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Abstract
This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits

perfect tightness for interpolators, even within over-parameterized model classes. This
bound, which relies on basic principles of Large Deviation Theory, defines a natural measure
of the smoothness of a model, characterized by simple real-valued functions. Building upon
this bound and the new concept of smoothness, we present an unified theoretical framework
revealing why certain interpolators show an exceptional generalization, while others falter.
We theoretically show how a wide spectrum of modern learning methodologies, encompassing
techniques such as ℓ2-norm, distance-from-initialization and input-gradient regularization,
in combination with data augmentation, invariant architectures, and over-parameterization,
collectively guide the optimizer toward smoother interpolators, which, according to our
theoretical framework, are the ones exhibiting superior generalization performance. This
study shows that distribution-dependent bounds serve as a powerful tool to understand the
complex dynamics behind the generalization capabilities of over-parameterized interpolators.

1. Introduction

In modern machine learning, model classes have such large capacity that optimizers virtually
always retrieve a model interpolating the training data; that is, with null training error
(Zhang et al., 2017). These models are called interpolators and it is well known that there are
many within a large model class (Livni et al., 2014) and that some of them have a remarkably
small generalization error (difference between “training error” and “expected or test error”)
while others do not (Feldman & Zhang, 2020).

The machine learning community has made a great effort during the last years to
understand why modern learning algorithms retrieve, most of the time, interpolators with a
small generalization error (Nagarajan & Kolter, 2019b; Bartlett et al., 2020). Most of these
attempts often focus on providing generalization bounds. These bounds provide an upper
limit on the expected error, tying it to variables related to the training dataset and the model
produced by a learning algorithm. Such bounds typically resemble the following form,

L(A(D)) ≤ L̂(A(D), D) + C(A(D), D, δ) , (1)
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where D represents the training dataset, independently and identically distributed (i.i.d.)
from a data-generating distribution ν; A denotes the learning algorithm, which generates a
hypothesis (a model) from a given data set (for example, via the gradient descent method);
L and L̂ indicate the expected and empirical errors of a hypothesis, respectively; C denotes
a complexity measure; and the inequality holds with high probability, at least, 1− δ over
draws of datasets from the distribution ν.

Examples of bounds falling inside this scheme include Vapnik–Chervonenkis (VC) bounds
(Vapnik & Chervonenkis, 2015; Bartlett et al., 2019), Rademacher bounds (Mohri et al.,
2018), (Norm and margin)-based bounds (Nagarajan & Kolter, 2017; Neyshabur et al.,
2015) and Sharpness-based measures (Nagarajan & Kolter, 2019a; Keskar et al., 2017a).
Even PAC-Bayes with a fixed prior (McAllester, 1999) can be included here if we consider
algorithms retrieving a distribution over the models.

However, many recent works are increasingly suggesting that these bounds are probably
vacuous in the over-parameterized regime and, in consequence, unable to explain generaliza-
tion in this setting. Zhang et al. (2017) was the first one to provide quite convincing empirical
evidence of this in the context of deep neural networks. Nagarajan and Kolter (2019b) later
provided a series of experiments and theoretical results in the same direction. These works
also show that even in the case where the complexity measure C depends directly on the
algorithm A rather than simply in its output A(D) (for example, assuming the algorithm
always retrieve models whose parameters’ norm is lower than a given constant) are also
vacuous. Recently, Wang et al. (2024) showed how any near-interpolator exhibits rapid
parameter norm growth, which implies that existing data-dependent parameter-norm-based
bounds are necessarily loose, concluding that “explaining the generalization capability of
near-interpolators will require new tools”. More generally, Gastpar et al. (2024) managed
to show that, under some conditions resembling over-parameterization, there is no gen-
eralization bound like Equation (1) tight for all data-generating distributions, and that
algorithm-dependent bounds are also provably vacuous. For all these reasons, the emerging
conclusion is that:

Bounds that solely depend on the training data are provably vacuous for
over-parameterized model classes and are unable to explain generalization.

The aforementioned works (Nagarajan & Kolter, 2019b; Nagarajan, 2021; Gastpar et al.,
2024) directly or indirectly advocate for the need of exploring alternative bounds that not
solely depend on the training data but also use information of the data-generating distribution.
These bounds are usually referred to as distribution-dependent bounds ; where the complexity
term C explicitly depends on the data-generating distribution ν. Distribution-dependent
bounds have been used before in different contexts (Zhang, 2006; Catoni, 2007), however, to
the best of our knowledge, none of these bounds is known to be tight or, at least, non-vacuous
for over-parameterized interpolators. Even more importantly, these kind of bounds have not
been used before to analyze the generalization of over-parametrized interpolators.
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1.1 Our Contribution

In this study, we investigate the use of distribution-dependent bounds within a finite
hypothesis space. Our aim is to understand how modern learning techniques manage
to produce models that both interpolate the data and have a small generalization error.
More precisely, Theorem 4.1 introduces a distribution-dependent PAC-Chernoff bound that
is perfectly tight for any algorithm retrieving models interpolating the training data, even
when the model class is over-parameterized. This bound has the following standard form

L(A(D)) ≤ L̂(A(D), D) + C(A(D), n, ν, δ) ,

where, now, the complexity term C also depends on the data-generating distribution ν.
Proposition 4.4 shows that with high-probability 1− δ, that

C(A(D), n, ν, δ) ≤ L(A(D)) ≤ L̂(A(D), D) + C(A(D), n, ν, δ) ,

which ensures that the proposed bound is perfectly tight for interpolators, that is to say, to
models whose empirical loss is null or small enough to be considered negligible or within an
acceptable error margin, denoted as L̂(A(D), D) ≤ ϵ.

As we show in this work, these bounds are directly connected to Large Deviation Theory
(LDT) (Ellis, 2012) because their complexity measure C(A(D), n, ν, δ) directly depends on
the so-called rate function (also known as the Cramér-Chernoff function), which is the central
element of LDT. We employ the rate function to present a new characterization of the
smoothness of a model using distribution-dependent measures. According to Theorem 4.6,
this approach enables a precise characterization of which interpolators better generalize,
addressing an outstanding open question in machine learning.

Despite being based on oracle quantities, we show that the theoretical framework built
around this complexity measure based on the rate function allows to create an unified
explanation of a wide range of learning techniques used in modern machine learning. Namely,
ℓ2-norm, distance from initialization and input-gradient regularization (Section 6), invariant
architectures, data augmentation (Section 7) and over-parameterization (Section 8). Under
this framework, we show why each of these learning techniques produce interpolators that
generalize well and why and when they complement each other (for example, why ℓ2-norm
regularization is also effective in combination with the use of invariant architectures).

We do not claim that the proposed theoretical analyses of each of these learning tech-
niques are better than existing ones at individual level. For example, we do not claim that
our explanation about why ℓ2-norm promotes generalization is better than existing ones, for
example, in the context of linear regression (Bartlett et al., 2020). However, we do claim that
using the rate function and PAC-Chernoff bounds, which are distribution-dependent quanti-
ties, it is possible to jointly explain, up to some degree, the generalization of interpolators,
the role of over-parameterization and why many widely used modern learning techniques
find interpolators that generalize. To the best of our knowledge, this is the first theoretical
framework capable of achieving insights that covers such a wide range of learning techniques.
At the same time, this work shows that distribution-dependent bounds are a promising
research direction for understanding the generalization of modern machine learning methods.
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2. Preliminaries

First of all, let us introduce the notation and the assumptions of this work. Let D denote a
given training data set with size n > 0, which we assume has been i.i.d. generated from an
unknown distribution, denoted by ν(y,x). We assume we have a model class parameterized
by a parameter vector θ ∈ Θ. We denote for any model θ ∈ Θ, its loss as ℓ(y,x,θ), its
expected loss as L(θ) = Eν [ℓ(y,x,θ)], and its empirical loss as L̂(θ, D) = 1

n

∑
i ℓ(yi,xi,θ).

Finally, the subset of models having a null variance (constant predictions) is defined as
Θ0 := {θ ∈ Θ : Vν(ℓ(y,x,θ)) = 0}.

We also consider that our model class lives inside a finite-precision computing machine. In
that sense, we assume our model class is represented by p parameters. Then, we will have kp

different models, under a numeric precision of log2(k) bits (for example, the value of k would
be k = 232 for single floating point precision and k = 264 for double floating point precision).
This model class defines a finite grid (using a discretization approach) contained in Rp, but
it does not imposed any restriction in the definition of the loss, which can be defined in a
continuous space. In Section 10, we discuss how the results presented here could be potentially
extended to infinite model classes by using recently introduced PAC-Bayes-Chernoff bounds
(Casado et al., 2024). Let us now introduce the specific assumptions of this work:

Assumption 1. The loss is lower-bounded; more precisely, the essential infimum of the loss
is finite and positive. That is, mθ := ess inf(x,y)∈ supp(ν) ℓ(y,x,θ) ≥ 0 ∀θ ∈ Θ. And the
expected loss is always finite, ∀θ ∈ Θ L(θ) < ∞.

This assumption assures that the loss function is lower-bounded and the generalization
error is finite (not necessarily upper-bounded). The first part of the assumption is naturally
satisfied in many standard problems; for example, in multiclass classification problems with
softmax activation and the cross-entropy loss and regression problems with mean squared
error, as it is clear that mθ = 0. The second part of the assumption (L(θ) < ∞) is mainly
introduced for the sake of simplicity in the mathematical exposition. In fact, this could be
relaxed in many of the theoretical results of this work, under some considerations. However,
under the scope of this work, that is studying the generalization error of interpolators,
assuming a finite expected error, and thus, a finite generalization error, is a reasonable
simplification for the exposition of the theoretical results.

Some extra considerations regarding this assumption raise in the case of a Gaussian
likelihood and log-loss, which can be considered another usual setting in machine learning.
In this setup, the density has to be lower than one for any data sample and the variance of
the Gaussian distribution can not be null in order to satisfy Assumption 1. However, this
is not restrictive; lower than one Gaussian densities is usual in high dimensional Gaussians
and can be ultimately imposed with a restriction on the variances. On the other hand,
non-zero variances are usually desirable to ensure stability of machine learning models. In
fact, variances are typically restricted to be positive or computed as the exponential of a
logarithm-scaled variable, ensuring their positiveness.

As an example of a case not considered under Assumption 1, the loss function cannot be
Gaussian-distributed, as mθ = −∞ in this case. In this regard an exponentially-distributed
loss could be used verifying Assumption 1.

506



PAC-Chernoff Bounds

0
0.0

0.5

1.0

1.5

2.0

L(θ1)−mθ1
L(θ3)−mθ3

Iθ1
(a)

Iθ2
(a)

Iθ3
(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

L(θ1)−mθ1

L(θ3)−mθ3

I−1
θ1

(s)

I−1
θ2

(s)

I−1
θ3

(s)

Figure 1: Illustration on different rate function (left) and inverse rate function (right) with
the same or different domains of definition: three different models θ1,θ2,θ3 ∈ Θ are shown
where θ1 and θ2 share the same definition interval for their rate functions.

3. The Rate Function

We start introducing the key function of this work, the so-called rate function, denoted by
Iθ(a). The rate function places a central role in Large Deviation Theory (LDT) (Ellis, 2012),
a branch of probability theory tightly connected to statistical mechanics, that deals with
understanding the behavior of rare events or large fluctuations in random systems. The rate
function is normally used to understand the underlying structure of these events and how
their probabilities change as they move away from the typical or average behavior.

Mathematically, the rate function is defined as the Legendre transform of the cummulant-
generating function, denoted by Jθ(λ), which is the natural logarithm of the moment-
generating function of a random variable, in this case L(θ)− ℓ(y,x,θ) with y,x ∼ ν(y,x).

Definition 1 (Rate Function). For any model θ ∈ Θ, its rate function is a real-valued
function Iθ : [0, L(θ)−mθ) → R+

0 , defined as

Iθ(a) = sup
λ>0

λa− Jθ(λ) ∀a ∈ [0, L(θ)−mθ) ,

where the cummulant-generating function is a real-valued function Jθ : R+
0 → R+

0 , defined as

Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
∀λ ≥ 0 .

The inverse of the rate function, denoted I−1
θ (s), will also place a relevant role in this work.

Definition 2 (Inverse Rate Function). For any model θ ∈ Θ, the inverse rate function is a
real-valued function I−1

θ : R+
0 → [0, L(θ)−mθ], defined as

I−1
θ (s) = inf

λ>0

Jθ(λ) + s

λ
∀s ≥ 0 .

Note that, when Pν(ℓ(y,x,θ) = mθ) ̸= 0, for ∀s ≥ − lnPν(ℓ(y,x,θ) = mθ), I−1
θ (s) is

constantly equal to L(θ)−mθ and, in consequence, I−1
θ (s) is a generalized inverse of Iθ(a)

(Rockafellar, 1970). For the sake of simplicity, we note that we abuse notation and assume
throughout the rest of work that for a > L(θ)−mθ, Iθ(a) = ∞. We also assume that binary
operators apply to this value following common sense. According to the following proposition,
both the rate function and its inverse are well defined for models satisfying Assumption 1.
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Proposition 3.1 (Proof). Under Assumption 1, ∀θ ∈ Θ, Iθ(·) and I−1
θ (·), are well defined.

That is, ∀a ∈ [0, L(θ)−mθ), Iθ(a) < ∞ and ∀s ∈ R+
0 , I−1

θ (s) < ∞.

Finally, the following result states some properties of the rate and inverse rate function,
shedding some light on their monotony, curvature and shape. In combination with Figure 1,
this result should provide some intuition on how this two functions behave in general.

Proposition 3.2 (Rockafellar (1970)). For any θ ∈ Θ, the rate function Iθ(·) and the
inverse rate function I−1

θ (·) satisfy the following properties,

(i) Iθ(·) is convex and I−1
θ (·) is concave; both monotonically increasing.

(ii) lim
a→0

∂
∂aIθ(a) = 0 and lim

s→0
∂
∂sI−1

θ (s) = +∞.

(iii) lim
a→(L(θ)−mθ)−

Iθ(a) = − lnP(ℓ(y,x,θ) = mθ) and lim
s→− lnP(ℓ(y,x,θ)=mθ)

I−1
θ (s) = L(θ)−mθ.

(iv) Iθ(·) and I−1
θ (·) are invariant to reparameterizations.

Note that the rate function of a Gaussian random variable, like many other standard
random variables, does not have a vertical asymptote. However, we should then consider that
if the loss follows a Gaussian distribution, it will not satisfy the first condition in Assumption
1, as the essential infimum is not finite.

The relevance of the rate function is consequence of the following results; firstly, the
classic Chernoff bound, defines how likely is to observe, over different i.i.d. data sets, an
empirical loss L̂(D,θ) that deviates from the expected loss L(θ) by a positive quantity a > 0.

Theorem 3.3 (Chernoff (1952)). For any fixed θ ∈ Θ and a > 0, it satisfies

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−nIθ(a) .

The above bound is relevant in this work because of two main factors that characterize
its behavior w.r.t. the data set size n and the generalization error gap a: on one hand,
Chernoff’s bound is known to be quite loose in the mean of the variable (when a ≈ 0) but
tight on the tail (when a ≈ L(θ) − mθ). As a result, the bound is specially useful when
talking about interpolators, where the value of L(θ) − L̂(D,θ) is close to its maximum
possible value (a = L(θ)−mθ), as stated in the following result.

Proposition 3.4 (Proof). For any fixed θ ∈ Θ and n > 0, it satisfies

lim
a→L(θ)−mθ

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= lim

a→L(θ)−mθ

e−nIθ(a) .

On the other hand, Cramér’s Theorem (Cramér, 1938) states that Chernoff’s bound is
exponentially tight for large n. Formally, this statement is written as follows,

Theorem 3.5 (Cramér (1938); Ellis (2012)). For any fixed θ ∈ Θ and any a > 0, it satisfies

lim
n→∞

− 1

n
lnPD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= Iθ(a) .
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Inception Crop L2 Train Acc. Test Acc. Test NLL ℓ2-norm

Standard no no 99.99% 84.36% 0.65 304
Crop yes no 99.94% 86.89% 0.58 309
L2 no yes 100.0% 86.60% 0.49 200
L2-Crop yes yes 99.98% 88.45% 0.42 130

Random no no 100.0% 10.13% 5.52 311

Initial - - 10.00% 10.00% 2.30 593
0.0 0.1 0.2 0.3 0.4 0.5

0.000
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Initial Model

Figure 2: Metrics of Inception models on Cifar10 using ℓ2 regularization and/or random
cropping (Crop), and randomly sampled class labels (Random). The corresponding rate
functions are shown on the right.

In LDT, the above asymptotic result is intuitively interpreted using the following equality,

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= e−nIθ(a)+o(n,a) , (2)

which shows that the exact expression of PD∼νn(L(θ) − L̂(D,θ) ≥ a) is defined by the
rate function, up to a sub-exponential term, that is negligible when n is large, because
limn→∞

o(n,a)
n = 0 and, in consequence, it does not have any meaningful effect. Then,

according to LDT, when n is large, the rate function would be the key quantity describing
the generalization error of a model, that is, statistical behavior of the difference between the
expected L(θ) and the empirical loss L̂(D,θ).

The Chernoff bound, governed by the rate function Iθ(·), is tighter for larger
datasets (when n → ∞) and for models interpolating the data (a ≈ L(θ)−mθ),
which are the settings of modern machine learning.

The Chernoff bound states that the generalization error a model is governed by its rate
function. The rate function is an oracle and distribution-dependent quantity because it
depends on the data-generating distribution ν. In machine learning, this distribution ν
is always unknown, which may be considered as a problem. However, as discussed in the
introduction, we will show how the use of a distribution-dependent quantity allows to explain,
for example, why data-augmentation works, why we need over-parameterized model families,
and why we should consider invariant architectures, like convolutional neural networks.
Furthermore, in this work, we also show how the rate function can be easily estimated from
an independent data set, if it is used as a proxy for the data-generating distribution. This
is a common practice in machine learning by making use of a separated validation data set
to get estimates of L(θ) without incurring in data snooping. In Appendix A, we show that
the rate function Iθ(·) can be easily estimated by running the model once on this validation
data set and using log-sum-exp operations to estimate Jθ(λ); and using a simple grid search
to optimize the value of λ in Definition 1. The fact that the cumulant and rate function can
be easily estimated and plotted (as in Figure 2) is, in our opinion, a relevant finding of this
work. This will allow us to empirically illustrate and validate the predictions made by our
theoretical framework.
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Figure 3: Illustrations on the distribution of L̂(D,θ) for data sets of size n = 50, its
concentration around the generalization error L(θ) and Chernoff’s inequality for increasing
values of a ∈ [0, L(θ)). All these quantities have been approximated using the test set of
Cifar10 data set for 3 of the Inception models used in Figure 2.

