). In general, decentralized solutions trade off quality for distributed computation
and control.

Multi-satellite observation scheduling has been framed as a DCOP previously (Picard,
2021; Parjan & Chien, 2023). DCOP algorithms tend to suffer from significant computa-
tional complexity or a large reliance on agent messaging. Solving a DCOP optimally is
known to be NP-Hard (Modi et al., 2005). Complete algorithms, such as SyncBB (Hi-
rayama & Yokoo, 1997), ADOPT (Modi et al., 2005), ConcFB (Netzer, Grubshtein, &
Meisels, 2012), AFB (Gershman, Meisels, & Zivan, 2009), DPOP (Petcu & Faltings, 2005),
or OptAPO (Mailler & Lesser, 2004) are computationally infeasible for our problem scale.
Many complete algorithms are distributed variations of a centralized counterpart (Fioretto,
Pontelli, & Yeoh, 2018). We employ a centralized branch and bound algorithm to find op-
timal solutions on small problem instances. However, the computational cost of the branch
and bound approach prevents finding optimal solutions on large problem instances. Any
complete DCOP algorithm would suffice for small instances, but would suffer the same
scalability issues as the centralized branch and bound, making them impracticable for the
application.

On the other hand, incomplete DCOP algorithms, such as Max-Sum (Stranders et al.,
2009), Maximum-Gain Messaging (MGM) (Maheswaran et al., 2004), Distributed Stochastic
Search (DSA) (Zhang et al., 2005), or Distributed Gibbs (D-Gibbs) (Nguyen et al., 2019),
which trade off optimality for scalability, still require notable messaging and computation.
Max-Sum, an inference-based method, can provide quality guarantees on the solution, but
incurs exponential cost. D-Gibbs is a sampling-based method that approximates the solu-
tion without quality guarantees. MGM and DSA are two search algorithms that are the
foundation of our scheduling algorithm, Neighborhood Stochastic Search (NSS). MGM and
DSA perform local search to iteratively improve the global solution. Genetic algorithms,
such as AED, have also been applied to DCOPs, incurring similar computation and com-
munication complexity as MGM and DSA (Mahmud et al., 2019). Improving the efficiency
of incomplete DCOP algorithms has been a focus of recent efforts (Khan et al., 2018a; Deng
& An, 2020; Cohen et al., 2020; Zivan et al., 2017).

NSS is motivated by Region-optimal algorithms (Pearce & Tambe, 2007). These algo-
rithms solve sub-problems optimally, reducing the cost of complete algorithms, albeit to
the size of sub-problems. NSS extends Region-optimal algorithms by obtaining incomplete
solutions to sub-problems, reducing the complexity when sub-problems remain large. An-
other divide-and-conquer method for solving DCOPs is the application of the distributed
large neighborhood search (DLNS) framework to DCOPs (Hoang et al., 2018). This ap-
proach heuristically selects regions of the search space to refine, iteratively improving the
global solution. Large neighborhood search was used to construct centralized solutions
to the multi-satellite scheduling problem, albeit for smaller problem instances (Squillaci
et al., 2023). While DLNS can rely heavily on agent communication, directly applying

173

Zilberstein, Rao, Salis & Chien

Algorithm Computation Communication Source

ADOPT Op2nq Op2nq (Modi et al., 2005)

AFB Op2nq Op2nq (Gershman et al., 2009)

ConcFB Op2nq Op2nq (Netzer et al., 2012)

DPOP Op2wq Opn¨2wq (Petcu & Faltings, 2005)

OptAPO Op2nq Op2nq (Mailler & Lesser, 2004)

SyncBB Op2nq Op2nq (Hirayama & Yokoo, 1997)

Region-Optimal Opk¨2wq Opk¨n¨2wq (Pearce & Tambe, 2007)

Max-Sum Opk¨2mq Opk¨mq (Stranders et al., 2009)

AED Opk¨m2q Opk¨m2q (Mahmud et al., 2019)

DLNS Opk¨nq Opk¨nq (Hoang et al., 2018)

D-Gibbs Opk¨mq Opk¨mq (Nguyen et al., 2019)

MGM Opk¨mq Opk¨mq (Maheswaran et al., 2004)

DSA Opk¨mq Opk¨mq (Zhang et al., 2005)

BD Opk¨nq Opk¨nq (Parjan & Chien, 2023)

Table 1: Complexity of DCOP algorithms applied to COSP shown per agent. n “ number
of variables, m “ max number of neighbors, k “ iterations, w “ induced width of
pseudo-tree. We assume for simplicity that variables are one-to-one per agent and
variable domains are binary.

the framework to the decentralized multi-satellite scheduling problem may be a promising
future endeavor. Some DCOP settings assume that there is not a fixed mapping of vari-
ables to agents, and a mapping can be dynamically computed. The Mapping of Nodes to
the participating Agents heuristic (MNA) can be leveraged as a decomposition technique
by computing sub-mappings of agents to nodes for divide-and-conquer DCOP algorithms
(Khan et al., 2018b).

We summarize the complexity of these DCOP algorithms in Table 1. In the table,
n denotes the number of variables, m denotes the max number of neighbors, w denotes
the induced width of the pseudo-tree, and k denotes the number of iterations for relevant
algorithms. We assume that variable domains are binary and there is only one variable per
agent. However, COSP instances are multi-variable and we typically have m “ Opnq and
w “ Opnq, therefore algorithms such as Max-Sum are exponential in n.

In the next sections, we discuss the challenges of applying these algorithms to the multi-
satellite constellation observation scheduling problem (COSP). We then show how heuris-
tically decomposing the problem can overcome the hurdles in their deployment while still
providing high-quality solutions.

3. Problem Formulation

In this section, we outline the multi-satellite constellation observation scheduling problem
(COSP). The main application of COSP is for Earth observation. However, the formulation
extends to orbits around other bodies. We start by formally defining the problem. Then,

174

Decentralized, Decomposition-Based Observation Scheduling

we present the problem as a DCOP and discuss some theoretical properties of the problem,
including the barriers to applying current DCOP algorithms. Similar formulations have
been examined in previous work (Picard, 2021; Parjan & Chien, 2023).

3.1 Multi-Satellite Constellation Observation Scheduling Problem

We formally define COSP in the following way.

Definition 3.1 (Multi-Satellite Constellation Observation Scheduling Problem). The multi-
satellite constellation observation scheduling problem (COSP) is a 6-tuple
xH,A,R,X , D,Cy. The main components are

• H: the scheduling horizon,

• A: the set of agents,

• R: the set of observation requests,

• X : the set of variables,

• D: the set of downlinks, and

• C: the set of constraints.

Each variable is controlled by an agent and represents a task that can be scheduled to
satisfy a single request in R. The goal of the optimization problem is to maximize the number
of requests satisfied while not violating the constraints of any agent.

We provide more detail on the main components and sub-components below.

1. H “ rhs, hes: the scheduling horizon, starting at time hs and ending at time he.

2. K : the set of orbital planes. An orbital plane defines the geometric plane that contains
a collection of satellite orbits. We denote K P K as an orbital plane, and k P K for the
specific orbit of a satellite within that plane. The number of satellites in an orbital
plane is denoted as |K|. Figure 1 shows the orbits defined by a single orbital plane
with 5 satellites. The satellites are shown as blue dots.

3. A: the set of agents. Each ai P A is an individual satellite in the constellation. We
define ai “ pk,mq where k is the orbit of the satellite and m P R` is the memory
capacity. We use the notation kpaiq and mpaiq to denote these values for agent ai,
and will use the same notation for equivalent indexing.

4. T : the set of point targets on Earth. Each ti P T is defined as ti “ plat, lonq where
lat is the latitude and lon is the longitude of the target.

5. R: the set of requests. Each ri P R is defined as ri “ pt, hq which denotes the target to
observe, t P T , and when in the scheduling horizon to observe, h Ă H. Note, h could
be both a single interval or a set of disjoint intervals. A request is satisfied when a
single observation is taken of t within the time interval h.

175

Zilberstein, Rao, Salis & Chien

Figure 1: Visualization of an orbital plane with 5 satellites.

6. For each agent, we define the following sets that compose X , D, and C respectively.

(a) Sai : the set of possible request fulfillments for agent ai. A request fulfillment,
sj P Sai , is a task that can be scheduled to satisfy a request. From R and kpaiq,
we derive visibilities for each target and each satellite. Sub-intervals of these
visibilities are used to create the tasks that define the fulfillments for satellite
ai to satisfy request rj . We define sj “ pr, h,mq where r P R is the request
being satisfied, h Ă hprq is the interval of the observation (including processing
and slewing time), and m P R` is the amount of memory required to take the
observation. Note that the memory required may vary across agents if they
utilize different sensors or image-processing. There may be zero, one, or multiple
opportunities for an agent to satisfy any request.

(b) Xai : the set of Boolean decision variables for agent ai. For each sj P Sai we define
the Boolean decision variable xj P Xai where xj “ 1 ðñ agent ai schedules
task sj . We denote xpsjq “ xj for agent ai.

(c) Dai : the set of downlinks for agent ai. A downlink, dj P Dai , is defined as dj “

ph,mq where m P R` is the maximum amount of data that can be downlinked,
and the interval h Ă H is the time window for the downlink. We assume that
no possible tasks occur during a downlink, and all downlinks are mandatory.

(d) Cai “ CDai
Y CSai

: the set of constraints where

CDai
“

ď

djPDai

cdj

and
cdj “

ÿ

slPS
dj
ai

xpslq ¨ mpslq ď minpmpaiq,mpdjqq.

176

Decentralized, Decomposition-Based Observation Scheduling

Here, S
dj
ai denotes the set of possible tasks for which the soonest downlink window

in the future is dj . This constraint enforces that agent ai never exceeds its
memory capacity and that for any observations it takes, it will be able to downlink
the data at the soonest opportunity. We define

CSai
“

ď

sj ,slPSai

csj ,sl

where
csj ,sl “ rxpsjq ¨ xpslq ` Iphpsjq X hpslq ‰ Hq ď 1s .

