
Journal of Artificial Intelligence Research 82 (2025) 777-817 Submitted 09/2024; published 02/2025

Reasoning about Decidability of Strategic Logics with Imperfect
Information and Perfect Recall Strategies

Davide Catta catta@lipn.univ-paris13.fr
Université Sorbonne Paris Nord, CNRS,
Laboratoire d’Informatique de Paris Nord, LIPN, F-93430
Villetaneuse, France

Angelo Ferrando angelo.ferrando@unimore.it
University of Modena and Reggio Emilia
Modena, Italy

Vadim Malvone vadim.malvone@telecom-paris.fr
Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

Abstract
In logics for strategic reasoning the main challenge is represented by their verification in con-

texts of imperfect information and perfect recall strategies. In this work, we show the combination
of two techniques to approximate the verification of Alternating-time Temporal Logic (ATL∗) under
imperfect information and perfect recall, which is known to be undecidable. Given a model M and
a formula φ, we propose a verification procedure that generates sub-models of M in which each
sub-model M′ satisfies a sub-formula φ′ of φ and the verification of φ′ in M′ is decidable. Then,
we use CTL∗ model checking to provide a verification result of φ on M. In case the previous step
does not give a final result, we exploit a runtime verification mechanism to provide some interme-
diate result. We prove that our procedure is sound and in the same complexity class of ATL∗ model
checking under perfect information and perfect recall. Moreover, we present a tool that uses our
procedure and provide experimental results.

1. Introduction

Multi-Agent Systems (MAS) can be seen as a set of rational entities capable of proactively decide
how to act to fulfill their own goals. These entities, called generally agents, are autonomous, in the
sense that they do not expect input from a user to act, and social: they can communicate amongst
each other to achieve common goals.

Systems are not easy to trust in general. Because of this, we need verification techniques to
confirm that such systems behave as expected. More specifically, in the case of MAS, it is relevant to
know whether the agents are capable of achieving their own goals, by themselves or by collaborating
with other agents by forming a coalition. This is usually referred to as the process of finding a
strategy for the agent(s).

A well-known formalism for reasoning about strategic behaviors in MAS is ATL∗ (Alternating-
time Temporal Logic) (Alur, Henzinger, & Kupferman, 2002). In fact, this logic permits to express
complex statements about what coalitions of agents can achieve their objectives via strategic behav-
iors. Given a mathematical model representing the structure of the MAS (usually a directed labeled
graph), one can first use the logic ATL∗ to specify properties of interest, then exploit model-checking
techniques to verify whether (the mathematical representation of) the MAS satisfies such properties.

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Catta, Ferrando, & Malvone

However, one should be careful. Before verifying ATL∗ specifications, two questions need to be
answered:

i) Given two possible evolutions of the system, is it possible for each agent to distinguish them?

ii) Given an objective φ, do agents need to keep in mind the past evolution of the system to deter-
mine the current action in order to realize φ?

If (i) does not admit a positive answer, then we say that the agents have imperfect information
about the system. The agents have perfect information otherwise. To capture the imperfect infor-
mation setting, the mathematical model of the system will be equipped with indistinguishability
relations (one for each agent) over the set of vertex of the model. Moreover, it will be assumed that
agents behave in the same way in indistinguishable states of the model.

If (ii) admits a positive answer, then we say that agents need to use perfect recall strategies. If
agents do not need to remember the past evolution of the system to determine their course of action,
we say that agents use imperfect recall strategies.

Note that, it is often the case that agents have both imperfect information about the system and
they need perfect recall strategies in order to achieve their goal. Unfortunately, given a mathematical
representationM of the system and an ATL∗ formula φ expressing the existence of a strategy for the
agents to verify their goal, we cannot, in general, decide whether φ holds in M. In fact, it has
been proved that the model-checking problem for ATL∗ specifications, under the assumption that
agents have perfect recall and imperfect information about the model, is undecidable (Dima &
Tiplea, 2011). Nonetheless, decidable fragments exist. Indeed, model checking ATL∗ under perfect
information is 2EXPTIME-complete (Alur et al., 2002), while under imperfect information and
imperfect recall is PSPACE-complete (Schobbens, 2003).

Given the relevance of the imperfect information setting, even partial solutions to the problem
are useful. In this contribution, we precisely detail a methodology that can be used to give a partial
solution to the problem. The main idea behind our methodology is to restrict the attention to par-
ticular sub-models of the initial given modelM in which agents have perfect information, and then
use Computation Tree Logic (CTL∗ for short) and Runtime Verification (RV for short) to verify (an
abstraction of) the ATL∗ property expressing the agents’ goal.