Let us briefly illustrate why the rate function is useful to understand the generalization
of interpolators. Figure 2 displays an estimation of the rate function Iθ(·) for some neural
network models used in Zhang et al. (2017). This work demonstrated that, within the
same model class, interpolators that merely memorize the training data (as represented by
“Random” in the figure, which has been learned using a random-labeled training data set) can
co-exist with others that generalize exceptionally well, as the ones learned using weight-norm
regularization (labeled as “L2”) and/or data-augmentation techniques (random-cropping
labeled as “Crop”). According to Chernoff’s bound, models with a larger rate function are
less likely to have significant disparities between their expected and empirical losses; in other
words, the empirical loss L̂(D,θ) is more concentrated around its mean L(θ). Figure 3
illustrates this fact for three of these models by plotting histograms that showcase the
distribution of L̂(D,θ) across various data sets of size n = 50 (retrieved from the test set).
From the histograms, it is clear that the concentration of L̂(D,θ) varies among the models;
the initial model, defined by Kaiming or He initialization (Goodfellow et al., 2016), has a
prominent rate function. For this model, L̂(D,θ) is tightly concentrated around its mean,
L(θ) = ln 10, observable through the minute scale of its x-axis. Comparatively, the Standard
model, trained using SGD and characterized by a smaller rate function, has a more dispersed
distribution around its mean L(θ) = 0.65. This dispersion is notably wider than that of the
L2-Crop model. The latter, also trained with SGD but incorporating both ℓ2 regularization
and data-augmentation, has a larger rate function than the Standard model.

The main point of Figures 2 and 3 is to illustrate how L̂(D,θ) is a random variable that
could be either highly or poorly concentrated around its mean L(θ), something which is
captured by the rate function of the model. When a model interpolates the training data,
we must think we are observing a realization of this random variable L̂(D,θ) for a particular
data set D. Consequently, when comparing two models that interpolate the training data,
we should choose the one that is more concentrated around its mean (higher rate function);
because it will likely have a smaller expected loss. For example, Figure 3 (left) and (center)
describe the distribution of L̂(D,θ) for two models, Standard and L2-Crop, respectively. As
both models interpolate the training data, we should prefer L2-Crop because L̂(D,θ) is more
concentrated around its expected value for that model.
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4. The Rate Function Characterizes the Generalization of Interpolators

In this section, we showcase the main results of this work, Theorems 4.1 and 4.6, which
show how the (inverse) rate function can characterize the generalization performance of
interpolators. Furthermore, we present a new notion of smoothness of a model which perfectly
aligns with the following statement: a (sufficiently) smoother interpolator generalizes better.

4.1 Tight Distribution-Dependent Bounds for Over-parameterized Interpolators

As discussed in the introduction, current high-probability generalization bounds in the form
of Equation (1) have been unable so far to explain the generalization of over-parameterized
interpolators. Different works (Nagarajan & Kolter, 2019b; Nagarajan, 2021; Gastpar et al.,
2024; Wang et al., 2024) have also shown that the problem lies in the impossibility of having
tight generalization bounds solely depending on the training data for over-parameterized
model classes. Gastpar et al. (2024) even concludes that “a bound without explicit distributional
assumptions is likely to be not tight”. Thus, an open question raises:

Open Question 1

Are there tight distribution-dependent bounds for over-parameterized models?

The answer to this question does not seem to be straightforward given that Nagarajan
& Kolter (2019b) also showed examples of distribution-dependent bounds (Nagarajan &
Kolter (2019b)’s Definition 3.3) which are not tight. However, the following result shows an
uniform-convergence bound which applies simultaneously over the model class,

Theorem 4.1 (Proof). (PAC-Chernoff Bound). With h.p. 1− δ over D ∼ νn, for all
θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
.

During the rest of this work, many results will resemble the same structure used in
Theorem 4.1: “with h.p. 1 − δ over D ∼ νn, for all θ ∈ Θ, simultaneously. . . ”. This
kind of enunciating is common in PAC theory but might be confusing to other readers.
We want to highlight that the above theorem states that for any δ ∈ (0, 1), the event
Event(θ, D, δ) := L(θ) ≤ L̂(D,θ) + I−1

θ

(
1
n ln kp

δ

)
will hold for every θ ∈ Θ unless you

have drawn a “bad” data set D ∼ νn; that is, the event holds with probability at least 1− δ.
Mathematically:

∀δ ∈ (0, 1), PD∼νn

( ⋂
θ∈Θ

Event(θ, D, δ)
)
≥ 1− δ .

Many results will resemble this structure through the text where the “event” might be an
inequality (A ≤ B) as in Theorem 4.1, or an implication (A =⇒ B) as in Proposition 4.4.

Going back to Theorem 4.1, in the above bound, I−1
θ

(
1
n ln kp

δ

)
defines a complexity

measure for the model θ in the context of a model class defined by p parameters, the training
data set of n samples and, according to the own definition of I−1

θ (·) (see Definition 2), it
also depends on the data-generating distribution ν. From Proposition 3.2, this complexity
measure I−1

θ

(
1
n ln kp

δ

)
monotonically grows with the size of the model class and monotonically

decreases with the level of confidence δ and the size of the training data.
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It is common to find models, within the same model class, that define the same loss
function, ℓ(·, ·,θ1) = ℓ(·, ·,θ2). For instance, in a Multi-Layer Perceptron (MLP), weights can
be permuted in specific ways without altering model predictions, and models with zeros in the
last layer produce the same predictions regardless of the weights in other layers. Consequently,
when calculating the size of the model class, we can effectively “exclude” models that define
the same empirical loss across different datasets. Let Θ̄ ⊆ Θ be a subset of the model
class where, if θ,θ′ ∈ Θ̄, there exists a dataset D ∼ νn such that L̂(D,θ) ̸= L̂(D,θ′). The
following result provides a refined bound, based on the size of Θ̄.

Corollary 4.2 (Proof). With h.p. 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln |Θ̄|

δ

)
.

For the remainder of this work, we keep the term kp in all of our results. However, in
each case, we can replace kp with the typically smaller term |Θ̄| by applying the result above.
The following result shows that, when n goes to infinity, the proposed complexity measure
converges with rate 1/

√
n to the (scaled) standard deviation of the loss function.

Theorem 4.3 (Proof). For any δ ∈ (0, 1) and any θ ∈ Θ, it verifies that

lim
n→∞

√
n I−1

θ

(
1
n ln kp

δ

)
=

√
2Vν(ℓ(y,x,θ)) ln

kp

δ .

The relevant property of this novel complexity measure is that it is a perfectly tight proxy
of the expected loss L(θ) for models that interpolate the training data, L̂(D,θ) ≤ ϵ, even if
the model class is over-parameterized,

Proposition 4.4 (Proof). With h.p. 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then 0 ≤ L(θ)− I−1
θ

(
1
n ln kp

δ

)
≤ ϵ . (3)

Note that in the above result , the event that holds with probability 1−δ is the implication
in Equation 3. Using there results, we can derive an algorithm-distribution-dependent bound
that is perfectly tight for any data distribution and any learning algorithm; even for over-
parameterized model classes. However, for this bound to be tight it is imperative that the
model interpolates the training data. Formally, for any fixed ϵ > 0, with 2X×Y denoting
the power set of all possible data sets of any size; let Aϵ : 2

X×Y → Θ be an algorithm that
takes any data set and returns a model θ ∈ Θ such that its training loss is lower than ϵ.
That is, for any training data set D ∈ 2X×Y , Aϵ verifies that L̂(Aϵ(D), D) ≤ ϵ. This kind of
algorithms are quite common in machine learning where the model space Θ is big enough
that there exists models capable of memorizing random labels (Zhang et al., 2017, Theorem
1). Then, for any Aϵ algorithm, with h.p. 1− δ over D ∼ νn,

L(Aϵ(D)) ≤ L̂(Aϵ(D), D) + I−1
Aϵ(D)

(
1
n ln kp

δ

)
≤ L(Aϵ(D)) + ϵ .

This provides an answer to the Open Question 1 using this newly presented bound:

PAC-Chernoff bounds are perfectly tight for (over-parameterized) interpolators.
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The question now is whether this distribution-dependent bound is useful to understand
the generalization of algorithms retrieving (over-parameterized) interpolators. A first insight
from the above bound is that the (inverse) rate function of the retrieved interpolator defines
its generalization error. To the best of our knowledge, this is the first (distribution-dependent)
complexity measure characterizing the generalization error an interpolator even in the context
of a over-parameterized model class. In the next section, we explore further how the rate
function can be used to precisely characterize which are the interpolates that better generalize.

4.2 Smoother Interpolators Generalize Better

As mentioned in the introduction, an open question in machine learning is the following,

Open Question 2

Given two models θ ∈ Θ and θ′ ∈ Θ′, both successfully interpolating the
training data, which of them generalizes better?

In this section, we introduce a formal result that provides the following answer to the
above question: the smoother interpolator is the one that achieves better generalization, given
that it is sufficiently smoother. The condition of being smoother is defined in terms of the
rate function of the models. We contend that a model θ is smoother than a model θ′ if,
for any a > 0, observing a deviation larger than a between the expected (test) loss and the
empirical (train) loss is consistently smaller for θ than for θ′. This is formalized as follows,

Definition 3. Given a data-generating distribution ν and a loss function ℓ, a model θ ∈ Θ
is β-smoother than a model θ′ ∈ Θ′ if

∀a ∈ (0, β] Iθ(a) ≥ Iθ′(a) .

Notice that if θ is β-smoother than θ′, it is β′-smoother for any β′ ∈ (0, β]. Furthermore,
if θ is β-smoother than θ′, it verifies that θ′ cannot be β′-smoother than θ for any β′ > 0.
This properties allow to reasonably compare degrees of smoothness between models in the
same or different model spaces. It is important to notice that the concept of smoothness is
defined in the context a given data-generating distribution and given loss function.

According to the above definition, the higher the rate function, the smoother the model
when comparing it to others. Furthermore, according to Chernoff’s bound (see Theorem 3.3
and Equation (2)), smoother models will have an empirical loss L̂(D,θ) more concentrated
around its expected value L(θ). In consequence, it is more unlikely to observe higher
differences between L̂(D,θ) and L(θ) in smoother models. In fact, the following result
states that there is a correspondence between the variance of the model’s loss and the newly
introduced notion of smoothness.

Proposition 4.5 (Proof). For any θ ∈ Θ and θ′ ∈ Θ′,

Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ
′)) ⇐⇒ ∃β > 0 s.t. θ is β-smoother than θ′ .

This result shows the relation between the smoothness and the variance the loss function
between a pair of models θ and θ′. As a result, we can intuitively understand this notion of
smoothness as a generalization of the variance of the loss of a model.
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Figure 4: Visual illustration on Theorem 4.6. The rate and inverse rate function of two
models θ,θ′ ∈ Θ is shown with θ being β-smoother than θ′ with β > I−1

θ

(
1
n ln kp

δ

)
. This

highlights the critical region that must fall below β for the theorem to hold.

Using this definition of smoothness and the results presented in Section 4.1, we can easily
derive a result providing an answer to which interpolator generalizes better,

Theorem 4.6 (Proof). For any ϵ ≥ 0, with h.p. 1− δ over D ∼ νn, for all θ ∈ Θ ⊂ Rp and
θ′ ∈ Θ′, simultaneously,

if L̂(D,θ) ≤ ϵ and θ is I−1
θ

(
1
n ln kp

δ

)
-smoother than θ′, then, L(θ) ≤ L(θ′) + ϵ .

Note that, due to Proposition 4.5, the smoothness condition given by “I−1
θ

(
1
n ln kp

δ

)
-

smoother” in Theorem 4.6 can be understood as an inequality between the variances of the
loss function under the hypothesis that n is sufficiently large. In fact, if Vν(ℓ(y,x,θ)) ≤
Vν(ℓ(y,x,θ

′)), there exists β > 0 such that θ is β-smoother than θ′. Then, if n is large
enough to verify that I−1

θ

(
1
n ln kp

δ

)
≤ β, we got that with h.p., if L̂(D,θ) ≤ ϵ, then,

L(θ) ≤ L(θ′) + ϵ. In short, Theorem 4.6 is a generalization of the following result: if n is
large enough, with h.p.,

if L̂(D,θ) ≤ ϵ and Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ
′)), then, L(θ) ≤ L(θ′) + ϵ .

Theorem 4.6 states that an interpolator generalizes better than another (with h.p.) if
it is sufficiently smoother in terms of its rate function. Figure 4 illustrates the premise of
this theorem. We should note that the above result holds even for the log-loss, which is
the default loss used for training, and for over-parameterized model classes. This result is
specially useful when ϵ is very small or null, as it states, with h.p., that smooth interpolators
generalize better, up to an ϵ, than other less smooth models; independently on whether
these interpolate the data or not. Furthermore, the above result verifies that the higher the
probability 1− δ or the number of parameters p, the stronger the smoothness condition needs
to be; and the opposite for larger n. In that sense, we could have interpolators which are
β-smoother than others but have worse generalization performance, because they are not
smooth enough in order to apply Theorem 4.6.

Interpolators with a larger rate function Iθ(·) or, equivalently, smoother
interpolators, are the ones that better generalize.
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Figure 5: Visualization on the presented notion of smoothness. Two models, a linear model
θ1 and a complex model θ2, are evaluated on two data-generating distributions ν1 (first row)
and ν2 (second row). The first column shows the data and models, the second shows rate
functions, and the third displays L̂(D,θ) distributions.

Figure 5 shows a synthetical example to highlight how the notion of smoothness depends
on the specific data-generating distribution, and why one model is smoother than another
only relative to such distribution. The example considers two different data generating
distributions ν1 (first row, which adds random noise to a linear function) and ν2 (second
row, adds random noise to a complex sinusoidal function). The considered loss is the mean
squared error. The introduced notion of smoothness using the rate function shows how θ1 (a
linear model) is smoother than θ2 (a more complex model) under ν1. In fact, under ν1, the
distribution of L̂(D,θ1) is more concentrated around a smaller mean value. However, the
second row of this example also shows how the more complex model θ2 can be smoother
than a linear model θ1 under a different data-generating distribution ν2 for exactly the same
reasons. With this example we want to highlight that a good notion of smoothness (as the
one presented here) should consider the data in which the models are being evaluated, rather
than just the complexity of the function they induced.

The results from this section clearly indicate that the generalization error of a interpolator
is defined by its level of smoothness and its rate function. The question is whether this
theoretical characterizations, which relies on distribution-dependent quantities, is useful for
understanding the inner workings of current learning techniques and complex phenomenons
appearing in deep learning. In Section 5, we show how the PAC-Chernoff bound and our
smoothness criteria are powerful enough to analyze the so-called double-descent phenomenon
(Belkin et al., 2019). In Section 6, we examine the relationship between the smoothness of a
model and widely used regularization techniques such as the parameter norm of a model,
distance from initialization, input-gradient norm, and Lipschitz constant. Many of these
quantities have also been previously used as measures of smoothness or complexity of a
model (Neyshabur et al., 2017a). In Section 7, we show why invariant architectures and
data-augmentation induce smoother interpolators. Finally, in Section 8, we examine how
over-parametrization is a necessary condition for having smoother interpolators. In Section
10, we also elaborate on the need to stablish connections our definition of smoothness with
current existing definitions (Keskar et al., 2017b; Shalev-Shwartz & Ben-David, 2014).
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Size Train Acc. Test Acc. Test NLL Bound

4k 43.82% 42.74% 1.56 2.93
32k 70.84% 59.86% 1.17 2.01
85k 86.69% 62.73% 1.35 1.77
163k 97.65% 63.97% 1.82 1.94
266k 99.84% 65.19% 2.15 2.19
395k 100.0% 65.74% 2.28 2.30

548k 100.0% 67.27% 2.10 2.11
727k 100.0% 69.88% 1.84 1.86
931k 100.0% 69.11% 1.83 1.84
1161k 100.0% 69.82% 1.72 1.74 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Parameters ×106
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PAC-Chernoff Bound

Figure 6: Illustration of the double-descent phenomenon: Evolution of the train loss, test
loss and the proposed PAC-Chernoff Bound of nested convolutional neural networks with
increasing number of parameters. Increasing the number of parameters promotes models with
worse population loss until the critical region; further increasing the number of parameters
decreases the population error. The proposed bound is perfectly tight for interpolators. The
point where models reach the interpolation regime is marked with a black line. The training
and test loss of models are marked with points and their smoothed curve is shown. Only a
few of the total models are shown in the table.

5. Understanding Double-Descent with PAC-Chernoff Bounds

The existing literature consistently demonstrates that interpolators with a larger number of
parameters tend to perform better. A finding that defies traditional beliefs from classical
statistical learning theory. Traditionally, it was assumed that increasing the number of
parameters in a model would lead to higher overfitting and, consequently, poor generalization
performance. However, this perspective has been challenged by the phenomenon of the
double-descent curve (Belkin et al., 2019), which exemplifies a shift in dynamics as models
enter the interpolation regime. In this regime, an increase in parameters paradoxically leads
to improved performance. This counter-intuitive behavior suggests that once models begin
to interpolate, their generalization performance improves as they grow larger.

Figure 6 illustrates this phenomenon by showing the training and the test loss of a
sequence of convolutional networks with a growing number of parameters (implemented by
adding more channels to the layers of a simple convolutional model). More precisely, models
with a number of parameters ranging from 4k to 1161k1.

Figure 6 also displays the evolution of our PAC-Chernoff bound for the whole range of
models. As theoretically shown, this bound is perfectly tight for interpolators. In the classical
regime, the bound also presents the so-called double descent phenomena, even thought its
tightness is not guaranteed. This highlights how distribution-dependent bounds are powerful
enough to capture the complex dynamics emerging in the interpolation regime.

1. All models were found by running stochastic gradient descent on Cifar10’s training data, until training
loss reaches 0.01 or until it did not improve in two consecutive epochs of training.
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Figure 7: Rate functions obtained by interpolating CNNs with 4k-1161k parameters on
Cifar10. Models correspond to those in the table of Figure 6. Parameters are increased by
increasing the number of channels in the architecture, resulting in nested model classes. Two
images are shown where models are divided so that the rate function decrease on the left
figure and increase on right one.

Open Question 3

Why does the generalization performance of interpolators improve with an
increasing number of parameters?

The complexity term of our own PAC-Chernoff bound I−1
θ

(
1
n ln kp

δ

)
monotonically in-

creases with the size of the mode class, which, in principle, would contradict the double-descent
phenomena on the bound and the fact that generalization error is reduced as we increase
the number of models. The following result, viewed as an extension of Theorem 4.6, offers a
partial explanation for this puzzling phenomena. More precisely, it demonstrates that if the
interpolators become progressively smoother (higher rate function), their generalization error
will be reduced, despite being part of a model class characterized by a greater number of
parameters.

Theorem 5.1 (Proof). Let Θ ⊂ Θ′ be two nested model classes with p < p′ parameters
respectively. For any ϵ > 0, with h.p. 1 − δ over D ∼ νn, for any θ′ ∈ Θ′, θ ∈ Θ,
simultaneously

if L̂(D,θ′) ≤ ϵ , L̂(D,θ) ≤ ϵ and θ′ is I−1
θ′

(
1
n ln kp

′

δ

)
-smoother than θ

⇓
L(θ′) ≤L(θ) + ϵ .