This constraint ensures that no tasks are scheduled to overlap. Here, I denotes
the indicator function that is 1 if the input condition is true and 0 otherwise. The
constraint that no task is performed during a downlink is not explicitly modeled
with a constraint, but it is enforced during task construction which is discussed
later.

The goal of the optimization problem is to maximize the number of requests satisfied
while not violating the constraints of any agent. We define a solution, X, of COSP.

Definition 3.2. A solution to COSP, X, is the assignment of each x P X such that all
constraints in C are satisfied.

Note that in this formulation, the downlink model is a simplification. We assume that
all agents must take every downlink opportunity and cannot fill their memory past what
they will be able to off-board at the next available downlink. We also assume that ground
stations can service multiple downlinks simultaneously. In reality, ground stations have
limited antennas, and therefore not all agents can be serviced at all opportunities. Agents
could also keep memory onboard to downlink at a future opportunity. Downlink scheduling
is another challenging decentralized scheduling problem in its own right, but is beyond the
scope of this work. Future work would examine ways to optimize downlink operations as
part of observation planning. Despite this simplification, the general definition of COSP
can model more complex formulations of downlinking.

3.2 DCOP Formulation of COSP

We can formulate COSP as a distributed constraint optimization problem (DCOP). A
DCOP is a five-tuple xA,X ,D,F , αy which we define below.

• A: the set of agents.

• X : the set of variables.

• D: the set of finite variable domains, where Di is the domain of variable xi P X .

• F “
Ť

SĎX
“
Ś

xiPS Di Ñ R
‰

: the set of utility functions (sometimes called constraints)
where each f P F takes in an input S Ď X and outputs a utility based on their
assignments. Given an assignment of the variables, X, we use XS to denote the
relevant input of a utility function.

177

Zilberstein, Rao, Salis & Chien

• α : X Ñ A is the mapping function of variables to agents. αpxq ÞÑ a denotes that
agent a controls the assignment of variable x.

The goal of a DCOP is to obtain an assignment of all variables as to maximize (or
minimize) the sum of the utility functions,

X˚ “ argmaxX
ÿ

fPF
f

`

XS˘

.

We can define the above for our problem:

• A: the set of satellites as previously defined.

• X “
Ť

aiPA
Xai : the set of Boolean decision variables for every agent’s possible task

set as previously defined.

• D “
Ť

xPX t0, 1u: all variable domains are Boolean.

• FpXq “
Ť

aiPA
faipXaiq Y

Ť

rjPR frj pXrj q where

faipXaiq “

#

0 if Xai satisfies Cai

´8 else

and

frj pXrj q “ 1 ´
ź

xPXrj

p1 ´ xq.

Here, Xai is the set of variables in the solution, X, such that αpxq “ ai, and Xrj is
the set of variables such that x “ xpslq and rpslq “ rj . See that frj pXrj q “ 1 iff there
exists a satellite satisfying request rj and faipXaiq “ 0 iff agent ai has a schedule that
satisfies its constraints.

• αpxq “ ai ðñ x P Xai maps a variable to the agent that can schedule the associating
request fulfillment.

In the standard definition of a DCOP, one agent controls exactly one variable. However,
COSP requires one agent to control many variables. We use a similar paradigm to the
Multi-Variable Agent Decomposition framework (MVA) (Fioretto, Yeoh, & Pontelli, 2016)
in which we consider both a global problem (coordinating the schedules across agents)
and a local problem (developing the schedule of a single agent). MVA is quite natural for
COSP since agents need to coordinate global satisfaction of requests, while each individually
managing resource constraints. This is apparent in the reward function structure; the set
of frj determines the global problem while each fai determines an agent’s local problem.

3.3 Challenges with DCOP Solutions

While the problem can be represented as a DCOP, there exist roadblocks to applying existing
DCOP algorithms. The constraint graph defined by this formulation has a minimum of
|A| ` |R| complete sub-graphs derived from fai and frj . Each ai P A contributes a clique

178

Decentralized, Decomposition-Based Observation Scheduling

Figure 2: Example constraint graph with |A| “ 3 and |R| “ 4 (top left). Nodes represent
a request fulfillment for agent ai, and edges denote a shared constraint among
variables. Dotted circles highlight which agents control which variables. Top right
highlights the clique induced by fa0 . The bottom two graphs highlight cliques
induced by two different frj .

of size |Xai |, and each rj P R contributes a clique of size |Xrj |. In many problem instances,
request time windows are long enough such that the majority of agents are able to satisfy
any particular request. This results in |Xai | “ Ωp|R|q and |Xrj | “ Ωp|A|q. In addition, most
of these cliques are highly connected to each other, resulting in a cyclic graph. Figure 2
shows an example of the structure we discuss for a problem instance with 3 agents and 4
requests, including highlights of the cliques induced by different reward functions.

Recall that we consider constellations with hundreds of agents and thousands of requests.
Therefore, since each agent ai controls all variables in Xai , the neighborhood of variables for
an agent is Ωp|A| ¨ |R|q, which is on the order of 105 variables. The problem scale coupled
with the structure makes it unsuitable for many DCOP algorithms. Complete DCOP
algorithms, such as SyncBB (Hirayama & Yokoo, 1997) or ADOPT (Modi et al., 2005),
are simply infeasible for the problem size, having a computational complexity of Op2|A|¨|R|q,
which is on the order of 1030102. Incomplete DCOP algorithms, such asMax-Sum (Stranders

179

Zilberstein, Rao, Salis & Chien

Problem Model Variables Per Agent Known Agents Known Constraints

DCOP 1 Neighboring Agents Neighboring Agents
COSP Many All Agents Self Only

Table 2: Differences between DCOP assumptions and COSP assumptions.

et al., 2009) or Maximum Gain Messaging (MGM) (Maheswaran et al., 2004), require many
iterations, in which at every iteration, each agent would exchange Ωp|A|q messages, each
with size Ωp|R|q, which is on the order of 107 total volume (Fioretto et al., 2018). Finally,
we mention that the DLNS and region-optimal approaches require defining sub-problems.
One application of our approach is outlining methods for sub-problem selection. However,
the above two algorithms still incur substantial costs when sub-problems remain large.
As mentioned previously, the MNA heuristic (Khan et al., 2018b) can be leveraged to
create sub-problems for DCOPs. We note that in COSP, MNA will require every agent to
communicate with every other agent. In addition, node-to-agent mappings typically require
agents to have local constraint graph knowledge which is not assumed.

Besides computation, we discuss one nuance of COSP that makes COSP a harder prob-
lem than a traditional DCOP. In standard DCOPs, agents know the variables and con-
straints of neighboring agents (Fioretto et al., 2018). An agent is unaware of the values of
other agents’ variables, but is privy to their existence. In COSP, we assume that agents are
aware of the existence of other agents, but have no knowledge of the request fulfillments
(variables) other agents are attempting to schedule. The implication is that an agent does
not know the local structure of the constraint graph for which it is a part. Note that it
takes one broadcast for each agent to share all their request fulfillments before the problem
becomes a standard DCOP. However, this requires an enormous amount of communication
(and memory) and is undesirable. This nuance is motivated by the requirements of the
application, and our solutions address this need. In contrast, an assumption of DCOP al-
gorithms is that agents can use the known local topology of the constraint graph to form
communication channels. This nuance is another reason why previous DCOP algorithms
are not directly suitable for COSP. Table 2 summarizes the differences in assumptions be-
tween a DCOP and COSP. The variables per agent is one for traditional DCOPs, but as
mentioned previously frameworks such as MVA exist to handle multiple variables per agent.

The structure of COSP encompasses a class of multi-agent scheduling problems and
other distributed coordination problems. The basic elements of this class of problems are

• A: a set of agents,

• R: a set of tasks/requests/goals to be satisfied, and

• C: a set of constraints.

These problems capture instances where agents must coordinate without full knowledge
of local or shared constraints. This encompasses problems such as multi-rover exploration,
scheduling computing nodes, and swarm formation. The key structure of COSP, high
degrees throughout the constraint graph, generalizes to these other problem instances. We
can also capture more complex reward functions beyond satisfaction, as long as the reward

180

Decentralized, Decomposition-Based Observation Scheduling

function for any r P R cannot be decomposed into a linear combination of the inputs (i.e.
many agent variables are necessary inputs to the function).

4. Problem Decomposition

In this section, we discuss the decomposition approach for partitioning COSP, including
a motivating example and the construction of the Geometric Neighborhood Decomposition
(GND) heuristic. Clearly, solving smaller problems is computationally cheaper, however,
decomposition schemes must be carefully constructed to preserve solution quality and ad-
dress the assumptions of COSP.

4.1 A Motivating Example

We consider a simplified toy problem related to COSP to illustrate the motivation of de-
composition and problem instance structures.

Definition 4.1. The toy task assignment problem (t-COSP) consists of n agents, a1, .., an,
and n tasks, r1, .., rn. Each agent can schedule exactly one task and agent i is capable of
completing any task rj such that j ď i. An agent only knows its own capable tasks and is
unaware of what other agents can do.

Clearly, t-COSP has exactly one solution in which agent ai does task ri. Similar to
COSP, the maximum degree of the constraint graph is n resulting in each agent communi-
cating with every other agent in most DCOP approaches.

Now consider the following: instead of solving one global problem, we partition the
agents randomly into k sets of any size. Clearly, letting each of the k sets independently
compute optimal schedules over all tasks will likely result in a sub-optimal global solution
with lots of redundancies. However, if we also partition the tasks properly, we can create
partitions that are both small for computational purposes and share an optimal solution
with the global solution.

Proposition 1. Let Aj be the set of agents in a random partition 1 ď j ď k as defined
above and Rj be the set of tasks in partition j. Taking Rj “ tri | ai P Aju results in an
optimal t-COSP solution if each partition solves their sub-problem optimally.

Proof. This proposition is trivially proved; if any agent ai does not do task i, there will be
m ` 1 tasks for m agents to do where m is the number of agents in the partition of ai that
are indexed higher than i.

