
Journal of Artificial Intelligence Research 82 (2025) 389–431 Submitted 09/2024; published 01/2025

Forgetting in Abstract Argumentation:
Limits and Possibilities

Ringo Baumann baumann@informatik.uni-leipzig.de
Universität Leipzig, Germany
ScaDS.AI, Dresden/Leipzig, Germany

Matti Berthold berthold@informatik.uni-leipzig.de
ScaDS.AI, Dresden/Leipzig, Germany

Dov Gabbay dov.gabbay@kcl.ac.uk

Odinaldo Rodrigues odinaldo.rodrigues@kcl.ac.uk

King’s College London, UK

Abstract

The topic of forgetting, which loosely speaking means losing, removing, or even hiding
some variables, propositions, or formulas, has been extensively studied in the field of
knowledge representation and reasoning for many major formalisms. In this article, we
convey this topic to the highly active field of abstract argumentation. We provide an
in-depth analysis of desirable syntactical and/or semantical properties of possible forgetting
operators. In doing so, we included well-known logic programming conditions, such as strong
persistence or strong invariance. Further, we argue that although abstract argumentation
and logic programming are closely related, it is not possible to reduce forgetting in abstract
argumentation to forgetting in logic programming in a straightforward manner. The analysis
of desiderata, adapted to the specifics of abstract argumentation, includes implications
among them, individual and collective satisfiability, and identifying inherent limits for a set
of prominent semantics. Finally, we conduct a case study on stable semantics incorporating
concrete forgetting operators.

1. Introduction

The notion of forgetting is central to knowledge representation and reasoning and has been
extensively studied in several major formalisms, such as classical logic, logic programming,
and belief change (Gonçalves, Knorr, & Leite, 2016a; Delgrande, 2017; Eiter & Kern-Isberner,
2019). Loosely speaking, forgetting is about losing or removing some variables, propositions,
or formulas while minimizing the loss of informational content incurred during the process.
This natural human ability can be unintentional or deliberate and plays an important role
in many cognitive processes. In reasoning, it can be exploited to focus attention by omitting
less relevant information and make the process more efficient, but forgetting is also important
in query answering, decision making, reasoning about actions, and belief change, amongst
others (see (Lang, Liberatore, & Marquis, 2003) for more details).

An excellent survey of the literature of forgetting can be found in (Eiter & Kern-Isberner,
2019), where Eiter and Kern-Isberner identify two main interpretations by which it can
be accomplished. “Type 1” forgetting involves the removal of atoms from the language
of a theory, such that it can no longer represent or infer certain concepts (Lin & Reiter,
1994; Lang et al., 2003; Gonçalves et al., 2016a). “Type 2” forgetting is about the removal

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.



Baumann, Berthold, Gabbay & Rodrigues

of information from a theory, making it impossible to derive some consequences from it.
Notably, a representative of type 2 forgetting in a logical setting is the well-known AGM
theory for belief revision and contraction (Alchourrón, Gärdenfors, & Makinson, 1985;
Gärdenfors, 1988; Rodrigues, Gabbay, & Russo, 2011). This theory is presented in terms of
postulates expressing desiderata for the belief change operations. These postulates constrain
the relationship between logical theories before and after the operations, stipulating minimal
rational requirements for the operations.

Abstract argumentation frameworks (AFs) (Dung, 1995; Baroni, Gabbay, Giacomin, &
van der Torre, 2018) were introduced to model important aspects of non-monotonic reasoning
and debate, and thus they also play a prominent role in the knowledge representation
literature. An AF is a tuple (A,R), where A is a set of (atomic) arguments and R ⊆ A ×A
is an attack relation between arguments. Naturally, one may wonder how forgetting can be
performed in AFs. A natural approach is to attempt to reuse existing forgetting results from
other formalisms. For example, we can apply the results of forgetting in logic programming
by translating an AF into a logic program (LP), performing the operation there, and
then translating the results back, if possible. Yet, as we shall see, forgetting in abstract
argumentation cannot be reduced to forgetting in logic programming due to limits regarding
the inversion of the standard translation (Strass, 2013) as well as differences in the expressive
power between LPs and AFs (Eiter, Fink, Pührer, Tompits, & Woltran, 2013; Dunne,
Dvořák, Linsbichler, & Woltran, 2015). Nevertheless, we draw a lot of inspiration from
logic programming and convey many essential properties such as strong persistence or
strong invariance (Knorr & Alferes, 2014; Gonçalves et al., 2016a) to the realm of abstract
argumentation.

A purely syntactical interpretation of forgetting is often too simplistic as it disregards the
acceptability of arguments before and after the operation. Most of what we can say about
such a syntactical approach is concerned with what the initial argumentation framework
looks like after the operation of forgetting. However, from the semantical point of view, we
can interpret forgetting as the suppression of the acceptability of one or more arguments.
Although this can obviously be achieved by simply syntactically modifying the argumentation
graph, for example, by removing unwanted arguments, in more realistic scenarios, simply
denying the existence of some argument(s) may not be possible. In such cases, a subtler,
more tactical removal is necessary, perhaps even by introducing counter-arguments. All of
this may affect the acceptance of other arguments, so in practice we need to consider how an
argumentation framework is interpreted under a specific argumentation semantics (i.e., its
“extensions” under the semantics), whether or not the argument(s) to be forgotten belong to
some (or all) of the extensions, and finally the actual intention of the operation.

Let us start with a motivating example highlighting different aspects of forgetting.

Example 1. Consider the scenario where Antoine celebrates his birthday and wants to plan
the food and drinks to be served at his party. There will be either hare (h), salmon (s),
or cheese-and-potato pie (cpp). For drinks, Antoine will offer either red wine (rw), white
wine (ww), or orange juice (oj). It goes without saying that he will not serve red wine with
salmon, nor white wine with the cheesy option. Antoine’s daughter has a pet rabbit (pr) and
therefore strongly opposes eating hare. The scenario may be represented by the argumentation
framework below.

390



Forgetting in Abstract Argumentation: Limits and Possibilities

pr h

s

cpp

rw

ww

oj

Under the stable semantics there are four different culinary outcomes:

E0 = {{pr, s,ww},{pr, s, oj},{pr, cpp, rw},{pr, cpp, oj}}

Since Antoine’s daughter is certainly attending his party, in no scenario will she even
consider hares as part of the conversation. The hare option (and the existence of the pet
rabbit) are straightforwardly discarded yielding the new argumentation framework below. In
other words, these arguments and their respective attacks are syntactically removed (see s1
in Section 4), but the relationships between the remaining arguments are preserved.

s

cpp

rw

ww

oj

We are now left with the four outcomes (stable extensions) below:

E1 = {{s,ww},{s, oj},{cpp, rw},{cpp, oj}}

There are, however, more complicated considerations to be made, depending on whether
some of Antoine’s friends are also attending. Benita is currently pregnant and will not drink
alcohol. From her point of view, she wants the wine options excluded from the outcomes in
E1 above (see e1 in Section 4):

E2 = {{s},{s, oj},{cpp},{cpp, oj}}

In E2, the outcomes of the forgetting operation are the same as in E1, except that we
ignore the forgotten arguments (with wine) in each extension. This type of extensional
forgetting is not always possible as we will see.

Another friend of Antoine, who shall remain anonymous, has a rather strict opinion
against alcohol. If wine is being served, he will not attend the party at all. This person
simply disregards all extensions in E1 that include red or white wine. Therefore, there are
only two potential scenarios in which he attends the party (see e4 in Section 4):

E3 = {{s, oj},{cpp, oj}

To provide a systematic analysis of these possibilities, our methodology follows the
approach outlined in (Alchourrón et al., 1985), stipulating desiderata for the forgetting
operation. The main idea is that one can focus on combinations of these desiderata to
characterize the desired properties of a specific operation to be defined. To facilitate their use,
we then classify our desiderata under specific aspects related to, for example, the magnitude
of change to the argumentation framework, the relationship between its extensions before

391



Baumann, Berthold, Gabbay & Rodrigues

and after the operation, the acceptability statuses of the arguments under credulous and
skeptical reasoning modes, and so on.

In this process, questions that naturally arise include the relationship between the
desiderata and whether specific combinations are realisable under a particular semantics.
As it turns out, the satisfiability of certain desiderata imply or prevent the satisfiability
of others, and as a result they can be naturally arranged by strength and also checked
for compatibility under specific semantics. Our investigation of these issues covered seven
well-known argumentation semantics, namely stage, stable, semi-stable, preferred, grounded,
ideal and eager semantics.

To summarise, our contributions are as follows:

• We postulate, investigate and classify a total number of 25 syntactical and/or exten-
sional desiderata for potential forgetting operation and establish dependencies between
them.

• We then investigate the individual as well as the combined satisfiability of single or
promising combinations of desiderata, respectively. This means, we tackle the question
whether there are forgetting operators at all for the semantics under consideration.

• We further shed light on the issue simultaneous vs. iterative forgetting. The analysis
shows that no clear statement can be made, as sometimes simultaneous and sometimes
iterative forgetting yields a more compact output.

• Finally, we provide three concrete constructions regarding stable semantics performing
forgetting w.r.t. one of the most central extensional desideratum, namely removing
extensions that overlap with forgotten arguments.

In doing so, the article significantly expands upon the preliminary investigations in
(Baumann, Gabbay, & Rodrigues, 2020; Baumann & Berthold, 2022) and provides the first
comprehensive overview of forgetting in abstract argumentation, establishing the limits and
possibilities for applying this operation. We decided to follow the lines of (Baumann &
Berthold, 2022) and consider the more general problem of forgetting entire sets of arguments,
as forgetting single arguments can be seen as a corner case. Moreover, we have introduced new
desiderata, a new construction, and provided declarative forms of the presented operators.
Additionally, we offer more detailed explanations, illustrative examples, and discussion of
related work.

The rest of the paper is organised as follows: In Section 2, we motivate the investigation
through a number of illustrating examples. Section 3 provides the necessary background
in argumentation theory as well as logic programming. In Section 4, we present the main
desiderata for forgetting operations and establish the key relationships between them.
Section 5 investigates the limits of the applicability of these desiderata to the considered
semantics by presenting satisfiability results for each. In Section 6, we provide a discussion of
the application of forgetting to the central stable semantics. Finally, in Section 7, we conclude
with a summary of the main results and outline aspects deserving further investigation.

392



Forgetting in Abstract Argumentation: Limits and Possibilities

2. Motivating Examples

In this section we present a few motivating examples showing some challenges and peculiarities
of forgetting in Dungean Frameworks.

2.1 Syntactical Forgetting of Single Arguments

It is quite surprising that the issue of how to forget single arguments has not received much
attention yet. The most straightfoward way of forgetting an argument is simply by removing
it from the argumentation framework (as considered in (Bisquert, Cayrol, de Saint-Cyr, &
Lagasquie-Schiex, 2011)). Whilst such a syntactical approach obviously guarantees that the
extensions of the resulting AF will not contain the argument, it leaves the precise semantical
relationship between the input and output frameworks unclear.

The following examples show some undesired effects of the syntactical removal of single
arguments and some possible alternatives. For precise definitions of argumentation semantics
and reasoning modes, please refer to Section 3.1. Let F = (A,R) be an AF, x be a single
argument and X a set of arguments. For notational convenience we use Fx (respectively,
FX) to denote the AF F restricted to A∖ {x} (respectively, A∖X). This means, Fx (FX) is
obtained from F by syntactically deleting x (any argument in X) and all edges involving x
(arguments in X).

Example 2 (Forget x from Extensions). Consider the AF F below, whose preferred exten-
sions are {x, b} and {x, c}. The syntactical removal of x from F guarantees the semantical
removal of x as well, since Fx’s sole preferred extension is empty. However, we end up losing
b and c as well from F’s preferred extensions.

x

a1

a2F ,Fx ∶
a3

b

c

a2F{x,a1} ∶
a3

b

c

If we were to delete the set of arguments X = {x, a1} instead, we would end up precisely with
the “semantical” removal of x from F’s preferred extensions, namely {b} = {x, b} ∖ {x} and
{c} = {x, c} ∖ {x} (namely, FX ’s preferred extensions). Confer Extensional Desiderata in
Section 4 for more information.

Example 3 (Forget x from Sceptical Acceptance). F’s sole preferred extension in the AF
below is {a, x, d1, d3}, and hence the arguments a, x, d1, and d3 are all sceptically accepted
under the preferred semantics. The syntactical removal of x does not preserve any sceptical
acceptance at all since Fx’s sole preferred extension is empty.

aF ,Fx ∶
b1

b2

x c d1 d2 d3

b1

b2

xFa ∶ c d1 d2 d3

Now consider the AF Fa instead, obtained by the deletion of the argument a from F. Fa

still allows us to forget x semantically, since its preferred extensions are {b1, d1, d3} and

393



Baumann, Berthold, Gabbay & Rodrigues

{b2, d1, d3}. Notice that unlike Fx, Fa does preserve the sceptical acceptances of d1 and d3.
See Reasoning Desiderata in Section 4 for properties dealing with different acceptance modes.

2.2 Iterative Forgetting

The next issue is concerned with forgetting multiple arguments. One natural approach for
forgetting a set of arguments is to iteratively apply an already existing forgetting operator
for single arguments.

Example 4 (Forget X in Different Orders). Consider the AF F below. It is easy to see that
F ’s stable extensions are stb(F) = {{x, b, e},{a, c, d},{a, c, e}}. Now suppose we would like to
forget the set of arguments X = {x, b}. One potential reasonable expectation for the forgetting
operation is that we end up with an AF F ′ whose extensions do not include any extension
overlapping with a former stable extension of F containing x or b (confer Desideratum e4 in
Section 4). This means, we are looking for an AF F ′ with stb(F ′) = {{a, c, d},{a, c, e}} =D.

cF ∶

b

x

a

d e

In (Baumann et al., 2020, Algorithm 1, Example 4) an operator f for forgetting single
arguments (respecting the Desideratum e4) was introduced. In order to forget the whole set
X we could simply iteratively apply the operation f until all elements of X are forgotten.1

Obviously, there are two options, namely forgetting x first, and then b or vice-versa. We
start with the first option, obtaining the AF f(f(F,x), b) on the right below.

cf(F,x)∶

b a

d e

n1 n2

cf(f(F,x), b)∶

a

d e

n1 n2

If we were to forget b first and subsequently x, we would obtain the following AF.

cf(F, b)∶ x

a

d e cf(f(F, b), x)∶

a

d e

Comparing the resulting frameworks reveals that both f(f(F, b), x) and f(f(F, b), x) pos-
sess the same desired set of stable extensions D = {{a, c, d},{a, c, e}}. However, the two

1. Roughly speaking, the construction consists of two steps: First, the argument in question is syntactically
removed. In the second step, any newly arisen undesired extensions E are removed by adding a self-
defeating argument that is not attacked by E. More detailed information about this operator is provided
in Section 6.1. The main point of this example is the order of forgetting.

394



Forgetting in Abstract Argumentation: Limits and Possibilities

frameworks are distinctively different, with the second framework being much more compact
than the first. This shows that the order of application of the operation can play a decisive
role in the process. See Iteration Desiderata in Section 4 for properties dealing with different
orders.

2.3 Forgetting via Translation

In order to obtain reasonable forgetting operators for abstract argumentation one may
try to take advantage of results and operators from related formalisms. The area of logic
programming with its plenty of approaches to forgetting is a good candidate (cf. (Gonçalves,
Knorr, & Leite, 2016b) for an excellent overview). However, the following two examples
show that forgetting in abstract argumentation cannot be reduced to forgetting in logic
programming in a straightforward manner.