Figure 7 (right) illustrates the rate functions of the interpolators from Figure 6, high-
lighting how larger interpolators become increasingly smoother, meaning their rate functions
are progressively higher (i.e., they are progressively smoother). This explains how it is
possible to obtain larger interpolators with smaller generalization error. In fact, by reversing
the implication of Theorem 5.1, we can infer that if a larger interpolator exhibits better
generalization performance, then, it cannot be less smooth than a smaller interpolator.
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Corollary 5.2 (Proof). Let Θ ⊂ Θ′ be two nested model classes with p < p′ parameters
respectively. For any ϵ > 0, with h.p. 1 − δ over D ∼ νn, for any θ′ ∈ Θ′, θ ∈ Θ,
simultaneously,

L̂(D,θ′) ≤ ϵ, L̂(D,θ) ≤ ϵ and L(θ′) + ϵ < L(θ)

⇓
θ is not I−1

θ

(
1
n lnkp

′

δ

)
-smoother than θ′ .

Consequently, Open Question 3 can be reformulated in terms of model smoothness rather
than generalization performance.

Open Question 4

Why does the smoothness of interpolators improve with an increasing number
of parameters?

Based on Theorem 5.1 and Corollary 5.2, addressing Open Question 4 is equivalent to
answering Open Question 3. In other words, if we could answer why the rate function of
the interpolators is increasingly higher as we increase the number of parameters in nested
model classes, Theorem 5.1 will effectively explain why the double descent phenomena, and
in particular, why the generalization performance of interpolators enhances as the number of
parameters grows. However, to the best of our knowledge, there is no direct answer to this
behavior without incurring in additional hypothesis on the matter.

Our rationale for explaining this phenomenon posits that, by increasing the number
of parameters, larger neural networks are better at capturing invariances in the data, a
notion that has been supported both theoretically (Bronstein et al., 2021) and empirically
(Goodfellow et al., 2009) by the machine learning community. Additionally, as will be shown
in Section 7, this capability of capturing invariances leads to smoother models with higher
rate functions. Combining these two factors, Theorem 5.1 can help to elucidate why the
generalization performance of interpolators improves with an increase in parameters. The
experimental setup presented in Figures 6 and 7 support this understanding.

Finally, it is also quite interesting to look at the models on the left part of the interpolation
threshold of Figure 6. Surprisingly, the sequence of rate functions, displayed in Figure 7
(left), get increasingly lower as the size of the mode class increases, just the opposite of what
happens in Figure 7 (right). In the classical regime, increasing the number of parameters leads
to less smooth models with higher generalization error. However, explaining this behavior in
the non-interpolation regime is out of the scope of this work, as the presented PAC-Chernoff
bound is not tight in that regime and no theoretical guarantees can be derived in such
framework. However, it is worth noticing that, even with the lack of tightness guarantees,
the proposed bound is close enough to showcase the double descent phenomena itself.

In the following section, we will connect the proposed oracle bound with many existing
regularization techniques, allowing to explain, in an unified framework, the effectiveness in
terms of generalization.
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6. Explicit Regularization

Structural risk minimization (Shawe-Taylor et al., 1998) is a learning principle based on
regularizers that penalize the complexity of a model when minimizing the training loss. Let
r(θ) denote a regularizing function, the learning objective is then given by,

min
θ∈Θ

L̂(D,θ) + r(θ) . (4)

High-probability bounds of the form given in Equation (1), L(θ) ≤ L̂(D,θ) + C(θ, D, δ),
have been traditionally used to justify the use of regularizers and to derive novel ones.
According to these bounds, an obvious choice for regularizes is the complexity term, r(θ) =
C(θ, D, δ). Then, the structural risk minimization problem given in Equation (4) would
correspond to minimize a high-probability upper bound over the expected loss L(θ). Many
regularizing methods have been studied from this perspective. One of the most commons
one is being the ℓ2-norm regularization and other variations based on spectral norms, which
recurrently show up within the complexity term of many generalization bounds (Bartlett
et al., 2017). However, as discussed in the introduction, these bounds are known to be loose
in the context of over-parameterized model classes interpolating the data. In consequence, the
rationale of using their associated complexity measures C(θ, D, δ) as regularizes is no longer
as strong as it used to be in learning setups where the model class is not over-parameterized.

Open Question 5

Is there a regularizer r(θ) that ensures near-optimal performance for over-
parameterized model classes interpolating the training data?

The following result provides an answer to Open Question 5. It shows that the complexity
measure of the PAC-Chernoff bound given in Theorem 4.1 can be used as a regularizer. That
is to say, using the inverse rate function I−1

θ

(
1
n ln kp

δ

)
, we get an optimal regularizer for

over-parameterized interpolators. More precisely, for any ϵ > 0, let θ⋆
ϵ and θ×

ϵ denote the
interpolator with the best generalization performance and the interpolator with the smallest
inverse rate function, respectively,

θ⋆
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L(θ) , θ×
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
.

This result shows that, with h.p., the expected loss of the interpolator with the smallest
inverse rate function θ×

ϵ is very close to the expected loss of the optimal interpolator, θ⋆
ϵ .

Theorem 6.1 (Proof). For any ϵ > 0, with h.p. 1− δ over D ∼ νn, |L(θ⋆
ϵ )− L(θ×

ϵ )| ≤ ϵ.

In simpler terms, favoring models with a small inverse rate function is the same as favoring
models with a larger rate function, which essentially means choosing smoother models. This
finding highlights that the smoothest interpolator not only fits the data but also performs
nearly optimally when it comes to generalization.

The inverse rate function I−1
θ

(
1
n ln kp

δ

)
is an optimal regularizer for over-

parameterized interpolators.
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6.1 Connecting the Inverse Rate with Existing Regularization Techniques

We have shown that the inverse rate function, a distribution-dependent and oracle element,
is an optimal regularizer for interpolators. However, in this section we will show how a wide
range of existing regularizers are tightly connected to the inverse rate and, in consequence,
to our definition of smoothness. We do not aim to fully explore these connections, and we do
not claim that the new bounds that we derive are better than existing ones. Our focus here
is to show how the (inverse) rate function of a model can be used to unify many existing
regularization techniques which were previously assumed to be unrelated.

6.1.1 Norm ℓ2 Regularization

This regularizer, also known as weight decay, is widely used by the ML community and it is
known to improve generalization even in over-parameterized model classes interpolating the
training data (Goodfellow et al., 2016). The following result defines a connection between
the inverse rate of a model and its norm, under the widely used assumption that the loss
function ℓ(y,x,θ) is Lipschitz with respect to the parameters of the model θ (Li & Orabona,
2019).

Proposition 6.2 (Proof). If the loss function ℓ(y,x,θ) is Lipschitz w.r.t. θ with constant
M > 0, then, for any θ0 ∈ Θ0 = {θ ∈ Θ | Vν(ℓ(y,x,θ)) = 0}, it verifies that

I−1
θ

(
1
n ln kp

δ

)
≤

√
2Ma ∥θ − θ0∥2 ,

where a = min
(
1, 1

n ln kp

δ

)
.

In many common ML models, the null vector is a model with null variance, that is,
0 ∈ Θ0, because the loss of this model is constant for any data sample. For example, in
supervised classification problems with K labels, a neural network with null weights has a
constant loss equal to lnK. In these cases, the above result shows that by promoting models
with small parameter norm we achieve models with small inverse rate. In consequence,
the ℓ2-norm is a proxy to minimize the inverse rate and works as a regularizer. Figure 2
illustrates for our running example how the use of ℓ2-norm regularization leads to models
with small parameter norm and larger rate function. This aligns with the existing evidence
in the literature about the use of ℓ2-norm for successfully regularizing interpolators.

However, in the context of over-parameterized models interpolating the training data, it
is well known that the ℓ2-norm of the parameters of the model does not correlate well with
the generalization error (Jiang et al., 2020). That is easy to explain if we consider that the
ℓ2-norm just defines an upper-bound over the inverse rate, which, as shown in Section 4.1 is
an optimal proxy for the generalization of interpolators. The gap of this upper-bound is the
ultimate responsible of the failure of ℓ2-norm as a proxy for the generalization error of an
interpolator. In fact, an open question in ML is:

Open Question 6

When does the norm of an interpolator correlate with its generalization error?

The following result provides a characterization of a learning setup where these two
elements are correlated.
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Corollary 6.3 (Proof). Considering the log-loss, if it belongs to the exponential family with
a constant base measure, that is, there exist s : X ×Y → Rp, a : Θ → R and k ∈ R such that

ℓ(y,x,θ) := − ln p(y|x,θ) = θT s(x,y)− a(θ) + k ∀(x,y) ∼ ν ;

Then, ∀ϵ > 0, exists n0 > 0 such that ∀n > n0:∣∣∣∣I−1
θ

(
1
n ln kp

δ

)
−
√
2 1
n ln kp

δ

√
θTCovν(s(y,x))θ

∣∣∣∣ ≤ ϵ ,

where Covν(·) is the covariance w.r.t. ν of the sufficient statistics of each (x,y) sample.

This result shows that under the exponential family and a large enough number of data
samples, the inverse rate is close to the scaled Riemannian norm of the model parameters
under the positive definite matrix Covν(s(y,x)) that defines the Riemannian metric. Note
that, in this case, the Riemannian norm will be an optimal regularizer as Theorem 6.1 applies
and the inverse rate is a perfectly tight proxy for the generalization error of interpolators
as shown in Section 4.1. The ℓ2-norm is obtained when the covariance matrix is a diagonal
matrix with constant entries, a condition that requires the statistical independence of the
components of the sufficient statistics s(y,x) with respect to the data-generating distribution.

In short, Proposition 6.2 shows how the ℓ2-norm of the parameters of the model upper
bounds its inverse rate and, then, it shows why biasing the optimizer towards models with
smaller ℓ2-norm tends to reduce the generalization error of the interpolators. However,
Corollary 6.3 exemplifies a general setting to understand the gap in the inequality of
Proposition 6.2 and how this gap can manifest if Covν(s(y,x)), a distribution-dependent
quantity, is very different from a diagonal matrix.

6.1.2 Distance From Initialization

The distance from initialization is known to be related to the generalization error of an
interpolator (Nagarajan & Kolter, 2017). In fact, it has been successfully used as a regularizer
in Hu et al. (2020). In these works, an implicit assumption was that the initial models are
produced through one of the well-established initialization schemes used in neural networks,
such as Xavier or He initialization (Goodfellow et al., 2016). These parameter initialization
schemes provide an initial set of weights which guarantee that the variance of the activations
across the different layers remain constant. In consequence, the randomly initialized model
makes almost constant predictions. If θ0 denotes the initial parameter, we should see that
Vν(ℓ(y,x,θ0)) is very small. Figure 3 (right) shows how this is the case for a randomly
intialized Inception model using He initialization.

Under the assumption that the initial model obtained by common initializers belongs to
Θ0, Proposition 6.2 also shows a link between distance from initilizaton and the inverse rate
function and, in consequence, with the generalization error of a model. The same reasoning
used with ℓ2-norm applies here: by promoting models with small distance from initialization
we promote models with small generalization error.

Furthermore, as happens with the ℓ2-norm, in the context of over-parameterized interpo-
lators, distance from intialization is not a reliable proxy for the generalization error (Jiang
et al., 2020). Again, this is easy to explain if we consider that distance from intialization is
just an upper-bound over of the inverse rate. In consequence, an open question in ML is:
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Open Question 7

When the distance from intialization of an interpolator perfectly correlates
with its generalization error?

We provide again a characterization for the case where the cumulant generating function of
the model Jθ(λ) is a quadratic function or, equivalently, its second-order Taylor approximation
around θ0 ∈ Θ0 is exact. In this case, as we show in the proof of Proposition 6.4, the cumulant
generating function can be expressed as

Jθ(λ) =
1

2
λ2

(
θ − θ0

)TCovν
(
∇θ ln p(y|x,θ0)

)(
θ − θ0

)
, (5)

where Covν(·) is the covariance w.r.t. ν of the gradient of the log-likelihood of each (x,y)
sample. Under this hypothesis, the inverse rate can be expressed as stated next.

Proposition 6.4 (Proof). For any θ ∈ Θ, if the equality of Equation (5) holds, then

I−1
θ

(
1
n ln kp

δ

)
=

√
2 1
n ln kp

δ

√(
θ − θ0

)TCovν
(
∇θ ln p(y|x,θ0)

)(
θ − θ0

)
.

When training highly over-parameterized models using gradient descent, it is well known
that parameters remain close to their initial values. This phenomenon is called lazy training
and is a standard assumption in many theoretical analysis of deep neural networks (Jacot
et al., 2018). However, when lazy training takes place, the second-order Taylor approximation
of the cumulant could become highly accurate. The above proposition then suggests how the
Riemannian distance, induced by Covν

(
∇θ ln p(y|x,θ0)

)
, would be an optimal proxy for the

generalization error of an interpolator in the lazy training regime. This reasoning also helps
to understand the limitations in this regard of the Euclidean-distance.

6.1.3 Input-Gradient and Lipschitz Regularization

Input-gradient regularization is a technique used in deep learning to improve the robustness
of neural network models (Gouk et al., 2021). This approach focuses on the gradients of the
model’s output with respect to its input, which are indicative of how sensitive the model’s
predictions are to changes in the input data.

The following result shows how the inverse rate function and the expected norm of the
input-gradient of a model are also related. This result is based on the log-sobolev inequalities
(Chafaï, 2004) and relies on the assumption that ν(y|x) is deterministic, to simplify gradients
with respect to the target variable, and that ν(x,y) is a uniformly strictly log-concave density,
an assumption satisfied by a wide range of distributions.

Proposition 6.5 (Proof). If ν(x,y) is an uniformly strictly log-concave density and ν(y|x)
is deterministic, then ∃M > 0, such that, for any θ ∈ Θ,

I−1
θ

(
1
n ln kp

δ

)
≤

√
1
n ln kp

δ

√
MEν

[∥∥∇xℓ(y,x,θ)
∥∥2
2

]
.
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The above result explains why models with small input-gradient norm tend to have a
small generalization error. And why a small generalization error may coexist with a large
input-gradient norm, if the gap in the above inequality is large.

From the above result, it is straightforward to derive a connection between the gener-
alization of a model and its Lipschitz constant. If a model θ is Lipschitz with respect to
the input data x with Lipschitz constant denoted Lip(θ), then, by definition, the following
inequality is verified:

∀(x,y) ∈ supp(ν) ∥∇xℓ(y,x,θ)∥22 ≤ Lip(θ) . (6)

The above inequality can be combined with Proposition 6.5 to derive a new upper bound
on the inverse of the rate function and on the generalization error of a model:

I−1
θ

(
1
n ln kp

δ

)
≤

√
1
n ln kp

δ

√
MLip(θ) .

In consequence, models with a small Lipschitz constant, will tend to have a small
generalization error. This aligns fully with the existing literature (Neyshabur et al., 2017b)
and, also, explains the rationale behind regularization techniques that prevent overfitting by
controlling the Lipschitz constant (Gouk et al., 2021).

6.1.4 Summary

In this section, we have theoretically characterized an optimal (distribution-dependent)
regularizer for interpolators, even for over-parameterized model classes. This theoretical
characterization can be used to understand why a wide range of commonly used regularization
techniques promotes interpolators with a smaller generalization error. We are not aware of
previous works able to characterize optimal regularizers for interpolators and establish such
a wide range of connections with existing regularization methods in the machine learning
community.

We have also analyzed, in some specific but not less relevant situations, when could
some of these common regularization methods be optimal for interpolators; even in over-
parameterized model classes. In this regard, our work complements other related theoretical
results, like the ones proposed by Bartlett et al. (2020), where the Euclidean norm was
shown to be an optimal regularizer for linear regression interpolators under some specific
assumptions.

This section allows to draw connections between our definition of smoothness, as outlined
in Section 4, and other existing definitions in the literature. We have shown how the smoothest
interpolator has near-optimal performance in Proposition 6.1. The clearest connection with
existing measures of smoothness arises from the characterization of the Lipschitz constant,
as demonstrated by combining Equation (6) and Proposition 6.5. The Lipschitz constant is
frequently cited in the literature as a measure of a model’s smoothness (Gouk et al., 2021).
In this work, we have shown how models with a small Lipschitz constant have a small inverse
rate and, in consequence, are smoother according to our own definition.
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Figure 8: Graph representation of Assumption 2. The left side represents the original
assumption with a single transformation and the right side represents the generalized setting
with T transformations. Observed variables are marked with a blue-ish background.

7. Invariances

In many machine learning problems, we know that the input data x we observed have been
transformed, usually as a result of the measuring process. For example, in the case of sensor
readings, by random noise due to non-perfect sensors or, in the case of images, these may
be rotated, blurred, etc, by the image capturing process (Bronstein et al., 2021). In this
section, we discuss how widely used techniques in machine learning, like data augmentation
(Shorten & Khoshgoftaar, 2019) and invariant architectures (Bronstein et al., 2021), can
be jointly explained, using PAC-Chernoff bounds and the rate function, as techniques to
improve learning under these transformed inputs.

Let G denote a set of input-data transformations such that any g ∈ G denotes a function,
g : X → X , defining a specific transformation. Assume there exists an unknown distribution
h over G. In image classification, G could be the set of all possible rotations, translations
and/or reflections.

The central hypothesis in this section is that the generative process of the data follows
the framework defined in the previous paragraphs.

Assumption 2. The data-generating distribution has the following structure:

(i) x0 ∼ ν0(x0), (ii) y ∼ ν(y|x0), (iii) g ∼ h(g), (iv) x = g(x0) ,

where x0 denotes the un-transformed and un-observed input, which is distributed according to
ν0, x denotes the observed (transformed) input. See Figure 8 (left) for a graph representation.

Under this assumption, the target value of an input is sampled before its transformation,
that is, transforming the inputs does not affect its label. In statistical terms, under Assumption
2, we have that the target random variable y is conditionally independent of x given x0. This
fact perfectly aligns with many common settings, where, for example, rotating, reflecting or
cropping an image does not alter the label of the object been represented in it (Bronstein
et al., 2021). This assumption is weaker than the usual ones used in many related works
(Chen et al., 2020; Bronstein et al., 2021), where the conditional generating distribution
is assumed to be invariant under any transformation. These works assume that ∀g ∈ G,
ν(y|x) = ν(y|g(x)). This assumption does not hold, for example, when considering rotation
over digits, as the true label of the image of a six rotated 180 degrees changes to a nine.
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Consider the generalized scenario where several transformations can be applied, that
is, g ∈ G is the composition of other transformations g(x0) = gT ◦ · · · ◦ g1(x0) = x. We
may denote G1, . . . , GT the sets of all possible individual transformations, with G = ∪tGt.
Notice that the value of T is arbitrary and can differ from one transformation g ∈ G to
another; however, to simplify the notation we will use the same T where one may consider
that some gi ∈ Gi are the identity. Then, we may consider the non-fully-transformed inputs
xt = gt ◦ · · · ◦g1(x0), with 0 < t < T . The following result shows that the mutual information
between the targets and the inputs, denoted MI(y ;x), decreases the further the input is
transformed.