The structure of t-COSP is similar to the structures outlined in Section 3.3 and what we
observe experimentally, presented later in the paper. We desire our heuristic to partition
the agents into computationally feasible sub-problems and the tasks into advantageous sub-
problems for those agents to solve. Notice in t-COSP that agent an is the only agent capable
of satisfying request rn. Any decomposition scheme that is optimal must partition an and
rn into the same sub-problem. The decomposition of t-COSP is trivial, and we leverage
centralized knowledge that is not available in actual problem instances of COSP, namely
other agent capabilities. In real COSP instances, the number of agents capable of satisfying
a request varies greatly, ranging from nearly all agents to a single agent. This information

181

Zilberstein, Rao, Salis & Chien

is unknown. Therefore, ensuring agent capabilities match the prospective requests within a
sub-problem is not trivial.

However, given the geometric structure of satellite scheduling, we can estimate these
capabilities for groups of agents, uncovering properties of the constraint graph that can be
utilized for decomposition. The underlying decomposition is motivated by the solution to
t-COSP presented in Proposition 1. We create sub-problems by reasoning about estimated
agent capabilities in a decentralized manner that, when solved, lead to well-founded global
solutions.

4.2 Heuristic Construction

We outline the construction of the Geometric Neighborhood Decomposition (GND) heuristic.
This heuristic originated in previous work (Zilberstein et al., 2024b). However, we present an
improved version. These improvements include reasoning about temporal constraints across
requests and introducing hyperparameters to construct varying degrees of non-disjoint sub-
problems. The heuristic decomposes the global problem through decentralized geometric
computation. The heuristic, computed individually by each agent, inherently coordinates
agents without communication. This heuristic is grounded in geometry and is composed of
three layers:

1. the global supply layer,

2. the inter-neighborhood delegation layer,

3. and the intra-neighborhood delegation layer.

4.2.1 Global Supply

In our application, supply, or the number of agents capable of satisfying a request, is im-
portant to uncover the structure of the constraint graph. The lack of knowledge of other
agent variables results in agents being unaware of the global supply for a request.

Problem instances contain observations for which only a few satellites have visibility, as
well as requests that the entire constellation can service. Identifying request supply enables
agents to make informed decisions to minimize redundant observations and collectively
service more requests.

In the traditional DCOP formulation, the supply is trivial to compute. The supply
for a request, r, would be the number of agents that have a variable x “ xpsjq such that
sj “ pr, h,mq, which is known since these agents all share a constraint.

We use the geometry of the satellite orbits to estimate the visibility of a ground target
for each orbital plane, obtaining an approximation of the number of satellites that could
satisfy a request during a time interval. Specifically, the supply of a request, r, provided
by an orbital plane, K, is determined as the duration of time that the request is in the
longitudinal cross-tracks of the plane times the number of agents that pass over a point per
epoch. The longitudinal cross-tracks of the orbital plane are the time intervals in which the
target is within a visible range of an orbital plane. This is determined by the time interval
of a request, point of closest approach, satellite slewing capabilities, and field of view. An
epoch refers to an instant of time in the units in which computation is performed.

182

Decentralized, Decomposition-Based Observation Scheduling

Figure 3 illustrates the geometric interval a ground target is in the cross-tracks. In the
figure, ZECI denotes the rotation axis of Earth. P1 and P2 are the bounding planes of the
cross-tracks on either side of the orbital plane. The green area then depicts the region for
which any ground target might be within the visibility of a satellite in the orbital plane.
The right ascension bounds depict the interval of potential visibility for a specific ground
target. Using simplified geometry such as a spherical Earth and a Keplerian orbit, we can
efficiently compute these time intervals via a bisection search, taking Oplog |H|q time. For
a request r and an orbital plane K, we denote this time interval as Ir,K .

Combining that interval with the number of agents that pass over a point per epoch, we
obtain the supply estimate for an orbital plane. The latter piece of information is determined
by the fixed amount of time it takes any satellite in the orbital plane to complete one full
orbit of Earth, denoted ok, and the number of agents in the plane, |K|. This estimation
assumes that the satellites are evenly spaced in an orbital plane. However, this is not a
necessary assumption. Since the geometry of the constellation is known, we can compute
the supply based on the overflights that intersect the right ascension bounds even if the
satellites are unevenly allocated. In these instances, an offset We compute the supply for
the request r from the orbital plane K as

Supplypr,Kq “ Ir,K ¨
|K|

ok
.

The global supply can then be computed as

Supplyprq “
ÿ

KPK
Supplypr,Kq.

Figure 3: Estimating supply from an orbital plane. The right ascension bounds shows the
temporal interval a ground target is within potential visibility of the orbital plane
based on geometric constraints.

183

Zilberstein, Rao, Salis & Chien

The global supply is the sum of the planar supply over all the orbital planes in the
constellation. Note that this heuristic estimates supply based on geometric visibilities.
However, there are other factors to consider to obtain an exact supply value. Even if a
satellite has visibility of the ground target, it may still be blocked from observing due
to a mandatory downlink, exact orbital mechanics and geometric constraints, or other
considerations.

4.2.2 Inter-Neighborhood Delegation

The supply layer estimates groups of edges between groups of agents in the constraint
graph, however, it does not perform any partitioning. The inter-neighborhood delegation
layer reasons about which sub-graphs in the estimated constraint graph agents should solve.

Considering the number of satellites that can service an observation request puts the
contention into perspective. Recall that the supply of many requests is nearly every satellite
in the constellation. The inter-neighborhood delegation heuristic assigns a request to a fixed
subset of agents, alleviating contention and reducing the problem size.

Each orbital plane, K P K, provides a natural grouping of agents into a large neighbor-
hood. This is motivated by satellites in the same orbital plane experiencing similar relative
geometries of Earth targets, making their view of the problem homogeneous, and the supply
estimation being efficiently computable per orbital plane. Agents in the same orbital plane
typically share the ability to satisfy the same requests, making the orbital planes a logical
choice for large neighborhoods. We acknowledge that this neighborhood selection exploits
specifics of our domain and that neighborhood selection in other domains is not always as
clear-cut.

In this section and future sections, we use the term neighborhood to describe a partition
of agents. It is important to note that our use of the term neighborhood is different from
the typical notion of a neighborhood in DCOPs. In a DCOP, the neighborhood refers to
agents that share a constraint. In our problem, agents in a neighborhood typically share
many constraints, however, they also share constraints with agents in other neighborhoods.
This layer of the heuristic determines which large neighborhoods (e.g. orbital planes) should
prioritize servicing a request, and in turn, what other neighborhoods should de-prioritize.
At an abstract level, this layer of the heuristic delegates each utility function, frj , to fixed
partitions of agents. We define the inter-neighborhood delegation heuristic based on the
properties of an orbital plane and the request. The algorithm for request delegation is
outlined below.

Algorithm 1 takes in the requests R, the orbital planes K, and a hyperparameter
n. The computation keeps track of which requests were delegated to which partition in
the data structure partition, which is indexed by a plane, k. Iterating through each re-
quest, r, in order of least to most supply, we compute the heuristic value HrKs for each
plane K. The heuristic is computed as the ratio of supply divided by the number of
requests in the partition that overlap in time with r. We aim to maximize this value
for each request r to create sub-problems with lower degree cliques. The sub-procedure
NumberOverlappingppartitionrKs, rq computes the number of requests in partitionrKs

that temporally overlap r.

184

Decentralized, Decomposition-Based Observation Scheduling

Algorithm 1 GND Inter-Neighborhood Delegation

procedure InterNeighborhoodDelegation(R,K, n)
order R based on increasing Supplyprq

partition Ð H

for r P R do
H Ð H

for K P K do
HrKs Ð Supplypr,Kq ˜ NumberOverlappingppartitionrKs, rq

end for
Kbest Ð arg maxnKpHq

for K P Kbest do
add r to partitionrKs

end for
end for
return partition

end procedure

The hyperparameter n denotes how many neighborhoods are selected. Note that n “ 1
results in a complete partition of the global problem; each request will be considered by ex-
actly one neighborhood of agents. Taking n ą 1 results in an incomplete partition, in which
n disjoint sets of agents will consider a request. For scheduling problems that are highly
constrained, in that agents cannot schedule all requests and requests conflict greatly with
each other, creating incomplete partitions may be advantageous. The hyperparameter n is
also considered in the intra-neighborhood delegation layer of the heuristic and is discussed
further in the next section.

In the arg max computation, ties are broken by selecting the plane with the minimum
distance to the request target, tprq, over the request window. The minimum distance is
estimated using three points over the continuous interval of the request horizon, hprq: the
start, the end, and the midpoint. This tie-breaking can be viewed as a unique secondary
estimate of the supply.

In previous work, the heuristic H was directly the supply, Supplypr,Kq, and only n “ 1
was considered (Zilberstein et al., 2024b). Taking into account the temporal constraint of
requests and incomplete partitioning are both strategies to improve the performance and
generalizability of GND across problem instances.

In Section 6.1.1 we will present the constellations, but as a consideration, we note here
that |K| is typically small (|K| ăă |A|). Therefore, while this partitioning is substantial in
that we create |K| sets of agents each considering a subset of requests, it is not necessarily
sufficient to reduce the problem scale to a desired level for DCOP algorithms. There is no
bound on the distribution of agents to orbital planes, so there is no theoretical guarantee
that problem instances are reduced to a desired level.

4.2.3 Intra-Neighborhood Delegation

So far, the value of the global supply heuristic and the inter-neighborhood heuristic delegate
requests to a group of agents defined by the orbital plane. The final layer in the heuristic is

185

Zilberstein, Rao, Salis & Chien

determining which agents in the same orbital plane should seek to schedule which requests,
which enacts further partitioning. The intra-neighborhood heuristic is driven by agent
biases, in which agents with the same biases form a subset of the partition.