Example 5 (Limits of the Standard Translation). Consider the following AF F , whose set
of stable extensions is stb(F) = {{b, d}}. Now suppose we want to forget the argument b.
We may expect as the result of the forgetting operation an AF F ′, s.t. stb(F ′) = {{d}} (see
Desideratum e1). Note that by simply deleting b, we would end up with the AF Fb below,
whose set of stable extensions are stb(Fb) = {{a, d}}. Such a purely syntactical removal
would render acceptable the previously unaccepted argument a.

aF ,Fb ∶ b c d

Let us instead consider the standard translation2 from AFs to logic programs (LPs)
(Strass, 2013), which yields the following equivalent logic program P . Indeed P ’s only answer
set is {b, d} (see Section 3.2 for precise definitions).

P ∶ a← not b

b← not c

c← not d

d

Now if we apply the already defined forgetting operator fSP (Berthold, Gonçalves, Knorr,
& Leite, 2019) to P and b (to forget b from P ), we would obtain the program fSP (P, b) given
below.

fSP (P, b) ∶ a← notnot c

c← not d

d

As desired, fSP (P, b)’s unique answer set is {d}. Unfortunately, fSP (P, b) is a non-AF-like
LP. Therefore, in general it is not possible to simply translate back from the resulting LP to

2. Roughly speaking, for each argument a, we associate a rule where a is the head, and the body contains
all attackers of a preceded by the default negation ’not’.

395



Baumann, Berthold, Gabbay & Rodrigues

an AF. In this specific case, we can find an LP P ′ equivalent to fSP (P, b) which is indeed
AF-like:

P ′ ∶ a← not d

c← not d

d

Translating P ′ back results in the AF F ′, and indeed stb(F ′) = {{d}}, as desired.

aF ′ ∶ c d

We want to emphasize that the issue presented above, namely retranslating from logic
programs to argumentation frameworks, applies to any forgetting operator in LP and not
exclusively to fSP . The same holds true for the next problem, as the inherent limitations of
argumentation semantics cannot be ignored.

Example 6 (Representational Limits). Consider now the slightly more elaborate AF F
below, whose set of stable extensions is stb(F) = {{a, e, f},{b, f, d},{c, d, e}}.

a d

c f

b

eF ∶

Let us assume again that we want to forget the argument b (as specified by Desideratum e1).
Consequently, the expected set of extensions would be D = {{a, e, f},{f, d},{c, d, e}}. Since D
forms a ⊆-antichain, there is an LP P realising it (Eiter et al., 2013). However, we will never
find an equivalent AF-like LP P ′ since D does not satisfy the so-called tightness property
(Dunne et al., 2015) (see Section 3.1). In particular, {f, d} ∪ {e} ∉D but {e, f} ⊆ {a, e, f}
and {d, e} ⊆ {c, d, e}.

The examples above demonstrate that we may want to impose certain constraints defining
how we want the resulting AF to look like after a forgetting operation is applied. They
motivate the need for a more thorough investigation on how sets of arguments can be
forgotten from argumentation frameworks. We therefore propose several possible forgetting
desiderata, and conduct a systematic and comprehensive analysis of their relationships. We
suggest potential operations and highlight their limits. In addition, we pay special attention
to forgetting under the stable semantics firstly because it is one of the most prominent
semantics, and secondly, because it shows quite a different behaviour regarding the fulfilment
of the desiderata.

3. Background

3.1 Argumentation Theory

Syntax and Semantics Let U be an infinite background set. An abstract argumentation
framework (AF) (Dung, 1995) is a directed graph F = (A,R) with A ⊆ U representing

396



Forgetting in Abstract Argumentation: Limits and Possibilities

arguments and R ⊆ A ×A interpreted as attacks. If (a, b) ∈ R we say that a attacks b or a is
an attacker of b. Moreover, a set E defends an argument a if any attacker of a is attacked
by some argument in E. In this paper, we consider finite AFs only and use the symbol F to
denote the set of all finite AFs. Moreover, for a set E ⊆ A we use E+ for {b ∣ (a, b) ∈ R,a ∈ E}
and define E⊕ = E∪E+. Given an AF F = (A,R), we use A(F ) to refer to the set A and R(F )
to refer to the relationR. For two AFs F andG , we define the expansion of F byG, in symbols
F ⊔G , as expected: F ⊔G = (A(F)∪A(G),R(F)∪R(G)). Finally, for notational convenience
we use FX (respectively, Fx) for the AF F restricted to A(F)∖X (respectively, F restricted
to A(F)∖{x}). More formally, FX = F ∣A(F)∖X = (A(F)∖X,R(F )∩(A(F)∖X×A(F)∖X))

An extension-based semantics σ ∶ F → 22
U

is a function which assigns to any AF F a
set of sets of arguments σ(F) ⊆ 2A(F). Each set of arguments E ∈ σ(F) is considered to be
acceptable with respect to F and is called a σ-extension. The most basic requirements of an
extension are called conflict-freeness (cf ) and admissibility (ad). Other well-studied mature
semantics include complete (co), stage (stg), stable (stb), semi-stable (ss), preferred (pr),
grounded (gr), ideal (il) and eager (eg). The requirements of each semantics are summarised
below. An overview of argumentation semantics can be found in (Baroni, Caminada, &
Giacomin, 2018).

Definition 1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,

2. E ∈ad(F) iff E ∈cf (F) and E defends all its elements,

3. E ∈co(F) iff E ∈ad(F) and for any a ∈ A defended by E, a ∈ E,

4. E ∈ stg(F) iff E ∈cf (F) and for no I ∈cf (F), E⊕⊂I⊕,

5. E ∈stb(F) iff E ∈cf (F) and E⊕ = A,

6. E ∈ss(F) iff E ∈ad(F) and for no I ∈ad(F), E⊕⊂I⊕,

7. E ∈pr(F) iff E ∈co(F) and for no I ∈co(F), E ⊂I,

8. E ∈gr(F) iff E ∈co(F) and for no I ∈co(F), I ⊂E,

9. E ∈ il(F) iff E ∈ad(F), E ⊆ ⋂pr(F) and there is no I ∈ad(F) satisfying I ⊆⋂pr(F)
s.t. E ⊂ I,

10. E ∈eg(F) iff E ∈ad(F), E ⊆ ⋂ss(F) and there is no I ∈ad(F) satisfying I ⊆⋂ ss(F)
s.t. E ⊂I.

Existence, Reasoning and Expressibility A semantics σ is universally defined, if
σ(F) ≠ ∅ for any F ∈ F . If even ∣σ(F)∣ = 1 we say that σ is uniquely defined. Apart
from the stable semantics all the semantics considered in this paper are universally defined.
The grounded (Dung, 1995), ideal (Dung, Mancarella, & Toni, 2007) and eager semantics
(Caminada, 2007) are uniquely defined (cf. (Baumann & Spanring, 2015) for an overview).
Given a semantics σ, two AFs F and G are (ordinarily) equivalent w.r.t. σ, i.e. F ≡σ G,
iff σ(F ) = σ(G). Moreover, two AFs are strongly equivalent w.r.t. σ, i.e. F ≡sσ G, iff
F ⊔H ≡σ G ⊔H for any AF H (Oikarinen & Woltran, 2011; Baumann, 2012).

397



Baumann, Berthold, Gabbay & Rodrigues

With respect to the acceptability of arguments, we consider two main reasoning modes.
Given a semantics σ, an AF F , and an argument a ∈ A(F ), we say that a is credulously
accepted w.r.t. σ if a ∈ ⋃σ(F) and that a is sceptically accepted w.r.t. σ if σ(F) ≠ ∅ and
a ∈ ⋂σ(F).

We say that a set of sets E ⊆ 2U is realisable w.r.t. a semantics σ if there is an AF F s.t.
σ(F) = E . realisability under stable semantics is given if and only if i) E forms a ⊆-antichain3
and ii) E is tight (Dunne et al., 2015). Tightness is fulfilled if for all E ∈ E and a ∈ ⋃E we
have: if E ∪ {a} ∉ E then there exists an e ∈ E, s.t. (a, e) ∉ {(b, c) ∣ ∃E′ ∈ E ∶ {b, c} ⊆ E′}.
Confer the set D in Example 6 for a non-tight set.

Moreover, we will frequently use that stage, semi-stable as well as preferred semantics
satisfy I-maximality too (cf. (Baumann, 2018) for an overview).

3.2 Logic Programming

Syntax and Semantics We assume a set of propositional atoms U . A logic program P
over U is a finite set of rules of the form (Lifschitz, Tang, & Turner, 1999):

a1 ∨ . . . ∨ ak ← b1, . . . , bl, not c1, . . . , not cm, notnot d1, . . . , notnot dn.

For such a rule r let H (r) = {a1, . . . ak}, B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm} and
B−−(r) = {d1, . . . , dn}. We define U(P ) = ⋃r∈P H (r) ∪B+(r) ∪B−(r) ∪B−−(r).

Given a program P over U and a set of atoms I ⊆ U , a so-called interpretation, the
reduct of P w.r.t. I, is defined as P I = {H (r) ← B+(r) ∣ r ∈ P,B−(r) ∩ I = ∅,B−−(r) ⊆ I}.
An interpretation I is an answer set of P if I ⊧ P , and for each interpretation I ′ we have:
If I ′ ⊧ P I , then I ′ /⊂ I. The set of all answer sets of P is denoted by AS(P ). We say that
two programs P1, P2 are equivalent if AS(P1) = AS(P2) and strongly equivalent, denoted
by P1 ≡ P2, if AS(P1 ∪R) = AS(P2 ∪R) for any program R (Lifschitz, Pearce, & Valverde,
2001). Given a set V ⊆ U , the V -exclusion of a set of answer sets M, denoted M∥V , is
{X ∖ V ∣X ∈M}.

Example 7. Double negations within rule-bodies is of particular interest in the context of
forgetting. By allowing them, we are able to model nondeterministic ‘decisions’, whether
an atom is true or not, without the use of auxiliary atoms. E.g. without double nega-
tion, modelling that the weather might be good, is only possible over a loop using a sec-
ond atom: P1 ∶= {weather good ← notweather bad; weather bad ← notweather good}.
Then AS(P1) = {{weather good},{weather bad}}. On the other hand the same circum-
stance may be modelled by use of a self-cycle over one atom: P2 = {weather good ←
notnotweather good}, where AS(P2) = {∅,{weather good}}.

Programs with double negation are strictly more expressive than those without, as they
are able to realise sets of answer-sets that are not ⊆-antichains.

Forgetting in Logic Programming: Desiderata and Operators Let P be the
set of all logic programs. A forgetting operator is a (partial) function f ∶ P × 2U → P.
The program f(P,V ) is interpreted as the result of forgetting about V from P . Moreover,

3. Within the argumentation community this property is usually referred to as I-maximality (Baroni &
Giacomin, 2007).

398



Forgetting in Abstract Argumentation: Limits and Possibilities

U(f(P,V )) ⊆ U(P ) ∖ V is usually required. In the following we introduce some well-known
properties for forgetting operators (Gonçalves et al., 2016a).

Strong persistence is arguably the best known forgetting property (Knorr & Alferes,
2014). It requires that the result of forgetting about V from P , f(P,V ), is strongly equivalent
to the original program P , modulo the forgotten atoms.

(SP) f satisfies strong persistence if, for each program P and each set of atoms V , we have:
AS(f(P,V ) ∪R) = AS(P ∪R)∥V for all programs R with U(R) ⊆ U ∖ V .

Strong invariance requires that forgetting is independent of the rules not mentioning the
atoms to be forgotten.

(SI) f satisfies strong invariance if, for each program P and each set of atoms V , we have:
f(P,V ) ∪R ≡ f(P ∪R,V ) for all programs R with U(R) ⊆ U ∖ V .

Consequence persistence and its two variations are weaker forms of strong persistence
dealing with ordinary equivalence only.

(CP) f satisfies consequence persistence if, for each P and each set of atoms V :
AS(f(P,V )) = AS(P )∥V .

(wC) f satisfies strengthened consequence if, for each P and each set of atoms V :
AS(f(P,V )) ⊆ AS(P )∥V .

(sC) f satisfies weakened consequence if, for each P and each set of atoms V :
AS(f(P,V )) ⊇ AS(P )∥V .

Note that the presented desiderata are often considered for certain subclasses like disjunctive,
normal or Horn programs. Moreover, forgetting properties can also be considered for single
forgetting instances only (Berthold et al., 2019). In this article we will follow the latter
interpretation.

4. Desiderata for Forgetting Operations

Given an AF F and a set of arguments X ⊆ U , we use f(F ,X) to denote the result of
forgetting the arguments X in F . This means, we consider functions f ∶ F × 2U → F . We
define forgetting operators over AFs, such that sets of arguments are forgotten. Forgetting
a single argument x can be modelled via X = {x}. In the following we collect and define a
large number of desiderata for forgetting in abstract argumentation mainly due to (Baumann
et al., 2020; Baumann & Berthold, 2022). We say that a forgetting operator f satisfies
desideratum d w.r.t. instance (F ,X) iff f(F ,X) fulfills the specified requirement. Moreover,
the forgetting operator f satisfies desideratum d iff f satisfies d w.r.t. any instance (F ,X).
Note that the specification is usually parameterised with a particular semantics σ. Finally,
a desideratum d is called satisfiable iff there is a forgetting operator f satisfying d.

We now start with presenting different groups of desiderata. We start with requirements
that are concerned with purely syntactical changes, i.e. they impose conditions on the
existence of arguments (and/or attacks) of the resulting AF.

Syntactical Desiderata. Given an AF F , a set of arguments X and a forgetting
operator f.

399



Baumann, Berthold, Gabbay & Rodrigues

s1. A(f(F,X)) ∩X = ∅, (no arguments from X)

s2. A(f(F,X)) = A(F ) ∖X, and (precise set of arguments)

s3. f(F,X) = FX . (rigid AF)

Desideratum s1 makes explicit what is often implicitly assumed for forgetting operators
in other formalisms, namely that the arguments in X syntactically disappear. Desideratum
s2 requires additionally that no further arguments are removed. Condition s3 presents the
most strict condition as it precisely defines the outcome. Such a syntactical approach was
firstly considered in (Bisquert et al., 2011).

The next four desiderata are concerned with the arguments either contained in every
extension (sceptical acceptance) or at least in one extension (credulous acceptance).

Reasoning Desiderata. Given an AF F , a set of arguments X, a semantics σ and a
forgetting operator f.

r1. ⋂σ(f(F,X)) ∩X = ∅, (X is not sceptically accepted)

r2. ⋃σ(f(F,X)) ∩X = ∅, (X is not credulously accepted)

r3. ⋂σ(f(F,X)) = (⋂σ(F )) ∖X, and (rigid sceptically acceptance)

r4. ⋃σ(f(F,X)) = (⋃σ(F )) ∖X. (rigid credulously acceptance)

Arguably the syntactical and reasoning desiderata either describe too strictly or too
loosely what the outcome should be. For instance, in order to satisfy r1 and r2 it suffices to
syntactically remove all arguments. In contrast, to satisfy r3 or r4 the resulting AF must
entail a precise set of arguments. As a compromise between them, we suggest the following
‘mixed’ desiderata, that bridge syntactical and reasoning requirements.

Mixed Syntactical-Reasoning Desiderata. Given two AFs F and H , a set of arguments
X, a semantics σ and a forgetting operator f.

m1. ⋂σ(f(F,X)) ⊆ A(F ) ∖X,
(sceptical acceptance is included in the arguments not forgotten)

m2. ⋃σ(f(F,X)) ⊆ A(F ) ∖X,
(credulous acceptance is included in the arguments not forgotten)

m3. ⋂σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X for all AFs H with A(H) ⊆ U ∖X, and
(forgotten arguments are never sceptically accepted)

m4. ⋃σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X for all AFs H with A(H) ⊆ U ∖X.
(forgotten arguments are never credulously accepted)

Condition m1 (resp. m2) requires that, if there are new arguments added while forgetting,
they be irrelevant to sceptical (resp. credulous) reasoning. In other words, that these
arguments are purely administrative. Then m3 (resp. m4) require new arguments to be
irrelevant, even under the addition of new information.