Proposition 7.1 (Proof). Under Assumption 2, let xt denote the random variable denoting
a transformation of an input x0 using a composition of t transformations, then

MI(y ;xt) ≤ MI(y ;xt−1) ∀t ∈ N+ .

As a consequence, MI(y;x) = MI(y;xT ) ≤ MI(y;x0).

Going back to the main objective of this work, which is to study the generalization of
interpolators, the rate function and PAC-Chernoff bounds can be directly applied to explain
why learning on transformed data x makes interpolators have worse generalization error
compared to “ideally” learning on the untransformed data x0, which is never observed. In the
following sections, we will use this argument to explain the reason why invariant architectures
and data augmentation promote models with better generalization errors by exploiting the
fact that the inputs are transformed.

Open Question 8

Why models interpolating transformed data, as described in Assumption 2,
have a higher generalization error?

Given a data-generating distribution, it is clear that the probability distribution of L̂(D,θ)
rules the generalization error of the model θ ∈ Θ. Proposition 7.1 shows that learning on
transformed variables reduces the information that the inputs x have about their target y. As
a result, one may expect that under transformed inputs, L̂(D,θ) becomes less concentrated
and with a higher expectation. Figure 9 illustrates how this is the case for a Multi-Layer
Perceptron and an Inception model on Cifar-10. In Figure 9 (left) we can see the distribution
of L̂(D0,θ), L̂(D1,θ) and L̂(D2,θ) for datasets of size 50; where D0 is the unstransformed
data, D1 corresponds to random translations applied to D0, and D2 corresponds to random
rotations applied to D1. In short, these datasets are drawn from ν0, ν1 and ν2 respectively.
The figure shows how transforming the inputs once (translations) and twice (translations +
rotations) increases the expectation and the scattering of the loss. This scattering can be
recognized by the size of the boxplots. As shown in Figure 9 (center) and (right), the lower
level of concentration of the distribution of L̂(·,θ) under transformed inputs is also reflected
by lower rate functions. Note that the same model can have different rate functions when
applied over different data-generating distributions because the rate function depends on
both the model and the data-generating distribution. Figure 9 also shows that the effect of
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Figure 9: Illustration on the effect of transformed inputs. The distribution of L̂(D,θ) is
shown on a fixed Multilayer perceptron and a fixed Inception model with similar amount
of parameters for three different learning setups. For MLP and Inception, D0 ∼ ν500 using
Cifar10’s test set; transformed inputs using random translations of 3 pixels, (D1 ∼ ν501 ); and,
transformed inputs with additional rotations up-to 20◦ are done (D2 ∼ ν502 ).

using transformed inputs can also be partly nullified by using invariant architectures, as the
case for Inception network which uses convolutional layers which are invariant to translations,
ν1, but not to rotations, ν2. We will go deeper into this in the next subsection.

The observed changes in the distribution of the empirical loss L̂(·,θ) under transformed
inputs can be formalized in our framework by considering some specific assumptions. Although
these assumptions can not be easily verified in general, the following results intend to provide
theoretical justifications for why transformed inputs make the distribution of the empirical loss
L̂(·,θ) less concentrated and with higher expectation. Formally, let νt denote the marginal
generating distribution of t-times transformed inputs xt = gt ◦ · · · ◦ g1(x0), Lνt(θ) and
Lνt+1(θ) denotes the expected loss of the model θ under the data-generating distributions νt
and νt+1, respectively. Similarly, Iνt

θ (a) and Iνt+1

θ (a) denote the rate function of a model θ
under these two data-generating distributions. According to the following result, if the loss
function is convex in x and the set of transformations satisfies that Eg∼h[g(x)] = x, then,
transformed inputs, as described by Assumption 2, make models have a higher expected loss.

Proposition 7.2 (Proof). Under Assumption 2, if ℓ(y,x,θ) is convex under x and Egt [gt(x)] =
x, then, ∀θ ∈ Θ, Lνt+1(θ) ≥ Lνt(θ).

The following result helps to explain why the empirical loss is less concentrated when
the input-data is transformed as described in Assumption 2. For any given input-data point
x, a given model incurs in some loss ℓ(y,x,θ), and when the same input-data point x is
transformed by a randomly chosen transformation g ∼ h, the model incurs in a different loss,
ℓ(y, g(x),θ). This loss will be higher or lower than the loss over the untransformed input. The
following result shows that the empirical loss under the transformed data is less concentrated if
the relative change between the two losses, denoted by ∆(y,x, g,θ) = ℓ(y, g(x),θ)−ℓ(y,x,θ),
is statistically independent of the loss itself, ℓ(y,x,θ). That is to say, how much the loss of
the transformed-input changes does not depend of the loss of the unstransformed input itself.

Proposition 7.3 (Proof). Under Assumption 2, if the change observed in the loss after a
transformation ∆(y,x, g,θ) = ℓ(y, g(x),θ)− ℓ(y,x,θ) is statistically independent of the loss
itself, ∆(y,x, g,θ) ⊥ ℓ(y,x,θ), then

Iνt+1

θ (a) ≤ Iνt
θ (a) ∀a > 0 .
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Summarizing, when input-data is transformed (Assumption 2), the input-data provides
less information about the target variable (Proposition 7.1). This causes the distribution
of the empirical loss L̂(·,θ) to be less concentrated and with higher expected loss L(θ) (as
empirically shown in Figure 9 and theoretically argued in Propositions 7.2 and 7.3).

Transformed input-data makes the expected loss of the model L(θ) higher and
the distribution of L̂(·,θ) less concentrated.

Finally, we re-state here the distribution-dependent bound given in Theorem 4.1 using the
extended notation used in this section. With high probability over random draws Dt ∼ νnt ,
simultaneously for all θ ∈ Θ, then:

if L̂(Dt,θ) ≤ ϵ then
(
Iνt
θ

)−1
( 1n ln kp

δ ) ≤ Lνt(θ) ≤
(
Iνt
θ

)−1
( 1n ln kp

δ ) + ϵ . (7)

The above bound easily explains why the presence of transformed input-data makes
interpolators have larger generalization error. The presence of transformed input-data reduces
the level of concentration of L̂(Dt,θ) and, in consequence, makes the rate function smaller
(as shown in Figure 9 and Proposition 7.3). Thus, the inverse rate function increases and so
does (Iνt

θ )−1( 1n ln kp

δ ); as a result, given that ϵ is supposedly very small, the generalization
error of the interpolator increases too.

The PAC-Chernoff bound explains why interpolators of transformed inputs
have higher generalization error.

7.1 Invariant Architectures

Invariant architectures refers to a kind of neural networks that remain unaffected by cer-
tain transformations in the input data (Bronstein et al., 2021). In case of images, these
transformations might include scaling, rotation, translation, or other geometrical changes.

Definition 4. Given a set of transformations G, a model θ ∈ Θ is called G-invariant if

p(y|x,θ) = p(y|g(x),θ) ∀g ∈ G ∀(x,y) ∈ X × Y .

These invariant models, such as convolutional neural networks (CNNs) (LeCun et al.,
1998), are crucial because they can recognize and process patterns irrespective of their
position, scale, or orientation. This invariance is particularly important in tasks like image
and speech recognition, where the essence of the data needs to be captured regardless of such
variations. Invariant architectures have consistently shown superior performance compared
to non-invariant models (Goodfellow et al., 2016).

The generalization error of invariant neural networks has been widely studied before.
Different generalization bounds have been shown to have complexity terms which tend
to shrink when the architecture of the model is invariant (Sokolic et al., 2017; Elesedy,
2022; Behboodi et al., 2022). Although these bounds provide theoretical grounds on why
generalization error is reduced with invariant architectures, the problem lies in that they
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only show that the complexity measures of the respective bounds are reduced, not the
generalization error. However, based on the arguments given in Section 1, there is a growing
empirical (Zhang et al., 2017) and theoretical evidence (Nagarajan & Kolter, 2019b; Gastpar
et al., 2024; Wang et al., 2024) that many of these bounds are non-tight, or, probably,
even vacuous, and do not satisfy basic criteria such as the bound decreasing with larger
dataset sizes, as specifically happens, for example, with the bound provided by Behboodi
et al. (2022). In consequence, to the best of our knowledge, there are not widely accepted,
specific generalization bounds that comprehensively captures the effect of the invariance of
an architecture on a interpolator’s generalization error, specially in over-parameterized model
classes. An open question is then the following,

Open Question 9

Why do (over-parameterized) invariant interpolators generalize better?

Although the final generalization error of a model is also influenced by other factors
such as the optimization process, we can provide a partial answer to this relevant open
question by analyzing the rate function of invariant models. The key advantage of invariant
architectures under transformed inputs (Assumption 2) is that they are unaffected by input-
data transformations and, in consequence, they avoid all the problems described in the
previous subsection. This can be formally stated in the following result,

Proposition 7.4 (Proof). Under Assumption 2, if a model θ ∈ Θ is Gt-invariant then,

Lνt+1(θ) = Lνt(θ) and Iνt+1

θ (a) = Iνt
θ (a) ∀a > 0 .

As argued in the above section, transformed-input data makes the empirical loss L̂(·,θ)
be less concentrated (with a lower rate function) and with a higher expected loss; however,
the previous result shows that invariant architectures allow to bypass this problem, as the
distribution of the empirical loss will be unaffected by transformed-input data.

Figure 9 clearly illustrates this point. Recall that D0 ∼ ν500 defines the distribution of
the input data, and D1 ∼ ν501 the distribution after applying random translations over D0.
As expected, for a fixed MLP model, whose architecture is non invariant to translations, the
expected loss significantly increases and the rate function significantly decreases. While for a
fixed Inception model, the changes are minimal. Here, the Inception model does not suffer a
severe downgrade from the presence of translations as the MLP. The reason why Inception
does not report exactly the same results on D0 and D1, as predicted by Proposition 7.4 is
because, even though convolutions and max-pooling are invariant to translations, in this
experiment, translations were implemented by padding the image (for example with zeros),
leading to slightly different results in the model output.

The PAC-Chernoff bound of Equation (7) neatly captures this phenomenon. As argued
in the above section, the presence of transformed input-data implies that

(
Iν1
θ

)−1
( 1n ln kp

δ ) ≥(
Iν0
θ

)−1
( 1n ln kp

δ ). However, if the model θ is invariant to the input-data transformations
present in the data-generating distribution ν1, then, due to Proposition 7.4, the complexity
term of our bound does not increase. This, in combination with the fact that our distribution-
dependent PAC-Chernoff bound is perfectly tight for interpolators, provides, to the best of
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Model Train Acc. Test Acc. Test NLL

Inception 100.0% 74.08% 1.00
Inception-Shuffle 100.0% 42.46% 2.45

MLP 99.99% 51.69% 3.29
MLP-Shuffle 99.99% 51.12% 3.29

Initial Inception 10.00% 10.00% 2.30
Initial MLP 10.00% 9.96% 2.30
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Figure 10: Results of the random shuffling experiment. Metrics of trained Inception and
MLP models with and without a fixed random shuffling of the inputs in both train and test
datasets. The rate function of all these models is shown in the right, each of them w.r.t. their
corresponding shuffled or un-shuffled data distribution they where trained and evaluated on.

our knowledge, the best theoretical explanation of why invariant models interpolating the
training data have a smaller generalization error.

The PAC-Chernoff bound explains why invariant interpolators have smaller
generalization errors than non-invariant interpolators under transformed inputs.

The results in Figure 10 attempt to illustrate this behavior in a different way. The specific
amount of invariances of an Inception network are unknown; however, we know at least this
model is invariant to translations by the usage of convolutional layers. In this experiment, we
attempt to remove this invariance by performing a pre-fixed random shuffling of the pixels
of the images. One can understand this as an extra input-data transformation gT+1 that
performs a permutation of the pixels on top of the data-generating distribution νT (we are
implicitly assuming that Cifar10’s data is generated by T unknown transformations of an
unknown distribution ν0). As a result of this, a convolutional network like Inception would
no longer be invariant in the context of νT+1, at least, to image translations. According
to the analysis at the beginning of the section, the empirical loss will be less concentrated
under νT+1 and, in consequence, the rate function will be lower with respect to νT . In the
figure, we can see this effect in the rate functions of the learned Inception models, under νT
(Inception label) and under νT+1 (Inception-Shuffle label)2.

The same experiment is performed to a MLP, which presents no local invariances; as
a result and as expected, the rate function of this model is not affected by the presence
of the random permutation. In fact, although the model is not invariant to shuffling, the
architecture is; in the sense that for any MLP θ and permutation gT+1, there exists a MLP
θ′ which makes the same predictions on νT+1 that θ does on νT (by permuting the weights in
the first layer). Thus, a learning algorithm can find the “same” MLP under νT and νT+1. As
a result, both MLP models present (nearly) the same rate function in the experiment. The
table in this figure also shows how the generalization error is much higher for non-invariant
models, as predicted by our theoretical analysis.

2. Note that the rate functions are computed under the log-loss or negative log-likelhood (NLL).
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7.2 Data Augmentation

Data augmentation is a widely-used technique in machine learning that enhances the robust-
ness and generalization ability of models, particularly in the field of computer vision (Shorten
& Khoshgoftaar, 2019). By applying various transformations like rotations, reflections,
scaling, and translations to existing data samples, data augmentation artificially expands the
dataset. This process helps the learned models to become invariant or less sensitive to these
transformations, leading to improved performance on unseen data.

Recent research has delved deeply into the theoretical foundations of data augmentation
(DA), with significant contributions coming from studies such as Chen et al. (2020) and
Lyle et al. (2020). These works build on the assumption than the set of transformations G
forms a group and that these transformations do not alter the data-generating distribution,
also assuming an equality in distribution assumption. Within this context, these studies
illustrate how DA can decrease variance and improve bounds on generalization error. Lyle
et al. (2020) further presents a PAC-Bayes bound based on these premises, showing that
data augmentation can lower the bound’s complexity measure. However, these studies
encounter a critical challenge: the equality in distribution assumption does not hold in reality,
as it implies that any model θ would yield identical expected losses on both transformed
and non-transformed input data, a premise contradicted by evidence shown in Figure 9,
where two models exhibit deteriorating performance as the data is increasingly transformed.
Additionally, the PAC-Bayes bound introduced by Lyle et al. (2020) is not proven to be tight
for interpolators. Thus, as highlighted in the introduction, merely demonstrating that data
augmentation reduces the complexity term of a bound, which might be vacuous, does not
assure a lower generalization error for an interpolator.

In this section, we demonstrate that our theoretical framework offers a more nuanced
explanation. First, we will illustrate that data augmentation defines a new, more concentrated
empirical loss. This finding is consistent with prior studies indicating that data augmentation
decreases the variance of the empirical loss (Chen et al., 2020; Lyle et al., 2020). Second, we
will explore how the complexity term of the PAC-Chernoff bound, introduced in Theorem 4.1,
becomes smaller with the application of data augmentation. As this bound is also perfectly
tight for interpolators trained on augmented datasets, we can deduce that the generalization
error of interpolators under data augmentation is reduced, in opposite to the non-tight
bounds used in earlier research (Lyle et al., 2020).

As argued, for example, by Chen et al. (2020), data augmentation is equivalent to
optimize, using Monte-Carlo estimates, the so-called data-augmented loss, denoted as ℓG,
which is the result of averaging the standard loss over all transformations obtained from a
given input x,

ℓG(y,x,θ) = Eg∼h [ℓ(y, g(x),θ)] . (8)

A pertinent question arises regarding whether the use of the augmented loss ℓG results in
a more concentrated empirical loss (characterized by a larger rate function), given that more
concentrated empirical losses lead to interpolators with a reduced generalization error.

The response to this inquiry is somewhat complex. Thus, in order to make the rest of
the section easier to follow, we are summarizing now the key points of the discussion:
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1. It is crucial to recognize that each transformed dataset, denoted DT , corresponds
to an original, unaltered dataset D0, from which DT is generated through random
transformations gt ∼ ht for t = 1, . . . , T − 1. Two main objects are discussed:

(a) The conventional empirical loss for transformed inputs L̂(D,θ), here referred to
as L̂ℓ(DT ,θ) to highlight that DT ∼ νnT , and that we are using the standard
non-augmented loss ℓ.

(b) The augmented empirical loss for original, non-transformed inputs, referred to
as L̂ℓG(D0,θ), with D0 being the non-transformed dataset, D0 ∼ νn0 , where
L̂ℓG(D0,θ) =

1
n

∑
yi,xi∈D0

ℓG(yi,xi,θ) and ℓG as defined in Equation (8).

It is important to keep in mind that L̂ℓG(D0,θ) is an unknown quantity as D0 is
un-observed. However, L̂ℓG(D0,θ) will play a fundamental role in explaining the
underlying mechanics of data-augmentation.

2. Theorem 7.5 will showcase, using the rate function, that the augmented empirical
loss for non-transformed inputs L̂ℓG(D0,θ) exhibits a higher concentration than the
empirical loss for transformed inputs L̂ℓ(DT ,θ). As a result of this, and the fact that
their expected value (population errors) are equal, minimizing L̂ℓG(D0,θ) is a better
optimization objective as observing lower generalization errors is more likely due to
the Chernoff’s bound in Theorem 3.3.

However, in practice D0 is unobserved, and DA involves minimizing L̂ℓG(DT ,θ) rather
than L̂ℓG(D0,θ). Therefore, merely establishing that L̂ℓG(D0,θ) is a better minimiza-
tion objective than L̂ℓ(DT ,θ) is insufficient for a nuance understanding of DA. The
following points discuss the link between L̂ℓG(DT ,θ) and L̂ℓG(D0,θ).

3. Proposition 7.7 will show that L̂ℓG(DT ,θ) and L̂ℓG(D0,θ) are equal when G is a group
and h is an uniform distribution. As a result of this, an interpolator of L̂ℓG(DT ,θ) will
interpolate for L̂ℓG(D0,θ), which exhibits a higher concentration than L̂ℓ(DT ,θ).

However, many DA techniques fall outside of this group hypothesis, such as rotations
within a finite range or random-cropping.

4. Proposition 7.8 will reveal that both L̂ℓG(DT ,θ) and L̂ℓG(D0,θ) share the same “optimal
interpolators” (minimal error). In essence, if θ serves as a perfect interpolator for
L̂ℓG(DT ,θ), then, it will similarly function as a perfect interpolator for L̂ℓG(D0,θ).