With more detail, given a modelM and an ATL∗ specification φ, our procedure generates a set of
sub-models ofM in which there is perfect information and each of these sub-models satisfies a sub-
formula ψ of φ. Then, we use CTL∗ model checking to check whether: (i) the universal remaining
part of φ is satisfied, (ii) the existential remaining part of φ is not satisfied. If this is the case, then
we can conclude based on our preservation results. Naturally, since this problem is undecidable, it
may happen that neither (i) nor (ii) hold (as we will thoroughly explain in the rest of the paper). In
such a case, since the static verification step does not yield a verdict, our procedure may continue
with the runtime verification step where runtime monitors are used to check if the remaining part of
φ can be satisfied at execution time. If this is the case, we can terminate at runtime the satisfaction
of φ for the corresponding system execution. This is determined by the fact that the system has been
observed behaving as expected, since it has verified at design time the sub-formula ψ of φ, and at
runtime the remaining temporal part of φ (which consists in the part left to verify in φ, not covered
by ψ). Note that, the RV step does not imply that the system satisfies φ, indeed future executions
may violate φ. The formal result over φ only concerns the current system execution, and how it has
behaved in it. However, we will present preservation results on the initial model checking problem

778

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

of φ on the model of the system M, as well. This will be obtained by linking the result obtained
at runtime, with its static counterpart. Hence, we are going to show how the satisfaction (resp.,
violation) of φ at runtime in our approach can be propagated to the verification question over φ on
modelM.

Since the original problem is undecidable, we cannot guarantee that the truth or falsity of the
property can be established. In other word, we cannot provide the completeness of our solution.
However, the procedure provides a constructive method to evaluate an ATL∗ formula under imperfect
information and perfect recall. We also show how such a procedure is still bounded to the class of
complexity of ATL∗ model checking under perfect information and perfect recall.

Our contribution The present work aggregates, harmonizes, and expands on works that have al-
ready appeared. In particular, the (partial) solution to the problem here presented is obtained by
harmoniously combining and expanding those presented in (Ferrando & Malvone, 2023) and (Fer-
rando & Malvone, 2022) while in (Ferrando & Malvone, 2021), a demonstration paper presenting a
part of the tool deriving by (Ferrando & Malvone, 2022) may be found. This partial solution is based
on the idea that, we can approximate results about satisfaction of formulas in a given model with
imperfect information, by focusing on sub-models of the given model in which the information is
perfect. By doing so, we obtain a more satisfactory solution to the approximation problem of model
checking ATL∗ specifications under imperfect information and perfect recall. With more details: the
CTL∗ verification procedure presented in (Ferrando & Malvone, 2023) and the RV procedure pre-
sented in (Ferrando & Malvone, 2022) became here two distinct phases of the same procedure that
are executed one after the other. Most of the propositions and theorems present in the contribution
already appear in the two aforementioned works. However, proofs for such theoretical results are
there not presented. We fill this gap by providing detailed proofs for each of these theorems and
propositions. Specifically, in Section 2 we define our logic in Negation Normal Form (NNF) and
provide new preliminary definitions (see Definition 4-5) and Proposition 1. Then, in Section 3, we
extend the use case by providing additional details and the formal modeling. Section 4 is mostly
new, in the previous published versions only the definitions of negative and positive sub-models
and the statements of Lemma 2 and 3 were given. In Section 5, the Subsections 5.1 and 5.2 are
completely new. Furthermore, Algorithm 7 and the proof of Lemma 4 are new contributions. In
Subsection 5.7, we provide the proof of Lemma 5 and the example as new contributions. In Sub-
section 5.8, we provide the algorithm that integrates the two techniques. In addition, notice that
all the proofs of the theorems for the complexities results are new. Finally, for the experimental
part, we harmonize the results given in the previous works and provide a new benchmarks section
to compare our approach with the existing tools provided in (Belardinelli, Lomuscio, Malvone, &
Yu, 2022; Belardinelli, Ferrando, & Malvone, 2023).

2. Preliminaries

In this section, we introduce the main formal tools that we use in the rest of the paper. In particular,
we introduce Concurrent Game Structures with imperfect information, the syntax, and semantics
of the logic ATL∗, and Runtime Verification. First, let us introduce some notation that will be used
along the paper.

Notation If X is a set, and Y ⊆ X we denote by Y its complement X \ Y . If X is a set, then X+

denotes the set of non-empty finite sequences over X, and Xω denotes the set of infinite sequences

779

Catta, Ferrando, & Malvone

over X. If ρ is a (infinite or finite) sequence over X, we denote by |ρ| its length (which is ω when ρ
is infinite). Given a natural number 1 ≤ i ≤ |ρ|, we let ρi denote the i-th element of the sequence,
ρ≤i denote the prefix ρ1, . . . ρi of ρ and ρ≥i denote the suffix of ρ starting at ρi. If ρ = ρ1, . . . , ρn is a
finite sequence last(ρ) denotes the last element ρn of ρ. Furthermore, given two sequences ρ and ρ′,
with ρ · ρ′ we denote the concatenation of the two. We write ρ ⊑ π when ρ is a prefix of π and ρ ⊏ π
when ρ is a strict prefix of π.