First, we define the bias of an agent, denoted b. A bias is parameterized by a periodicity,
ρ P N. The periodicity determines the number of unique biases and the number of agents
for which the bias repeats in a neighborhood. To compute the bias, we need to index each
agent in an orbital plane. For each orbital plane, K, we arbitrarily select an agent 0 and
order all the agents in the plane from 0 to |K| ´ 1 by moving counter-clockwise. The bias,
b P r0, ρq, is computed as an integer based on the index, i, of the agent:

b ” i mod ρ.

The periodicity of the bias means all agents indexed i ` q ¨ ρ possess the same bias for
all q P N. Increasing the periodicity means creating more sub-groups of agents with the
same bias. The motivation for spacing agents with the same bias as opposed to selecting
consecutive agents with the same bias is to diversify the sub-neighborhood’s collective visi-
bilities and geometries over time. There is no supply estimation for a request among agents
within an orbital plane. In COSP, request durations tend to be sufficiently long that the
majority of agents within an orbital plane are able to satisfy any request. However, this
is not assumed. Spacing the bias increases the likelihood that the supply of a request in
any sub-neighborhood is nonzero and is an effective strategy when uninformed. The bias
for a single agent is fixed. Therefore, we assume it is known by all agents apriori with the
configuration of the satellite constellation.

GND can be used with different biases in different domains. However, for COSP, we
again use the geometry to define the sub-problems. We define the request target position
bias which examines the latitude and longitude of the ground target, tprq. For both co-
ordinates, we add a bias if the degree times ten modular ρ is equivalent to the agent bias
b. We multiply by ten to give more precision to the bias. Targets tend to be clustered
in small geographic regions, so using more precision provides more diversity in this bias.
We mentioned previously that many agents experience very similar relative geometry with
targets in terms of time and space. The latitude and longitude bias aims to disrupt that
homogeneity across agents. Figure 4 visualizes the grid pattern that occurs from this bias
when projected onto latitude and longitude strips. Note that this figure is not to scale.
An agent with bias b “ 1 favors observing ground targets within the orange regions of the
strips.

Let b be the bias of an agent a computed as b ” i mod ρ and r¨s denote the standard
integer rounding function. We define the biases as follows.

LatitudeBiaspr, aq “

#

Z1 if b ” rlatptprqq ¨ 10s mod ρ

Z2 else,

and

LongitudeBiaspr, aq “

#

Z3 if b ” rlonptprqq ¨ 10s mod ρ

Z4 else.

Each Zi P R is the heuristic value associated with the bias. The full intra-neighborhood
heuristic ζ : R ˆ A Ñ R is computed as

186

Decentralized, Decomposition-Based Observation Scheduling

Figure 4: Latitude and longitude grid bias for an agent with b “ 1 and ρ “ 4.

Figure 5: Partition of agents within an orbital plane.

ζpr, aq “ LatitudeBiaspr, aq ` LongitudeBiaspr, aq.

We use ζ to divide the sub-problems within an orbital plane. We partition the agents
in an orbital plane into ρ sets, in which a set is defined by agents with the same bias. Like
the inter-neighborhood delegation, to partition the requests, we associate each request with
n partitions of agents. We select the n biases that have the largest value of ζ. Across the
intra- and inter-neighborhood heuristics, the parameter n controls how much of the state
space is reachable through search. Taking n “ |K| ¨ ρ, results in the entire search space
being reachable via solutions to the partitioned sub-problems. Increasing the value of ρ
will increase the number of biases, which in turn affects the number of partitions of the
problem. Tuning ρ enables us to create partitions of constant size, albeit at a reduction of
coordination among agents. We integrate the inter- and intra-neighborhood delegation such
that when delegating a request to n partitions, we delegate first to the sub-neighborhoods of
agents in the best orbital plane (Section 4.2.2), before allocating to the subsequent planes.
When ρ ě n, a request will only be delegated to partitions within an orbital plane. When
ρ ă n, partitions across orbital planes can be delegated the same request.

187

Zilberstein, Rao, Salis & Chien

4.2.4 Complete Heuristic

A decomposition heuristic, Υ : A ˆ S Ñ t0, 1u, is a function computed by an agent that
maps a request fulfillment to a Boolean value. For a single agent, ai, the heuristic identifies
the subset of requests assigned (by the heuristic) to the partition containing the agent.

We can now define GND based on the above construction. An agent, ai, first computes
the planar supply for each request. Then, an agent determines if its orbital plane is among
the n orbital planes delegated to this request. If so, the agent will compute the bias value for
the request and determine if it is within the agent’s partition according to ζ. This procedure
is the first step in coordinating sub-problems to solve with other DCOP algorithms.

When using GND to create sub-problems to deploy DCOP algorithms, an agent performs
a two-step heuristic partitioning. First, an agent partitions the requests according to the
inter-neighborhood delegation heuristic, and then further partitions those requests based on
the intra-neighborhood delegation heuristic. Recall that a neighborhood is fixed based on
the orbital plane and bias of an agent, therefore it can be computed by each agent. There
are two hyperparameters of GND, ρ which determines the size of agent sub-neighborhoods,
and n which controls the degree of incompleteness of request partitioning. We fix ρ based
on the desired reduction in size from the global problem and refer to GND with n degrees
of incompleteness as GND(n).

5. Scheduling Solutions to COSP

Before we present the algorithms, we briefly mention the procedure for generating the re-
quest fulfillments to schedule. Given the request set, R, an agent ai determines its visibilities
of the ground targets in R based on its orbit and the time windows of the requests. Using
the computed visibilities, an agent greedily constructs the request fulfillments, Sai , which
are the tasks that can be scheduled to satisfy requests. The point of least off-nadir angular

Figure 6: The off-nadir angle is calculated as the difference between the viewing direction of
the target and the nadir direction. An orthogonal viewing angle typically provides
optimal observation quality.

188

Decentralized, Decomposition-Based Observation Scheduling

separation determines when in a visibility interval to create a request fulfillment. The in-
terval of a request fulfillment is set to minimize the distance from the time of observation
to the point of least off-nadir angular separation while ensuring that the entire fulfillment
interval is within the request interval. Figure 6 illustrates the off-nadir angular separation,
a metric for the proximity between the satellite and the ground target. The point of least
off-nadir angular separation serves as a guide for when to observe a target for optimal view-
ing quality. During this task construction, request fulfillment intervals are enforced so as
not to overlap with a downlink. The greedy, decentralized construction of these request
fulfillments again highlights the lack of knowledge of shared constraints in COSP.

5.1 Fully Decentralized Solutions

By fully decentralized solutions, we refer to decentralized algorithms that do not rely on
inter-agent communication. We present three baseline scheduling algorithms derived from
a forward greedy scheduler.

5.1.1 Forward Greedy Scheduler

We implement a greedy heuristic scheduler that computes the schedule for an individual
satellite without knowledge of other satellite schedules. Algorithm 2 contains the pseudo-
code for the decentralized scheduling procedure. This algorithm is an arbitrary greedy
scheduler that functions with any heuristic over requests, denoted Hai . For each downlink,
dj , the scheduler selects the subset of request fulfillments in which the next soonest downlink

is dj . This set of request fulfillments is denoted S
dj
ai . The request fulfillments sl P S

dj
ai are

then ordered based on Hai and iterated through, being inserted into the schedule if no
constraints are violated. The scheduler performs a single pass over the ordered request
fulfillments. A single forward pass scheduling approach is a benchmark for common flight
capabilities (Troesch et al., 2020).

Algorithm 2 Greedy Scheduler for agent ai
procedure GreedySchedule(R,Sai , Dai , Cai ,Hai)

sched Ð H

for dj P Dai do

compute S
dj
ai

order S
dj
ai based on Hai

for sl P S
dj
ai do

if sl satisfies Cai then
addToSchedule(sched, sl)

end if
end for

end for
return sched

end procedure

189

Zilberstein, Rao, Salis & Chien

Algorithm 3 Random Scheduler for agent ai
procedure RandomSchedule(R,Sai , Dai , Cai)

sched Ð H

shuffle Sai

for s P Sai do
if s satisfies Cai then

addToSchedule(sched, sl)
end if

end for
return sched

end procedure

The sub-procedure addToSchedule inserts the request fulfillment sl into the schedule
at time interval hpslq if there is no other request fulfillment for r currently in the schedule.
This is equivalent to setting xpslq “ 1.

5.1.2 Baseline Scheduling Approaches

The following are the fully decentralized scheduling approaches we evaluate.

1. Random. Each agent ai P A randomly shuffles its set of request fulfillments, Sai . The
shuffled request fulfillments are iterated through and scheduled using the procedure
addToSchedule.

2. Greedy Start Time. Each agent ai P A sorts the request fulfillments, Sai based on start
time of the request fulfillment. The sorted request fulfillments are iterated through
and scheduled using the procedure addToSchedule. Note that this algorithm is
equivalent to GreedySchedule using the start time heuristic.

3. Greedy Portfolio. Each agent ai P A samples a heuristic from the portfolio of heuris-
tics, Π, uniformly at random. The sampled heuristic defines the greedy insertion order
into the schedule. Note that this algorithm is equivalent to GreedySchedule with
the sampled heuristic. The portfolio consists of four heuristics: random, start time,
memory usage, and off-nadir angular separation. The random heuristic assigns a ran-
dom value to each request fulfillment. We note that the portfolio does not contain a
dominating heuristic.

5.2 Centralized Algorithm

The centralized algorithm we employ is an adaptation of squeaky wheel optimization (SWO)
(Joslin & Clements, 1999) shown in Algorithm 4. SWO is an incomplete centralized search
algorithm. Over the course of iterations, SWO heuristically creates schedules based on
priorities assigned over previous iterations. In our implementation, SWO sorts the requests
based on priority, breaking ties with the least supply. It then randomly selects an available
satellite to schedule the request. Requests that are not scheduled on previous iterations
have their priorities increased. In subsequent iterations, requests that were not previously
scheduled are attempted to be satisfied first.