An alternative way of imposing restrictions is to introduce dependencies between former
and new extensions. In fact, there are many different ways to relate them.

400



Forgetting in Abstract Argumentation: Limits and Possibilities

Extensionality Desiderata. Given an AF F , a set of arguments X, a semantics σ and a
forgetting operator f.

e1. σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}, (X-adjusted extension)

ewC. σ(f(F,X)) ⊇ {E ∖X ∣ E ∈ σ(F )}, (no X-adjusted extension is lost)

esC. σ(f(F,X)) ⊆ {E ∖X ∣ E ∈ σ(F )}, (no further extensions are added)

e2. σ(f(F,X) ⊔H) = {E ∖X ∣ E ∈ σ(F ⊔H)} for any H with A(H) ⊆ U ∖X,
(delete X even from any future extension)

e3⊆ . σ(f(F,X)) = {T (E) ∣ E ∈ σ(F )} with T ∶ σ(F )→ 2U and E ↦ T (E) ⊆ E ∖X,
(subsets of X-adjusted extension)

e3⊇ . σ(f(F,X)) = {T (E) ∣ E ∈ σ(F )} with T ∶ σ(F )→ 2U and E ↦ T (E) ⊇ E ∖X, and
(supersets of X-adjusted extension)

e4. σ(f(F,X)) = σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅}. (remove X-overlapping extensions)

Desideratum e1 requires that any former extension has to survive in an adjusted fashion,
namely new extensions are obtained from initial ones via deleting the arguments that have
to be forgotten. Any subsequent desiderata, apart from e4, is a variation of e1. For instance,
ewC allows for outputting additional extensions beyond the adjusted ones. In contrast, esC
demands that only adjusted extensions are are considered reasonable positions.

Desiderata e3⊆ and e3⊇ relax e1 in another direction. They require that for each former
extension E the forgetting result has an extension that is a subset (resp. superset) of E ∖X.

Finally, Desideratum e4 requires the full removal of extensions containing arguments
that have to be forgotten.

Note that desiderata ewC and esC correspond to (wC) and (sC) (as introduced in
Section 3.2), hence their name. The desiderata e1 as well as e2 could be alternatively
renamed as eCP and eSP, as (CP) and (SP) are the equivalent forgetting properties in
the context of logic programming. However, for continuity we decided to keep the original
denomination as introduced in (Baumann et al., 2020).

Next, we postulate desiderata that aim to constrain the amount of change to an AF. In
particular, the following vacuity desiderata provide conditions under which a given framework
does not require any changes.

Vacuity Desiderata. Given an AF F , a set of arguments X, a semantics σ and a
forgetting operator f.

v1. If ⋂σ(F ) ∩X = ∅, then F = f(F,X), (sceptical vacuity)

v2. If ⋃σ(F ) ∩X = ∅, then F = f(F,X), and (credulous vacuity)

v3. If A(F ) ∩X = ∅, then F = f(F,X). (argument vacuity)

In particular the initial framework is required to stay unchanged if none of the forgotten
arguments X appears in F in case of v1, or if no argument of X is sceptically (resp.
credulously) accepted in case of v2 (resp. v3).

401



Baumann, Berthold, Gabbay & Rodrigues

It is advantageous to confine the construction of a forgetting result in some way. For
comparison, some forgetting operators in logic programming have been shown to be able to
disregard rules that do not mention the atoms to be forgotten, i.e. they satisfy the discussed
property (SI). Similarly, when forgetting arguments from an AF we could require that parts
of the framework that do not stand in (close) contact to the arguments to be forgotten can
be left unchanged.

Locality Desiderata. Given an AF F , a set of arguments X, a semantics σ and a
forgetting operator f.

l1. f(F,X) ⊔H ≡σ f(F ⊔H,X) for all AFs H with A(H) ⊆ U ∖X, and
(f and ⊔ are compatible)

l2. f(F,X)⊔H ≡σ f(F ⊔H,X) for all AFs H with A(H) ⊆ U∖(X∪{a ∣ ∃x ∈X, s.t. (a, x) ∈
R(F) or (x, a) ∈ R(F)}). (less tolerant refinement of compatibility)

As shown in Example 4 there are forgetting operators where the result of forgetting
arguments iteratively highly depends on the considered ordering. Moreover, in case of
logic programs there are cases where atoms cannot be correctly forgotten iteratively in any
order (Berthold, 2022), meaning that forgetting the whole set at once is always different
from forgetting iteratively. The following desiderata describe either independence of the
forgetting order or that there is at least one reconstructing ordering.

Iteration Desiderata. Given an AF F , a set of arguments X = {x1, . . . xn} and a
forgetting operator f.

i1. for each bijection b ∶X →X: f(F,X)) = f(f(. . . f(F, b(x1)) . . . , b(xn−1)), b(xn))), and
(independence of the chosen ordering)

i2. there is a bijection b ∶X →X with f(F,X)) = f(f(. . . f(F, b(x1)) . . . , b(xn−1)), b(xn))).
(there is a reconstructing forgetting order)

4.1 Relationships between Single Desiderata

We proceed with an analysis of the dependencies between single desiderata. More precisely,
we clarify the following question, namely: Does an operator satisfy desideratum c′ w.r.t.
instance (F ,X), if the operator satisfies desideratum c w.r.t. the same instance (F ,X).

402



Forgetting in Abstract Argumentation: Limits and Possibilities

e2 s3 v1

l1 v2

e1 e4 l2 s2 i1 v3

e3⊇ r3 ewC r4 e3⊆ esC m4 i2

m2 m3 s1

m1 r2

r1

∃

∃

∃

∃

∃

Figure 1: General Relations between Desiderata. Edges are marked with ‘∃’, if the implica-
tion requires the existence of at least one extension.

Proposition 1. For σ ∈ {stg , stb, ss,pr , gr , il , eg} and conditions c and c′ in the diagram
of Figure 1, a path from c to c′ indicates that: Given an AF F and a set of arguments X,
any function f satisfying c w.r.t. (F ,X) under σ also satisfies c′ w.r.t. (F ,X) under σ.
Moreover, in case of σ ∈ {stg , stb, ss,pr} only these relationships between pairs of desiderata
hold.

Proof. Given an AF F and a set of arguments X. We start by proving the valid dependencies.
We mention that in case of stable semantics we have to be a bit more careful since it is the
only considered semantics not being universally defined. Consequently, familiar properties
like sceptical accepted arguments are credulously accepted too are no longer necessarily true
(cf. (Baumann & Spanring, 2015) for more information). If providing at least one σ-extension
is essential for the relation, we use the shorthand “∃stb”. For instance, X ⊆∃stb Y means that
the subset-relation holds under the assumption that at least one stable extension exists.

• e1 ⇒ r3: ⋂σ(f(F,X)) = ⋂{E∖X ∣ E ∈ σ(F )} = (⋂{E ∣ E ∈ σ(F )})∖X = (⋂σ(F ))∖X.

• e1 ⇒ r4: ⋃σ(f(F,X)) = ⋃{E∖X ∣ E ∈ σ(F )} = (⋃{E ∣ E ∈ σ(F )})∖X = (⋃σ(F ))∖X.

• e1 ⇒ esC, ewC: Obviously, σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )} implies σ(f(F,X)) ○ {E ∖
X ∣ E ∈ σ(F )} for each ○ ∈ {⊆,⊇}.

403



Baumann, Berthold, Gabbay & Rodrigues

• e1 ⇒ e3⊇ , e3⊆ : σ(f(F,X)) = {E ∖ X ∣ E ∈ σ(F )} implies T (E) = E ∖ X and thus,
T (E) ○E ∖X for each ○ ∈ {⊆,⊇}.

• e4 ⇒ esC: We have σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅} ⊆ {E ∖X ∣ E ∈ σ(F )}.

• esC ⇒m2: ⋃σ(f(F,X)) ⊆ ⋃{E ∖X ∣ E ∈ σ(F )} ⊆ A(F ) ∖X since for each extension
E ∈ σ(F ), E ⊆ A(F ) is implied.

• e3⊆ ⇒m2: ⋃σ(f(F,X)) ⊆ ⋃{T (E) ∣ E ∈ σ(F )} with T ∶ σ(F ) → 2U and E ↦ T (E) ⊆
E ∖X. Consequently, ⋃{T (E) ∣ E ∈ σ(F )} ⊆ ⋃{E ∖X ∣ E ∈ σ(F )} ⊆ A(F ) ∖X as
argued above.

• e2 ⇒ e1: Consider H∅ = (∅,∅).

• e2 ⇒m4: Let H be an AF with A(H) ⊆ U∖X. We have: ⋃σ(f(F,X)⊔H) = ⋃{E∖X ∣
E ∈ σ(F ⊔H)} ⊆ (A(H) ∪A(F )) ∖X.

• e2 ⇒ l1: σ(f(F,X) ⊔H) = {E ∖X ∣ E ∈ σ(F ⊔H)} = {E ∖X ∣ E ∈ σ(F ⊔H ⊔H∅)} =
σ(f(F ⊔H,X) ⊔H∅) = σ(f(F ⊔H,X))

• l1 ⇒ l2: Obviously, U ∖ (X ∪ {a ∣ ∃x ∈X, s.t. (a, x) ∈ R or (x, a) ∈ R}) ⊆ U ∖X

• r3 ⇒m1: ⋂σ(f(F,X)) = (⋂σ(F )) ∖X ⊆ A(F ) ∖X

• r4 ⇒m2: ⋃σ(f(F,X)) = (⋃σ(F )) ∖X ⊆ A(F ) ∖X

• m3 ⇒m1 and m4 ⇒m2: Consider H∅.

• m4 ⇒m3: ⋂σ(f(F,X) ⊔H) ⊆∃stb ⋃σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X

• m2 ⇒m1: ⋂σ(f(F,X)) ⊆∃stb ⋃σ(f(F,X)) ⊆ A(F ) ∖X

• m1 ⇒ r1 and m2 ⇒ r2: Obvious since (A(F ) ∖X) ∩X = ∅.

• s3 ⇒ s2: A(f(F,X)) = A(F ∣A(F )∖X) = A(F ) ∖X.

• s3 ⇒ v3: Let A(F ) ∩X = ∅. Consequently, f(F,X) = F ∣A(F )∖X = F .

• s3 ⇒ l1: We have f(F,X) ⊔H = F ∣A(F )∖X ⊔H = F ∣A(F )∖X ⊔H ∣A(H)∖X since A(H) ⊆
U∖X is assumed. Consequently, f(F,X)⊔H = F ⊔H ∣A(F ⊔H)∖X = f(F ⊔H,X) implying
f(F,X) ⊔H ≡ f(F ⊔H,X).

• s2 ⇒ s1: A(f(F,X)) ∩X = (A(F ) ∖X) ∩X = ∅.

• s2 ⇒ m4: ⋃σ(f(F,X) ⊔H) ⊆ A(f(F,X) ⊔H) = A(f(F,X)) ∪A(H) = (A(F ) ∖X) ∪
A(H) = (A(H) ∪A(F )) ∖X since for the AF H we have A(H) ⊆ U ∖X.

• r2 ⇒ r1: Obviously, ⋃σ(f(F,X)) ∩X = ∅⇒∃stb ⋂σ(f(F,X)) ∩X = ∅.

• s1 ⇒ r2: ⋃σ(f(F,X)) ∩X ⊆ A(f(F,X)) ∩X = ∅.

• v1 ⇒ v2: ⋃σ(F ) ∩X = ∅⇒∃stb ⋂σ(F ) ∩X = ∅⇒ F = f(F,X).

404



Forgetting in Abstract Argumentation: Limits and Possibilities

• v2 ⇒ v3: A(F ) ∩X = ∅⇒ ⋃σ(F ) ∩X = ∅⇒ F = f(F,X).

• s3 ⇒ i1: Desideratum s3 requires the removal of any argument (together with its
corresponding attacks) in X. Clearly, this procedure is independent of the order.

• i1 ⇒ i2: Obviously, since any bijection, and thus resulting order, does the job.

• ewC ⇒m1. ⋂σ(f(F,X)) ⊆∃stb E ∖X for some E ∈ σ(F). Since E ⊆ A(F) we are done.

Now we show that the remaining dependencies do not hold. In order to reduce the number
of proofs, we make use of the following observation. Let there be four desiderata d1, . . . , d4,
s.t. d1 ⇒ d2 and d3 ⇒ d4. If we are able to show d1 /⇒ d4, then we also have that d2 /⇒ d4
and d1 /⇒ d3. The following proofs suffice to show that the graph in Figure 1 is complete
w.r.t. to the semantics σ ∈ {stg , stb, ss,pr}.

• ewC /⇒ r2: Let σ ∈ {stg , stb, ss,pr} and F = ({a, x},∅). Consequently, σ(F ) = {{a, x}}.
Consider an operator f s.t. f(F ,{x}) = ({a, x},{(a, x), (x, a)}). Hence, σ(f(F,{x})) =
{{a},{x}}. This means, f satisfies ewC w.r.t. (F,{x}) but not r2 as x is credulously
accepted in f(F,{x}).

• ewC /⇒ r3: Let σ ∈ {stg , stb, ss,pr}. Consider the AF F = ({a, b, c, x},{(a, x), {(x, a),
(a, c), (c, a)) and a forgetting operator f, s.t. f(F ,{x}) = ({a, b, c, x}, {(a, x), (x, a),
(b, x), (x, b), (c, x), (x, c), (a, c), (c, a)}). We have σ(F ) = {{a, b},{b, c, x}} and
σ(f(F,{x})) = {{a, b},{b, c},{x}}. Thus, f satisfies ewC w.r.t. (F,{x}) since {a, b} ∖
{x} = {a, b} and {b, c, x} ∖ {x} = {b, c} are contained in σ(f(F,{x})). However, r3 is
violated as ⋂σ(f(F,{x})) = ∅ ≠ {b} = (⋂σ(F)) ∖ {x}.

• e3⊇ /⇒m2: Let σ ∈ {stg , stb, ss,pr} and F = ({a, x},∅). Consequently, σ(F ) = {{a, x}}.
Consider an operator f s.t. f(F ,{x}) = ({a, x},{(a, x), (x, a)}). Hence, σ(f(F,{x})) =
{{a},{x}}. This means, f satisfies ewC w.r.t. (F,{x}) but not m2 as x is credulously
accepted in f(F ,{x}).

• e3⊇ /⇒m3: Let σ ∈ {stg , stb, ss,pr} and F = ({a, x},∅). Consequently, σ(F ) = {{a, x}}.
Consider an operator f s.t. f(F ,{x}) = ({a, x},{(a, x)}). Hence, σ(f(F,{x})) = {{a}}.
This means, f satisfies ewC w.r.t. (F,{x}). Consider now H = ({a, b},{(b, a)}), then
σ(f(F,{x})⊔H) = {b, x}, meaning that σ(f(F,{x})⊔H)∩ {x} = {x} ≠ ∅, hence m3 is
not satisfied for (F,{x}).

• e3⊇ /⇒ r1: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and F like above. This means, σ(F ) =
{{a, x}}. Let f be the identity, i.e. f(F,{x}) = F . Hence, f satisfies e3⊇ w.r.t. (F,{x})
but not r1 as x sceptically accepted in f(F,{x}) = F .

• l1 /⇒ r1: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}, f the identity function, and F = ({x},∅).
Then, l1 is obviously satisfied for (F,{x}) (even for any instance) but r1 is not, as x is
sceptically accepted in f(F,{x}) = F .

• i1 /⇒ r1: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}, f be the identity function, and F =
({a, x},∅). Then f satisfies i1 w.r.t. (F,{x}) but not r1, as x is sceptically accepted
in f(F,{x}) = F .