As a conclusion on the discussion, such an interpolator is likely to exhibit a lower
generalization error compared to those minimizing L̂ℓ(DT ,θ), given that L̂ℓG(D0,θ)
is more concentrated than L̂ℓ(DT ,θ). As a result of this and Chernoff’s bound, an
interpolator minimizing L̂ℓ(DT ,θ) is more likely to exhibit a lower generalization error.

In the following result, we use Lν0,ℓG(θ) and Iν0,ℓG
θ (a) to denote the expected loss and

rate function, respectively, associated to the augmented loss ℓG under the un-transformed
data-generating distribution ν0. Recall that, under this notation, L(θ) would be equal to
LνT ,ℓ(θ) and, similarly, Iθ(a) would be equal to IνT ,ℓ

θ (a), as they are implicitly defined over
the standard loss ℓ and the (observed) transformed data-generating distribution νT , which is
the data-generating distribution from which we observe the training data sets.
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Figure 11: Illustration on the effect of data augmentation and transformed inputs. The distri-
bution of L̂(D0,θ), L̂(D1,θ) and L̂ℓG(D0,θ) are shown on a fixed Multilayer perceptron and
a fixed Inception model with similar amount of parameters for three different learning setups.
For MLP and Inception, we use Cifar10’s test set to simulate D0 ∼ ν500 ; transformed inputs,
(D1 ∼ ν501 ), are simulated by applying random translations of 3 pixels, and rotations up-to
20◦ to Cifar10’s test set. The augmented loss ℓG is computed using the same augmentations
used to generate D1. The obtained rate functions for the Inception model are shown in the
middle figure. The last figure resembles the obtained rate functions with an Inception model
trained using the augmented loss ℓG.

Theorem 7.5 (Proof). Under Assumption 2, it verifies that

∀θ ∈ Θ, LνT ,ℓ(θ) = Lν0,ℓG(θ) and IνT ,ℓ
θ (a) ≤ Iν0,ℓG

θ (a) ∀a > 0 .

Figure 11 illustrates the above result using a fixed MLP and a fixed Inception model over
CIFAR-10. Figure 11 (left) shows how the distribution of the empirical loss over transformed
data L̂ℓ(D1,θ) with D1 ∼ ν501 is more dispersed than the distribution of the empirical loss
over the un-transformed data L̂ℓ(D0,θ) with D0 ∼ ν500 for both models. And, also, how the
distribution of L̂ℓG(D0,θ) becomes more concentrated and with the same expectation than
the distribution of L̂ℓ(D1,θ). Figure 11 (center) also shows how the rate functions of the
Inception models on the three different setups changes as expected. We want to remark
again that the models are fixed and the changes in the distribution of their empirical losses
are due to changes in the data-generating distribution and/or the loss.

The following result is an adaptation of the PAC-Chernoff bound given in Theorem 4.1 for
this setup, which describes the effect of using the data-augmented loss on the generalization
error of interpolators.

Corollary 7.6 (Proof). With h.p. 1− δ over D0 ∼ νn0 , for all θ ∈ Θ, simultaneously,

if L̂ℓG(D0,θ) ≤ ϵ then
(
Iν0,ℓG
θ

)−1
( 1n ln kp

δ ) ≤ LνT ,ℓ(θ) ≤
(
Iν0,ℓG
θ

)−1
( 1n ln kp

δ ) + ϵ .

If we reformulate the above bound for interpolators under the standard loss,

if L̂ℓ(DT ,θ) ≤ ϵ, then
(
IνT ,ℓ
θ

)−1
( 1n ln kp

δ ) ≤ LνT ,ℓ(θ) ≤
(
IνT ,ℓ
θ

)−1
( 1n ln kp

δ ) + ϵ, (9)

and acknowledge that Theorem 7.5 also states that (IνT ,ℓ
θ )−1(s) ≥ (Iν0,ℓG

θ )−1(s) ∀s >
0, it becomes evident why an interpolator leveraging the augmented loss exhibits lower
generalization error and thus superior generalization capability. According to this result, the
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process of learning by minimizing L̂ℓG(D0,θ) is advantageous over minimizing L̂ℓ(DT ,θ).
As Theorem 7.5 states, the augmented loss results in a more concentrated empirical loss and
a reduced inverse rate function. Consequently, as posited by Corollary 7.6, the generalization
error associated with an interpolator is also diminished.

However, as previously highlighted, in the practice of data augmentation (DA), we do
not minimize L̂ℓG(D0,θ) due to the lack of access to the unaltered dataset D0; instead,
we focus on minimizing L̂ℓG(DT ,θ), which refers to the augmented loss calculated over
the observed transformed dataset. If the set of transformations G forms a group and its
associated probability distribution h is uniform —two prevalent assumptions in DA— it
follows from the next result that minimizing L̂ℓG(DT ,θ) effectively amounts to minimizing
L̂ℓG(D0,θ).

Proposition 7.7 (Proof). Under Assumption 2, if the transformations G define a group
and its probability distribution h is uniform, then

L̂ℓG(DT ,θ) = L̂ℓG(D0,θ) , (10)

where D0 is any un-transformed dataset and DT is the corresponding transformed dataset
obtained by applying a transformation g ∼ h to each of the samples in D0.

When multiple transformations g1, . . . , gT are considered, the analysis can be seamlessly
expanded into a sequence of equalities, provided that each corresponding set of transformations
G1, . . . , GT forms a group and is governed by uniform distributions h1, . . . , hT . From this
angle, it becomes feasible to combine this approach with the insights from the previous
section on invariant architectures, as these two methods could address different sets of chained
transformations. For instance, convolutional neural networks naturally handle translations,
whereas data augmentation can accommodate other types of transformations.

In summary, Theorem 7.5 shows that L̂ℓG(DT ,θ) for a dataset DT ∼ νnT is more concen-
trated than L̂(DT ,θ) for a dataset D ∼ νnT . Furthermore, the Chernoff bound presented
in Corollary 7.6 indicates that interpolators operating with the augmented loss exhibit a
reduced generalization error. To the best of our knowledge, this is the strongest result of this
type explaining why interpolators under data augmentation (DA) have better generalization
error, a result achieved through the application of distribution-dependent bounds.

Theorem 7.5 shows that the augmented loss makes the empirical loss more
concentrated. Then, the PAC-Chernoff bound of Corollary 7.6, explains why
interpolators under the augmented loss have a smaller generalization error.

However, some transformations in data augmentation (DA) fail to form a group. For
instance, rotations within the range of -20 to 20 degrees do not constitute a group because
combining a rotation of 20 degrees with another of 10 degrees results in a 30-degree rotation,
which exceeds the range. To establish a group of rotations, it is necessary to consider the
full spectrum of rotations between -360 and 360 degrees, a range not typically employed
in practice. Similarly, random cropping operations also do not create a group. In such
scenarios, the analysis can still proceed under the assumption that L̂ℓG(DT ,θ) ≈ L̂ℓG(D0,θ).
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Therefore, by minimizing L̂ℓG(DT ,θ), we are, in effect, also indirectly minimizing the loss
L̂ℓG(D0,θ), which is more concentrated and has interpolators with a reduced generalization
error.

The subsequent result presents an alternative approach for handling transformations that
do not inherently form a group. In such scenarios, it is necessary that for every transformation
in the set G, an inverse transformation exists, denoted as ∀g ∈ G, ∃g−1 ∈ G. An example
fulfilling this criterion is the set of rotations within the range of -20 to 20 degrees, where for
any given rotation a in [−20, 20], its inverse rotation −a is also within the [−20, 20] interval.
Under these conditions, if θ acts as a perfect interpolator with respect to L̂ℓG(DT ,θ) —the
actual empirical loss targeted by the learning algorithm— then, θ similarly qualifies as a
perfect interpolator for L̂ℓ(D0,θ). Here, the term perfect interpolator is used to describe
models that achieve the minimal possible empirical loss.

Proposition 7.8 (Proof). Given an un-transformed dataset D0, for any transformed dataset
DT derived from D0 under Assumption 2, if mθ := ess inf(x,y)∼νT ℓ(y, g(x),θ) ∀g ∈ G, and
∀g ∈ G, ∃g−1 ∈ G. Then, it verifies that

∀θ ∈ Θ L̂ℓG(DT ,θ) = mθ ⇐⇒ L̂ℓ(D0,θ) = mθ .

This result implies that if a model achieves perfect interpolation on the transformed
dataset DT using the augmented loss, it concurrently achieves perfect interpolation on the
original, untransformed dataset D0 under the standard loss. This means that when the
learning algorithm identifies an interpolator utilizing the augmented loss (as typically occurs
in practice), it is essentially also identifying an interpolator for the untransformed dataset D0.
This scenario parallels the one encountered with invariant architectures, where the algorithm
retrieves interpolators for the untransformed dataset. As highlighted at the outset of Section
7, interpolators for the untransformed dataset D0 are associated with a lower generalization
error compared to those for the transformed dataset DT .

Figure 11 (right) illustrates the rate function of an inception model trained with data aug-
mentation achieving almost perfect interpolation, where L̂ℓG(DT ,θ) ≈ mθ. It’s particularly
noteworthy to observe how this model’s various rate functions are nearly indistinguishable,
indicating that the model has nearly become invariant to rotations too. According to Propo-
sition 7.4, if a model is invariant to rotations, then Iν0,ℓ(a) = Iν1,ℓ(a), which aligns with the
outcome of this experiment.

Within this theoretical framework, distinct from the methodologies referenced earlier,
we can establish a connection between invariant architectures, data augmentation, and the
discussions on explicit regularization presented in Section 6. Specifically, we can explain
why these regularization techniques, in conjunction with invariant architectures or data
augmentation, help to find interpolators with smaller generalization errors, a relationship
already empirically showcased in Figure 2. This is achieved by extending the analysis
from Section 6 to the new inverse rate functions

(
Iν0
θ

)−1
( 1n ln kp

δ ) and
(
Iν0,ℓG
θ

)−1
( 1n ln kp

δ ),
associated respectively with invariant architectures and data augmentation. For instance,
implementing Proposition 6.2 on these inverse rate functions elucidates the benefit of ℓ2-norm
or distance-from-initialization regularization in the context of invariant architectures and/or
data augmentation. Similarly, Proposition 6.5 clarifies the advantage of input-gradient
normalization in these settings.
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8. Over-Parameterization and Smooth Interpolation

Many theoretical contributions have established that over-parameterization is directly related
to the strong performance of interpolators (Neyshabur et al., 2019; Bubeck et al., 2021).
Specifically, the celebrated study by (Bubeck & Sellke, 2023)3, building on an isoperimetry
assumption, demonstrates that any model capable of interpolating training data beneath the
noise threshold requires a (Euclidean) Lipschitz constant of the order at least

√
nd/p, where

d represents the data’s ambient dimension. We sketch this result using our notation: We
say a model θ is interpolating below the noise threshold if L̂(D,θ) ≤ L⋆ := minθ∈Θ L(θ).
Similarly, we denote Lip(θ) the Lipschitz constant of the model θ, as defined in Equation (6).
Bubeck and Sellke (2023) (Theorem 1) can be informally stated as: under an isoperimetry
assumption, for any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability 1− δ over D ∼ νn,
for all θ ∈ Θ,

if L̂(D,θ) ≤ ϵ then Lip(θ) ≥ Ω
(
(L⋆ − ϵ)

√
nd
p

)
. (11)

This implies that to keep models with O(1)-Lipschitz constants that continue to interpolate
the training data as the number of samples n grows, the number of parameters p must also
increase. Bubeck and Sellke (2023) employs the Lipschitz constant as a measure of a
model’s smoothness. According to their findings, over-parameterization emerges as a crucial
prerequisite for interpolators to exhibit small Lipschitz constants. Given that a lower Lipschitz
constant enhances generalization, over-parameterization becomes a necessary condition for
achieving interpolators with reduced generalization error.

In this section, we show how using PAC-Chernoff bounds we can arrive to a more
nuanced understanding of the role that over-parameterization plays in generalization error of
interpolators. In fact, the following result shows that over-parameterization is a requirement
that naturally emerges from the PAC-Chernoff bound of Theorem 4.1. The following result
derives a lower bound over the number of parameters of a model class based on the rate
function of a model interpolating the data below the noise-threshold.

Theorem 8.1 (Proof). For any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability 1− δ
over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then p ≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.

The above bound connects the smoothness of an interpolator, measured by the rate
function as discussed in Section 4, and the minimum number of parameters in the model class.
As the size of the training dataset increases, the number of parameters must also increase
linearly if we wish to maintain the same degree of smoothness in the model. This result
generalizes the result of Bubeck and Sellke (2023) and it does not require a isoperimetry
assumption.

Over-parameterization is a necessary condition for smooth interpolators.

3. Outstanding Paper Award at NeurIPS’21.
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The primary advantage of the aforementioned findings are their ability to establish a
link between over-parameterization, interpolation, and our prior analyses about model’s
smoothness and its rate function. This enables us to show how Bubeck and Sellke (2023)’s
analysis of smooth interpolation, using isoperimetry and Lipschitz continuity, represents
merely one of several approximations to the characterization presented in Theorem 8.1. As
described Section 6, the norm of parameters, the distance from initialization, the input-
gradient norm, and the Lipschitz constant of a model, serve as proxies of the (inverse) rate
function of a model and, consequently, of its smoothness. We first proceed to show how
Bubeck and Sellke (2023)’s characterization of smooth interpolation can be directly deduced
from Theorem 8.1 under the same isoperimetry assumption. This can also be derived under
log-concave assumptions using the same techniques used in Proposition 6.5 and Equation (6).

Corollary 8.2 (Proof). If ℓ(y,x,θ) is Lipschitz w.r.t. x with constant Lip(θ) and satisifies
a c-isoperimetry assumption, then for any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability
1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then Lip(θ) ≥
√

nd
2c(p ln k−ln δ)(L

⋆ − ϵ) .

We can similarly derive a bound with a giving norm or distance-from-initialization.

Corollary 8.3 (Proof). If the loss function ℓ(y,x,θ) is Lipschitz w.r.t. θ with constant
M > 0, then, for any θ0 ∈ Θ0 = {θ ∈ Θ | Vν(ℓ(y,x,θ)) = 0} ⊂ Θ, any ϵ ∈ (0, L⋆) and any
δ ∈ (0, 1), with high probability 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then ∥θ − θ0∥2 ≥
√

n
8M(p ln k−ln δ)(L

⋆ − ϵ) .

Corollary 8.2 and 8.3 imply that, as the number of samples n increases, to have smooth
interpolators with a small Lipschitz constant, or a small parameter norm, or a small distance
from initialization, we need to increase the number of parameters of the model class too. In
any case, all these results are approximations of the general result given in Theorem 8.1.
Note that a similar result could be derived in the context of input-gradient norms using
Proposition 6.5.

Interpolating with a small parameter norm, or a small distance from initializa-
tion, or a small input-gradient norm requires over-parameterization.

Remarkably, we can also link Theorem 8.1 with invariant architectures and data-
augmentation given in Section 7. For example, Theorem 7.5, which says that the use
of the data-augmented loss induced a higher rate function, in combination with Theorem
8.1, would explain why interpolating under data-augmentation will require, at some point, a
higher number of parameters. Moreover, the same could be said about interpolating using
more invariant architectures, as they define models with higher rate functions.

Interpolating using data-augmentation and/or a model-invariant architecture
requires over-parameterization.

To the best of our knowledge, we are not aware of any other results showing this kind of
relationships between over-parameterization and smooth interpolators.

536



PAC-Chernoff Bounds

9. Related Work

In the context of uniform convergence bounds, many efforts have been made towards obtaining
tighter generalization bounds (Kawaguchi et al., 2022; Bartlett et al., 2017; Neyshabur et al.,
2017a; Golowich et al., 2018; Liang et al., 2019), by, for example, only considering the models
effectively visited by the optimization algorithm. However, it is clear that these bounds are not
actually meaningful (see Nagarajan & Kolter (2019b) for further references and discussions).
The PAC-Bayes framework has also adapted to this new paradigm by exploiting properties
of the models induced by the training data set (such as low spectral norm (Neyshabur et al.,
2017b), noise stability (Arora et al., 2018b), de-randomization (Negrea et al., 2020), and
compression (Arora et al., 2018b; Zhou et al., 2019)), but none of these bounds are shown to
be empirically tight in the over-parameterized model classes and, for example, are unable to
describe the interplay between invariant architectures and over-parameterization. In fact,
very recently, Gastpar et al. (2024) proved that, for over-parameterized model classes, none
of these bounds are tight for all data-generating distributions.

Our work mainly differs from these related works in the sense that we use oracle complexity
measures, that is, PAC-Chernoff bounds and the rate function assumes access to the data-
generating distribution. Consequently, we are able to tightly bound the generalization error
of an interpolator, as elaborated in Section 4. This capability stems from our ability to derive
robust results such as Theorem 4.6 even under unbounded losses. Furthermore, Theorem 4.6
and the PAC-Chernoff bound of Theorem 4.1 enables to leverage architectural invariances
with respect to transformations inherent in the data-generating distribution.

Many other recent theoretical studies try to understand specific learning techniques in
deep learning in an isolated and independent way to simplify the problem (e.g, (Vidal et al.,
2020; Arora et al., 2016; Gilbert et al., 2017; Patel et al., 2016; Schoenholz et al., 2017; Poole
et al., 2016; Tishby & Zaslavsky, 2015; Arora et al., 2018a; Gunasekar et al., 2018; Hardt &
Ma, 2017; Soudry et al., 2018; Chen et al., 2020; Bubeck & Sellke, 2023)). As a result of
such isolated approach, they are not fully able, most of the times, to establish links among
different learning techniques, as done in this work. Furthermore, relying on the insights
provided by the field of geometric deep learning (Bronstein et al., 2021), our work provides a
theoretical explanation, from a statistical inference point of view, on why such invariances
induce smoother model classes and better generalization.

10. Conclusions and Limitations

In this work, we discussed how a growing literature (Zhang et al., 2017; Nagarajan & Kolter,
2019b; Wang et al., 2024; Gastpar et al., 2024) is suggesting that bounds that solely depend
on the training data are provably vacuous for over-parameterized model classes, and points to
the need of exploring novel approaches to understand generalization in deep learning. Then,
we argued in favor of distribution-dependent bounds, as bounds which directly depend on the
data generating distribution, instead of the training data sample. A distribution-dependent
PAC-Chernoff bound, outlined in Theorem 4.1, is introduced, which shows how this bound is
perfectly tight for any interpolator. Based on the complexity measure of this bound, a novel
definition of smoothness is proposed in Definition 3, which is able to provide a clear answer
to the previously unanswered question of which interpolators generalize more effectively.
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In Section 5, we showed how PAC-Chernoff bounds are able to capture the complex
phenomenon of double-descent. Our bound is able to explain why is possible to have
interpolators with a smaller generalization error and, at the same time, defined by a larger
number of parameters.