190

Decentralized, Decomposition-Based Observation Scheduling

The algorithm returns the best schedule found across iterations. The data structure
priorityMap tracks the priorities of requests across iterations. A lower value equates to a
higher priority. All request priorities are initialized to 0. A request scheduled in the current
iteration has its priority incremented by 1, and requests that are not scheduled have their
priorities reset to 0. Convergence is determined when the absolute difference in solution
quality across iterations is below a threshold. In addition to the previously defined procedure
addToSchedule, there are several important sub-procedures of the SWO implementation
relevant to understanding an iteration of the algorithm.

• sortRequestspR,A, S, priorityMapq. This procedure sorts the requests in R based
on their priority in priorityMap. A lower value equates to a higher priority. To break
ties, requests are sorted in ascending order based on the number of agents in A that
have a request fulfillment for the request.

• selectRequestFulfillmentpr, S1, Aq. This procedure selects a request fulfillment
from S1, the set of all feasible request fulfillments across all agents to satisfy the request
r. It returns a tuple ps, aq of the selected request fulfillment and the scheduling agent.
If no feasible request fulfillments exist for the request, the tuple pH,Hq is returned.

Algorithm 4 Squeaky Wheel Optimization

procedure SqueakyWheelSchedule(R,S,D,C,A,maxIterations)
bestSchedule Ð H

priorityMaprrs Ð 0, r P R
i Ð 0
while i ă maxIterations ^ not converged do

sortRequestspR,A, S, priorityMapq

currentSchedule Ð H

S1 Ð copypSq

for r P R do
s, a Ð selectRequestFulfillmentpr, S1, Aq

if s “ H then
priorityMaprrs Ð 0

else
addToSchedule(currentScheduleras, s)
removeInfeasibleRequestFulfillmentspS1, s, aq

priorityMaprrs Ð priorityMaprrs ` 1
end if

end for
if currentSchedule is better than bestSchedule then

bestSchedule Ð currentSchedule
end if
i Ð i ` 1

end while
return bestSchedule

end procedure

191

Zilberstein, Rao, Salis & Chien

Several selection heuristics were evaluated. However, random selection provided the
best balance of execution time and solution quality. Squeaky wheel optimization can
thrash over many iterations when evaluating the problem in a similar fashion via
unchanging priorities and deterministic heuristics. Using a random selection heuristic
diversifies the traces of the scheduler across iterations.

• removeInfeasibleRequestFulfillmentspS1, s, aq. This procedure removes from
S1 the request fulfillments that are no longer feasible after scheduling s for agent a.
Note that only request fulfillments for agent a that exist within the same downlink
window could become infeasible. Let dj be the next downlink for agent a after hpsq.
A request fulfillment, sj is removed if setting xpsjq “ 1 violates cdj or csj ,s. This
procedure ensures that the request fulfillments in S1 can be scheduled without violating
constraints. In addition, all request fulfillments for rpsq are removed from S1 for
efficiency. However, note that no request fulfillments that satisfy r will be scheduled
in an iteration after request r is considered during the inner loop.

Before an iteration, the set of request fulfillments, S, is copied into the data structure
S1 to enable the removal of request fulfillments that become infeasible. An iteration begins
by sorting the requests in the sub-procedure sortRequests, which is detailed above. The
sorted requests are then iterated through and a request fulfillment to satisfy each request
is selected in the procedure selectRequestFulfillment. The priorityMap is then up-
dated depending on whether or not a request fulfillment, s, was found to satisfy r. If there
is a request fulfillment to satisfy r, it is scheduled in the procedure addToSchedule, and
S1 is updated by removing the infeasible request fulfillments as a result of scheduling s.

5.3 Neighborhood Stochastic Search

The Neighborhood Stochastic Search(NSS) algorithm is a DCOP algorithm developed for
COSP. It was first presented in prior work (Zilberstein et al., 2024b) and extends the request
satisfaction variation of BD (Parjan & Chien, 2023) to more precisely fit both COSP and
DCOPs, scale to large problem instances, and enable scheduling with resource constraints.
We present the pseudo-code in Algorithm 5 and mention key sub-procedures. The first step
for an agent is to compute, using a decomposition heuristic, Υ, the sub-problem the agent
is involved in solving. We denote this sub-problem as N , which is itself a DCOP consisting
of agents, AN Ď A, and requests, RN Ď R.

• computeSubProblempai, A,R, Sai ,Υq. This procedure returns the neighborhood of
agent ai and the requests for the neighborhood to schedule using the decomposition
heuristic Υ. Each agent knows the request set, R, the other agents, A, and the orbital
planes and fixed bias. The neighborhood of agents is the subset of agents of A such
that the orbital plane and bias are the same as the computing agent. A subset of
the request set is subsequently selected according to the decomposition heuristic as
requests for which the value of Υpai, sq ą 0 for some s P Sai such that rpsq “ r. The
neighborhood defines the agents that an agent will communicate with. Note that this
computation produces neighborhoods that are reflexive and transitive.

192

Decentralized, Decomposition-Based Observation Scheduling

Algorithm 5 Neighborhood Stochastic Search for agent ai
procedure NSS(R,Sai , Dai , A,Υ,maxIterations)

N “ computeSubProblempai, A,R, Sai ,Υq

sched “ initialSolutionpN , Sai , Dai , Caiq

while i ă maxIterations^ not converged do
com “ messagepAN , sched)
shuffle RN
for r P RN do

assigned “ stochasticUpdatepr, sched, comq

if assigned “ true then
scheduled “ schedulepr, sched, Saiq

end if
end for
i Ð i ` 1

end while
return sched

end procedure

• initialSolutionpN , Sai , Dai , Caiq. This procedure constructs an initial schedule for
agent ai. We use random initialization, in which agents construct initial schedules
using Algorithm 3. This initialization scheme is typical for DSA variants (Zhang
et al., 2005).

• messagepAN , sched). This procedure encapsulates the message exchange between
agents in a neighborhood. Agent ai messages the subset of RN that it satisfied in the
previous iteration to each agent in AN . In addition, agent ai receives the broadcast
from each agent in its neighborhood and compiles the received information in the data
structure com.

• stochasticUpdatepr, sched, comq. This procedure updates the assignment of the
agent to the request based on the communicated information. By assignment, we
refer to whether or not the request should be scheduled by this agent. Let m be
the number of agents that satisfied request r according to the broadcast, and Pu be
a probability to be discussed later. The assignment of a request r is stochastically
updated in the following ways.

– If agent ai is not assigned to r and m “ 0, ai assigns to r.

– If agent ai is not assigned to r and m ą 0, ai remains unassigned to r.

– If agent ai is assigned to r and m “ 0, ai will unassign with probability Pu.

– If agent ai is assigned to r and m ą 0, ai will unassign with probability m´1
m .

• schedulepr, sched, Saiq. This procedure attempts to schedule a request fulfillment
for request r in the current schedule. If an assigned request fulfillment satisfies Cai

it is immediately inserted into the schedule. Otherwise, the scheduler can remove a
conflicting request fulfillment from the schedule to free up resources. The removed

193

Zilberstein, Rao, Salis & Chien

request fulfillments are selected as the closest start time to the request fulfillment to
insert. Agent ai remains assigned to removed request fulfillments and may attempt
to re-schedule these in subsequent iterations based on the stochastic assignments.
Allowing agents to de-schedule requests enables the algorithm to overcome getting
stuck at local maxima. Note that we consider all requests of equal priority and there
is no temporal flexibility in the start or end times of request fulfillments. The scheduler
is amenable to these extensions and in future work, we can include continuous variables
in COSP to model temporal flexibility.

We evaluate several variations of the NSS algorithm with different heuristics and par-
titioning. NSS-Random serves as a baseline of GND and refers to NSS with a random
decomposition heuristic. NSS-Random randomly creates partitions of agents and requests.
With no other knowledge of the constraint graph, doing more sophisticated partitioning
is challenging, therefore NSS-Random serves as a suitable, naive baseline for GND. NSS-
GND(n), refers to NSS with the GND(n) heuristic.

The stochastic search performed in NSS mimics the search of BD with some key distinc-
tions: decomposition to reduce size, de-allocating to overcome local minima, and scheduling
with resource constraints. Note that NSS relies on the parameter Pu. We use Pu “ 0.7 as
published by the authors of the BD algorithm (Parjan & Chien, 2023), but mention that
changing Pu, had minimal effect on the performance of NSS.

5.4 Theoretical Analysis of Algorithms

We begin by examining the complexity of NSS which we present in Propositions 2 and 3.
We define AN as the largest set of agents in a sub-problem and RN as the largest set of
requests in a sub-problem. We also define L, the maximum size of a satellite’s schedule
to more exactly capture the complexity. The value of L is driven by the horizon, H,
the requests, R, and an agent’s constraints, Cai . In practice L ăă |R| (and |AN |, |RN |).
Checking if a request fulfillment satisfies Cai and inserting into a schedule are both OplogLq

operations. We omit L and other factors in the complexity of NSS that are subsumed by
larger factors.

Proposition 2. In every iteration, NSS requires an agent to send Op|AN |q number of
messages each of size Op|RN |q.

Proof. The only message exchange occurs in the procedure Message in which an agent
sends the subset of its sub-problem’s requests that it satisfied to all agents in the sub-
problem, which are at most |RN | and |AN | respectively.

Proposition 3. In every iteration, NSS requires an agent to perform Op|AN |¨|RN |q oper-
ations.

Proof. To compute the probabilities used in StochasticUpdate, an agent must iterate
through the communication received from the Message procedure, which is Op|AN |¨|RN |q.
The main loop of NSS iterates through at most Op|RN |q requests, performing OplogLq

computation for each.

194

Decentralized, Decomposition-Based Observation Scheduling

Algorithm Computation Communication

Random |R|¨ logL N/A

Greedy Start Time |R|¨ log |R| N/A

Portfolio Greedy |R|¨ log |R| N/A

NSS k¨|RN |¨|AN | k¨|RN |¨|AN |

BD, DSA, MGM k¨|R|¨|A| k¨|R|¨|A|

Table 3: Op¨q complexity of decentralized algorithms.

We summarize the per-agent computational and communication complexity of the de-
centralized algorithms in Table 3. It is assumed that all agents have knowledge of the
requests. Therefore, the fully decentralized algorithms incur no communication.