2.1 Concurrent Game Structures with Imperfect Information

We can now formally define our models for MAS.

Definition 1. A concurrent game structure with imperfect information (iCGS for short) is a tuple
M = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ where:

– Ag = {1, . . . ,m} is a finite, non-empty set of agents;

– Ap is a finite, non-empty set of atomic propositions (or atoms);

– S is a finite, non-empty set of states, with initial state sI ∈ S;

– Acti is a finite non-empty set of actions for all i ∈ Ag; we denote by Act = ∪i∈AgActi and by
ACT = Πi∈AgActi. Elements of this latter set will be called joint actions;

– ∼i⊂ S × S is an equivalence relation between states, for all i ∈ Ag;

– d : Ag × S → 2acti is the protocol function mapping an agent i and a state to a non-empty
subset of Acti. Moreover, for any two states s, s′ such that s ∼i s, d(i, s) = d(i, s′);

– δ : S × ACT → S is the transition function, assigning to any state s and joint-action a⃗, such
that ai ∈ d(i, s), a successor state s′;

– V : S → 2Ap is the labeling function, assigning to any state s the set of atomic propositions
holding in s.

By Definition 1 an iCGS describes the interactions of a group Ag of agents, starting from the
initial state sI ∈ S, according to the transition function δ. The latter is constrained by the availability
of actions to agents, as specified by the protocol function d. Furthermore, we assume that agents
can have imperfect information of the exact state of the game; so in any state s, the agent i considers
epistemically possible all states s′ that are i-indistinguishable from s (Fagin, Halpern, Moses, &
Vardi, 1995). When every ∼i is the identity relation, i.e., s ∼i s′ iff s = s′, we obtain a standard
CGS with perfect information (Alur et al., 2002).

Given an iCGSM, a path ρ ∈ Sω is an infinite sequence of states ρ = s1, s2, . . . such that for all
i ≥ 1, δ(si, a⃗) = si+1 for some joint action a⃗. A history h is a finite sequence of states that is a prefix
of some path ρ. We use H to denote the set of all histories. Given two histories h, h′ and an agent i,
we say that h is indistinguishable from h′ for agent i (denote by h ∼i h) iff |h| = |h′| = n ∈ N and for
all i ≤ n, hi ∼i h′i .

We assume that agents employ uniform strategies (Jamroga & van der Hoek, 2004), i.e., they
perform the same action whenever they have the same information.

780

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Definition 2. A uniform strategy for agent i ∈ Ag is a function σi : S+→Acti such that for all
histories h and h′:

i) σi(h)∈d(i, last(h)) and,

ii) h∼i h′ implies σi(h)=σi(h′).

A strategy σi for i is said to be an imperfect recall (or memoryless) strategy whenever for every
pair of histories h and h′ we have that last(h) = last(h′) implies σi(h) = σi(h′). As it is usual, one
can see a memoryless strategy σi as a function from S to Acti.

By Definition 2 any strategy for agent i has to return actions that are enabled for i. Also,
whenever two histories are indistinguishable for i, then the same action is returned. Notice that, for
the case of perfect information, condition (ii) is satisfied by any strategy σ.

Given a joint strategy ΣΓ, comprising of one strategy for each agent in Γ ∈ Ag, a path ρ is
ΣΓ-compatible iff for every j ≥ 1, ρ j+1 = δ(ρ j, a⃗) for some joint action a⃗ such that for every i ∈ Γ,
ai = σi(ρ≤ j), and for every i ∈ Γ, ai ∈ d(i, p j). We denote with out(s,ΣΓ) the set of all ΣΓ-compatible
paths from s.

2.2 Alternating-time Temporal Logic

In this subsection, we expose the logic ATL∗ by recalling its syntax and semantics. We present the
syntax of ATL∗ in negation normal form i.e., the negation operator will be only applied to atomic
propositions. This choice will greatly simplify the formal machinery deployed in the rest of the
paper.

Definition 3. Given a non-empty countable set Ap of atomic propositions (or atoms) and a non-
empty finite set Ag of agents, state (φ) and path (ψ) formulas in ATL∗ are defined by mutual induc-
tion according to the following grammar:

φ ::= q | ¬q | φ ∧ φ | φ ∨ φ | ⟨⟨Γ⟩⟩ψ | [[Γ]]ψ

ψ ::= φ | ψ ∧ ψ | ψ ∨ ψ | Xψ | (ψUψ) | (ψRψ)

where q ∈ Ap and Γ ⊆ Ag.