405



Baumann, Berthold, Gabbay & Rodrigues

• v1 /⇒ r1: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}, f be the identity function, and F =
({a, x},∅). Then f satisfies v1 w.r.t. (F,{x}) but not r1, as x is sceptically accepted
in f(F,{x}) = F

• r3 /⇒ r2: Let σ ∈ {stg , stb, ss,pr}, F = ({a, x},{(a, x), (x, a)}) be an AF, and f be a
forgetting operator, s.t. f(F,{x}) = F . Then f satisfies r3 for (F,{x}) but not r2 as x
is credulously accepted in f(F,{x}) = F .

• m3 /⇒ r2: Let σ ∈ {stg , ss,pr}. Consider the AF F = ({x, y},{(x, y), (y, x)}) and a
forgetting operator f, s.t. f(F ,{x, y}) = F . We have σ(F) = {{x},{y}} Please note
that any considered semantics σ satisfies so-called non-interference (van der Torre &
Vesic, 2017; Baroni, Caminada, & Giacomin, 2011). This means that the semantics
of two disjoint AFs F and H is obtained via combining single extensions from F
and H . Moreover, the considered semantics σ are universally defined. Consequently,
for any H over U ∖ {x, y} we have that {x} ∪E ∈ σ(f(F,{x, y}) ⊔H) and {x} ∪E ∈
σ(f(F,{x, y})⊔H) for some E ∈ σ(H). Hence, ⋂σ(f(F,{x, y})⊔H) = ∅ showing that
m3 is satisfied w.r.t. (F ,{x, y}). In contrast, r2 is not satisfied, as both x and y are
credulously accepted σ(f(F,{x, y}))

• s1 /⇒ m1: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}, F = ({x},∅), f be a forgetting operator,
s.t. f(F,{x})) = ({a},∅). Then f satisfies s1 for (F,{x}), as the forgotten arguments
are not contained in the result, but not m1, as new arguments are introduced.

• i1 /⇒ v3: Let f be the constant forgetting operator mapping any input to G = (∅,∅).
Consider F = ({a},∅). Then f satisfies i1 w.r.t. (F,{x}), since {x} can only be
forgotten in one order. However v3 does not hold since F changed, although x does
not appear in F .

• s2 /⇒ v3: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and f a forgetting operator, s.t. f(F,X) =
(A(F )∖X,∅) for any AF F and any set X. Consider F = ({a, b},{(a, b)}). Obviously,
f satisfies s2 w.r.t. (F,{x}) as all non-forgotten arguments are still included. However,
v3 is violated since F is changed, although x does not appear in F .

• e4 /⇒ v3: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}. Consider the AF F = ({a, b},{(a, b), (b, b)})
and a forgetting operator f, s.t. f(F,{x}) = ({a},∅). We have σ(F) = σ(f(F,{x})) =
{{a}}. Hence, f satisfies e4 for (F,{x}) as there are no {x}-overlapping extensions.
However, v3 is violatd as the forgetting result and the initial framework are not
syntactically equal.

• e2 /⇒ i2: For each semantics σ ∈ {stg , stb, ss,pr , gr , il , eg} one may find two syntactically
different AFs F and G being strongly equivalent (Oikarinen & Woltran, 2011). The
proof idea is to consider such two AFs and a set of two arguments {x, y} disjoint from
A(F). The forgetting operator now maps F to G if forgetting x and y simultaneously
and results in F if forgetting only one single argument. In this way the described
operator satisfies e2 for the instance (F,{x, y}) but not i2.
For the sake of clarity we give a concrete example. Let σ = stb, F = ({a, b},{(a, a), (a, b)}).
Moreover, the forgetting operator f is defined as f(F,{x, y}) = ({a, b},{(a, a)}) = G ,
and f(F ,{z}) = F for each z ∈ U . Please note that F ≡sstb G as both have the same

406



Forgetting in Abstract Argumentation: Limits and Possibilities

stable kernels (Oikarinen & Woltran, 2011). Consequently, by definition of strong
equivalence we have: stb(f(F,{x, y}) ⊔H) = stb(G ⊔H) = stb(F ⊔H) for any AF H.
Since {x, y}∩A(F) = ∅ we have {E ∖ {x, y} ∣ E ∈ stb(F ⊔H)} = stb(F ⊔H) for any H
with A(H) ⊆ U ∖ {x, y}. Hence, desideratum e2 is fulfilled for the instance (F,{x, y}).
However, F ≠ G and F = f(f(F ,{x}),{y}) = f(f(F ,{y}),{x}) proves that i2 is violated
for (F,{x, y}).

• e4 /⇒ i2: Consider the above case e2 /⇒ i2. We will now use the same idea as well
as counterexample. We have already shown that i2 does not hold. Since F and G
are strongly equivalent they possess the same extensions. Moreover, {x, y} does not
intersect with the arguments in F and G . Consequently, no extensions contain x or y.
Hence, f satisfies e4 w.r.t. (F,{x, y}).

• e2 /⇒ v3: Again we use the idea and counterexample from e2 /⇒ i2. We have already
shown that e2 is fulfilled. Since A(F)∩ {x, y} = ∅, but F ≠ G we obtain that f violates
v3 w.r.t. (F,{x, y}).

• s2 /⇒ i2: The concrete semantics does not matter as we consider syntactical criteria.
Consider a forgetting operator f, s.t. f(F ,{z}) = (A(F) ∖ {z},∅) for each z ∈ U .
Moreover, if X is not a singleton we have f(F ,X) = (A(F)∖X,R(F )∖X ×R(F )∖X).
Consequently, for F = ({a, x, y},∅) we have and f(F,{x, y}) = ({a},{(a, a)}) but
f(f(F ,{x}),{y}) = f(f(F ,{y}),{x}) = ({a},∅). Hence, s2 is satisfied for (F,{x, y}),
but i2 is not.

• v1 /⇒ i2: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and f a forgetting operator, s.t. f(F ,X) =
(A(F) ∪ {c},R(F) ∪ {(a, c) ∣ a ∈ A(F)}) for some fresh argument c, i.e. c ∉ A(F ).
Consider now F = ({a},∅). Obviously, ⋂σ(F) = {a}. Further, we obtain f(F ,{a, x}) =
({a, c},{(a, c)}). Since ⋂σ(F) ∩ {a, x} = {a} ≠ ∅ we see that f satisfies v1 w.r.t.
(F ,{a, x}). However, according to the construction both frameworks f(f(F,{a}),{x})
and f(f(F,{x}),{a}) contain two new arguments which prevents them from coinciding
with f(F ,{a, x}). This means, i2 is violated.

• e3⊆ /⇒ ewC: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and f the constant operator mapping any
input to G = (∅,∅). Consider F = ({a},∅). Hence, σ(F ) = {{a}} and σ(f(F,{x}) =
{∅}. Since ∅ ⊆ {a} ∖ {x} we have that f satisfies e3⊆ w.r.t. (F ,{x}). Obviously, ewC

is violated as {a} ∖ {x} = {a} ∉ {∅}.

• e3⊇ /⇒ ewC: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and f the identity function mapping any
input to itself. Consider F = ({x},∅). Consequently, σ(F) = {{x}} = σ(f(F ,{x})).
Since {x} ∖ {x} = ∅ ⊆ {x} we have that f satisfies e3⊇ w.r.t. (F ,{x}). However, ewC is
violated as {x} ∖ {x} = ∅ ∉ {{x}}.

• r4 /⇒ ewC: Let us consider the semantics σ ∈ {stg , stb, ss,pr} only. Consider the
AF F = ({a, b, c, x},{(a, x), (b, x), (c, x), (x, a), (x, b), (x, c), (b, c), (c, b)}) and the for-
getting operator f with f(F,{x}) = ({a, b, c},{(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}).
Hence, σ(F ) = {{a, b},{a, c},{x}} and σ(f(F,{x})) = {{a},{b},{c}}. Consequently, f
satisfies r4 w.r.t. (F,{x}) as ⋃σ(f(F,{x})) = {a, b, c} = {a, b, c, x} ∖ {x} = (⋃σ(F)) ∖

407



Baumann, Berthold, Gabbay & Rodrigues

{x}. Moreover, we see that ewC is violated as for instance, {a, b} ∖ {x} = {a, b} ∉
{{a},{b},{c}}.

• r3 /⇒ ewC: Let σ ∈ {stg , stb, ss,pr}. Consider the F = ({a, x},{(a, x), (x, a)}) and
a forgetting operator f, s.t. f(F,{x}) = ({a, b},{(a, b), (b, a)}). We have σ(F ) =
{{a},{x}} as well as σ(f(F,{x})) = {{a},{b}}. This means, f satisfies r3 w.r.t.
(F,{x}) as ⋂σ(f(F,{x})) = ∅ = ∅ ∖ {x} = (⋂σ(F)) ∖ {x}. However, we see that ewC

is violated as for instance, {x} ∖ {x} = ∅ ∉ {{a},{b}}.

• e4 /⇒ ewC: Let σ ∈ {stg , stb, ss,pr}. Consider the AF F = ({a, b, x},{(a, b), (a, x),
(b, a), (x, a)}) and let f be a forgetting operator, s.t. f(F,{x}) = ({a},∅). We have
σ(F ) = {{a},{x, b}} and σ(f(F,{x})) = {{a}}. Consequently, f satisfies e4 w.r.t.
(F,{x}) as any extension containing x (i.e. {x, b}) is removed. However, ewC is
violated as {x, b} ∖ {x} = {b} ∉ {{a}}.

• s3 /⇒ ewC: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}. Consider the AF F = ({a, x},{(x, a)})
and let f be a forgetting operator, s.t. f(F,{x}) = ({a},∅). Consequently, f satisfies
s3 for (F,{x}) as f(F,{x}) = F{x}. Since σ(F) = {{x}} and σ(f(F,{x})) = {{a}} we
see that ewC is violated because {x} ∖ {x} = ∅ ∉ {{a}}.

• v1 /⇒ ewC: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}, F = ({x, a},{(x, a)}) and f(F,{x}) = F .
Then σ(f(F,{x})) = σ(F ) = {{x}}. f satisfies v1 for (F,{x}), as the forgetting result
is equal to the initial framework, but not ewC, as ∅ ∉ σ(f(F,{x})).

• r3 /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr}. Consider the AF F = ({a, b, c, x},{(a, x), (b, x), (c, x),
(x, a), (x, b), (x, c), (b, c), (c, b)}) and let f be a forgetting operator, s.t. f(F,{x}) =
({a, b, c},{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}). Hence, σ(F ) = {{a, b},{a, c},{x}}
and σ(f(F,{x})) = {{a},{b},{c}}. Consequently, there are no sceptically accepted
arguments in both frameworks. This means, f satisfies r3 w.r.t. (F,{x}). However,
e3⊇ is violated as there are no supersets of {a, b} nor of {b, c} in σ(f(F,{x})).

• e3⊆ /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr , gr , il , eg} and f be a constant forgetting operator
mapping any input to the empty AF G = (∅,∅). Consider the AF F = ({a},∅). Then
f satisfies e3⊆ w.r.t. (F,{x}) as ∅ ∈ σ(f(F,{x})) is a subset of {a}. However, e3⊇ is
violated since there is no superset of {a} in σ(f(F,{x})).

• ewC /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr}, F = ({a},∅) and f(F,{x}) = ({a, b},{(a, b), (b, a)}).
Then σ(F ) = {{a}} and σ(f(F,{x})) = {{a},{b}}. Consequently, f satisfies ewC for
(F,{x}), as {a} ∖ {x} = {a} ∈ σ(f(F,{x})). In contrast, e3⊇ is violated since {b} is no
superset of {a} ∖ {x}.

• r4 /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr}. Consider the AF F = ({a, b, c, x},{(a, x), (b, x),
(c, x), (x, a), (x, b), (x, c), (b, c), (c, b)}) and let f be a forgetting operator, s.t.
f(F,{x}) = ({a, b, c},{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}). Hence, σ(F ) = {{a, b},
{a, c}, {x}} and σ(f(F,{x})) = {{a},{b},{c}}. Then f satisfies r4 w.r.t. (F,{x})
since {a, b, c} = {a, b, c, x} ∖ {x}. In contrast, e3⊇ is violated since there is no map-
ping T , s.t. each set {a}, {b} and {c} is the image of exactly one E ∈ σ(F), s.t.
T (E) ⊇ E ∖ {x}. For instance, in case of {a, b} ∈ σ(F) neither {a}, {b} nor {c} is a
superset of {a, b} ∖ {x} = {a, b}.

408



Forgetting in Abstract Argumentation: Limits and Possibilities

• e4 /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr}. Consider F = ({a, b, x},{(a, x), (x, a), (a, b), (b, a)})
and let f be a forgetting operator, s.t. f(F,{x}) = ({a},∅). We have σ(F ) =
{{a},{x, b}} and σ(f(F,{x})) = {{a}}. Hence, f satisfies e4 w.r.t. (F,{x}) since
{x, b} is eliminated as required. However, e3⊇ is violated as the mapping T enforces
T ({x, b}) = {a} and {a} ⊇ {x, b} ∖ {x} = {b} does not hold.

• s3 /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}. Consider the AF F = ({a, b, x},{(x, a),
(a, b)}) and f(F,{x}) = ({a, b},{(a, b)}). We have σ(F ) = {{x, b}} and σ(f(F,{x})) =
{{a}}. The operator f satisfies s3 w.r.t. (F,{x}) as f(F,{x}) = F{x}. However, e3⊇ is
violated as the mapping T enforces T ({x, b}) = {a} and {a} ⊇ {x, b} ∖ {x} = {b} does
not hold.

• v1 /⇒ e3⊇: Let σ ∈ {stg , stb, ss,pr , gr , il , eg}. Consider the AF F = ({a, x},∅) and
f(F,{x}) = ({b, x},∅). We have σ(F ) = {{a, x}} and σ(f(F,{x})) = {{b, x}}. Conse-
quently, f satisfies v1 w.r.t. (F,{x}) trivially, as its precondition is not met (i.e. x
is sceptically accepted in F ). However, e3⊇ is violated as the mapping T enforces
T ({a, x}) = {b, x} and {b, x} ⊇ {a, x} ∖ {x} = {a} does not hold.

v1

e2 s3 v2

e4 l1 s2 i1 v3

e1 esC ewC e3⊆ r3 r4 l2 i2

e3⊇ m3 m4 s1

m1 m2

r1 r2

Figure 2: Relationships between desiderata under uniquely defined semantics

Next, we refine the previously established general relations for uniquely defined semantics.

409



Baumann, Berthold, Gabbay & Rodrigues

Proposition 2. For σ ∈ {gr , il , eg} and conditions c and c′ in the diagram of Figure 2, a
path from c to c′ indicates that: Given an AF F and a set of arguments X any function f
satisfying c w.r.t. (F,X) under σ also satisfies c′ w.r.t. (F,X) under σ. Moreover, only
these relationships between pairs of desiderata hold.

Proof. Any new dependency, i.e. ewC ⇒ e1, esC ⇒ e1, r3 ⇒ e1, r4 ⇒ e1, r1 ⇒ r2, m1 ⇒m2,
and m3 ⇒ m4 hold because the semantics σ ∈ {gr , il , eg} are uniquely defined (∗). In
particular, we can take advantage of the facts that given two unary extension-sets {E1} and
{E2}, {E1} ⊆ {E2} implies {E1} = {E2}, as well as that ⋃{E1} = ⋂{E1} = E1. The shown
implications together with results depicted in Figure 1 yield that the following pairs of
desiderata (m3,m4), (m1,m2), (r1, r2) as well as (x, y) with x, y ∈ {ewC, e1, esC, e3⊆, r3, r4}
collapse.

• ewC ⇒ e1: σ(f(F,X)) ⊇ {E ∖X ∣ E ∈ σ(F )}⇒(∗) σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}

• esC ⇒ e1: σ(f(F,X)) ⊆ {E ∖X ∣ E ∈ σ(F )}⇒(∗) σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}
In the following two cases we use σ(F) = {E}.