In Section 6, we showed how the complexity measure of our PAC-Chernoff bound defines
an regularizer that provides near-optimal performance for over-parameterized model classes
interpolating the training data, as detailed in Theorem 6.1. During the rest of Section 6, we
illustrated how a broad spectrum of existing regularization techniques can be shown to be
proxies of this optimal regularizer. In certain cases, we even identified how some variations of
existing regularizers can act as optimal surrogates for an interpolator’s generalization error.
This analysis serves to better understand the limitations of existing regularization techniques
such as parameter norm, distance from initialization or input-gradient norm.

In Section 7, we described how having transformed inputs, as depicted in Assumption 2,
make learning harder because interpolators have a higher generalization error, as shown by
the PAC-Chernoff bound of Equation 7. The same PAC-Chernoff bound, in combination
with other results, was also able to show why invariant architectures and data augmentation
induce interpolator with smaller generalization error. We finished this section by discussing
how this theoretical framework can establish a connection between invariant architectures,
data augmentation, and the regularizers analyzed in Section 6.

Finally, in Section 8, we established how over-parameterization is an essential requisite for
achieving smooth interpolators, with smoothness being definable across various dimensions,
including parameter-norm, Lipschitz constant, or the employment of invariant architectures
or data augmentation. Highlighting how this theoretical framework is able to establish
connections among different, previously thought, unrelated approaches. We concluded the
discussion by addressing the compatibility of larger model classes with smooth interpolators
that exhibit superior generalization.

In summary, the primary insight from this study is that, distribution-dependent PAC-
Chernoff bounds are a powerful tool to better understand the generalization capabilities of
(over-parameterized) interpolators.

10.1 Discussion of Limitations

A limitation of this research is its assumption of a finite model class. We believe this
limitation can be overcome by employing recently introduced PAC-Bayes-Chernoff bounds
(Casado et al., 2024). This PAC-Bayesian bound is also a distribution-dependent bound,
relying on a similar rate function. As a result, these findings could potentially be extended
to infinite model classes. However, exploring such an extension is beyond the scope of this
paper. Finally, this study has not delved into the significant role that stochastic gradient
descent (SGD) plays in identifying interpolators with minimal generalization error.

Another limitation of our work is the lack of explicit connections between the smoothness
definition introduced in this paper and other existing definitions in the literature. For
instance, smoothness is often characterized using the largest eigenvalue of the Hessian matrix
(Nesterov, 2003), the change in loss value within a perturbation radius (Keskar et al., 2017b),
or Lipschitz continuity of the loss function (Shalev-Shwartz & Ben-David, 2014). While our
notion of smoothness is tied directly to the PAC-Chernoff framework and its distribution-
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dependent complexity term, future work could explore how this concept aligns or diverges
from these established definitions. Establishing such connections could provide additional
insights into how our framework complements or generalizes existing theoretical constructs.
We have chosen to focus here on the implications of our specific definition for generalization,
leaving these broader comparisons for future research. This limitation underscores the
potential for follow-up studies to bridge our smoothness definition with the broader landscape
of smoothness concepts in machine learning theory.
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Appendix A. Experimental Settings

In this appendix we expand in the details of the conducted experiments. More precisely, the
architectures used and the hyper-parameters and learning methods of each figure.

A.1 Learning Settings for Figures

A GitHub Repository with the conducted experiments can be found in https://github.com/
Ludvins/2024_PAC-Chernoff-Bound. Regarding the experimental setting of this work, we
have mainly used a small InceptionV3 (Szegedy et al., 2016) used in Zhang et al. (2017), and
Cifar10 dataset (Krizhevsky et al., 2009). Before showing the specific specific architecture of
our small Inception, taken from Zhang et al. (2017), we need to detail some of the modules
that compose it:

1. Convolutional module: Convolutional layer, batch-normalization and ReLU activation.

2. Inception module with output channels o1×1 and o3×3: Consists on 2 different convolu-
tional layers, one with kernel 1× 1 and o1×1 output channels and another with kernel
3× 3 and o3×3 output channels. The output of this layers is then concatenated, so the
total number of output channels is o1×1 + o3×3.

3. Downsample module: Convolutional module with kernel size 3, stride 2 and padding 0
and MaxPooling with kernel size of 3 and stride 2. The outputs of these two layers is
concatenated.

With these elements, the architecture of our small InceptionV3 network is

1. Convolutional module with 96 output channels, kernel size 3, stride 1 and padding 0.

2. Inception Module with o1×1 = 32 and o3×3 = 32.

3. Inception Module with o1×1 = 32 and o3×3 = 48.
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4. DownSample Module with o3×3 = 80.

5. Inception Module with o1×1 = 112 and o3×3 = 48.

6. Inception Module with o1×1 = 96 and o3×3 = 64.

7. Inception Module with o1×1 = 80 and o3×3 = 80.

8. Inception Module with o1×1 = 48 and o3×3 = 96.

9. DownSample Module with o3×3 = 96.

10. Inception Module with o1×1 = 176 and o3×3 = 160.

11. Inception Module with o1×1 = 176 and o3×3 = 160.

12. Adaptative Average Pooling layer with kernel 7× 7.

13. Fully connected layer from 16464 to the number of classes (i.e, 10).

Where the total number of parameters of this model is 1.814.106.

Figure 2. For this experiments, all Inception models where trained using SGD with
momentum 0.9 and learning rate 0.01 with exponential decay of 0.95. All models are trained
for 30.000 iterations of batches of size 200 or until the train loss is under 0.005. These
settings are selected to ensure that the random label model converges to an interpolator.
Random cropping is employed using RandomResizeCrop function of torchvision with scale
(0.8, 1.0) and ratio (0.9, 1.1). For ℓ2 regularization, the multiplicative factor is 0.01.

Figure 3. For this figure, Standard, L2-Crop and Initial model from Figure 2 are used.
Subsets of size n = 50 of CIFAR10’s test split are used to approximate samples of the data
generating distribution and build the histograms.

Figure 6. For this figure, we used a generalization of LeNet5 (three convolutional layers
a two fully connected with ReLu activation and average pooling), where the number of
channels of the convolutional layers was parameterized by k. Precisely, the first layer had
3 input and ⌊6k⌉ output channels; the second layer ⌊6k⌉ input and ⌊16k⌉ output channels;
and the last layer ⌊16k⌉ input and ⌊120k⌉ output channels. The set of models are created
ranging k from 0.2 to 4.9 every 0.1; raising models from 7k parameters to models with 1.2M
parameters. Each of this models is then trained until the train loss is lower than 0.01 or
until the train loss has not lowered in two epochs (this only happens in the smallest models).

Figure 7. The rate function of a subset of all the models in Figure 6 is computed here.

Figure 9. The batch size is fixed to 250 and images are standardize (this was necessary
to improve learning in the MLP model). The precise MLP has 3 hidden layers with 512
units, with a total of 1.735.178 parameters. All models are trained until the interpolation
regime, that is, until the train loss is under 0.015, which, in the worst case where 20.000
iterations for the MLP. Inception models are trained using a learning rate of 0.001 whereas
MLP models use 0.1, both with 0.9 momentum and 0.95 exponential decay. Regarding the
data, D0 is CIFAR10’s test set, D1 is the result of performing random translations of 5% and
D2 considers random translations of 5% and rotations of up-to 20%. Both transformations
are computed using RandomAffine function of torchvision.
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Figure 10. The model’s specification and training setup is the same as in Figure 9.
Regarding the data, the random shuffling of the pixels was performed using a random
permutation using Numpy; the dataset was fully permuted and stores as a new dataset.

Figure 11. The model’s specification and training setup is the same as in Figure 9. D1

considers random translations of 5% and rotations of up-to 20% (the same as D2 in Figure 9).
Data-augmentation was produced using the same transformations as those that define D1.

A.2 Estimating the Cumulant Function Jθ(λ) and the Rate Function Iθ(·)
From the definition of the cummulant function Jθ(λ),

Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
= lnEν

[
p(y|x,θ)λ

]
− Eν [ln p(y|x,θ)λ] ,

it is clear that computing its true value requires access to the true data generation distribution
ν. However, in real-world problems, this distribution is unknown and innacesible.

The Machine Learning community is used to approximate this kind of quantities (such
as the expected loss L(θ)) using separate validation datasets Dval. In fact, due to the large
amount of data available in nowadays problems, using this approach is perfectly doable,
leading to

Jθ(λ) ≈ ln

 1

M

∑
(x,y)∈Dval

p(y|x,θ)λ
− 1

M

∑
(x,y)∈Dval

ln p(y|x,θ)λ .

It is important to notice that the above estimator is biased due to the first term and Jensen’s
Inequality. In fact,

EDval

ln
 1

M

∑
(x,y)∈Dval

p(y|x,θ)λ
 ≤ ln

EDval

 1

M

∑
(x,y)∈Dval

p(y|x,θ)λ


= lnEν

[
p(y|x,θ)λ

]
.

As a result, if the size of Dval is not large enough, we might end understimating the cummulant
function.

In regard of computational stability, computing the estimation in Equation (A.2) can
be computationally unstable due to the use of probabilities. We encourage the use of
log-probabilities and log-sum-exp operations as,

Jθ(λ) ≈ ln

 ∑
(x,y)∈Dval

exp(λ ln p(y|x,θ))

− lnM − 1

M

∑
(x,y)∈Dval

λ ln p(y|x,θ) .

From this, it is straight-forward to compute the log-probabilities of the model (for example
skipping the softmax layer of a NN), multiply them by λ and compute the mean and
log-sum-exp of these quantities.
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Figure 12: Illustration on the relationship between the rate function Iθ(a) (left) and the
cummulant function Jθ(λ) (right). They display the rate and the cummulant functions for
the same set of models (same experiment than Figure 2).

Once the cummulant function has being approximated, computing the rate function relies
on computing the optimal value of λ,

Iθ(a) = sup
λ>0

λa− Jθ(λ) .

In this regard, trying to optimize the value of λ doing automatic optimization resulted in a
very unstable method in our experiments. Thus, the method we are recommending and the
one we have employed is using a binary search algorithm. Fixed a range in which to optimize
lambda [λmin, λmax], a binary search algorithm has complexity O(log2(λmax − λmin)). In
fact, if (due to the nature of the problem) the needed value of λmax is too large, one might
perform the binary search in [ln(λmin), ln(λmax)], which has the same complexity but makes
it easier to consider larger values of λ.

It is clear that computing the rate function is more complex than computing only the
cummulant function (as the former requires the latter). In fact, the next result shows that it
might not be necessary to compute the rate function, as the cummulant might be enough to
characterize smoothness.

Proposition. If ∀λ ≥ 0, Jθ(λ) ≤ Jθ′(λ), then ∀a ≥ 0, we have Iθ(a) ≥ Iθ′(a).

Proof. Direct consequence of the Iθ(a) being the Legendre transform of Jθ(λ).

From this result, if a model θ has a higher cummulant function than another model θ′,
then θ is smoother than θ′ and many results apply. In fact, this is the method we recommend
to analyze whether a model is smoother than another. Figure 12 clearly illustrates this case.
Just plotting the cummulants is enough to understand which models are smoother.

Appendix B. Theorems and Proofs

B.1 The Rate Function (go back to Section 3)

Proposition 3.1 (Return). Under Assumption 1, ∀θ ∈ Θ, Iθ(·) and I−1
θ (·), are well defined.

That is, ∀a ∈ [0, L(θ)−mθ), Iθ(a) < ∞ and ∀s ∈ R+
0 , I−1

θ (s) < ∞.

Proof. First, from Assumption 1, we have that mθ ≥ 0, then ℓ(y,x,θ) ≥ 0 ∀(x,y) ∈ X ×Y .
Then, it verifies that λ(L(θ)− ℓ(y,x,θ))) ≤ λL(θ). Taking exponential and expectations,

Eν

[
eλ(L(θ)−ℓ(y,x,θ))

]
≤ Eν

[
eλL(θ)

]
.
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Lastly, the expectation on the r.h.s. is constant, leading to

Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
≤ lnEν

[
eλL(θ)

]
= λL(θ) .

As, by Assumption 1, ∀θ ∈ Θ, L(θ) < ∞ and the function Jθ(λ) is well-defined for λ > 0.
Next we need to show that the supremum over λ is reached in the definition of the rate
function. For that, we are showing that it is actually a maximum. First, we have that,

∂

∂λ
(λa− Jθ(λ)) = a− ∂

∂λ
Jθ(λ) ,

Where the second derivative is negative as ∂2

∂λ2Jθ(λ) ≥ 0 (the cumulant is convex). As a
result, when the previous derivative is zero, the maximum is reached. In fact the optimum
of λ is a λ⋆ such that a = ∂

∂λJθ(λ
⋆). Then, ∀a ∈ (0, L(θ) − mθ), we need to show that

∃λ⋆ ∈ R+. We have that ∂
∂λJθ(λ) is a continuous function, as it is combination of continuous

functions:
∂

∂λ
Jθ(λ) =

Eν [p(y|x,θ)λ ln p(y|x,θ)]
Eν [p(y|x,θ)λ]

− Eν [ln p(y|x,θ)] .

By standard properties of the cumulant generating function, we have that ∂
∂λJθ(0) = 0. On

the other had, also by standard properties of the cummulant (Herdegen, 2008, Lemma 1),
we have that

lim
λ→∞

∂

∂λ
Jθ(λ) = ess sup

(x,y)
L(θ)− ℓ(y,x,θ) = L(θ)−mθ . (12)

Thus, if ∂
∂λJθ(λ) is continuous, ∂

∂λJθ(0) = 0 and limλ→∞
∂
∂λJθ(λ) = L(θ) − mθ, then

∀a ∈ [0, L(θ)−mθ) there always exist a λ⋆ ∈ R+ such that a = ∂
∂λJθ(λ

⋆). Thus, for such
values of a the rate function is finite and well defined.

For a ≥ L(θ)−mθ, we have that the supremum is reached when λ → ∞, because Jθ(λ)
is monotonically increasing. Every a ≥ L(θ)−mθ, can be written as a = L(θ)− b, where
b ≤ mθ. Then the limit when λ → ∞ for any a ≥ L(θ)−mθ can be written as follows,

lim
λ→∞

λ(L(θ)− b)− Jθ(λ) = lim
λ→∞

−λb− lnEν

[
p(y|x,θ)λ

]
= lim

λ→∞
− lnEν

[(
p(y|x,θ)

e−b

)λ
]

= − lnEν

[
lim
λ→∞

(
p(y|x,θ)

e−b

)λ
]
= − lnEν

[
1(p(y|x,θ) = e−b

]
= − lnEν [1(ℓ(y,x,θ) = b)] = − lnPν(ℓ(y,x,θ) = b) .

If b < mθ or, equivalently, a > L(θ)−mθ, we then have Iθ(a) = ∞. And if a = L−mθ,
we then have Iθ(a) = − lnPν(ℓ(y,x,θ) = mθ), which, may be well defined or equal to ∞.

We now proceed to show that inverse rate is well defined. By definition of the inverse
rate function,

I−1
θ (s) = inf

λ≥0

s+ Jθ(λ)

λ
≤ lim

λ→∞

s+ Jθ(λ)

λ
= lim

λ→∞

Jθ(λ)

λ

Then, by L’Hôpital’s rule and Equation (12), we have
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lim
λ→∞

Jθ(λ)

λ
= lim

λ→∞
∇λJθ(λ) = L(θ)−mθ

From Assumption 1 we have that L(θ) < ∞ and mθ ≥ 0, then we deduce that ∀s ≥ 0
we have that I−1

θ (s) < ∞.

Proposition 3.4 (Return). For any fixed θ ∈ Θ and n > 0, it satisfies

lim
a→L(θ)−mθ

PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= lim

a→L(θ)−mθ

e−nIθ(a) .

Proof. It is clear from the definition of mθ := ess inf(y,x)∼ν ℓ(y,x,θ) and the rate function
Iθ(a), that the limit at both sides is 0.

B.2 The Rate Function Characterizes the Generalization of Interpolators (go
back to Section 4)

Theorem 4.1 (Return). With h.p. 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
.

Proof. By Chernoff’s Theorem 3.3, for a given θ, we have, P
(
L(θ)−L̂(D,θ) ≥ a

)
≤ e−nIθ(a).

Naming δ′ = e−nIθ(a) and re-arranging terms, a = I−1
θ

(
− 1

n ln δ′
)
. This allows us to rewrite

the first equation as
P
(
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln 1

δ′

) )
≤ δ′ .

Reversing and using an union bound over the set of models,

P
( ⋃

θ∈Θ
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln 1

δ′

) )
≤

∑
θ∈Θ

P
(
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln 1

δ′

) )
.

As we have kp different models, the r.h.s. can be rewritten as

P
( ⋃

θ∈Θ
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln 1

δ′

) )
≤ kpδ′ .

By reparameterizing the above inequality with δ′ = δk−p we have

P
( ⋃

θ∈Θ
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln kp

δ

) )
≤ δ .

Which verifies,

1− P
( ⋃

θ∈Θ
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln kp

δ

) )
≥ 1− δ .

Which is equivalent to,

P
( ⋂

θ∈Θ
L(θ)− L̂(D,θ) ≤ I−1

θ

(
1
n ln kp

δ

) )
≥ 1− δ .
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Corollary 4.2 (Return). With h.p. 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln |Θ̄|

δ

)
.

Proof. Thet proof follows the same approach as Theorem 4.1, with the union bound applied
to the models in Θ̄ rather than directly to the models in Θ. This adjustment is valid because,
when applying the union bound, we only need to consider the total number of distinct random
variables; in this case, L̂(D,θ) with D ∼ νn. Models in Θ that are not in Θ̄ define random
variables that are duplicated by definition and therefore do not need to be accounted for in
the application of the union bound.

Theorem 4.3 (Return). For any δ ∈ (0, 1) and any θ ∈ Θ, it verifies that

lim
n→∞

√
n I−1

θ

(
1
n ln kp

δ

)
=

√
2Vν(ℓ(y,x,θ)) ln

kp

δ .

Proof. Let Z̄n :=
√
n(L(θ)− L̂(D,θ)) and JZ̄n

, IZ̄n
and I−1

Z̄n
denote its cumulant, rate and

inverse rate function. Then, by properties of the cummulant, it verifies that JZ̄n
(λ) =

nJθ
(

λ√
n

)
. Using the definition of the rate function, we can deduce that

IZ̄n
(a) = sup

λ
aλ+ nJθ

(
λ√
n

)
= n sup

λ

λ√
n

a√
n
+ Jθ

(
λ√
n

)
= nIθ( a√

n
) .

Using a second order Taylor expansion over Iθ(a) around a = 0, where Iθ(0) = 0 and
∂
∂aIθ(0) = 0, we got that

Iθ( a√
n
) = 1

2
∂2

∂a2
Iθ(0)

(
a√
n

)2
+
(

a√
n

)2
h
(

a√
n

)
,

where limt→0 h(t) = 0. Furthermore, it verifies that (Ellis, 2012)

∂2

∂a2
Iθ(0) =

(
∂2

∂λ2Jθ(0)
)−1

.