In what follows, we will use the letters p, q, and r (possibly indexed) to denote arbitrary atoms,
the letters φ and ψ (possibly indexed) to denote arbitrary state and path formulas, and the letters θ
and λ (possibly indexed) to denote arbitrary formulas. We will also use the term coalitions to refer
to subsets of the set of agents. Negation can be extended to all formulas using the following De
Morgan’s equations:

¬¬q = q ¬(θ ∧ λ) = (¬θ ∨ ¬λ) ¬(θ ∨ λ) = (¬θ ∧ ¬λ)
¬(⟨⟨Γ⟩⟩ψ)= ([[Γ]]¬ψ) ¬([[Γ]]ψ) = (⟨⟨Γ⟩⟩ ¬ψ)
¬(Xψ) = X (¬ψ) ¬(ψ1 Uψ2)= (¬ψ1R¬ψ2) ¬(ψ1 Rψ2)= (¬ψ1 U¬ψ2)

As usual, a formula ⟨⟨Γ⟩⟩ψ is read as “the agents in coalition Γ have a strategy to achieve ψ”.
The meaning of temporal connectives next X , until U , and release R is standard (Baier & Katoen,
2008). The connectives eventually F and globally G can be defined as usual.

781

Catta, Ferrando, & Malvone

Formulas in the ATL fragment of ATL∗ are obtained from Definition 3 by restricting path for-
mulas as follows:

ψ ::= Xφ | (φUφ) | (φRφ)

Definition 4. The size |θ| of a formula θ, its rank r(θ), and its set of sub-formulas sub(θ) are recur-
sively defined as follows:

– if θ is an atom or a negated atom, then |θ| = r(θ) = 0 and sub(θ) = {θ};

– if θ is θ1 ⋆ θ2 with ⋆ ∈ {∧,∨, U , R }, then |θ| = max(|θ1|, |θ2|) + 1, r(θ) = max(r(θ1), r(θ2)) and
sub(θ) = sub(θ1) ∪ sub(θ2) ∪ {θ1 ⋆ θ2};

– if θ is ◦θ1 with ◦ ∈ {X , ⟨⟨Γ⟩⟩ , [[Γ]] }, then |θ| = |θ1|+1, r(θ) = r(θ1) if ◦ = X and r(θ) = r(θ1)+1
otherwise, and sub(θ) = sub(θ1) ∪ {θ}.

Remark that, we consider that a formula can be seen as a tree in which leaf are labeled by atoms
or negated atoms and in which non-leaf nodes are labeled by connectives. Intuitively, the size of a
formula is the height of this tree. This intuition will be formalized in the definition of formula tree
that will follow. The rank of a formula is the maximum number of nestings of strategic operators of
the formula.

Given a formula θ, we say that:

• θ is negation-free whenever none of its sub-formulas is a negated atom ¬p;

• θ is a CTL∗ formula whenever all its strategic subformulas are of the form ⟨⟨X⟩⟩ψ, where
X ∈ {Ag, ∅}. For a CTL∗ formula we will write Eψ instead of ⟨⟨Ag⟩⟩ψ and Aψ instead of
⟨⟨∅⟩⟩ψ;

• θ is an LTL formula whenever none of its sub-formulas is a strategic formula ⟨⟨Γ⟩⟩ψ or [[Γ]]ψ
(i.e., r(θ) = 0).

Before specifying the semantics of ATL∗ formulas, let us define a concept that will be useful in
the following. We recall, that a directed tree is a directed connected graph T = ⟨V,→⟩ in which
there is a node r (the root) such that ⟨v′, r⟩ <→ for every v ∈ V and given any other node v ∈ V there
is exactly one node v′ such that ⟨v′, v⟩ ∈→.

Definition 5. A formula tree is a finite directed tree T in which nodes are labeled with either atomic
propositions, negated atomic propositions, or ATL∗ connectives and edges are labeled with elements
from {0, 1, 2}, such that:

• each leaf of T is labeled with either an atomic proposition or a negated atomic proposition;

• each internal node is labeled with an ATL∗ connective;

• if v is a node of T and v is labeled with an ATL∗ binary connective, then v has exactly two
children. One of v outgoings edges is labeled with 1, while the other is labeled with 2;

• if v is a node of T and v is labeled with an ATL∗ unary connective, then v has exactly one
child and the edge going from v to this child is labeled with 0.