• r3 ⇒ e1: ⋂σ(f(F,X)) = (⋂σ(F )) ∖X = E ∖X ⇒(∗) σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}

• r4 ⇒ e1: ⋃σ(f(F,X)) = (⋃σ(F )) ∖X = E ∖X ⇒(∗) σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}
In the following three cases we use ⋂σ(f(F,X)) = ⋃σ(f(F,X)) as well as ⋂σ(f(F,X)⊔H ) =
⋃σ(f(F,X) ⊔H ) due to uniquely definedness.

• r1 ⇒ r2: ⋂σ(f(F,X)) ∩X = ∅⇒(∗) ⋃σ(f(F,X)) ∩X = ∅

• m1 ⇒m2: ⋂σ(f(F,X)) ⊆ A(F ) ∖X ⇒(∗) ⋃σ(f(F,X)) ⊆ A(F ) ∖X

• m3 ⇒ m4: ⋂σ(f(F,X) ⊔ H) ⊆ (A(H) ∪ A(F )) ∖ X for all AFs H with A(H) ⊆
U ∖X ⇒(∗) ⋃σ(f(F,X)⊔H) ⊆ (A(H)∪A(F ))∖X for all AFs H with A(H) ⊆ U ∖X

All other (non)dependencies are proved in Proposition 1.

4.2 Relationships involving Multiple Desiderata

Apart from the relationships concerning single conditions there are more complex relationships
involving sets of desiderata. In the realm of logic programming it was already shown that
(SP) is necessary and sufficient for (SI) and (CP) (Gonçalves et al., 2016a). Beside other
interesting relations we will show the analogous result for abstract argumentation (cf. Item 5
of the subsequent proposition). The following assertions are meant in the same way as
Proposition 1, that is they consider satisfiability w.r.t. instances. For example, Item 1 states
that if an operator simultaneously satisfies desiderata s2, l1 and e3⊆ w.r.t. a certain instance
(F ,X), then the operator satisfies desideratum e2 w.r.t. instance (F ,X).

Proposition 3. For any semantics σ ∈ {stg , stb}:

1. s2, l1 and e3⊆ imply e2,

2. s2, l1 and e3⊇ imply e2.

Moreover, for any τ ∈ {stg , stb, ss,pr , gr , il , eg} we have:

410



Forgetting in Abstract Argumentation: Limits and Possibilities

3. e3⊆ and e3⊇ if and only if e1,

4. esC and ewC if and only if e1,

5. e1 and l1 if and only if e2.

Proof. 1. Given an AF F and a set of arguments X ⊆ U . Let f satisfy s2, l1 and e3⊆
w.r.t. (F ,X). In order to show desideratum e2 we will first prove that condition e1 is
implied. Then, applying Item 5 of this Proposition yields e2. Desideratum e1 requires
σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}. Due to s2 we have A(f(F,X)) = A(F ) ∖X ∶= A.
Define a copy of A, i.e. a set of fresh arguments A′ = {a′ ∣ a ∈ A}, s.t. A′∩(A(F )∪X) = ∅.
Let us define the AF H = (A ∪A′,{(a, a′) ∣ a ∈ A}). By construction any argument
a ∈ A attacks its copy a′ ∈ A′. Consequently, for any extension E ∈ σ(F) we have,
E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E} ∈ σ(F ⊔H ). Vice versa, any E′ ∈ σ(F ⊔H ) can be uniquely
associated with some E ∈ σ(F), s.t. E′ = E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E}. Therefore, for both
semantics, stable and stage, we deduce for any a ∈ A: either a ∈ E′ or (its copy) a′ ∈ E′.
The same relation between extensions applies to f(F,X) and f(F,X)⊔H. Furthermore,
since f(F,X) ⊔H ≡ f(F ⊔H,X) due to l1 we may even conclude the same behaviour
regarding arguments a ∈ A for f(F ⊔H,X). More precisely, for any extension E′ ∈
σ(f(F ⊔H,X)), either a ∈ E′ or a′ ∈ E′.

(⊇) If E ∈ σ(F ), then E ∖X ∈ σ(f(F,X)).
Since E ∈ σ(F ) we deduce E∪{a′ ∈ A′ ∣ a ∈ A∖E} ∈ σ(F⊔H ). Due to e3⊆ we obtain
T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E}) ⊆ (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E}) ∖X = E ∖X ∪ {a′ ∈ A′ ∣
a ∈ A∖E} for some function T ∶ σ(F ⊔H )→ 2U and T (E ∪{a′ ∈ A′ ∣ a ∈ A∖E}) ∈
σ(f(F⊔H,X)). Assuming T (E∪{a′ ∈ A′ ∣ a ∈ A∖E}) ⊊ E∖X∪{a′ ∈ A′ ∣ a ∈ A∖E}
yields the existence of an a ∈ A, s.t. neither a ∈ T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}),
nor a′ ∈ T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}). Contradiction. Hence, T (E ∪ {a′ ∈ A′ ∣
a ∈ A ∖ E}) = E ∖ X ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}. Moreover, applying l1 justifies
E ∖X ∪ {a′ ∈ A′ ∣ a ∈ A ∖E} ∈ σ(f(F,X) ⊔H). In consideration of the one-to-one
correspondence we deduce E ∖X ∈ σ(f(F,X)) as claimed.

(⊆) If E′ ∈ σ(f(F,X)), then E′ = E ∖X for some E ∈ σ(F).
Due to condition e3⊆ we know σ(f(F,X)) = {T (E) ∣ E ∈ σ(F )} with T ∶ σ(F )→
2U and E ↦ T (E) ⊆ E ∖X. This means, there is some E ∈ σ(F), s.t. E′ ⊆ E ∖X.
Applying the former case (⊇) yields E ∖X ∈ σ(f(F,X)). Since stable as well as
stage semantics satisfy I-maximality, i.e. σ(f(F,X)) has to form a ⊆-antichain we
deduce E′ = E ∖X concluding the proof.

2. This proof is analogous to the previous one.

3. (⇐) Confer Proposition 1.
(⇒) Let F be an AF and X ⊆ U a set of arguments. Let f satisfy e3⊇ and e3⊆ w.r.t.
(F ,X). Consider now a certain extension E ∈ τ(F). Due to e3⊇ and e3⊆ we deduce
that there are two functions T1, T2 ∶ τ(F )→ 2U s.t. T1(E) ⊇ E ∖X and T2(E) ⊆ E ∖X.
Since any considered semantics satisfies I-maximality, i.e. τ(f(F,X)) has to form a
⊆-antichain we deduce T1(E) = E∖X = T2(E). Hence, τ(f(F,X)) = {E∖X ∣ E ∈ τ(F)}
as required.

411



Baumann, Berthold, Gabbay & Rodrigues

4. Obvious.

5. (⇐) Confer Proposition 1.
(⇒) τ(f(F,X) ⊔H) =(l1) τ(f(F ⊔H,X)) =(e1) {E ∖X ∣ E ∈ τ(F ⊔H)}

5. Satisfiability and Unsatisfiability of Desiderata

We now turn to the problem of satisfiability in general. More precisely, we tackle the question
whether there are forgetting operators satisfying a certain desiderata d. This means, in order
to prove an affirmative answer, one has to come up with a concrete operator satisfying d
w.r.t. any instance (F ,X). Beside some positive results we also reveal intrinsic limits of
forgetting operators in abstract argumentation.

5.1 Satisfiability of Individual Desiderata

We first show that the majority of the desiderata are satisfiable. This means, we may
find/construct operators satisfying the desideratum in question for any instance. We will
consider stable semantics in a seperate proposition as satisfiability sometimes require the
existence of extensions.

Proposition 4. Let d ∈ {e3⊇ , e3⊆ , esC, r1, r2, r3, r4, s1, s2, s3,m1,m2,m3,m4, v1, v2, v3, l1, l2, i1,
i2} and σ ∈ {stg , ss,pr , gr , il , eg}. Desideratum d is satisfiable w.r.t. semantics σ.

Proof. It suffices to show that each desideratum d ∈ {e3⊇ , e3⊆ , esC, r3, r4, v1, s3} is satisfiable
w.r.t. any instance (F,X). The satisfiability of the remaining desiderata is then implied
by Proposition 1. In the following we present concrete forgetting operators handling any
instance (F,X) in the desired way.

• e3⊇ : If σ(F) = ∅, then set f(F,X) = F . If not, define f(F,X) = (⋃E∈σ(F)E ∖X,∅).
Consequently, σ(f(F,X)) = {⋃E∈σ(F)E ∖X}. Thus, the constant function T ∶ σ(F )→
2U with E ↦ T (E) = ⋃E∈σ(F)E ∖ X satisfies T (E) ⊇ E ∖ X for any E ∈ σ(F) as
desired.

• e3⊆ : If σ(F) = ∅, then set f(F,X) = F . If not, define f(F,X) = (∅,∅). Thus, the
constant function T ∶ σ(F ) → 2U with E ↦ T (E) = ∅ satisfies T (E) ⊆ E ∖X for any
E ∈ σ(F) as required.

• esC: If σ(F) = ∅, then set f(F,X) = F . If not, just pick an arbitrary E ∈ σ(F) and
define f(F,X) = (E ∖X,∅). Obviously, σ(f(F,X)) = {E ∖X} justifying σ(f(F,X)) ⊆
{E ∖X ∣ E ∈ σ(F )}.

• r3: Consider f, s.t. if ⋂σ(F ) = ∅, then f(F,X) = ∅, else f(F,X) = ((⋂σ(F )) ∖X,∅).

• r4: Define f(F,X) = ((⋃σ(F )) ∖X,∅).

• v1: Set f(F,X) = F .

• s3: Set f(F,X) = FX .

412



Forgetting in Abstract Argumentation: Limits and Possibilities

Now we turn to stable semantics as promised.

Proposition 5. Let d ∈ {e3⊇ , e3⊆ , esC, r1, r2, r4, s1, s2, s3,m1,m2,m4, v1, v2, v3, l1, l2, i1, i2}.
Desideratum d is satisfiable w.r.t. stable semantics.

Proof. Note that the proofs presented in Proposition 4, namely d ∈ {e3⊇ , e3⊆ , esC, r3, r4, v1, s3}
is satisfiable, apply to stable semantics too. However, regarding the consequences in case of
stable semantics we have to be careful as some implications hold in case of non-collapsing
AFs only (cf. Figure 1). This means, some relations require the existence of stable extensions.
In the following we show the missing desiderata d ∈ {m1, r1, v2}.

• m1: Let f(F,X) = (∅,∅) for any instance (F,X). Hence, ⋂ stb(f(F,X)) = ∅ ⊆
A(F ) ∖X.

• r1: Using the shown satisfiability of m1 immediately yields the satisfiability of r1 w.r.t.
stable semantics (cf. Proposition 1).

• v2: Set f(F,X) = F .

In contrast to the other considered semantics we have to give up the satisfiability of r3
and m3 in case of stable semantics.

Proposition 6. Let d ∈ {r3,m3}. Desideratum d is not satisfiable w.r.t. stable semantics,
i.e. there are instances s.t. any operator fails to satisfy d.

Proof. • m3: Given an AF F , a set X and an operator f. Consider further an AF H =
({a},{(a, a)}) with some fresh argument a ∉ A(f(F,X)). Consequently, stb(f(F,X) ∪
H) = ∅ implying ⋂ stb(f(F,X) ∪H) = U . This means, ⋂ stb(f(F,X) ∪H) /⊆ (A(H) ∪
A(F )) ∖X which contradicts m3.

• r3: This impossibility is mainly due to the finite assumption. Consider the AF
F = ({x},{(x,x)}) and X = {x}. This means, stb(F ) = ∅ implying ⋂ stb(F ) = U .
Consequently, there is no forgetting operator f with ⋂ stb(f(F,X)) = U ∖ {x} as

⋂ stb(f(F,X)) is either U (in case of no stable extensions) or a finite set (in case of
non-collasping) as any extension is a subset of A(f(F,X)).

The following assertion shows a dividing line between the considered uniquely defined
and universally defined semantics. The I-maximality of the latter prevent the satisfiability
of e1 and ewC w.r.t. arbitrary inputs.

Proposition 7. Desiderata e1 and ewC are satisfiable w.r.t. semantics τ ∈ {gr , il , eg}.
However, there are instances s.t. any operator fails to satisfy e1 as well as ewC under
semantics σ ∈ {stb, stg , ss,pr}.

413



Baumann, Berthold, Gabbay & Rodrigues

Proof. Consider the uniquely defined semantics τ . For any AF F we obtain a singleton as
extension-set, i.e. τ(F ) = {E}. Define f(F,X) = (E ∖X,∅). Thus, τ(f(F,X)) = {E ∖X}
proving e1 and therefore ewC.
Consider now the remaining semantics σ and let F = ({a, x},{(a, x), (x, a)}) be a specific
AF. We obtain σ(F) = {{a},{x}}. According to ewC it must hold σ(f(F,{x})) ⊇ {∅,{a}}.
This means that σ(f(F,{x})) does not form a ⊆-antichain. Hence, no such f(F,{x}) can
exist.

We proceed with showing that there are no operators satisfying desideratum e2. This
means, for any chosen operator we may find instances violating the desired property e2.

4

Proposition 8. Desideratum e2 is not satisfiable w.r.t. semantics σ ∈ {stg , stb, ss,pr , gr , il ,
eg}.

Proof. Let us consider first the universally defined semantics σ ∈ {stg , stb, ss,pr}. We already
know that satisfiability of e2 implies the satisfiability of e1 (Proposition 1). Moreover, in
Proposition 7 we have shown that e1 is not satisfiable w.r.t. σ. Therefore, neither is e2.
Consider now the remaining semantics τ ∈ {gr , il , eg}. We fix the AF F = ({a, x},{(x, a)})
and let X = {x}. Striving for a contradiction assume the existence of an AF G = f(F,X), s.t.
for any AF H with x ∉ A(H ) we have: τ(G⊔H ) = {E∖{x} ∣ E ∈ τ(F⊔H )}. In order to obtain
a contradiction we will augment F with different AFs. Consider first H1 = ({a, b},{(a, b)}).
We have τ(F ⊔H1) = {{x, b}}. Consequently, by assumption τ(G ⊔H1) = {{b}}. For τ = gr
we already have a contradiction since if the singleton {b} is grounded in an AF, then {b}
has to be unattacked in this AF. Obviously, this is not the case for G ⊔H1.
Consider now the ideal and eager semantics. Both are based on admissibility. Hence, {b} is
admissible in G ⊔H1. This means, (b, a) ∈ R(G) as b is attacked in G ⊔H1. Please note that
a, b ∈ A(G) is implied.
Now we do the same procedure with the AF H2 = ({a, c},{(a, c)}), i.e. instead of a attacks
b we consider a attacks c. Via the same reasoning we finally obtain that a, c ∈ A(G).
Now, the decisive step. Consider the AF H3 = ({a, b, c},{(a, b)}). We already know
a, b, c ∈ A(G). Consequently, we find G ⊔H1 = G ⊔H3. However, τ (G ⊔H3) = {{x, b, c} ∖
{x}} ≠ {{b}} = τ(G ⊔H1). Contradiction!

The stable semantics is able to precisely cut off undesired extensions. No other considered
semantics shares this property.

Proposition 9. Desideratum e4 is satisfiable w.r.t. stable semantics, but not under any
semantics τ ∈ {stg , ss,pr , gr , il , eg}.

Proof. The satisfiability of e4 w.r.t. stable semantics is an immediate consequence of
Proposition 13.
Consider now the remaining semantics τ ∈ {stg , ss,pr , gr , il , eg}. In case of the AF F =
({x},∅) we obtain τ(F) = {{x}}. Hence, desideratum e4 would require the deletion of {x},
i.e. f(F , x) = ∅. This is impossible due to universal definedness of τ .