The centralized algorithm, SWO, has a computational complexity ofOrk¨p|R|2`|R|¨|A|qs.
This cost is incurred by the centralized node which has arbitrary computing power. Central-
ized algorithms require sending the final schedules to each agent, resulting in an OpL ¨ |A|q

communication cost. The NSS algorithm incurs a communication cost proportional to the
size of the sub-problem. For NSS, SWO, and other relevant algorithms we define k, the
number of iterations.

The complexity shows that the fully decentralized algorithms are the most efficient. In
comparison to MGM, DSA, or BD, NSS achieves a complexity parameterized by |AN | and
|RN | in each iteration as opposed to |A| and |R|.

6. Experimental Results

We select hyperparameters of GND such that the global problem is reduced in size by an
order of magnitude. We set ρ such that the largest neighborhood of satellites is at least
10 times smaller than the total constellation size. In the intra-neighborhood delegation
heuristic, ζ, we set Zi such that the resultant ordering is based on latitude, then longitude.
An example assignment is Z1 “ 2, Z3 “ 1, and Z2 “ Z4 “ 0. We then evaluate GND(n)
with n “ 1, 2, 4 and 8. For both NSS and SWO, we set maxIterations “ 20 and determine
convergence using a solution difference threshold of 0.001% satisfaction.

6.1 Experimental Setup

6.1.1 Satellite Constellations

We simulate two constellations inspired by operational low Earth orbit constellations (Planet,
2023). The first constellation is modeled on the Dove constellation from Planet, and we
refer to it as Planet. There are 200 agents in total divided across 4 orbital planes at 600 km
altitude. The constellation has two near sun-synchronous orbital planes at 95˝ inclinations
composed of 95 satellites each. There are an additional two orbital planes at 52˝ inclinations
with 5 satellites each. Each satellite has a single sensor that can slew to 60˝ off of nadir
and an on-board memory capacity of 125 GB.

The second constellation is derived from a Walker constellation, and based on the Skysat
constellation from Planet. We refer to this constellation as Walker. This constellation has
6 orbital planes with 14 satellites each at an 88˝ inclination. There is an overlay of 2 orbital

195

Zilberstein, Rao, Salis & Chien

Figure 7: Visualization of the satellite constellations: Planet-inspired (left) and Walker
constellation with overlay (right). The dots represent a single satellite along the
path defined by the orbital plane.

planes at a 51.6˝ inclination with 12 satellites. This overlay provides more coverage at low
declinations and is in a similar orbit as the International Space Station. Each satellite has
a single sensor that can slew to 45˝ off of nadir and an on-board memory capacity of 125
GB. Figure 7 shows the two constellations centered around a sphere.

6.1.2 Downlinks

We consider two ground stations: the ASF Near Space Network Satellite Tracking Ground
Station and the Guam Remote Ground Terminal System. A downlink is modeled as a
constant bit stream of 62.5 MB/s for the duration of visibility of the ground stations.

6.1.3 Observation Request Campaigns

The target set, T , is composed of 634 globally distributed ground targets (cities and volca-
noes). Figure 8 illustrates the distribution of targets on the surface of Earth.

We generate a campaign by selecting a random subset of targets from T that has a
size of at least 75% of T . For large problem instances, a random periodicity is selected in
the range r4, 12s. A periodicity of p means the constellation is requested to observe each
target once within p evenly spaced intervals during the scheduling horizon, resulting in p
requests for a target. For small problem instances, we reduce the periodicity and randomly
remove requests to obtain a problem instance with a smaller set of requests. The start of
the scheduling horizon is randomly initialized. The end of the horizon is fixed at 24 hours
after the selected start time. The amount of memory required by a request fulfillment is
sampled from a normal distribution with mean 50 MB and standard deviation 10 MB. The
interval of time required to schedule a request fulfillment is fixed at 63 seconds (3 seconds
for the observation and 30 seconds on either side for slewing and processing).

196

Decentralized, Decomposition-Based Observation Scheduling

Figure 8: Visualization of the set of point targets on Earth, T .

Generating campaigns in this manner produces hard problem instances. By hard, we
refer to the constraint graph structure mentioned in Section 3. Despite fixing the scheduling
horizon at one day, it is the density of requests during the window (i.e. requests per epoch)
that drives the difficulty of the scheduling problem.

6.2 Evaluation

6.2.1 Geometric Neighborhood Decomposition

We begin by examining large problem instances and the decomposition of GND on these
instances. Figure 9 plots the distribution of request supply for the global problem and
different variations of GND(n). The distribution of the global problem matches what we
describe for t-COSP and elsewhere in Section 3; Ωp|R|q cliques of size Ωp|A|q as well as
cliques of constant size, composed of just a few satellites. For the Planet constellation
consisting of 200 agents, the first and third quantiles are 5 and 141 respectively. For the
Walker constellation, which has 108 agents, these values are 15 and 29, however, the spread
of outliers is much larger.

The partition sizes of GND(n) variations match what we expect; GND(1) creates the
smallest sub-problems, shrinking the supply distribution by an order of magnitude. As n
increases, so does the supply for individual requests. Interestingly, we see minimal supply
change between GND(4) and GND(8) for both Planet and Walker constellations, suggesting
that the majority of supply for a request is contained within 4 neighborhoods.

We also examine the error in the GND supply estimation as shown in Figure 10. The
plot shows the average normalized error of the estimation. This error is computed as the
absolute difference between estimated supply and actual supply, normalized based on the
size of the constellation (e.g. number of agents). The supply estimation is computed as
described in Section 4.2.1 while the actual supply for a request, r, is computed as the exact
number of agents that have a task sj “ pr, h,mq. This equivalently describes the relative
error in the degree estimation of a node in the constraint graph. We find that the Walker
constellation has a much lower error in the supply estimation, averaging around a 2% error
in the size of the constellation that reduces slowly and linearly as the problem size increases.

197

Zilberstein, Rao, Salis & Chien

Global Problem GND(1) GND(2) GND(4) GND(8)
100

101

102

R
eq

ue
st

 S
up

pl
y

Global Problem GND(1) GND(2) GND(4) GND(8)
100

101

R
eq

ue
st

 S
up

pl
y

Figure 9: Distribution of request supply across 100 problem instances after the different
decomposition schemes for Planet constellation (left) and Walker constellation
(right).

In contrast, GND has a larger absolute error for the Planet constellation, peaking at 6.5%,
and decreases much faster. This is partially due to the size of the Planet constellation
being nearly double that of the Walker constellation, therefore the average degree of nodes
is larger, as seen in Figure 9.

GND utilizes estimates that are employed in the decomposition. However, we see that
this computation is not perfect, and includes some error. The error is relatively low com-
pared to the global problem size and we confirm that this error has no degradation on the
scheduling performance by evaluating GND using the exact supply value. We show in the
next sections that NSS-GND can provide efficient, high-quality scheduling solutions.

2000 3000 4000 5000 6000 7000
Requests In Campaign

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
or

m
al

iz
ed

 E
rr

or
 o

f G
N

D

Planet
Walker

Figure 10: Average normalized error of GND supply estimation across 100 large problem
instances.

198

Decentralized, Decomposition-Based Observation Scheduling

6.2.2 Small Problem Instances

To demonstrate the effectiveness of our algorithms, we compare their performance on small
problem instances to an optimal solution. By small problem instances, we refer to a small
request set, which we upper bound at 500 requests. We use a branch and bound search
to obtain an optimal schedule for each satellite in the constellation to maximize the total
number of satisfied requests. The branch and bound algorithm can only execute on small
problem instances due to computational constraints and memory limitations. We report
the average gap in satisfaction percentage to the optimal solution of the algorithms over 50
randomly generated small problem instances with between 400 and 500 requests in Tables
4 and 5.

It is important to note that small problem instances are typically under-constrained,
especially for the Walker constellation, which has relatively uniform coverage of Earth.
This is illustrated by the high performance of the Random algorithm. However, as the
problem instances scale in the number of requests, the constraints on the system increase,
and so does the necessity for coordination.

The results show that the centralized solution, SWO, achieves near-optimal performance.
The NSS algorithms also achieve close to optimal performance, while the fully decentralized

Algorithm Opt. Gap (%) Time (ms) Messages (KB)

Random 3.856 ă 1 0
Greedy Start Time 5.152 ă 1 0
Portfolio Gredy 4.544 ă 1 0
NSS-Random 3.187 3.375 1, 4303.712
NSS-GND(1) 3.072 ă 1 106.718
NSS-GND(2) 1.713 ă 1 181.392
NSS-GND(4) 1.784 ă 1 207.886
NSS-GND(8) 1.784 ă 1 207.886
BD 2.160 10.775 11, 895.264
SWO 0.020 644.925 0.489
B&B 0.0 373, 174.350 0.489

Table 4: Results of algorithms on 50 small problems for the Planet constellation.

Algorithm Opt. Gap (%) Time (ms) Messages (KB)

Random 0.188 ă 1 0
Greedy Start Time 3.980 ă 1 0
Portfolio Gredy 0.284 ă 1 0
NSS-Random 0.632 3.02 604.730
NSS-GND(1) 1.192 ă 1 122.336
NSS-GND(2) 0.308 ă 1 234.564
NSS-GND(4) 0.236 1.08 385.093
NSS-GND(8) 0.272 1.46 411.798
BD 0.408 4.18 2, 451.242
SWO 0.0 305.98 0.499
B&B 0.0 1, 129.0 0.499

Table 5: Results of algorithms on 50 small problems for the Walker constellation.

199

Zilberstein, Rao, Salis & Chien

solutions are significantly further from optimal for the Planet constellation. In comparison
to BD, the NSS-GND algorithms achieve mostly higher request satisfaction while possessing
faster run times and procuring an order of magnitude fewer messages. Notably, most
variations of NSS-GND outperform NSS-Random in both solution quality and efficiency.
These results support the efficacy of GND in generating advantageous sub-problems and
the theoretical analysis of NSS.