782

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Given a formula θ, one can define the tree Tθ by induction on |θ|, as follows:

• if θ is an atomic proposition or a negated atomic proposition, then Tθ is the tree composed of
just one node labeled with θ itself;

• if θ = θ1 ⋆ θ2 with ⋆ a binary connective, then Tθ is the directed tree in which the root r
is labeled with ⋆, the set of nodes only contains r and all nodes of Tθ1 and Tθ2 , and the set
of edges only contains all edges of Tθ1 , all edges of Tθ2 , an edge from r to the root of Tθ1

(labeled with 1) and an edge from r to the root of Tθ2 (labeled with 2);

• if θ = ◦θ1 with ◦ a unary connective, then Tθ is the directed tree in which the root r is labeled
with ◦, the set of nodes only contains r and all nodes of Tθ1 , and the set of edges only contains
all edges of Tθ1 and an outgoing edge from r to the root of Tθ1 that is labeled with 0.

In Figure 1, we display an example of formula tree.

q

⟨⟨Γ1⟩⟩ X [[Γ2]] U

r

∧

q

⟨⟨Γ3⟩⟩ X ∨

r

1

2

0 0 0
1

2

0 0
1

2

Figure 1: Formula tree for the formula (⟨⟨Γ1⟩⟩X [[Γ2]] q U r) ∧ (⟨⟨Γ3⟩⟩X (q ∨ r)).

It is straightforward to see that for each formula θ, Tθ is a formula tree in the sense of Defini-
tion 5. Also, the following proposition can be easily proved by induction on the number of nodes of
the considered tree.

Proposition 1. If T is a formula tree, then there is a unique formula θ such that T = Tθ.

Consequently, in the following we will feel free to equivalently use a representation of formulas as
trees or as strings of symbols according to our convenience.

Now, we have all the ingredients to assign a meaning to ATL∗ formulas on iCGS.

Definition 6. Let M = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ be an iCGS. The satisfaction rela-
tion |= is defined by mutual induction on state and path formulas as follows. For state formulas at a
state s ∈ S:

• (M, s) |= q iff q ∈ V(s)

• (M, s) |= ¬q iff q < V(s)

• (M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2

783

Catta, Ferrando, & Malvone

• (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 or (M, s) |= φ2

• (M, s) |= ⟨⟨Γ⟩⟩ψ iff there is a strategy ΣΓ such that for all ρ ∈ out(s,ΣΓ) we have that (M, ρ) |= ψ

• (M, s) |= [[Γ]]ψ iff for every strategy ΣΓ there is a path ρ ∈ out(s,ΣΓ) such that (M, ρ) |= ψ

For path formulas, given a path ρ ∈ Sω:

• (M, ρ) |= φ iff (M, ρ1) |= φ

• (M, ρ) |= ψ1 ∧ ψ2 iff (M, ρ) |= ψ1 and (M, ρ) |= ψ2

• (M, ρ) |= ψ1 ∨ ψ2 iff (M, ρ) |= ψ1 or (M, ρ) |= ψ2

• (M, ρ) |= Xψ iff (M, ρ≥2) |= ψ

• (M, ρ) |= ψ1 Uψ2 iff (M, ρ≥k) |= ψ2, for some k ≥ 1, and (M, ρ j) |= ψ1, for every 1 ≤ j < k

• (M, ρ) |= ψ1 Rψ2 iff (M, ρ≥i) |= ψ2, for all i ≥ 1, or there is a k ≥ 1 such that (M, ρ≥k) |= ψ1
and, for all 1 ≤ j ≤ k, (M, ρ≥ j) |= ψ2

We say that formula φ is true in an iCGSM, orM |= φ, iff (M, sI) |= φ. We can now state the model
checking problem.

Definition 7 (Model Checking). Given an iCGS M and a formula φ, the model checking problem
concerns determining whetherM |= φ.

Remark 1. The imperfect recall (or memoryless) satisfaction relation |=ir is obtained by writing
“imperfect recall strategy” instead of “strategy” in Definition 6 for the strategic operators ⟨⟨Γ⟩⟩ and
[[Γ]] .

2.3 Runtime Verification

Runtime Verification (RV from now on) is a lightweight formal verification technique which focuses
on the analysis of the runtime behavior of a system (Bartocci, Falcone, Francalanza, & Reger, 2018;
Leucker & Schallhart, 2009). Differently from other verification techniques, RV is not exhaustive,
since it focuses on the actual system execution. That is, a violation of the expected behavior is
concluded only if such violation is observed. Nevertheless, RV does not check all possible system’s
behaviors, and so, it scales better than its static verification counterparts, which usually suffer from
the state space explosion problem. The standard formalism to specify formal properties in RV is
Linear Temporal Logic (LTL) (Pnueli, 1977). We now define what a monitor is, and how it works.
Informally, a monitor is a function that, given a history in input, returns a verdict which denotes the
satisfaction (resp., violation) of a formal property.