4. We mention that the original proof (cf. (Baumann et al., 2020, Proposition 4)) contained minor errors
which have now been corrected.

414



Forgetting in Abstract Argumentation: Limits and Possibilities

5.2 Satisfiability of Combinations of Desiderata

In this section we consider the satisfiability of combinations of desiderata, i.e., of whole sets
of conditions. Please note that this is not just an academic task, as for certain applications
one might be interested in satisfying several desiderata at once or, in case of inherent limits,
to satisfy as many desiderata as possible from a set of desired properties. In particular,
combinations of syntactical and semantical desiderata are quite natural requirements.

In what follows, we analyse some combinations involving extensionality conditions. Our
analysis is not exhaustive, but it serves as an illustration of how the satisfiability of specific
combinations can be investigated. We conclude the section with a summary of all satisfiability
and unsatisfiability results shown and how they can be used to determine the status of
further combinations.

Proposition 10. We have the following satisfiability results:

1. Let µ ∈ {stg , stb}. The sets {s2, l1, e3⊆} as well as {s2, l1, e3⊇} are not satisfiable w.r.t.
µ.

2. The sets {e3⊆ , e3⊇} and {esC, ewC} are satisfiable for each semantics τ ∈ {gr , il , eg},
but not satisfiable w.r.t. semantics σ ∈ {stg , stb, ss,pr}.

Proof. 1. Let µ ∈ {stg , stb}. According to Items 1 and 2 of Proposition 3 we have that
{s2, l1, e3⊆} as well as {s2, l1, e3⊇} imply e2. The latter requirement is not satisfiable
due to Proposition 8. Hence, both sets are not satisfiable under semantics µ.

2. Given σ ∈ {stb, stg , ss,pr} and τ ∈ {gr , il , eg}. The sets of desiderata {e3⊆ , e3⊇} re-
spective {esC, ewC} are equivalent to e1 in terms of satisfiability (Items 3 and 4 of
Proposition 3). Consequently, applying Proposition 7 we obtain that both sets are
satisfiable w.r.t. τ , but not w.r.t. σ.

The next two results once again demonstrate that stable semantics is somehow exceptional
regarding its potential for forgetting. More precisely, while individual satisfiability of the
subsequent desiderata is guarenteed for any considered semantics, only the stable one exhibits
simultaneous satisfiability.

Proposition 11. The set {l1, esC} is satisfiable w.r.t. stable semantics, but not under
σ ∈ {stg , ss,pr , gr}.

Proof. • Given an AF F and a set X. We define a forgetting operator via f(F,X) =
(A(F ),R(F ) ∖ {(a, x) ∣ x ∈X} ∪ {(x,x) ∣ x ∈X ∩A(F )}).
Regarding l1 please note that f(F,X) ⊔H = f(F ⊔H,X) if considering AFs H, s.t.
A(H)∩X = ∅. Consequently, l1 is fulfilled w.r.t. any semantics as ordinary equivalence
of f(F,X) ⊔H and f(F ⊔H,X)) is implied.
We now turn to esC. If A(F )∩X = ∅, then f(F,X) = F and hence, σ(f(F,X)) = σ(F )
for any semantics σ. If not, i.e. A(F )∩X ≠ ∅ we observe that f(F,X) collapses for stable
semantics, i.e. stb(f(F,X)) = ∅. In both cases, stb(f(F,X)) ⊆ {E ∖X ∣ E ∈ stb(F )}
yielding esC.

415



Baumann, Berthold, Gabbay & Rodrigues

• Towards a contradiction suppose that there is a forgetting operator f satisfying
l1 and esC under σ ∈ {ss,pr , gr}. Let us consider the instance (F,X) with F =
({x, a},{(x, a)}) and X = {x}.

xF : a aH: b

We have σ(F ) = {{x}} and σ(f(F,X)) ≠ ∅ due to universal definedness. Applying
condition esC, i.e. σ(f(F,X)) ⊆ {E ∖X ∣ E ∈ σ(F )} = {{x} ∖ {x}} yields σ(f(F,X)) =
{∅}.
Consider now the AF H = ({a, b},{(a, b)}). We get σ(F ⊔H) = {{x, b}}. Again due
to universal definedness and condition esC we obtain σ(f(F ⊔H,X)) = {{b}}. Due to
l1 we further infer σ(f(F,X) ⊔H)) = {{b}}.
This already yields a contradiction in case of grounded semantics since gr(f(F,X) ⊔
H)) = {{b}} implies b is unattacked in f(F,X) ⊔H which is obviously not true.

For preferred and semi-stable semantics we deduce that {b} is admissible in f(F,X)⊔H.
Hence, the AF H ′ = ({a, b},{(b, a)}) must be a subframework of f(F,X). Moreover,
whenever b is attacked by some c ≠ a in f(F,X), it has to be counterattacked by b in
f(F,X) because admissibility of {b} in f(F,X)⊔H has to be guarenteed. Consequently,
{b} ∈ ad(f(F,X)) is implied too. In case of preferred semantics we infer the existence
of a set E, s.t. {b} ⊆ E ∈ pr(f(F,X)). For semi-stable we deduce that either {b} is
already semi-stable in f(F,X), or there is an admissible set E, s.t. {b}⊕ ⊂ E⊕ with
E ∈ ss(f(F,X)). Note that E ≠ ∅ is implied. For both semantics, σ(f(F,X)) ≠ {∅}.
Contradiction!

Let us turn now to stage semantics. Consider therefore the following two AFs

bF : x c aH: b

with a /∈ A(f(F,X)), i.e. a is a fresh argument not appearing in f(F,X). We have
stg(F ) = {{b, c}} and stg(F⊔H) = {{a, x}}. Since stage semantics is universally defined
we deduce via esC that stg(f(F,x)) = {{b, c}}, and respectively stg(f(F⊔H,x)) = {{a}}.
Since c appears in an extension of f(F,x), we have (c, c) ∉ R(f(F,x)), hence (c, c) ∉
R(f(F,x) ⊔H). Moreover, since we assumed a /∈ A(f(F,X)) we deduce (a, c), (c, a) ∉
R(f(F,x)). Furthermore, (a, c), (c, a) ∉ R(H ) as c is not contained in H . This means,
(a, c), (c, a) ∉ R(f(F,x)) ∪R(H ) = R(f(F,x) ⊔H ). In other words, {a, c} is conflict-
free in f(F,x) ⊔H and obviously, {a}⊕ ⊂ {a, c}⊕. By definition of stage semantics we
conclude {a} ∉ stg(f(F,x) ⊔H). Hence, stg(f(F,x) ⊔H) ≠ {{a}} = stg(f(F ⊔H,x))
contradicting l1.

Proposition 12. The set {l2, esC} is satisfiable under stable semantics but not under
σ ∈ {stg , ss,pr , gr}.

416



Forgetting in Abstract Argumentation: Limits and Possibilities

Proof. • First, the positive result regarding stable semantics. In Proposition 11 we have
shown that the set of desiderata {l1, esC} is satisfiable under stable semantics. As
satisfiability of l1 w.r.t. a certain instance implies satisfiability of l2 w.r.t. to the same
instance (see Figure 1) the simultaneous satisfiability of the set {l1, esC} is shown.

• Let σ ∈ {stg , ss,pr , gr}. Towards a contradiction suppose that there is a forgetting
operator f satisfying l2 and esC under σ. Consider the following AF F and let
X = {x1, x2, x3}.

b1F :

b2

b3

b4

c1

c2

c3

c4

x1

x2

x3 d

Obviously, σ(F ) = {{b1, b2, b3, b4, x1, x2, d}}. Let f(F,X) be the forgetting result. Let
further a1, a2, a3 and a4 be arguments not contained in A(f(F,X)). For each 1 ≤ i ≤ 4
we define Hi = ({ai, bi},{(ai, bi)}). Hence,

σ(F ⊔H1 ⊔H3) = {{a1, b2, a3, b4, c1, c3, x3}},
σ(F ⊔H2 ⊔H4) = {{b1, a2, b3, a4, c2, c4, x3}},
σ(F ⊔H1 ⊔H2) = {{a1, a2, b3, b4, c1, c2, x2, d}},
σ(F ⊔H3 ⊔H4) = {{b1, b2, a3, a4, c3, c4, x1, d}}.

Using the universal definedness of any considered semantics σ together with condition
esC yields:

σ(f(F ⊔H1 ⊔H3,X)) = {{a1, b2, a3, b4, c1, c3}},
σ(f(F ⊔H2 ⊔H4,X)) = {{b1, a2, b3, a4, c2, c4}},
σ(f(F ⊔H1 ⊔H2,X)) = {{a1, a2, b3, b4, c1, c2, d}},
σ(f(F ⊔H3 ⊔H4,X)) = {{b1, b2, a3, a4, c3, c4, d}}.

Applying l2 justifies:

σ(f(F,X) ⊔H1 ⊔H3) = {{a1, b2, a3, b4, c1, c3}},
σ(f(F,X) ⊔H2 ⊔H4) = {{b1, a2, b3, a4, c2, c4}},
σ(f(F,X) ⊔H1 ⊔H2) = {{a1, a2, b3, b4, c1, c2, d}},
σ(f(F,X) ⊔H3 ⊔H4) = {{b1, b2, a3, a4, c3, c4, d}}.

The last two lines show that any ai, bi as well as ci appears together with d in at least
one extension. Consequently, the forgetting result f(F,X) neither contains attacks
between ai and d, nor bi and d, nor ci and d.
Hence, {a1, b2, a3, b4, c1, c3} ∈ cf (f(F,X) ⊔H1 ⊔H3), implies {a1, b2, a3, b4, c1, c3, d} ∈
cf (f(F,X)⊔H1⊔H3). Moreover, {a1, b2, a3, b4, c1, c3}⊕ ⊂ {a1, b2, a3, b4, c1, c3, d}⊕ which
contradicts {a1, b2, a3, b4, c1, c3} ∈ stg(f(F,X) ⊔H1 ⊔H3).

417



Baumann, Berthold, Gabbay & Rodrigues

Let us consider the remaining semantics, i.e. σ ∈ {gr ,pr , ss}. Since d ∉ {a1, b2, a3, b4, c1,
c3} ∈ σ(f(F,X)⊔H1⊔H2) as well as d ∉ {b1, a2, b3, a4, c2, c4} ∈ σ(f(F,X)⊔H3⊔H4) we
conclude that d must be attacked by an argument e ∉ {a1, . . . , a4, b1, . . . b4, c1, . . . , c4} =
A not being counterattacked by any a ∈ A. If so, we deduce {a1, a2, b3, b4, c1, c2, d} ∉
ad(f(F,X)⊔H1 ⊔H2) as well as {b1, b2, a3, a4, c2, c4, d} ∉ ad(f(F,X)⊔H3 ⊔H4). Thus,
{a1, a2, b3, b4, c1, c2, d} ∉ σ(f(F,X)⊔H1 ⊔H2) and {b1, b2, a3, a4, c2, c4, d} ∉ σ(f(F,X)⊔
H3 ⊔H4). Contradiction!

The presented unsatisfiability results reveal intrinsic limitations that hinder the practical
implementation of potentially desirable combinations (or even single desiderata). In contrast,
satisfiability results demonstrate the theoretical possibility of such implementations. However,
a satisfiable set of desiderata does not necessarily uniquely determine a forgetting operator.
See Section 6.1 for examples.

Tables 1 and 2 summarise the results proved. There are simply too many combinations
to check all combinations exhaustively. From the 25 desiderata introduced, there are 300
distinct combinations of two desiderata, 2300 of three desiderata, and so forth. However,
taking into account the dependencies between single desiderata (Propositions 1 and 2) the
status of many other combinations become immediately clear. For example, we showed
that Desideratum s3 is satisfiable under stable semantics (Proposition 5). Moreover, any
function f satisfying s3 under stable semantics will also satisfy s2, s1 and r1 (Figure 1).
Hence, the two-element sets {s3, s2}, {s3, s1} and {s3, r1} are satisfiable too. In contrast,
any superset of an unsatisfiable set of combinations will stay unsatisfiable. For instance,
since Desideratum e2 is unsatisfiable under any considered semantics (cf. Proposition 8), we
infer that any combination that involves e2, e.g., {e2, s2}, etc, is unsatisfiable too.

Combination Semantics Proposition

{d}, d ∈ {e3⊇ , e3⊆ , esC, r1, r2, r4, s1, s2, s3,
m1,m2,m4, v1, v2, v3, l1, l2, i1, i2} all 4+5

{d}, d ∈ {r3,m3} all, except stb 4+6
{d}, d ∈ {e1, ewC} gr , il , eg 7
{e4} stb 9
{e3⊆ , e3⊇} gr , il , eg 10
{esC, ewC} gr , il , eg 10
{l1, esC} stb 11
{l2, esC} stb 12

Table 1: Summary of shown Compatibilities of Desiderata

6. Forgetting under Stable Semantics

Let us reflect on the proposed extensional desiderata listed in Section 4. At first we
observe that conditions e1 and e4 represent two opposing philosophies about the concept of
forgetting. Desideratum e1 requires that any former extension has to survive in an adjusted

418



Forgetting in Abstract Argumentation: Limits and Possibilities

Combination Semantics Proposition

{d} d ∈ {r3,m3} stb 6
{d} d ∈ {e1, ewC} stg , stb, ss, pr 7
{e2} all 8
{e4} all, except stb 9
{s2, l1, e3⊆} stg , stb 10
{s2, l1, e3⊇} stg , stb 10
{e3⊆ , e3⊇} stg , stb, ss, pr 10
{esC, ewC} stg , stb, ss, pr 10
{l1, esC} stg , ss, pr , gr 11
{l2, esC} stg , ss, pr , gr 12

Table 2: Summary of shown Incompatibilities of Desiderata

fashion, namely new extensions are obtained from initial ones via deleting the arguments
that have to be forgotten (σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}). In contrast, desideratum
e4 requires the full removal of extensions containing arguments that have to be forgotten
(σ(f(F,X)) = σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅}). These interpretations of forgetting are
independent as shown by Proposition 1. Any other considered extension-based condition is
either a relaxation of e1, or a lifting of this interpretation to the level of strong equivalence.
In the following we will consider these two main desiderata in case of the most prominent
semantics, namely the stable semantics.

6.1 Forgetting via e4

In (Baumann et al., 2020, Algorithm 1) the very first operator satisfying e4 w.r.t. forgetting
single arguments was introduced. In the motivation section we observed that applying this
operator iteratively does not necessarily produce a desirable outcome and furthermore, the
procedure is highly sensitive to the order of forgetting (cf. Example 4). In the following we
show how to modify the existing procedure for multiple arguments, thereby also covering
the case of forgetting a single argument.

The former construction consists of two steps. Given an AF F and an argument x we
first remove x and its associated attacks, i.e. we consider Fx. Any stable extension E of F
not containing x remains stable in Fx. However, new extensions may arise. Now, in a second
step, each new (undesired) extension E′ is removed via adding a self-defeating argument not
attacked by E′.

This procedure can be more or less directly applied to forget a whole set of arguments
X. In the first step we simply restrict the initial framework to A(F ) ∖X, i.e. we consider
FX . Thus, any former extension containing arguments from X is not stable anymore but
any other survives. And secondly, we eliminate any unwanted extensions via the addition of
self-attacking arguments. This process results in the AF returned by the function f1(F ,X)
whose construction is shown in Construction 1. Proposition 13 shows the desiderata that

419



Baumann, Berthold, Gabbay & Rodrigues

f1(F ,X) satisfies. In order to simplify the definition we assume that the set of forgetting
arguments X is a subset of the arguments appearing in the framework.5

Construction 1. Given an AF F = (A,R) and X ⊆ A. Let B = {aE ∣ E ∈ stb(FX)∖stb(F )},
s.t. B ∩A = ∅. Then, f1(F ,X) = (A′,R′), where:

A′ = A(FX) ∪B,

R′ = R(FX) ∪ {(b, b) ∣ b ∈ B}
∪ ⋃

E∈stb(FX)∖stb(F )

{(y, aE) ∣ y ∈⋃ stb(FX) ∖E} .