6.2.3 Large Problem Instances

We evaluate each scheduling algorithm against 100 randomly generated large problem in-
stances. Note that solving a large problem instance optimally would likely take longer than
the age of the universe.

Figure 11 shows the reward achieved by each algorithm as a function of problem size. The
NSS-GND algorithms outperform the fully decentralized solutions and the NSS-Random
variation. The results enforce that GND creates effective sub-problems relative to random
decomposition. In comparison to the centralized solution, there remains a gap between any
of the decentralized approaches. There is also a 3% gap in satisfaction between the best
NSS variation and the BD algorithm. However, we will see that what NSS trades off in
solution quality, it gains in crucial metrics for distributed deployment: message volume and
run time.

Figure 11 also shows that as the density of requests grows, problem instances become
more difficult. The constellation as a whole cannot satisfy all the requests, therefore coor-
dinating to reduce redundancy of observations becomes more and more crucial.

2000 2500 3000 3500 4000 4500 5000 5500 6000
Requests In Campaign

60

70

80

90

100

Pe
rc

en
t S

at
is

fie
d

(%
)

2000 3000 4000 5000 6000 7000
Requests In Campaign

70

80

90

100

Pe
rc

en
t S

at
is

fie
d

(%
)

Figure 11: Percent of satisfied requests achieved by each algorithm across 100 large problem
instances presented as a scatter plot for Planet constellation (left) and Walker
constellation (right). Each point represents the results of a single problem in-
stance and we regress a line of best fit for each algorithm.

200

Decentralized, Decomposition-Based Observation Scheduling

2000 2500 3000 3500 4000 4500 5000 5500 6000
Requests In Campaign

0

100

101

102

103

104
Ex

ec
ut

io
n

Ti
m

e
(m

s)

2000 3000 4000 5000 6000 7000
Requests In Campaign

0

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 12: Execution time of each algorithm across 100 large problem instances presented
as a scatter plot for Planet constellation (left) and Walker constellation (right).
Each point represents the results of a single problem instance and we regress a
line of best fit for each algorithm.

Figure 12 depicts the make-span execution time of each algorithm as a function of the
problem size. Simulations are executed in Java. Notice the non-linearity of the y-axis. The
execution times of the decentralized approaches are reported as the max run time over all
agents. The NSS algorithms are an order of magnitude slower than the fully decentralized
approaches. Critically, NSS-GND algorithms achieve run times that are nearly 2 orders
of magnitude faster than BD and one order of magnitude faster than NSS-Random. The
centralized approach is another two orders of magnitude slower than the BD algorithm.
These results support the theoretical analysis from Section 5.4.

Finally, we see in Figure 13 the total message volume of the varying approaches reported
in bytes. Notice again the non-linearity of the y-axis. We see that the NSS-GND algorithms
achieve a total message volume that is also around 2 orders of magnitude less than BD and
slightly less than NSS-Random.

While centralized algorithms will nearly always provide higher-quality solutions, our
GND-based solution is highly effective in the decentralized context, outperforming all the
decentralized baselines. This demonstrates that high-quality schedules can be produced
in very large-scale constellations by utilizing problem decomposition. Given the unique
challenges of deploying autonomy to satellites, we desire solutions that are lightweight and
scalable. The BD algorithm, while effective at producing high-quality solutions, incurs
costs that would not be feasible for deployment. We have shown that through informed
partitioning, we can trade off some solution quality for huge reductions in execution time and
message volume. We have also shown that, relative to a naive partitioning approach, GND
is effective given the assumptions of COSP. NSS-GND is an improvement of more expensive

201

Zilberstein, Rao, Salis & Chien

2000 2500 3000 3500 4000 4500 5000 5500 6000
Requests In Campaign

0
100

101

102

103

104

105

106

107
M

es
sa

ge
 V

ol
um

e
(b

yt
es

)

2000 3000 4000 5000 6000 7000
Requests In Campaign

0
100

101

102

103

104

105

106

107

M
es

sa
ge

 V
ol

um
e

(b
yt

es
)

Figure 13: Message volume of each algorithm across 100 large problem instances presented
as a scatter plot for Planet constellation (left) and Walker constellation (right).
Each point represents the results of a single problem instance and we regress a
line of best fit for each algorithm.

algorithms in terms of computation and communication and would be much more suitable
for deployment to a multi-satellite constellation.

7. Conclusion

A major barrier to applying existing DCOP algorithms to large-scale, real-world problems is
their computation and communication complexities, specifically when dealing with highly
connected constraint graphs. We propose the Neighborhood Stochastic Search (NSS) al-
gorithm, a decomposition-based approach to the multi-satellite constellation observation
scheduling problem (COSP) that is efficient in both time and message complexity and can
scale to problems orders of magnitudes larger than previous approaches. While not offer-
ing quality guarantees, we show that solving well-constructed sub-problems can generate
high-quality global solutions while reducing the overall costs burdened by each agent. The
Geometric Neighborhood Decomposition (GND) heuristic exploits the geometric nature of
COSP, enabling decomposition in the face of limited agent knowledge. The assumptions
of COSP and elements of GND extend to other domains, especially those in which com-
putation and communication may be limited, geometry or topology play a key role, and
rewards are dictated by unknown agent information. These factors are often overlooked
in applications of distributed optimization, but are crucial to real-world deployment. Ex-
amples of other relevant applications include multi-agent path finding (Salzman & Stern,
2020), mobile sensor teams (Pertzovsky, Zivan, & Agmon, 2024), and UAV coordination
(Pujol-Gonzalez et al., 2013). Future work would adapt NSS to these other domains with
variations of GND, such as ones that perform dynamic neighborhood formation, use exact

202

Decentralized, Decomposition-Based Observation Scheduling

supply computation or relevant estimation, and leverage domain-specific biases. The general
framework of NSS with a decomposition heuristic applies to a broad range of distributed
optimization problems.

As DCOPs are leveraged for more and more applications, extensions of the DCOP model
have arisen. These include dynamic DCOPs (Macarthur et al., 2011; Yeoh et al., 2015;
Hoang et al., 2022), continuous DCOPs (Liao & Hoang, 2024; Nguyen & Yao, 2012; Hoang
et al., 2020), privacy aware DCOPs (Grinshpoun et al., 2019; Grinshpoun & Tassa, 2016;
Tassa et al., 2017), communication aware DCOPs (Rachmut, Zivan, & Yeoh, 2022), and
more. Exploring COSP in these models is relevant to future work. COSP can be dynamic
in which active agents and requests change over time. Instead of fixing the interval of a
task, we can reason about the physical dynamics of maneuvering a satellite’s instrument in
a continuous setting. Federating multiple constellations of satellites operated by different
organizations into one observing system would require agents to communicate securely and
maintain privacy. Modeling interference and imperfect communication is relevant to satellite
cross-links, and communication constraints can be bottlenecks of distributed deployment.

Beyond the application of scheduling a satellite constellation, many large multi-agent
systems come with limiting constraints, and developing algorithms that work within those
constraints is essential. Current DCOP work suffers from a lack of scalability to systems
that possess computation and communication limitations. Partitioning the global problem
is one strategy to enable the broader application of DCOP solutions that have varying
complexity. In addition, an underlying assumption of many DCOP solutions, that agents
know shared constraints, does not apply to every domain. Solutions that conform to this
reality are a necessity for the application of DCOP solvers to real-world domains.

Acknowledgments

The research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration
(80NM0018D0004). Government sponsorship acknowledged. We also thank the anonymous
reviewers for their valuable feedback.

References

Augenstein, S., Estanislao, A., Guere, E., & Blaes, S. (2016). Optimal scheduling of a
constellation of Earth-imaging satellites, for maximal data throughput and efficient
human management. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 26, pp. 345–352.

Boerkoel, J., Mason, J., Wang, D., Chien, S., & Maillard, A. (2021). An efficient approach for
scheduling imaging tasks across a fleet of satellites. In Proceedings of the International
Workshop on Planning and Scheduling for Space.

Bonnet, G., & Tessier, C. (2007). Collaboration among a satellite swarm. In Proceedings
of the International Conference on Autonomous Agents and Multi-Agent Systems, pp.
1–8.

203

Zilberstein, Rao, Salis & Chien

Bonnet, G., & Tessier, C. (2008). Coordination despite constrained communications: A
satellite constellation case. In Proceedings of the National Conference on Control
Architectures of Robots, pp. 89–100.

Chatterjee, A., & Tharmarasa, R. (2024). Multi-stage optimization framework of satellite
scheduling for large areas of interest. Advances in Space Research, 73 (3).

Chien, S., Candela, A., Zilberstein, I., Rijlaarsdam, D., Hendrix, T., & Dunne, A. (2024).
Leveraging commerical assets, edge computing, and near real-time communications for
an enhanced New Observing Strategies (NOS) flight demonstration. In Proceedings
of the IEEE Geoscience and Remote Sensing Symposium.

Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davis, A., Mandl,
D., Frye, S., Trout, B., et al. (2005). Using autonomy flight software to improve science
return on Earth Observing One. Journal of Aerospace Computing, Information, and
Communication, 2 (4), 196–216.

Clement, B. J., Durfee, E. H., & Barrett, A. C. (2007). Abstract reasoning for planning
and coordination. Journal of Artificial Intelligence Research, 28, 453–515.

Cohen, L., Galiki, R., & Zivan, R. (2020). Governing convergence of Max-sum on DCOPs
through damping and splitting. Artificial Intelligence, 279, 103212.

Deng, Y., & An, B. (2020). Speeding up incomplete gdl-based algorithms for multi-agent
optimization with dense local utilities. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pp. 31–38.

Dorri, A., Kanhere, S. S., & Jurdak, R. (2018). Multi-agent systems: A survey. IEEE
Access, 6, 28573–28593.

Dunkel, E. R., Swope, J., Candela, A., West, L., Chien, S. A., Towfic, Z., Buckley, L.,
Romero-Cañas, J., Espinosa-Aranda, J. L., Hervas-Martin, E., et al. (2023). Bench-
marking deep learning models on myriad and snapdragon processors for space appli-
cations. Journal of Aerospace Information Systems, 20 (10), 660–674.