Definition 8 (Monitor). Let M be an iCGS and ψ be an LTL property. Then, a monitor for ψ is a
function MonMψ : S + → B3, where B3 = {⊤,⊥, ?}:

MonMψ (h) =

⊤ ∀ ρ ∈ Sω (M, h · ρ) |= ψ
⊥ ∀ ρ ∈ S ω (M, h · ρ) ̸|= ψ
? otherwise.

where the path ρ is a valid continuation of the history h inM.

784

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Intuitively, a monitor returns ⊤ if all continuations of h satisfy ψ; ⊥ if all continuations of
h violate ψ; ? otherwise. The first two outcomes are standard representations of satisfaction and
violation, while the third is specific to RV. In more detail, it denotes when the monitor cannot
conclude any verdict yet. This is closely related to the fact that RV is applied while the system is still
running, and not all information about it are available. For instance, a property might be currently
satisfied (resp., violated) by the system, but violated (resp., satisfied) in the (still unknown) future.
The monitor can only safely conclude any of the two final verdicts (⊤ or ⊥) if it is sure such verdict
will never change. The addition of the third outcome symbol ? helps the monitor to represent its
uncertainty w.r.t. the current system execution.

3. Use Case Scenario

In this section, we present a variant of the Curiosity rover scenario under imperfect information
and perfect recall. The Curiosity rover is one of the most complex systems successfully deployed
in a planetary exploration mission to date. Its main objectives include recording image data and
collecting soil/rock data. Differently from the original (NASA, 2024), in this example the rover is
equipped with decision-making capabilities, which make it autonomous. We simulate an inspection
mission, where the Curiosity patrols a topological map of the surface of Mars.

In Figure 2, we model an example of mission for the rover. The rover starts in state sI , and has
to perform a setup action, consisting in checking the three main rover’s components: arm, mast,
and wheels. To save time and energy, the mechanic (the entity capable of performing the setup
checks and making any corrections) can perform only one setup operation per mission. Since such
operation is not known by the rover, from its point of view, states s1, s2, and s3 are equivalent, i.e., it
cannot distinguish between the three setup operations. After the selection, the mechanic can choose
to check and eventually correct the component (action ok) or decline the operation (action nok). In
the former case, the rover can continue the mission, while in the latter the mission terminates with
an error. In case the mechanic collaborates, the rover can start the mission. We consider with state
s4 the fact that the rover is behind the ship. So, its aim is to move from its position, to take a picture
of a sample rock of Mars and then to return to the initial position. More in detail, from the state s4,
it can decide to move left (L) moving to state s6, or right (R) moving to state s7. In these two states,
the rover can take a photo of a sample rock (action tp). After this step, the rover has to conclude
the mission by returning behind the ship. To accomplish the latter, it needs to do the complement
moving action to go back to the previously visited state (R from s6, and L from s7).

Formally, the modelM = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ of the mission is defined as:

• Ag = {rover,mechanic};

• Ap = {sp, cpa, cpm, cpw, oc, rm, rp, ip, pl, pr};

• S = {sI , s1, s2, s3, s4, s5, s6, s7, s8, e1, e2};

• Actrover = {chk, L,R, tp, i};

• Actmechanic = {ca, cm, cw, ok, nok, i};

• there are the following non-trivial equivalence relations s1 ∼rover s2, s1 ∼rover s3, and s2 ∼rover

s3;

785

Catta, Ferrando, & Malvone

• the functions d and δ can be derived by Figure 2;

• the labelling function is defined as: V(sI) = {sp}, V(s1) = {cpa}, V(s2) = {cpm}, V(s3) =
{cpw}, V(s4) = {oc, rm}, V(s5) = {pl}, V(s6) = V(s7) = {rp, ip}, V(s8) = {pr}, and V(e1) =
V(e2) = ∅.

The atomic propositions have the following meaning: sp stays for starting position, cpa stays
for check phase arm, cpm stays for check phase mast, cpw stays for check phase wheels, oc stays
for ok check phase, rm stays for ready to mission, rp stays for ready to take a picture, ip stays for
in position, pl stays for picture left, and pr stays for picture right.

sp
sI

cpw
s3

cpa
s1

cpm
s2

oc,rm
s4

∅
e2

rp,ip
s6

rp,ip
s7

pl
s5

pr
s8

∅
e1

(L, i) (R, i)
(i, i)

(chk, ca)

(chk, cm)

(chk, cw)

(i, ⋆)

(i, ok)

(i, nok)

(i, ok)

(i, nok)

(i, ok)

(i, nok)

(L, i)
(tp, i)

(R, i) (⋆,⋆)

(⋆,⋆)

(R, i)
(tp, i)

(L, i)

(i, i) (i, i)

Figure 2: An example of the rover’s mission where i stands for the idle action, ⋆ for any action,
and the rover’s equivalence relation is denoted with the dotted lines.