From there, we have that

∂2

∂λ2
Jθ(λ) = − ∂

∂λ

Eν [e
−λℓ(y,x,θ)ℓ(y,x,θ)]

Eν [e−λℓ(y,x,θ)]

=
Eν [e

−λℓ(y,x,θ)(ℓ(y,x,θ))2]

Eν [e−λℓ(y,x,θ)]
− Eν [e

−λℓ(y,x,θ)ℓ(y,x,θ)]2

Eν [e−λℓ(y,x,θ)]2
.

Which evaluated at λ = 0, gives

∂2

∂λ2Jθ(0) = Vν(ℓ(y,x,θ)) =: σ2

Then,

lim
n→∞

IZ̄n
(a) = lim

n→∞
nIθ( a√

n
) = lim

n→∞
n
1

2
σ−2

(
a√
n

)2
+ n

(
a√
n

)2
h
(

a√
n

)
=

1

2
σ−2a2 .
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Then, as both the rate and its inverse are continuous functions, it verifies that

lim
n→∞

I−1
Z̄n

(s) =
(
lim
n→∞

IZ̄n

)−1
(s) =

√
2σ2s

By definition of the inverse rate, we got that

I−1
Z̄n

(s) = inf
λ

s+ JZ̄n
(λ)

λ
= inf

λ

s+ nJθ(
λ√
n
)

λ
=

√
n inf

λ

s
n + nJθ(

λ√
n
)

λ√
n

=
√
nI−1

θ

(
s
n

)
.

As a result,
lim
n→∞

√
nI−1

θ

(
s
n

)
= lim

n→∞
I−1
Z̄n

(s) =
√
2σ2s .

Proposition 4.4 (Return). With h.p. 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then 0 ≤ L(θ)− I−1
θ

(
1
n ln kp

δ

)
≤ ϵ . (3)

Proof. By Theorem 4.1, L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
, and, by Proposition 3.1, Iθ(a) is

well defined ∀a ∈ [0, L(θ)−mθ). Then, by Proposition 3.2, ∀b > 0, I−1
θ (b) ∈ [0, L(θ)−mθ).

In consequence, we have,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
≤ L̂(D,θ) + L(θ)−mθ .

The result follows from mθ ≥ 0, L̂(D,θ) ≤ ϵ and rearranging terms..

Proposition 4.5 (Return). For any θ ∈ Θ and θ′ ∈ Θ′,

Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ
′)) ⇐⇒ ∃β > 0 s.t. θ is β-smoother than θ′ .

Proof. Let Z̄n :=
√
n(L(θ)− L̂(D,θ)) and JZ̄n

, IZ̄n
and I−1

Z̄n
denote its cumulant, rate and

inverse rate function. Then, by properties of the cummulant, it verifies that JZ̄n
(λ) =

nJθ
(

λ√
n

)
. Using the definition of the rate function, we can deduce that

IZ̄n
(a) = sup

λ
aλ+ nJθ

(
λ√
n

)
= n sup

λ

λ√
n

a√
n
+ Jθ

(
λ√
n

)
= nIθ( a√

n
) .

Using a second order Taylor expansion over Iθ(a) around a = 0, where Iθ(0) = 0 and
∂
∂aIθ(0) = 0, we got that

Iθ( a√
n
) = 1

2
∂2

∂a2
Iθ(0)

(
a√
n

)2
+
(

a√
n

)2
h
(

a√
n

)
,

where limt→0 h(t) = 0. Furthermore, it verifies that

∂2

∂a2
Iθ(0) =

(
∂2

∂λ2Jθ(0)
)−1

= Vν(ℓ(y,x,θ))
−1 =: σ−2 .
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Then,

lim
n→∞

IZ̄n
(a) = lim

n→∞
nIθ( a√

n
) = lim

n→∞
n
1

2
σ−2

(
a√
n

)2
+ n

(
a√
n

)2
h
(

a√
n

)
=

1

2
σ−2a2 . (13)

Let us assume that Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ
′)). Then, we aim to show that there

exists β > 0 such that Iθ(a) ≥ Iθ′(a) ∀a ≤ β. For a fixed value of a, by the limit in
Equation 13, we got that for any ϵ > 0, there exists n0(a), n

′
0(a) > 0 such that∣∣nIθ( a√

n
)− 1

2Vν(ℓ(y,x,θ))
−2a2

∣∣ < ϵ ∀n > n0(a) ,

and ∣∣nIθ′( a√
n
)− 1

2Vν(ℓ(y,x,θ
′))−2a2

∣∣ < ϵ ∀n > n′
0(a) .

Let ϵ = Vν(ℓ(y,x,θ))
−2a2 − Vν(ℓ(y,x,θ

′))−2a2 ≥ 0 and n⋆
0(a) = max{n0(a), n

′
0(a)}. Then,

Iθ( a√
n
) ≥ Iθ′( a√

n
) ∀n > n⋆

0(a) .

This implies that Iθ(c) ≥ Iθ′(c), for any c ≤ a/
√

n⋆
0(a), as there exists n = (a/c)2 verifying

c = a/
√
n. We may consider then β := supa>0{a/

√
n⋆
0(a)} > 0, which might be infinite. It

verifies that
Iθ(a) ≥ Iθ′(a) ∀a ≤ β .

Let us now assume that there exists β > 0 such that θ is β-smoother than θ′, or, equivalently
Iθ(a) ≥ Iθ′(a) ∀a ≤ β. Then,

lim
n→∞

nIθ( a√
n
) ≥ lim

n→∞
nIθ′( a√

n
) .

Using the limit in Equation 13, we got

Vν(ℓ(y,x,θ))
−2a2 ≥ Vν(ℓ(y,x,θ

′))−2a2 ,

leading to
Vν(ℓ(y,x,θ)) ≤ Vν(ℓ(y,x,θ

′)) .

Theorem 4.6 (Return). For any ϵ ≥ 0, with h.p. 1− δ over D ∼ νn, for all θ ∈ Θ ⊂ Rp

and θ′ ∈ Θ′, simultaneously,

if L̂(D,θ) ≤ ϵ and θ is I−1
θ

(
1
n ln kp

δ

)
-smoother than θ′, then, L(θ) ≤ L(θ′) + ϵ .

Proof. If θ is β-smoother than θ′, by Definition 3, ∀a ∈ (0, β] Iθ(a) ≥ Iθ′(a), where
β = I−1

θ

(
1
n ln kp

δ

)
. Then, we have that

I−1
θ

(
1
n ln kp

δ

)
≤ I−1

θ′
(
1
n ln kp

δ

)
.

As the rate function Iθ′(a) is invertible and its image lies in [0, L(θ′)−mθ′), where mθ′ ≥ 0,
due to Assumption 1, we have that I−1

θ′ (s) ∈ [0, L(θ′)−mθ′). In consequence, we also have

I−1
θ′

(
1
n ln kp

δ

)
≤ L(θ′) .
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As I−1
θ

(
1
n ln kp

δ

)
≤ I−1

θ′
(
1
n ln kp

δ

)
, it verifies I−1

θ

(
1
n ln kp

δ

)
≤ L(θ′). By the PAC-Chernoff

bound of Theorem 4.1 and because L̂(D,θ) ≤ ϵ, we have with h.p. 1− δ over D ∼ νn,

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
≤ ϵ+ I−1

θ

(
1
n ln kp

δ

)
.

Combining the last two inequalities, we have

L(θ) ≤ ϵ+ I−1
θ

(
1
n ln kp

δ

)
≤ ϵ+ L(θ′) .

The statement of the theorem directly derives from the above inequality.

B.3 Explicit Regularization (go back to Section 6)

Theorem 6.1 (Return). For any ϵ > 0, with h.p. 1− δ over D ∼ νn, |L(θ⋆
ϵ )− L(θ×

ϵ )| ≤ ϵ.

Proof. From the definitions of θ×
ϵ and θ⋆

ϵ , given by

θ⋆
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L(θ) , θ×
ϵ = argmin

θ : L̂(D,θ)≤ ϵ

L̂(D,θ) + I−1
θ

(
1
n ln kp

δ

)
,

it is clear that L(θ⋆
ϵ ) ≤ L(θ×

ϵ ). On the other hand, because for any s ≥ 0, I−1
θ (s) ∈

[0, L(θ)−mθ) (Proposition 3.2), we have that ∀θ ∈ Θ:

I−1
θ

(
1
n ln kp

δ

)
+ L̂(D,θ) ≤ L(θ) + L̂(D,θ) .

By definition of θ×
ϵ and θ⋆

ϵ ,

I−1

θ×
ϵ
( 1n ln kp

δ ) + L̂(D,θ×
ϵ ) ≤ I−1

θ⋆
ϵ
( 1n ln kp

δ ) + L̂(D,θ⋆
ϵ ) ,

which gives
I−1

θ×
ϵ
( 1n ln kp

δ ) + L̂(D,θ×
ϵ ) ≤ L(θ⋆

ϵ ) + L̂(D,θ⋆
ϵ ) ≤ L(θ⋆

ϵ ) + ϵ .

This, in combination with the PAC-Chernoff bound of Theorem 4.1 gives

L(θ×
ϵ ) ≤ I−1

θ×
ϵ
( 1n ln kp

δ ) + L̂(D,θ×
ϵ ) ≤ L(θ⋆

ϵ ) + ϵ .

From this, we deduce that, L(θ×
ϵ ) ≤ L(θ⋆

ϵ ) + ϵ. Thus, we got that L(θ⋆
ϵ ) ≤ L(θ×

ϵ ) and
L(θ×

ϵ ) ≤ L(θ⋆
ϵ ) + ϵ, finishing the proof.

Proposition 6.2 (Return). If the loss function ℓ(y,x,θ) is Lipschitz w.r.t. θ with constant
M > 0, then, for any θ0 ∈ Θ0 = {θ ∈ Θ | Vν(ℓ(y,x,θ)) = 0}, it verifies that

I−1
θ

(
1
n ln kp

δ

)
≤

√
2Ma ∥θ − θ0∥2 ,

where a = min
(
1, 1

n ln kp

δ

)
.
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Proof. If the loss is Lipschitz continuous with constant M , ∀y, x,θ ∥∇θℓ(y,x,θ)∥22 ≤ M .
Then, Jθ(λ) verifies

∥∇θJθ(λ)∥22 = || − λEνpλ [∇θℓ(y,x,θ)] + λEν [∇θℓ(y,x,θ)] ||22
≤ λ2Eνpλ

[
∥∇θℓ(y,x,θ)∥22

]
+ λ2Eν

[
∥∇θℓ(y,x,θ)∥22

]
≤ 2Mλ2 ,

where Eνpλ [∇θℓ(y,x,θ)] =
Eν [p(y|x,θ)λℓ(y,x,θ)]

Eν [p(y|x,θ)λ] . With this, we have

|Jθ(λ)− Jθ0(λ)| ≤ 2Mλ2∥θ − θ0∥22 =⇒ Jθ(λ) ≤ 2Mλ2∥θ − θ0∥22 .

Then, for any a ≥ 0, we have a+Jθ(λ)
λ ≤ a+2Mλ2∥θ−θ0∥22

λ ; where by definition of the inverse
rate we got

I−1
θ (a) ≤ a+ Jθ(λ)

λ
≤ a+ 2Mλ2∥θ − θ0∥22

λ
.

As the inequality holds for any λ ≥ 0, we take the one that minimizes the r.h.s, leading to
I−1
θ (a) ≤

√
2Ma∥θ − θ0∥2. On the other hand, I−1

θ (a) is Lipschitz with constant M as

∥∇θI−1
θ (a) ∥22 =

∥∥∥∇θJθ(λ
⋆
a)

λ⋆
a

∥∥∥2
2
≤ ∥∇θJθ(λ

⋆
a)∥22

λ⋆,2
a

≤ 2M .

In consequence, (I−1
θ

(
1
n ln kp

δ

)
− I−1

θ0
( 1n ln kp

δ ))
2 ≤ 2M ||θ − θ0||2. Which implies that

I−1
θ

(
1
n ln kp

δ

)
≤

√
2M ||θ − θ0||2. Thus, it simultaneously holds that

I−1
θ

(
1
n ln kp

δ

)
≤

√
2M ||θ − θ0||2 and I−1

θ

(
1
n ln kp

δ

)
≤

√
2M 1

n ln kp

δ ∥θ − θ0∥2 .

Corollary 6.3 (Return). Considering the log-loss, if it belongs to the exponential family with
a constant base measure, that is, there exist s : X ×Y → Rp, a : Θ → R and k ∈ R such that

ℓ(y,x,θ) := − ln p(y|x,θ) = θT s(x,y)− a(θ) + k ∀(x,y) ∼ ν ;

Then, ∀ϵ > 0, exists n0 > 0 such that ∀n > n0:∣∣∣∣I−1
θ

(
1
n ln kp

δ

)
−
√
2 1
n ln kp

δ

√
θTCovν(s(y,x))θ

∣∣∣∣ ≤ ϵ ,

where Covν(·) is the covariance w.r.t. ν of the sufficient statistics of each (x,y) sample.

Proof. Using Theorem 4.3, we got that limn→∞
√
n I−1

θ

(
1
n ln kp

δ

)
=

√
2Vν(ℓ(y,x,θ)) ln

kp

δ .
The proof concludes from the fact that using the exponential family,

Vν

(
ℓ(y,x,θ)

)
= Vν

(
θT s(y,x)− a(θ) + k

)
= θTCovν

(
s(y,x)

)
θ .
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Proposition 6.4 (Return). For any θ ∈ Θ, if the equality of Equation (5) holds, then

I−1
θ

(
1
n ln kp

δ

)
=

√
2 1
n ln kp

δ

√(
θ − θ0

)TCovν
(
∇θ ln p(y|x,θ0)

)(
θ − θ0

)
.

Proof. A second-order Taylor expansion of Jθ(λ) w.r.t. to θ centered around θ0 is

Jθ0(λ) +∇θJθ0(λ)(θ − θ0) +
1

2
(θ − θ0)

T∇θθJθ0(λ)(θ − θ0) .

By standard properties of the cumulant generating function over centered random variables,
we have Jθ0(λ) = 0. While the ∇θJθ(λ) can be expressed as,

∇θJθ(λ) = λEνpλ [∇θ ln p(y|x,θ)]− λEν [∇θ ln p(y|x,θ)] ,

where νpλ denotes νpλ(y,x) = ν(y,x)p(y|x,θ)λ
Eν [p(y|x,θ)λ] . At θ0, we have that νpλ = ν, because, by

definition, p(y|x,θ0) is constant for any (y,x). In consequence, the gradient at θ0 simplifies
as,

∇θJθ0(λ) = λEν [∇θ ln p(y|x,θ)]− λEν [∇θ ln p(y|x,θ)] = 0 .

The Hessian of the cumulant Jθ(λ) w.r.t. to θ can be written as follows:

∇θθJθ(λ) = λ2Covνpλ(∇θ ln p(y|x,θ)) + λEνpλ [∇θθ ln p(y|x,θ)]
− λEν [∇θθ ln p(y|x,θ)] .

Again, at θ0, we have that νpλ = ν, so the Hessian of the cumulant Jθ(λ) at θ0 simplifies
as, ∇θθJθ0(λ) = λ2Covν(∇θ ln p(y|x,θ0)). With this, the second order Taylor expansion of
Jθ(λ) evaluated on θ0 is λ2

2 (θ − θ0)
TCovν(∇θ ln p(y|x,θ0))(θ − θ0).

On the other hand, if, at the definition of I−1
θ (s) given in Equation (2), we replace Jθ(λ)

by the above Taylor expansion, we have that,

I−1
θ (s) = inf

λ>0

s

λ
+

λ

2
(θ − θ0)

TCovν(∇θ ln p(y|x,θ0))(θ − θ0) .

The optimal value of λ is acquired derivating the above expression w.r.t. λ, giving,

−s

λ2
+

1

2
(θ − θ0)

TCovν(∇θ ln p(y|x,θ0))(θ − θ0) = 0 .

One may show that it is a minimum by taking the second derivative. From this, the optimal

value of λ is λ⋆ =
(

2s
(θ−θ0)T Covν(∇θ ln p(y|x,θ0))(θ−θ0)

) 1
2 . Using this expression,

I−1
θ (s) = 2s

√
1

2s
(θ − θ0)TCovν(∇θ ln p(y|x,θ0))(θ − θ0) .

Evaluating the expression on s = 1
n ln kp

δ and θ = 0 concludes the proof.

Proposition 6.5 (Return). If ν(x,y) is an uniformly strictly log-concave density and ν(y|x)
is deterministic, then ∃M > 0, such that, for any θ ∈ Θ,

I−1
θ

(
1
n ln kp

δ

)
≤

√
1
n ln kp

δ

√
MEν

[∥∥∇xℓ(y,x,θ)
∥∥2
2

]
.

550



PAC-Chernoff Bounds

Proof. Using Chafaï (2004)’s Corollary 2.1 on ϕ(f) = − ln f and fθ(y,x) = e−λℓ(y,x,θ); we
get that

Jθ(λ) ≤ Mλ2 Eν

[∥∥∇xℓ(y,x,θ)
∥∥2
2

]
.

Then,

I−1
θ (s) = inf

λ>0

s+ Jθ(λ)

λ
≤ inf

λ>0

s+Mλ2Eν [|∇xℓ(y,x,θ)|2]
λ

.

Deriving w.r.t. to λ to compute the optimal value, gives λinf =
√

s
MEν [|∇xℓ(y,x,θ)|2] . Using

this,
I−1
θ (s) ≤ √

s
√

MEν [|∇xℓ(y,x,θ)|2] .

B.4 Invariances (go back to Section 7)

Proposition 7.1 (Return). Under Assumption 2, let xt denote the random variable denoting
a transformation of an input x0 using a composition of t transformations, then

MI(y ;xt) ≤ MI(y ;xt−1) ∀t ∈ N+ .

As a consequence, MI(y;x) = MI(y;xT ) ≤ MI(y;x0).

Proof. According to Assumption 2, the targets y are independent of the input xt given
xt−1, that is, y ⊥ xt|xt−1. This is a result of the fact that xt−1 d-connects xt and y in
the graph representation of Assumption 2. The result follows then by the data processing
inequality.

Proposition 7.2 (Return). Under Assumption 2, if ℓ(y,x,θ) is convex under x and
Egt [gt(x)] = x, then, ∀θ ∈ Θ, Lνt+1(θ) ≥ Lνt(θ).

Proof. By definition we have Lνt+1(θ) = Eνt+1 [ℓ(y,xt+1),θ)] = EνtEgt+1 [ℓ(y, gt+1(xt),θ)].
As ℓ(y,x,θ) is convex in x, the expectation under gt+1 can be moved inside ℓ:

Lνt+1(θ) ≥ Eνt [ℓ(y,Egt+1 [gt+1(xt)],θ)] .

Given that Egt+1 [gt+1(x)] = x, we got Lνt+1(θ) ≥ Eνt [ℓ(y,xt,θ)] = Lνt(θ).