Proposition 13. Let G = f1(F ,X). Then G satisfies conditions v3, s1, m4, e4 under the
stable semantics.

Proof. Condition s1 is satisfied by G as Construction 1, removes all arguments X, and
only adds arguments B, where B and X are disjoint. Moreover, condition v3 is ensured
by the fact that if A(F ) and X are disjoint, then FX = F and B = ∅. Desideratum
m4 is ensured as first, G does not contain arguments in X anymore and secondly, newly
introduced arguments are self-attacking. This means, for any H with A(H) ⊆ U ∖X we
have: ⋃σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X.

The proof that G also satisfies e4, i.e., stb(G) = {E ∣ E ∈ stb(F),E ∩X = ∅} mainly
relies on two well-known properties listed below.6 Let us consider the disjoint union
stb(F) = EX̄ ∪ EX , where EX̄ = {E ∈ stb(F) ∣ E ∩X = ∅} and EX = {E ∈ stb(F) ∣ E ∩X ≠ ∅}.

1. Preservation of extensions not containing any x ∈X. Given an AF F and its restriction
F ∣A(F)∖X , we have EX̄ ⊆ stb (F ∣A(F)∖X).

2. Elimination of single extensions. For any H , any fresh argument a, i.e. a /∈ A(H ),
and any E ∈ stb(H ) we have: stb(H ′) = stb(H ) ∖ {E} where A(H ′) = A(H ) ∪ {a} and
R(H ′) = R(H ) ∪ {(y, a) ∣ y ∈ (⋃ stb(H) ∪ {a}) ∖E}.

Given these two points, it is easy to see that i) any additional occurring stable extension
E of FX , i.e. an E that is not stable in F will be removed (as it does not attack aE) and
ii) every stable extension in EX̄ is preserved as a stable extension of G. This is because
EX̄ ⊆ stb(FX) and for every addition of a new argument aE , there exists an attack from
every argument y ∈ ⋃ stb(FX)∖E into aE . Consequently, since stb(FX) forms a ⊆-antichain
it is guaranteed that every extension of EX̄ contains an argument attacking aE in G.

Example 8 (Example 4 cont.). Consider again the AF F from the beginning. We have
stb(F) = {{x, b, e},{a, c, d},{a, c, e}}. Let X = {x, b}. Applying Construction 1 immediately
yields f1(F ,X) = FX with stb(FX) = {{a, c, d},{a, c, e}}. This means, there is no need to
eliminate unwanted extensions.

5. If not, simply consider f1(F ,X ′) with X ′ =X ∩A(F). The same applies to Constructions 2 and 3.
6. A procedure to eliminate unwanted stable extensions was first presented in (Dunne et al., 2015) and

studied in a principled way in (Baumann & Brewka, 2019).

420



Forgetting in Abstract Argumentation: Limits and Possibilities

cF ∶ x

ab

d e cFX∶

a

d e

Please note that FX = f1(F,{b, x}) = f1(f1(F, b), x). In other words, forgetting x and b
simultaneously yields the more compact outcome of the two potential orders of iterative
applications of the operator f, i.e., f1(f1(F, b), x) vs. f1(f1(F,x), b) (cf. Example 4).

Unfortunately, the above observation does not hold in general. This means, there are
cases where iterative forgetting is strictly better than set forgetting. Consider therefore the
following illustrating example.

Example 9. Consider the AF F and let X = {x, y}. We have one stable extension, namely
stb(F ) = {{b}}. Furthermore, the initial framework modulo the forgotten arguments has
three, i.e. stb (F{x,y}) = {{a},{b},{c}}. Hence, the result of simultaneously forgetting x and
y, i.e. the AF f1(F ,{x, y}), contains two new self-attackers n1 and n2, to eliminate the
stable extensions {a} and {c}.

aF ∶ b

c

x

y

af1(F ,{x, y}) ∶ b

c

n1

n2

af1(F , x) ∶ b

c

n1

y

af1(f1(F,x), y) ∶ b

c

n1

On the other hand, the initial framework modulo x has two stable extensions, stb (F{x}) =
{{b},{c}}, so only one argument n1 is introduced in f1(F,x) to eliminate {c}. This result
modulo y already has the correct stable models, stb (f1(F,x){y}) = {{b}}, therefore no more
self-attacker are introduced.

Now lets turn to the question of whether e4 can be satisfied when removing arguments is
impossible, unintended or just undesired for some reason. This means, only expanding the
initial framework F is allowed. The AF returned by the function f2(F ,X) in Construction 2
gives an affirmative answer. The simple idea is to manipulate F as follows. For any argument
x ∈X we add a self-attacking argument ax to F which is attacked by each attacker of x. In
doing so, any former extension E not containing x remains stable, but former extensions E′

with x ∈ E′ do not survive as they do not attack ax. It is important to note that the presented
construction relies on syntactic information only as it does not require the computation of
any extension.

421



Baumann, Berthold, Gabbay & Rodrigues

Construction 2. Given an AF F = (A,R) and X ⊆ A. Let X ′ = {ax ∣ x ∈X}, s.t. X ′∩A = ∅.
Then, f2 ∶= (A′,R′), where:

A′ = A ∪X ′,
R′ = R ∪ {(x′, x′) ∣ x′ ∈X ′}

∪ ⋃
x∈X

{(b, ax) ∣ b ∈ A ∖X, (b, x) ∈ R} .

Proposition 14. Let G = f2(F ,X). Then G satisfies conditions v3 and e4 under the stable
semantics.

Proof. Condition v3 is ensured by the Construction 2, as if X ∩A(F ) = ∅ no new arguments,
nor attacks are added.

Now, e4 holds, since:

1. Former extensions not overlapping X are preserved. Given a stable extension E of F
with E ∩X = ∅. First, conflict-freeness in F immediately transfer to conflict-freeness
in G . Secondly, by definition of stable semantics E attacks all a ∈ A(F ) ∖ E. In
particular, E attacks any x ∈ X. Thus, by construction it also attacks any x′ ∈ X ′
proving stability in G .

2. Former extensions overlapping X are eliminated. Given a stable extension E of F with
E∩X ≠ ∅. Let x ∈ E∩X and x′ ∈X ′ the associated new argument. By construction we
have E attacks x′ in G if and only if E attacks x in F contradicting its conflict-freeness
in F .

3. Finally, no new extension E ∈ stb(G) ∖ stb(F) is created. This can be seen as follows:
Newly introduced arguments are self-attacking. This means, E ⊆ A(F). As E attacks
any argument in A(G)∖E it also attacks any argument in A(F)∖E. Thus, E ∈ stb(F)
contradicting the assumption and concluding the proof.

Construction 3 is a very simple syntactical manipulation. Here, instead of adding new
arguments which are self-attacking and attacked by certain former arguments, we add
self-loops to any x occurring in F . The downside of this simple implementation is that in
contrast to both former constructions, Construction 3 modifies former relations between
initial arguments which might be undesired in certain applications.

Construction 3. Given an AF F = (A,R) and X ⊆ A. Then, f3 ∶= (A′,R′), where:

A′ = A,
R′ = R ∪ {(x,x) ∣ x ∈X}.

Proposition 15. Let G = f3(F ,X). Then G satisfies conditions v3, m4 and e4 under the
stable semantics.

422



Forgetting in Abstract Argumentation: Limits and Possibilities

Proof. Condition v3 is ensured by the fact that the construction does not do anything if
A(F) ∩X = ∅. Desideratum m4 is ensured as first, G does not contain newly introduced
arguments and secondly, arguments in X are self-attacking.
Now, e4 holds, since

1. Former extensions not overlapping X are preserved. Given a stable extension E of F
with E∩X = ∅. Consequently, E remains conflict-free in G and moreover, as E attacks
any argument a ∈ A(F ) ∖E we deduce that E is stable in G since A(G) = A(F).

2. Former extensions overlapping X are eliminated. Given a stable extension E of F
with E ∩X ≠ ∅. Let x ∈ E ∩X. Hence, x is self-defeating in G and thus, E is not
conflict-free and therefore not stable in G.

3. No new extension is created. If E ∈ stb(G) ∖ stb(F), then E is conflict-free in G.
Since A(G) = A(F) and arguments in A(F) ∩X became self-attacking we deduce
E ⊆ A(F) ∖X. Moreover, by definition of stable semantics E attacks any argument in
A(F) ∖E. Consequently, E ∈ stb(F ) contradicting the assumption.

Finally, we provide a simple example illustrating the differences between the three
constructions presented. Future work will include fine-tuning these constructions and
conducting experiments on runtimes.

Example 10 (Example 5 cont.). Consider again AF F . We have stb(F) = {{b, d}}. Let
X = {b}. Note that Desideratum e4 forces the collapse of stable extensions. Indeed, neither
f1(F ,X), f2(F ,X), nor f3(F ,X) provide reasonable positions.

F ∶ a b c d

aaadf1(F ,X) ∶ c d

a babf2(F ,X) ∶ c d

f3(F ,X) ∶ a b c d

6.2 Forgetting via e1

The main reason for the impossibility to find an operator satisfying e1 under the stable
semantics is an intrinsic one, namely realisability. More precisely, certain instances, i.e. an
initial framework F and a set X of arguments would enforce a framework F ′ with a set of
stable extensions violating the ⊆-antichain property or tightness. Consequently, a reasonable

423



Baumann, Berthold, Gabbay & Rodrigues

strategy is to look for forgetting operators satisfying e1 whenever possible, or satisfying a
relaxation of the condition, when it is not.

Regarding possibility it would be interesting to find semantical or syntactical conditions
for stb(F) or F , respectively, s.t. {E ∖X ∣ E ∈ stb(F )} is realisable. This means, how to
guarantee that {E ∖X ∣ E ∈ stb(F )} is tight and forms a ⊆-antichain. Natural candidates for
the relaxation of e1 would be e3⊆ , e3⊇ or esC. A similar procedure was suggested and also
implemented for strong persistence in the realm of logic programming (Gonçalves, Knorr,
Leite, & Woltran, 2017).

The question which relaxation to choose has no clear answer. First of all, according
to Figure 1, e3⊆ , e3⊇ and esC are all independent of each other. Moreover, each relaxation
has its particular advantages and drawbacks. It does not make sense to express general
preferences among the desiderata as the specific application will determine which criterion
is most suitable. Furthermore, even for a particular chosen relaxation, the precise result of
forgetting might not be clear. This is demonstrated by the following example.

Example 11. Consider again AF F presented in Example 6:

a d

c f

b

eF ∶

Let X = {a, b, c}. As stb(F) = {{a, e, f},{b, f, d},{c, d, e}} we obtain {E ∖X ∣ E ∈ stb(F )} =
{{d, e},{d, f},{e, f}}. This set is not tight implying that e1 is impossible. The relaxation
esC is satisfied by any AF F ′ with stb(F ′) ⊆ {{d, e},{d, f},{e, f}}. Giving up one of these
three extensions would result in a realisable set. However, without further information there
is no reason to prefer one set over the other.

In summary, that means both the choice of how to relax e1 as well as its particular
implementation depends on the application in mind. A more thorough study on this issue
including certain preferences is left for future work.

7. Discussion and Conclusion

This article presents an in-depth analysis of forgetting in the realm of abstract argumen-
tation. We considered 25 desirable syntactical and/or semantical properties of possible
forgetting operators for a representative set of semantics, including stage, stable, semi-stable,
preferred, grounded, ideal, and eager semantics. We excluded other semantics, such as weak
admissibility-based semantics (Baumann, Brewka, & Ulbricht, 2020), because their precise
characterisation of realisability is still lacking, and complete semantics, because the high
complexity of its characterisation (Linsbichler, 2018). In our analysis, we included conditions
well-known from logic programming, such as strong persistence and strong invariance (Knorr
& Alferes, 2014; Gonçalves et al., 2016a). We would like to note that we did not express any
preferences among the given desiderata. We believe that specific applications will favour
certain conditions while excluding others.

One main axis of the article is the theoretical analysis of the given desiderata in terms
of individual and combined satisfiability. While individual conditions can mostly be easily

424



Forgetting in Abstract Argumentation: Limits and Possibilities

satisfied, it quickly becomes difficult or even impossible to find operators that fulfil multiple
conditions. Moreover, we considered the question whether simultaneous or iterative forgetting
always yield a more compact result. Unfortunately, it turns out that no clear statement
can be made, as sometimes simultaneous and sometimes iterative forgetting yields a better
result. A further analysis of this topic, e.g. identifying conditions which guarantee more
compact forgetting results, will be part of future work. Moreover, we showed that already
established forgetting operators from logic programming (Berthold et al., 2019) cannot be
unconditionally applied to abstract argumentation. The two main reasons are that we cannot
translate back the output LP as an AF in a straightforward manner, and secondly as well as
more importantly, due to essential differences in the expressibility between both formalisms
(Eiter et al., 2013; Dunne et al., 2015). However, we want to emphasise that there may still
be instances where the retranslation works perfectly, making former operators potentially
useful. A deeper investigation of this issue will be part of our future work.

A second contribution of this article is a more practical one, namely providing concrete
constructions and discussing potential forgetting operators for selected conditions. In
particular, we focused on the prominent stable semantics (leaving others for future work)
and the central extensionality desiderata e1 and e4. Desideratum e1 requires that any former
extension must be cleaned of the arguments to be forgotten. In contrast, desideratum e4
requires the full removal of extensions (cf. (Baumann & Brewka, 2019) for an axiomatic
approach) containing arguments that have to be forgotten. We provided three concrete
constructions satisfying e4. Of particular note is that although the criterion is a semantical
one, two of the constructions are purely syntactical in nature. We discussed desideratum e1
only as realisability issues prevent the existence of general operators. We further showed that
a lot of non-technical decisions have to be made even if we stick to conditional satisfiability.
This underscores that external factors will play a significant role in determining the selection
of desiderata.

Our approach follows the line of most formalisms for belief change in which there is an
implicit assumption that the primary objective of the belief change is known. For example,
in belief revision operations, the belief revising the old belief set is given. Indeed, this is
also the case in the multiple belief change operations (see (Rodrigues et al., 2011) for an
overview), originally introduced by Furhmann (Fuhrmann, 1988), where the belief set is
modified in response to a set of formulas, e.g., explanation-based belief revision (Falappa,
Kern-Isberner, & Simari, 2002), set revision (Zhang, 1996), package contraction (Fuhrmann
& ove Hansson, 1994), etc. However, it is worth mentioning that an important consideration
is that of which arguments trigger the forgetting operation. In general, one can mention the
motivations or external reasons for an agent to want to forget certain arguments. Here are
some possibilities:

• Persuasion in Debates: Arguments that an agent want to be defeated in the debate of
a given topic.

• Changed Context: Arguments that are no longer applicable because the context has
evolved.

• Shifted Values: Arguments that have become irrelevant due to changes in ethical or
moral standards.

425



Baumann, Berthold, Gabbay & Rodrigues

• Laws and Regulations: Arguments that are obsolete due to updates in legal require-
ments, such as the recent change in the minimum required passage width from 2.80
metres to 3.05 metres (German law concerning the respective interests of neighbours).

A future line of research is to include specific conditions with respect to the status of
arguments that are not accepted, i.e., whether we insist on a forgotten argument to be
defeated (i.e., attacked by an accepted argument) or whether we are content with its status
being merely “undecided” (i.e., not attacked by an accepted argument). Such information
about the specific status of all arguments is more readily available in the so-called labelling-
based approach to argumentation semantics (Baroni et al., 2018). Please note that although
the extension-based versions and labelling-based ones are intimately connected, as for most of
them we have a 1-to-1 correspondence, intrinsic properties like strong equivalence (Baumann,
2016) or realisability (Baumann & Heine, 2023, 2024) often differ significantly. Hence,
we believe that analysing forgetting desiderata fine-tuned to the specific desired status of
forgotten arguments will be a challenging task.