So, given the modelM, we can define several specifications. For example, the specification that
describes the rover mission is

φ1 = ⟨⟨rover⟩⟩F((oc ∧ rm) ∧ F((pl ∨ pr) ∧ F(oc ∧ rm)))

In words, the latter formula means that there exists a strategy for the rover that sooner or later it
can be ready to start the mission, can take a picture of a sample rock, and can return behind the
ship. In the latter formula, we assume that the mechanic can decide not to cooperate. In this case,
it is impossible for the rover to achieve the end of the mission even using memoryful strategies. If
we assume the cooperation of the mechanic (i.e., the mechanic checks a component and eventually

786

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

corrects it via action ok), we can rewrite the specification as

φ2 = ⟨⟨rover,mechanic⟩⟩F((oc ∧ rm) ∧ ⟨⟨rover⟩⟩F((pl ∨ pr) ∧ F(oc ∧ rm)))

In this case, by using memoryless strategies the formula φ2 still remains false since the rover can
select only one action on states s6 and s7, so it is impossible for it to first make the picture and then
go to the end of the mission. While, by using memoryful strategies, the rover has a strategy to make
the formula true by considering the cooperation of the mechanic. In fact, a simple strategy σ can be
generated by:

• σ(sI) = chk

• σ(sI s j) = i, where j ∈ {1, 2, 3}

• σ(sI s js4) = L, where j ∈ {1, 2, 3}

• σ(sI s js4s6) = tp, where j ∈ {1, 2, 3}

• σ(sI s js4s6s5) = i, where j ∈ {1, 2, 3}

• σ(sI s js4s6s5s6) = R, where j ∈ {1, 2, 3}

With the above observations, we can conclude that, to verify the specification φ2 in the model
M, we need the ATL∗ model checking in the context of imperfect information and perfect recall, a
problem in general undecidable.

Other interesting specifications can involve specific rover’s status. For example, we could be
interested to verify if there exists a strategy for the rover in coalition with the mechanic such that
it can be ready to take a picture but it is not in position to do that and, from that point, if it has the
ability to take a picture and return in the starting mission, i.e., we want to verify the formula

φ3 = ⟨⟨rover,mechanic⟩⟩F((rp ∧ ¬ip) ∧ ⟨⟨rover⟩⟩F((pl ∨ pr) ∧ F(oc ∧ rm)))

It is easy to see that φ3 is false in the model M because there is not a state in which rp ∧ ¬ip.
However, to check φ3 in the model M, we need the model checking of ATL∗ in the context of
imperfect information and perfect recall, a problem in general undecidable.

In what follows, we present a sound but not complete procedure handling this class of problems,
and use the curiosity rover scenario to help the reader during each step.

4. The Formal Background of Our Procedure

In this section, we give formal definitions of the objects that our procedure uses to give a partial
solution to the undecidability problem.

4.1 Negative and Positive Models

Our procedure tries to circumvent the problem of imperfect information. To do this, some particular
sub-models of the initial model are selected. In this subsection, we define such types of models and
show preservation results between these sub-models and the initial model.

We start by presenting the sub-models that under-approximate the original model w.r.t. the
satisfaction of ATL∗ formulas.

787

Catta, Ferrando, & Malvone

Definition 9 (Negative sub-model). Given an iCGSM = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ a
negative sub-model ofM is an iCGSM• = ⟨Ag, Ap, S•, s•I , {Acti}i∈Ag, {∼

•
i }i∈Ag, d

•, δ•, V•⟩ where:

• S• = S ′ ∪ {s⊥}, S ′ is a subset of S and s⊥ is a fresh state;

• for any i ∈ Ag, ∼•i = (∼i ∩(S ′ × S ′)) ∪ {(s⊥, s⊥)};

• for every state s ∈ S• and every agent i ∈ Ag, the function d•(i, s) is equal to d(i, s) if s ∈ S ′

and it is equal to Acti if s = s⊥;

• for every state s ∈ S• \ {s⊥}, if δ(s, a⃗) ∈ S ′ then δ•(s, a⃗) = δ(s, a⃗), otherwise δ•(s, a⃗) = s⊥.
Moreover, δ•(s⊥, a⃗) = s⊥ for each joint action a⃗;

• for every state s ∈ S•, if s ∈ S ′ then V•(s) = V(s), otherwise (i.e., s = s⊥) V•(s) = ∅.

Now, we continue by presenting the sub-models that over-approximate the original model w.r.t.
the satisfaction of ATL∗ formulas.