Proposition 7.3 (Return). Under Assumption 2, if the change observed in the loss after
a transformation ∆(y,x, g,θ) = ℓ(y, g(x),θ)− ℓ(y,x,θ) is statistically independent of the
loss itself, ∆(y,x, g,θ) ⊥ ℓ(y,x,θ), then

Iνt+1

θ (a) ≤ Iνt
θ (a) ∀a > 0 .

551



Masegosa & Ortega

Proof. First of all we will show that J
νt+1

θ (λ) ≥ Jνt
θ (λ); from there, the result is imme-

diate due to definition of the inverse rate. By definition, we got J
νt+1

θ (λ) = λLνt+1(θ) +
lnEνt+1 [e

−ℓ(y,xt+1,θ)], where νt+1 can be expanded leading to

J
νt+1

θ (λ) = λLνt+1(θ) + lnEνtEgt+1

[
e−λℓ(y,gt+1(xt),θ)

]
.

Using the decomposition of the loss, Jνt+1

θ (λ) = λLνt+1(θ)+lnEνtEgt+1

[
e−λ(ℓ(y,xt,θ)+∆(y,xt,gt+1,θ))

]
,

which can be written as

J
νt+1

θ (λ) = λLνt+1(θ) + lnEνt

[
e−λℓ(y,xt,θ)

]
+ lnEνtEgt+1

[
e−λ∆(y,xt,gt+1,θ)

]
.

Using Jensen’s inequality in the last term,

J
νt+1

θ (λ) ≥ λLνt+1(θ) + lnEνt

[
e−λℓ(y,xt,θ)

]
− λEνtEgt+1 [∆(y,xt, gt+1,θ)] ,

and using the definition of ∆(y,xt, gt+1,θ),

J
νt+1

θ (λ) ≥ λLνt+1(θ)+lnEνt

[
e−λℓ(y,xt,θ)

]
−λEνtEgt+1 [ℓ(y, gt+1(xt),θ)]+λEνt [ℓ(y,xt,θ)]] .

By definition of the expected loss,

J
νt+1

θ (λ) ≥ λLνt+1(θ) + lnEνt [e
−λℓ(y,xt,θ)]− λLνt+1(θ) + λLνt(θ)

= lnEνt [e
−λℓ(y,xt,θ)] + λLνt(θ) = Jνt

θ (λ) .

From this inequality and by considering standard properties of the Legendre transform, we
have J

νt+1

θ (λ) ≥ Jνt
θ (λ) =⇒ Iνt+1

θ (a) ≤ Iνt
θ (a).

Proposition 7.4 (Return). Under Assumption 2, if a model θ ∈ Θ is Gt-invariant then,

Lνt+1(θ) = Lνt(θ) and Iνt+1

θ (a) = Iνt
θ (a) ∀a > 0 .

Proof. It immediately follows from the definition of model invariant (Definition 4) and the
definitions of Lνt+1(θ), Lνt(θ), Iνt+1

θ (a) and Iνt
θ .

Theorem 7.5 (Return). Under Assumption 2, it verifies that

∀θ ∈ Θ, LνT ,ℓ(θ) = Lν0,ℓG(θ) and IνT ,ℓ
θ (a) ≤ Iν0,ℓG

θ (a) ∀a > 0 .

Proof. Under Assumption 2, it is clear that

Lv0,ℓG(θ) = Eν0 [ℓG(y,x,θ))] = Eν0Eg∼h[ℓ(y, g(x),θ))] = Eν [ℓ(y,x,θ))] = LνT ,ℓ(θ) .

On the other hand, from the definition of the cummulant function, Jθ(λ) = lnEνT [e
−λℓ(y,x,θ)]+

λEνT [ℓ(y,x,θ)]. Where by definition

Jθ(λ) = lnEν0Eg∼h[e
−λℓ(y,g(x),θ)] + λEν0Eg∼h[ℓ(y, g(x),θ)] ,
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where expectations can be exchanged as

Jθ(λ) = lnEν0(x)Eν(y|x)Eg[e
−λℓ(y,g(x),θ)] + λEν0(x)Eν(y|x)Eg[ℓ(y, g(x),θ)] .

Applying Jensen’s inequality to the exponential,

Jθ(λ) ≥ lnEν0(x)Eν(y|x)

[
e−λEg [ℓ(y,g(x),θ)]

]
+ λEν0(x)Eν(y|x)Eg[ℓ(y, g(x),θ)] .

Where by definition of ℓG,

Jθ(λ) ≥ lnEν0 [e
−λ[ℓG(y,x,θ)]] + λEν0 [ℓG(y,x,θ)] = Jν0,ℓG

θ (λ) .

From this point, the inequality regarding the inverse rate is clear from the definition.

Corollary 7.6 (Return). With h.p. 1− δ over D0 ∼ νn0 , for all θ ∈ Θ, simultaneously,

if L̂ℓG(D0,θ) ≤ ϵ then
(
Iν0,ℓG
θ

)−1
( 1n ln kp

δ ) ≤ LνT ,ℓ(θ) ≤
(
Iν0,ℓG
θ

)−1
( 1n ln kp

δ ) + ϵ .

Proof. Under Assumption 2, it is clear that

Lv0,ℓG(θ) = Eν0 [ℓG(y,x,θ))] = Eν0Eg∼h[ℓ(y, g(x),θ))] = Eν [ℓ(y,x,θ))] = LνT ,ℓ(θ) .

Where it verifies that L(θ) := LνT ,ℓ(θ). Thus, the result comes from the application of
Theorem 4.1.

Proposition 7.7 (Return). Under Assumption 2, if the transformations G define a group
and its probability distribution h is uniform, then

L̂ℓG(DT ,θ) = L̂ℓG(D0,θ) , (10)

where D0 is any un-transformed dataset and DT is the corresponding transformed dataset
obtained by applying a transformation g ∼ h to each of the samples in D0.

Proof. On one hand, by definition of ℓG it verifies that

L̂ℓG(DT ,θ) =
1

n

∑
i

Eg′∼h[ℓ(yi, g
′(xi),θ)] =

1

n

∑
i

∫
h(g′)ℓ(yi, g

′(gi(x0,i)),θ) dg
′ .

As the set of transformations define a group, for each transformation gi that generated each
input, there exists g−1

i . Furthermore, there exists l := g′ ◦ gi ∈ G1 such that g′ = l ◦ g−1
i .

Thus,

L̂ℓG(DT ,θ) =
1

n

∑
i

∫
g′=l◦g−1

i

h(l ◦ g−1
i )ℓ(yi, l ◦ g−1

i ◦ gi(x0,i),θ) dg′ .

Then, using a change of variables

L̂ℓG(DT ,θ) =
1

n

∑
i

∫
l
h(l ◦ g−1

i )ℓ(yi, l(x0,i),θ) dl .
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As h is uniform h(l ◦ g−1
i ) = h(l),

L̂ℓG(DT ,θ) =
1

n

∑
i

∫
l
h(l)ℓ(yi, l(x0,i),θ)dl = L̂ℓG(D0,θ) .

Proposition 7.8 (Return). Given an un-transformed dataset D0, for any transformed dataset
DT derived from D0 under Assumption 2, if mθ := ess inf(x,y)∼νT ℓ(y, g(x),θ) ∀g ∈ G, and
∀g ∈ G, ∃g−1 ∈ G. Then, it verifies that

∀θ ∈ Θ L̂ℓG(DT ,θ) = mθ ⇐⇒ L̂ℓ(D0,θ) = mθ .

Proof. First of all, by definition we got that mθ = ess inf(x,y)∼νT ℓ(y,x,θ). Then, it verifies
that

L̂ℓG(DT ,θ) = mθ ⇐⇒ ℓG(y,x,θ) = ess inf
(x,y)∼νT

ℓ(y,x,θ) ∀(x,y) ∈ DT .

Thus, by definition of ℓG:

L̂ℓG(DT ,θ) = mθ ⇐⇒ Eg[ℓ(y, g(x),θ)] = ess inf
(x,y)∼νT

ℓ(y,x,θ) ∀(x,y) ∈ DT .

Now, using that ess inf(x,y)∼νT ℓ(y, g(x),θ) = mθ ∀g ∈ G, reaching the essential infimum in
expectation means all the losses inside the expectation reach such infimum:

L̂ℓG(DT ,θ) = mθ ⇐⇒ ℓ(y, g(x),θ) = ess inf
(x,y)∼νT

ℓ(y,x,θ) ∀g ∈ G,∀(x,y) ∈ DT .

Using that for every (x0,y) ∈ D0 exists g′ ∈ G associated to that input such that x = g′(x0)
and that

L̂ℓG(DT ,θ) = mθ ⇐⇒ ℓ(y, g ◦ g′(x0),θ) = ess inf
(x,y)∼νT

ℓ(y,x,θ) ∀g ∈ G,∀(x0,y) ∈ D0 .

Then, using that there exists g′−1 ∈ G, we got that

L̂ℓG(DT ,θ) = mθ ⇐⇒ ℓ(y,x0,θ) = ess inf
(x,y)∼νT

ℓ(y,x,θ) ∀(x0,y) ∈ D0 .

As a result, the empirical loss L̂ℓ(D0,θ) is equal to mθ too.

B.5 Over-Parameterization (go back to Section 8)

Theorem 8.1 (Return). For any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability 1− δ
over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then p ≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.
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Proof. Due to fact that L̂(D,θ) ≤ ϵ and to Theorem 4.1, we have that with high probability
1− δ over D ∼ νn(y, x),

L(θ) ≤ ϵ+ I−1
θ

(
1
n ln kp

δ

)
.

Then, just rearranging terms as follows, we get L(θ)− ϵ ≤ I−1
θ

(
1
n ln kp

δ

)
. Applying the rate

function at both sides,

Iθ(L(θ)− ϵ) ≤ 1
n ln kp

δ =
1

n
(ln kp − ln δ) .

Then, we got ln kp ≥ nIθ(L(θ)− ϵ) + ln δ and

p ≥ nIθ(L(θ)− ϵ) + ln δ

ln k
.

As L⋆ ≤ L(θ) and the rate function is monotonically increasing, then

p ≥ nIθ(L(θ)− ϵ) + ln δ

ln k
≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.

Corollary 8.2 (Return). If ℓ(y,x,θ) is Lipschitz w.r.t. x with constant Lip(θ) and satisifies
a c-isoperimetry assumption, then for any ϵ ∈ (0, L⋆) and any δ ∈ (0, 1), with high probability
1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then Lip(θ) ≥
√

nd
2c(p ln k−ln δ)(L

⋆ − ϵ) .

Proof. Under the isoperimetry assumption, we have Iθ(a) ≤ da2

2cLip(θ)2
. Due to fact that

L̂(D,θ) ≤ ϵ and to Theorem 4.1, we have that with high probability 1− δ over D ∼ νn(y, x),

L(θ) ≤ ϵ+ I−1
θ

(
1
n ln kp

δ

)
.

Then, just rearranging terms as follows, we get L(θ)− ϵ ≤ I−1
θ

(
1
n ln kp

δ

)
. Applying the rate

function at both sides,

Iθ(L(θ)− ϵ) ≤ 1
n ln kp

δ =
1

n
(ln kp − ln δ) .

Then, we got ln kp ≥ nIθ(L(θ)− ϵ) + ln δ and

p ≥ nIθ(L(θ)− ϵ) + ln δ

ln k
.

As L⋆ ≤ L(θ) and the rate function is monotonically increasing, then

p ≥ nIθ(L(θ)− ϵ) + ln δ

ln k
≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.

Using the upper bound over the rate function we obtained before, we got that

p ≥
n d(L⋆−ϵ)2

2cLip(θ)2
+ ln δ

ln k
.
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Re-arranging terms, √
nd(L⋆ − ϵ)2

2c(p ln k − ln δ)
≤ Lip(θ) .

Corollary 8.3 (Return). If the loss function ℓ(y,x,θ) is Lipschitz w.r.t. θ with constant
M > 0, then, for any θ0 ∈ Θ0 = {θ ∈ Θ | Vν(ℓ(y,x,θ)) = 0} ⊂ Θ, any ϵ ∈ (0, L⋆) and any
δ ∈ (0, 1), with high probability 1− δ over D ∼ νn, for all θ ∈ Θ, simultaneously,

if L̂(D,θ) ≤ ϵ then ∥θ − θ0∥2 ≥
√

n
8M(p ln k−ln δ)(L

⋆ − ϵ) .

Proof. If the loss is Lipschitz continuous with constant M , ∀y, x,θ ∥∇θℓ(y,x,θ)∥22 ≤ M .
Then, Jθ(λ) verifies

∥∇θJθ(λ)∥22 = || − λEνpλ [∇θℓ(y,x,θ)] + λEν [∇θℓ(y,x,θ)] ||22 ≤ 2Mλ2 . (14)

where Eνpλ [∇θℓ(y,x,θ)] =
Eν [p(y|x,θ)λℓ(y,x,θ)]

Eν [p(y|x,θ)λ] . With this, we have

|Jθ(λ)− Jθ0(λ)| ≤ 2Mλ2∥θ − θ0∥22 =⇒ Jθ(λ) ≤ 2Mλ2∥θ − θ0∥22 .

Then, for any a ≥ 0, we have by definition of the rate function that

Iθ(a) ≥ aλ− Jθ(λ) ≥ aλ− 2Mλ2∥θ − θ0∥22 .

As the inequality holds for any λ > 0, maximizing it raises λ⋆ = a
4M∥θ−θ0∥22

. Thus,

Iθ(a) ≥ aλ− Jθ(λ) ≥ a
a

4M∥θ − θ0∥22
− 2M

a2

(4M∥θ − θ0∥22)2
∥θ − θ0∥22 =

a2

8M∥θ − θ0∥22
.

Due to fact that L̂(D,θ) ≤ ϵ and to Theorem 4.1, we have that with high probability 1− δ
over D ∼ νn(x,y), L(θ) ≤ ϵ + I−1

θ

(
1
n ln kp

δ

)
. Then, just rearranging terms as follows, we

get L(θ)− ϵ ≤ I−1
θ

(
1
n ln kp

δ

)
. Applying the rate function at both sides,

Iθ(L(θ)− ϵ) ≤ 1
n ln kp

δ =
1

n
(ln kp − ln δ) .

Then, we got ln kp ≥ nIθ(L(θ)− ϵ) + ln δ and p ≥ nIθ(L(θ)−ϵ)+ln δ
ln k . As L⋆ ≤ L(θ) and the

rate function is monotonically increasing, then

p ≥ nIθ(L(θ)− ϵ) + ln δ

ln k
≥ nIθ(L⋆ − ϵ) + ln δ

ln k
.

Using the upper bound over the rate function we obtained before, we got that

p ≥
n (L⋆−ϵ)2

8M∥θ−θ0∥22
+ ln δ

ln k
=⇒ (L⋆ − ϵ)

√
n

8M(p ln k − ln δ)
≤ ∥θ − θ0∥2 .
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Corollary 5.2 (Return). Let Θ ⊂ Θ′ be two nested model classes with p < p′ parameters
respectively. For any ϵ > 0, with h.p. 1 − δ over D ∼ νn, for any θ′ ∈ Θ′, θ ∈ Θ,
simultaneously,

L̂(D,θ′) ≤ ϵ, L̂(D,θ) ≤ ϵ and L(θ′) + ϵ < L(θ)

⇓
θ is not I−1

θ

(
1
n lnkp

′

δ

)
-smoother than θ′ .

Proof. We can apply Theorem 4.1 on θ assuming that θ ∈ Θ′, because we have that Θ ⊂ Θ′.
In consequence, with h.p., we have

L(θ) ≤ L̂(D,θ) + I−1
θ

(
1
n ln kp

′

δ

)
Using the fact that L̂(D,θ) ≤ ϵ, and that the inverse rate is bounded by the expected loss,
we arrive to the following inequality

L(θ) ≤ ϵ+ I−1
θ

(
1
n ln kp

′

δ

)
≤ ϵ+ L(θ)

The same reasoning applies for θ′:

L(θ′) ≤ ϵ+ I−1
θ′

(
1
n ln kp

′

δ

)
≤ ϵ+ L(θ′)

Using the theorem’s premise, L(θ′) + ϵ < L(θ), we can chain the last two h.p. upper bounds.
And note that we can do that with no extra cost, as both apply on the same bigger model
class Θ′. That is, it is the same upper bound, which holds simultaneously for all models
within Θ′, used on two different models θ and θ′. Then, we have,

I−1
θ′

(
1
n ln kp

′

δ

)
< I−1

θ

(
1
n ln kp

′

δ

)
.

Naming a = I−1
θ

(
1
n ln kp

′

δ

)
, such that 1

n ln kp
′

δ = Iθ(a), we got that

I−1
θ′ (Iθ(a)) < I−1

θ (Iθ(a)) = a .

Applying Iθ′(·) at both sides:

Iθ′(I−1
θ′ (Iθ(a))) = Iθ(a) < Iθ′(a) .

Then, we can negate the inverse statement using ¬ notation as ¬
[
Iθ(a) ≥ Iθ′(a)

]
. Then we

have that θ is not β-smoother than θ′ for any β ≥ a. Which is equivalent to say that, θ is
not β-smoother than θ′ for any β such that Iθ(β) ≥ 1

n ln kp
′

δ .

Theorem 5.1 (Return). Let Θ ⊂ Θ′ be two nested model classes with p < p′ parameters
respectively. For any ϵ > 0, with h.p. 1 − δ over D ∼ νn, for any θ′ ∈ Θ′, θ ∈ Θ,
simultaneously

if L̂(D,θ′) ≤ ϵ , L̂(D,θ) ≤ ϵ and θ′ is I−1
θ′

(
1
n ln kp

′

δ

)
-smoother than θ

⇓
L(θ′) ≤L(θ) + ϵ .

557



Masegosa & Ortega

Proof. If θ′ is β-smoother than θ, by Definition 3, ∀a ∈ (0, β] Iθ′(a) ≥ Iθ(a) where β =

I−1
θ′

(
1
n ln kp

′

δ

)
. Then, we have that I−1

θ′ (s) ≤ I−1
θ (s) for s = Iθ′(β) = Iθ′

(
I−1
θ′

(
1
n ln kp

′

δ

))
=

1
n ln kp

′

δ . Thus,

I−1
θ′

(
1
n ln kp

′

δ

)
≤ I−1

θ

(
1
n ln kp

′

δ

)
≤ L(θ) .

Where we used that the inverse rate is upper bounded by L(θ). By Theorem 4.1, because
L̂(D,θ) ≤ ϵ, we have with h.p. 1− δ over D ∼ νn,

L(θ′) ≤ L̂(D,θ′) + I−1
θ′

(
1
n ln kp

′

δ

)
≤ ϵ+ I−1

θ

(
1
n ln kp

′

δ

)
.

By combining the last two inequalities, we have

L(θ′) ≤ ϵ+ I−1
θ′

(
1
n ln kp

′

δ

)
≤ ϵ+ L(θ) .
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