In recent times the argumentation community realised that the limited expressive
capability of AFs, namely the option of single attacks only, reduces their suitability as
sound target systems for more complex applications (Atkinson, Baroni, Giacomin, Hunter,
Prakken, Reed, Simari, Thimm, & Villata, 2017). Consequently, a number of additional
functionalities were introduced including preferences, values, collective attacks, attacks on
attacks as well as support relations between arguments (Amgoud & Vesic, 2011; Bench-
Capon & Atkinson, 2009; Nielsen & Parsons, 2006; Baroni, Cerutti, Giacomin, & Guida,
2009; Cayrol & Lagasquie-Schiex, 2009). Abstract Dialectical Frameworks (ADFs) are one of
the most powerful generalisations of Dung AFs, yet staying on the abstract level (Brewka
& Woltran, 2010; Brewka, Polberg, & Woltran, 2014). The additional expressive power is
achieved by adding acceptance conditions to the arguments which allow for the specification
of more complex relationships between them. Of particular interest might be the subclass of
bipolar ADFs (BADFs) which are as complex as AFs while arguably offering more modelling
capabilities (Brewka, Ellmauthaler, Strass, Wallner, & Woltran, 2017; Straß & Wallner, 2015;
Baumann & Heinrich, 2023). It is one highly relevant future task to investigate notions of
forgetting in these more expressive argumentation formalisms.

Similarly, it is worthwhile to study forgetting in logic-based or structured argumentation
formalisms (cf. (Besnard & Hunter, 2008; Arieli, Borg, Heyninck, & Straßer, 2021) for
excellent overviews). These approaches take the (logical) structure of arguments into account
and define notions such as attack, undercut, and defensibility, among others, in terms of
the (logical) properties of the chosen argument structures. A first study in this direction
was recently conducted for assumption-based argumentation (ABA) (Bondarenko, Toni, &
Kowalski, 1993). As expected, advancing research from abstract to structured argumentation
is a challenging endeavour, as the underlying formalisms may restrict the types of changes
possible at the abstract level (Prakken, 2023; Wallner, 2020). Another emerging issue in this
context is the need to study expressibility specifically tailored to the considered formalism
(Berthold, Rapberger, & Ulbricht, 2023a, 2023b).

One highly relevant work is (Rienstra, Sakama, van der Torre, & Liao, 2020) dealing
with so-called robustness principles. The paper studies the question to which extent old
labellings persist/new labellings arise if a certain change of the initial AF is performed.
Such results are highly relevant for the theory of forgetting as they can be used to show the

426



Forgetting in Abstract Argumentation: Limits and Possibilities

satisfiability/unsatisfiability of desired properties. Similarly, the analysis of implicit conflicts,
i.e. arguments that do not occur jointly in any extension, albeit there is no attack between
them, as well as compact AFs, i.e. frameworks where each argument is credulously accepted,
may be used for more fine-grained/optimised constructions (Baumann, Dvorák, Linsbichler,
Spanring, Strass, & Woltran, 2016).

Within the scope of belief change operations (already mentioned above), the study of
belief contraction operations — which aim to remove a belief from a belief set — is very
relevant (Alchourrón et al., 1985; Gärdenfors, 1988; Gabbay, Rodrigues, & Russo, 2010;
Rodrigues et al., 2011). Contraction operations were originally defined for single formulas,
but later extended to sets of formulas too (Fuhrmann & ove Hansson, 1994; Falappa et al.,
2002; Zhang, 1996; Zhang, Chen, Zhu, & Chen, 1997; Zhang & Foo, 2001) in the spirit of
the analysis done in this paper. There is a potentially interesting area of investigation of the
relationship between postulates for these operations and the desiderata we proposed here.

Finally, towards a more general operation of forgetting, not necessarily restricted to the
realm of abstract argumentation: Forgetting a set X can also be combined with protecting
a set Y . This might be important as Y may guarantee that the overall behaviour of the
considered system is not affected. For instance, in AGM belief contraction (Alchourrón
et al., 1985), the Y part is implicit. Contractions and revisions must protect tautologies
and all the logical consequences of whatever is not removed during the process to ensure
that the set remains closed under logical consequence. In contrast, in the framework of
revision by translation (Gabbay, Rodrigues, & Russo, 2000), the translation machinery was
codified as formulas and included in the belief set. These formulas needed to be protected
from removal during revisions. Clearly, our focus was on the removal aspect and we did
not considered Y explicitly. Nevertheless some desiderata implicitly touch this topic like
the vacuity desiderata as well as some syntactical desiderata. We believe that forgetting
combined with protecting will be one central topic in the future.

Acknowledgements

The authors acknowledge the financial support by the Federal Ministry of Education and
Research of Germany and by Sächsische Staatsministerium für Wissenschaft, Kultur und
Tourismus in the programme Center of Excellence for AI-research “Center for Scalable
Data Analytics and Artificial Intelligence Dresden/Leipzig”, project identification number:
ScaDS.AI

References

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change:
Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50 (2),
510—-530.

Amgoud, L., & Vesic, S. (2011). A new approach for preference-based argumentation
frameworks. Annals of Mathematics and Artificial Intelligence, 149–183.

Arieli, O., Borg, A., Heyninck, J., & Straßer, C. (2021). Logic-based approaches to formal
argumentation. IfCoLog Journal of Logics and their Applications, 8 (6), 1793–1898.

427



Baumann, Berthold, Gabbay & Rodrigues

Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari, G. R.,
Thimm, M., & Villata, S. (2017). Towards artificial argumentation. AI Magazine,
25–36.

Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (2018). Handbook of Formal
Argumentation. College Publications.

Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation
semantics. The Knowledge Engineering Review, 26 (4), 365–410.

Baroni, P., Caminada, M., & Giacomin, M. (2018). Abstract argumentation frameworks
and their semantics. In Handbook of Formal Argumentation, pp. 159–236. College
Publications.

Baroni, P., Cerutti, F., Giacomin, M., & Guida, G. (2009). Encompassing attacks to attacks
in abstract argumentation frameworks. In Proceedings of (ECSQARU-09), pp. 83–94.

Baroni, P., & Giacomin, M. (2007). On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence, 171, 675–700.

Baumann, R. (2012). Normal and strong expansion equivalence for argumentation frameworks.
Artificial Intelligence, 193, 18—-44.

Baumann, R. (2016). Characterizing equivalence notions for labelling-based semantics. In
Proceedings of (KR-16), pp. 22–32.

Baumann, R. (2018). On the nature of argumentation semantics: Existence and uniqueness,
expressibility, and replaceability. In Handbook of Formal Argumentation. College
Publications. also appears in IfCoLog Journal of Logics and their Applications.

Baumann, R., & Berthold, M. (2022). Limits and possibilities of forgetting in abstract
argumentation. In Proceedings of (IJCAI-22), pp. 2539–2545.

Baumann, R., & Brewka, G. (2019). Extension removal in abstract argumentation - an
axiomatic approach. In Proceedings of (AAAI-19), Vol. 33, pp. 2670–2677.

Baumann, R., Brewka, G., & Ulbricht, M. (2020). Comparing weak admissibility semantics
to their dung-style counterparts - reduct, modularization, and strong equivalence in
abstract argumentation. In Proceedings of (KR-20), pp. 79–88.

Baumann, R., Dvorák, W., Linsbichler, T., Spanring, C., Strass, H., & Woltran, S. (2016).
On rejected arguments and implicit conflicts: The hidden power of argumentation
semantics. Artificial Intelligence, 241, 244–284.

Baumann, R., Gabbay, D. M., & Rodrigues, O. (2020). Forgetting an argument. In
Proceedings of (AAAI-20), Vol. 34, pp. 2750–2757.

Baumann, R., & Heine, A. (2023). On conflict-free labellings - realizability, construction
and patterns of redundancy. In Proceedings of (KR-23), pp. 720–725.

Baumann, R., & Heine, A. (2024). On naive labellings - realizability, construction and
patterns of redundancy. In Proceedings of (FoIKS-24), pp. 125–143.

Baumann, R., & Heinrich, M. (2023). Bipolar abstract dialectical frameworks are covered
by kleene’s three-valued logic. In Proceedings of (IJCAI-23), pp. 3123–3131.

428



Forgetting in Abstract Argumentation: Limits and Possibilities

Baumann, R., & Spanring, C. (2015). Infinite argumentation frameworks - On the existence
and uniqueness of extensions. In Essays Dedicated to Gerhard Brewka on the Occasion
of His 60th Birthday, Vol. 9060, pp. 281–295.

Bench-Capon, T. J. M., & Atkinson, K. (2009). Abstract argumentation and values. In
Argumentation in Artificial Intelligence, pp. 45–64.

Berthold, M. (2022). On syntactic forgetting with strong persistence. In Proceedings of
(KR-22), pp. 43–52.

Berthold, M., Gonçalves, R., Knorr, M., & Leite, J. (2019). A syntactic operator for forgetting
that satisfies strong persistence. Theory and Practice of Logic Programming, 19 (5–6),
1038–1055.

Berthold, M., Rapberger, A., & Ulbricht, M. (2023a). Forgetting aspects in assumption-based
argumentation. In Proceedings of (KR-23), pp. 86–96.

Berthold, M., Rapberger, A., & Ulbricht, M. (2023b). On the expressive power of assumption-
based argumentation. In Proceedings of (JELIA-23), pp. 145–160.

Besnard, P., & Hunter, A. (2008). Elements of Argumentation.

Bisquert, P., Cayrol, C., de Saint-Cyr, F. D., & Lagasquie-Schiex, M. (2011). Change in
argumentation systems: Exploring the interest of removing an argument. In Proceedings
of (SUM-11), pp. 275–288.

Bondarenko, A., Toni, F., & Kowalski, R. A. (1993). An assumption-based framework for
non-monotonic reasoning. In Proceedings of (LPNMR-93).

Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J. P., & Woltran, S. (2017). Abstract dialec-
tical frameworks. an overview. The IfCoLog Journal of Logics and their Applications,
4 (8), 2263–2317.

Brewka, G., Polberg, S., & Woltran, S. (2014). Generalizations of dung frameworks and
their role in formal argumentation. IEEE Intelligent Systems, 29 (1), 30–38.

Brewka, G., & Woltran, S. (2010). Abstract dialectical frameworks. In Proceedings of
(KR-10).

Caminada, M. (2007). Comparing two unique extension semantics for formal argumentation:
Ideal and eager. In Proceedings of (BNAIC-07).

Cayrol, C., & Lagasquie-Schiex, M. (2009). Bipolar abstract argumentation systems. In
Argumentation in Artificial Intelligence, pp. 65–84.

Delgrande, J. P. (2017). A knowledge level account of forgetting. Journal of Artificial
Intelligence Research, 60, 1165–1213.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77 (2), 321–357.

Dung, P. M., Mancarella, P., & Toni, F. (2007). Computing ideal sceptical argumentation.
Artificial Intelligence, 171 (10), 642–674.

Dunne, P. E., Dvořák, W., Linsbichler, T., & Woltran, S. (2015). Characteristics of multiple
viewpoints in abstract argumentation. Artificial Intelligence, 228, 153–178.

429



Baumann, Berthold, Gabbay & Rodrigues

Eiter, T., Fink, M., Pührer, J., Tompits, H., & Woltran, S. (2013). Model-based recasting in
answer-set programming. Journal of Applied Non-Classical Logics, 23 (1-2), 75–104.

Eiter, T., & Kern-Isberner, G. (2019). A brief survey on forgetting from a knowledge
representation and reasoning perspective. KI - Künstliche Intelligenz, 9–33.

Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2002). Explanations, belief revision
and defeasible reasoning. Artificial Intelligence, 141 (1), 1–28.

Fuhrmann, A. (1988). Relevant logics, modal logics and theory change. Ph.D. thesis,
Australian National University.

Fuhrmann, A., & ove Hansson, S. (1994). A survey of multiple contractions. Journal of
Logic, Language, and Information, 3 (1), 39–75.

Gabbay, D., Rodrigues, O., & Russo, A. (2010). Revision, Acceptability and Context:
Theoretic and Algorithmic Aspects. Springer Verlag.

Gabbay, D., Rodrigues, O., & Russo, A. (2000). Revision by Translation, pp. 3–31. Springer
US.

Gärdenfors, P. (1988). Knowledge in Flux. Modelling the Dymanics of Epistemic States.
Cambridge, Mass.: MIT Press.

Gonçalves, R., Knorr, M., & Leite, J. (2016a). The ultimate guide to forgetting in answer
set programming. In Proceedings of (KR-16), pp. 135–144. AAAI Press.

Gonçalves, R., Knorr, M., & Leite, J. (2016b). You can’t always forget what you want: On
the limits of forgetting in answer set programming. In Proceedings of (ECAI-16), pp.
957–965.

Gonçalves, R., Knorr, M., Leite, J., & Woltran, S. (2017). When you must forget: Beyond
strong persistence when forgetting in answer set programming. Theory and Practice
of Logic Programming, 17 (5–6), 837–854.

Knorr, M., & Alferes, J. J. (2014). Preserving strong equivalence while forgetting. In
Proceedings of (JELIA-14), Vol. 8761, pp. 412–425.

Lang, J., Liberatore, P., & Marquis, P. (2003). Propositional independence: Formula-
variable independence and forgetting. Journal of Artificial Intelligence Research, 18 (1),
391—-443.

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2 (4), 526—-541.

Lifschitz, V., Tang, L. R., & Turner, H. (1999). Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25, 369–389.

Lin, F., & Reiter, R. (1994). Forget it!. In Proceedings of AAAI Fall Symposium on Relevance,
pp. 154–159.

Linsbichler, T. (2018). Characteristics of multiple viewpoints in abstract argumentation
under complete semantics. Tech. rep. DBAI-TR-2018-113, TU Wien.

Nielsen, S. H., & Parsons, S. (2006). A generalization of dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In Proceedings of (ArgMAS-
06), pp. 54–73.

430



Forgetting in Abstract Argumentation: Limits and Possibilities

Oikarinen, E., & Woltran, S. (2011). Characterizing strong equivalence for argumentation
frameworks. Artificial Intelligence, 175 (14), 1985–2009.

Prakken, H. (2023). Relating abstract and structured accounts of argumentation dynamics:
the case of expansions. In Proceedings of (KR-23), pp. 562–571.

Rienstra, T., Sakama, C., van der Torre, L., & Liao, B. (2020). A principle-based robustness
analysis of admissibility-based argumentation semantics. Argument & Computation,
11 (3), 305–339.

Rodrigues, O., Gabbay, D., & Russo, A. (2011). Belief revision. In Handbook of Philosophical
Logic, Vol. 16, pp. 1–114. Springer, Dordrecht.

Strass, H. (2013). Approximating operators and semantics for abstract dialectical frameworks.
Artificial Intelligence, 205, 39–70.

Straß, H., & Wallner, J. P. (2015). Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory. Artificial Intelligence, 226.

van der Torre, L., & Vesic, S. (2017). The principle-based approach to abstract argumentation
semantics. IfCoLog Journal of Logics and their Applications, 629–639.

Wallner, J. P. (2020). Structural constraints for dynamic operators in abstract argumentation.
Argument & Computation, 11 (1–2), 151–190.

Zhang, D. (1996). Belief revision by sets of sentences. Journal of Computer Science and
Technology, 11, 108–125.

Zhang, D., Chen, S., Zhu, W., & Chen, Z. (1997). Representation theorems for multiple
belief changes. In Proceedings of (IJCAI-97), Vol. 1.

Zhang, D., & Foo, N. (2001). Infinitary belief revision. Journal of Philosophical Logic, 30,
525–570.

431