Eddy, D., & Kochenderfer, M. J. (2021). A maximum independent set method for scheduling
Earth-observing satellite constellations. Journal of Spacecraft and Rockets, 58 (5),
1416–1429.

Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research, 61, 623–698.

Fioretto, F., Yeoh, W., & Pontelli, E. (2016). Multi-variable agents decomposition for
DCOPs. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for dis-
tributed COPs. Journal of Artificial Intelligence Research, 34, 61–88.

Globus, A., Crawford, J., Lohn, J., & Pryor, A. (2004). A comparison of techniques for
scheduling Earth-observing satellites. In Proceedings of the Conference on Innovative
Applications of Artificial Intelligence.

Grinshpoun, T., & Tassa, T. (2016). P-SyncBB: A privacy preserving branch and bound
DCOP algorithm. Journal of Artificial Intelligence Research, 57, 621–660.

204

Decentralized, Decomposition-Based Observation Scheduling

Grinshpoun, T., Tassa, T., Levit, V., & Zivan, R. (2019). Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artificial Intelligence, 266, 27–50.

He, L., Liu, X., Laporte, G., Chen, Y., & Chen, Y. (2018). An improved adaptive large
neighborhood search algorithm for multiple agile satellites scheduling. Computers &
Operations Research, 100, 12–25.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In
Proceedings of the International Conference on Principles and Practice of Constraint
Programming, pp. 222–236.

Hoang, K. D., Fioretto, F., Hou, P., Yeoh, W., Yokoo, M., & Zivan, R. (2022). Proactive dy-
namic distributed constraint optimization problems. Journal of Artificial Intelligence
Research, 74, 179–225.

Hoang, K. D., Fioretto, F., Yeoh, W., Pontelli, E., & Zivan, R. (2018). A large neighbor-
ing search schema for multi-agent optimization. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming, pp. 688–706.

Hoang, K. D., Yeoh, W., Yokoo, M., & Rabinovich, Z. (2020). New algorithms for continuous
distributed constraint optimization problems. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems, pp. 502–510.

Joslin, D. E., & Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial
Intelligence Research, 10, 353–373.

Kangaslahti, A., Mason, J., Swope, J., Holzmann, T., Davies, A. G., Chien, S., Harrison,
T., & Walter, J. J. (2024). Sensorweb systems for global high-resolution monitoring
of environmental phenomena. Journal of Aerospace Information Systems, 21 (8), 616–
627.

Khan, M., Tran-Thanh, L., Ramchurn, S., & Jennings, N. (2018a). Speeding up GDL-based
message passing algorithms for large-scale DCOPs. Computer Journal, 61, 1639–1666.

Khan, M., Tran-Thanh, L., Yeoh, W., & Jennings, N. (2018b). A near-optimal node-to-
agent mapping heuristic for GDL-based DCOP algorithms in multi-agent systems. In
Proceedings of the International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 1604–1612.

Liao, X., & Hoang, K. D. (2024). A population-based search approach to solve continuous
distributed constraint optimization problems. Applied Sciences, 14 (3), 1290.

Lin, X., Chen, Y., Xue, J., Zhang, B., He, L., & Chen, Y. (2024). Large-volume leo satel-
lite imaging data networked transmission scheduling problem: Model and algorithm.
Expert Systems with Applications, 249, 123649.

Lo, M. W. (1999). Satellite-constellation design. Computing in Science & Engineering,
1 (1), 58–67.

Macarthur, K., Stranders, R., Ramchurn, S., & Jennings, N. (2011). A distributed anytime
algorithm for dynamic task allocation in multi-agent systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 25, pp. 701–706.

205

Zilberstein, Rao, Salis & Chien

Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for DCOP:
A graphical-game-based approach. In Proceedings of the International Conference on
Parallel and Distributed Computing Systems, pp. 432–439.

Mahmud, S., Choudhury, M., Khan, M. M., Tran-Thanh, L., & Jennings, N. R. (2019).
AED: An anytime evolutionary DCOP algorithm. arXiv:1909.06254.

Mailler, R., & Lesser, V. (2004). Solving distributed constraint optimization problems using
cooperative mediation. In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems, pp. 438–445.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence,
161 (1-2), 149–180.

Nag, S., Li, A. S., & Merrick, J. H. (2018). Scheduling algorithms for rapid imaging using
agile cubesat constellations. Advances in Space Research, 61 (3), 891–913.

Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for dis-
tributed constraint optimization problems. Artificial Intelligence, 193, 186–216.

NewSpace (2023). Newspace constellations. https://www.newspace.im. Accessed: 2024-08-
12.

Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: A linear-
space sampling-based DCOP algorithm. Journal of Artificial Intelligence Research,
64, 705–748.

Nguyen, T. T., & Yao, X. (2012). Continuous dynamic constrained optimization—the
challenges. IEEE Transactions on Evolutionary Computation, 16 (6), 769–786.

Parjan, S., & Chien, S. A. (2023). Decentralized observation allocation for a large-scale
constellation. Journal of Aerospace Information Systems, 1–15.

Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for dis-
tributed constraint optimization problems.. In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1446–1451.

Pertzovsky, A., Zivan, R., & Agmon, N. (2024). Collision avoiding max-sum for mobile
sensor teams. Journal of Artificial Intelligence Research, 79, 1281–1311.

Petcu, A., & Faltings, B. (2005). DPOP: A scalable method for multiagent constraint
optimization. In Proceedings of the International Joint Conference on Artificial In-
telligence, pp. 266–271.

Phillips, S., & Parra, F. (2021). A case study on auction-based task allocation algorithms
in multi-satellite systems. In Proceedings of AIAA Scitech.

Picard, G. (2021). Auction-based and distributed optimization approaches for scheduling
observations in satellite constellations with exclusive orbit portions. arXiv:2106.03548.

Planet (2023). Our constellations. https://www.planet.com/our-constellations. Accessed:
2024-08-12.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J. A., & Tambe, M.
(2013). Engineering the decentralized coordination of UAVs with limited communi-
cation range. Advances in Artificial Intelligence, 1, 199–208.

206

Decentralized, Decomposition-Based Observation Scheduling

Rachmut, B., Zivan, R., & Yeoh, W. (2022). Communication-aware local search for dis-
tributed constraint optimization. Journal of Artificial Intelligence Research, 75, 637–
675.

Salzman, O., & Stern, R. (2020). Research challenges and opportunities in multi-agent
path finding and multi-agent pickup and delivery problems. In Proceedings of the
International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1711–
1715.

Schaffer, S., Chien, S., Branch, A., & Hernandez, S. (2018). Automatic orbit selection for
a radio interferometric spacecraft constellation. Journal of Aerospace Information
Systems, 15 (11), 627–639.

Shah, V., Vittaldev, V., Stepan, L., & Foster, C. (2019). Scheduling the world’s largest
Earth-observing fleet of medium-resolution imaging satellites. In Proceedings of the
International Workshop on Planning and Scheduling for Space, pp. 156–161.

SpaceX (2023). How starlink works. https://www.starlink.com/technology. Accessed: 2024-
08-12.

Squillaci, S., Pralet, C., & Roussel, S. (2023). Scheduling complex observation requests for
a constellation of satellites: Large neighborhood search approaches. In Proceedings of
the International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pp. 443–459.

Squillaci, S., Roussel, S., & Pralet, C. (2021). Managing complex requests for a constella-
tion of Earth-observing satellites. In Proceedings of the International Workshop on
Planning and Scheduling for Space.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. (2009). Decentralised coordination
of mobile sensors using the max-sum algorithm. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 299––304.

Swope, J., Mirza, F., Dunkel, E., Candela, A., Chien, S., Holloway, A., Russell, D.,
Sauvageau, J., Sheldon, D., & Fernandez, M. (2023). Benchmarking space mission
applications on the snapdragon processor onboard the iss. Journal of Aerospace In-
formation Systems, 20 (12), 807–816.

Tassa, T., Grinshpoun, T., & Zivan, R. (2017). Privacy preserving implementation of the
max-sum algorithm and its variants. Journal of Artificial Intelligence Research, 59,
311–349.

Troesch, M., Mirza, F., Hughes, K., Rothstein-Dowden, A., Bocchino, R., Donner, A.,
Feather, M., Smith, B., Fesq, L., Barker, B., & Campuzano, B. (2020). MEXEC:
An onboard integrated planning and execution approach for spacecraft commanding.
In Proceedings of the International Conference on Automated Planning and Schedul-
ing, Workshop on Integrated Execution / Goal Reasoning.

Wang, X., Wu, G., Xing, L., & Pedrycz, W. (2020). Agile Earth observation satellite
scheduling over 20 years: Formulations, methods, and future directions. IEEE Systems
Journal, 15 (3), 3881–3892.

Yeoh, W., Varakantham, P., Sun, X., & Koenig, S. (2015). Incremental DCOP search algo-
rithms for solving dynamic DCOP problems. In Proceedings of the IEEE/WIC/ACM

207

Zilberstein, Rao, Salis & Chien

International Conference on Web Intelligence and Intelligent Agent Technology, Vol. 2,
pp. 257–264.

Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search
and distributed breakout: Properties, comparison and applications to constraint opti-
mization problems in sensor networks. Artificial Intelligence, 161 (1-2), 55–87.

Zilberstein, I., Candela, A., Chien, S., Rijlaarsdam, D., Hendrix, T., Buckley, L., & Dunne,
A. (2024a). Demonstrating onboard inference for Earth science applications with
spectral analysis algorithms and deep learning. In Proceedings of the International
Symposium on Artificial Intelligence, Robotics and Automation in Space.

Zilberstein, I., Rao, A., Salis, M., & Chien, S. (2024b). Decentralized, decomposition-based
observation scheduling for a large-scale satellite constellation. In Proceedings of the
International Conference on Automated Planning and Scheduling, Vol. 34, pp. 716–
724.

Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint op-
timization. Autonomous Agents and Multi-Agent Systems, 31, 1165–1207.

208