Definition 10 (Positive sub-model). Given an iCGSM = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ a
positive sub-model ofM is an iCGSM◦ = ⟨Ag, Ap, S◦, s◦I , {Acti}i∈Ag, {∼

◦
i }i∈Ag, d

◦, δ◦, V◦⟩ where:

• S◦ = S ′ ∪ {s⊤}, S ′ is a subset of S and s⊤ is a fresh state;

• for any i ∈ Ag, ∼◦i = (∼i ∩(S ′ × S ′)) ∪ {(s⊤, s⊤)};

• for every state s ∈ S◦ and every agent i ∈ Ag, the function d◦(i, s) is equal to d(i, s) if s ∈ S ′

and it is equal to Acti if s = s⊤;

• for every state s ∈ S◦ \ {s⊤}, for every joint action a⃗, if δ(s, a⃗) ∈ S ′ then δ◦(s, a⃗) = δ(s, a⃗),
otherwise δ◦(s, a⃗) = s⊤. Moreover, δ◦(s⊤, a⃗) = s⊤ for every joint action a⃗;

• for every state s ∈ S◦, if s ∈ S ′ then V◦(s) = V(s), otherwise (i.e., s = s⊤) V◦(s) = Ap.

Given an iCGSM and an ATL∗ formula θ, the procedure that we have devised will select positive
and negative sub-models ofM in which we have perfect information and evaluate the formula θ on
those models. For the procedure to make sense, we must have preservation results between these
two sub-model classes and the original model. Specifically, we would like that when a strategic
formula φ is true in a negative sub-model then φ is true in the modelM as well and, conversely, that
when φ is false in a positive sub-model it is also false in the original model. Unfortunately, this is
not the case. Consider the modelM and its negative and positive sub-modelsM• andM◦ displayed
in Figure 3. Suppose that the set of agents ofM counts just one agent a1, and that this agent has at
its disposal only the action a. We have that, (M•, s0) |= ⟨⟨a1⟩⟩X¬p and (M, s0) ̸|= ⟨⟨a1⟩⟩X¬p and
that (M◦s0) ̸|= ⟨⟨a1⟩⟩X¬q while (M, s0) |= ⟨⟨a1⟩⟩X¬q.
As the reader may have guessed, the failure of the wanted preservation results depends upon the
presence of negated atoms in the specification we have used. In fact, the preservation results hold
for ATL∗ formulas containing no negated atoms as the following series of proposition and lemmas
show.

Let us fix some terminology; given an iCGSM and a path π ofM, we say that:

1. π is ⊥-like iff for any i we have that V(πi) = ∅;

788

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

M• =
q
s0

∅

s⊥

M =
q
s0

p
s1

M◦ =
q
s0

q, p
s⊤

a

a

a a

a a

Figure 3: A model and two possible negative and positive sub-models.

2. π is ⊤-like iff for any i we have that V(πi) = Ap.

If σ and π are two paths, we say that σ is a k-twin of π iff there is k ∈ N such that V(πi) = V(σi)
for every i ≤ k.

Proposition 2. Let θ be a negation-free LTL formula andM an iCGS.

1. For every ⊥-like path π ofM, (M, π) ̸|= θ.

2. For every ⊤-like path π ofM, (M, π) |= θ.

Proof. We only give an argument for (1) as the one for (2) is completely alike. The proof is by
induction on |θ|. If |θ| = 0 then θ is some atomic formula p. By definition of satisfaction (M, π) |= p
iff (M, π1) |= p iff p ∈ V(π1). Since V(π1) = ∅, we conclude that (M, π1) ̸|= p. Suppose that the
statement of the proposition holds for any formula whose size is at most n, and consider any formula
whose size is n + 1. Remark that any suffix of ⊥-like path is ⊥-like path. From this observation, the
proposition’s statement easily follows by induction hypothesis. □

Lemma 1. Let θ be negation-free LTL formula,M an iCGS, and π a path ofM:

1. Suppose that π≥ j is ⊥-like for some j ≥ 1. If (M, π≥k) |= θ then k ≤ j and for every iCGS N
and every path σ of N such that σ is j − 1-twin of π we have that (N, σ≥k) |= θ.

2. Suppose that π≥ j is ⊤-like for some j ≥ 1. If (M, π≥k) ̸|= θ then k ≤ j and for every iCGS N
and every path σ of N such that σ is j − 1-twin of π we have that (N, σ≥k) ̸|= θ.

Proof. We only give an argument for (1) as the one for (2) is completely alike. The proof is by
induction on |θ|. If |θ| = 0 then (M, π≥k) |= p iff (M, πk) |= p iff p ∈ V(πk). Remark that this implies
k < j. Consider any model N and any path σ of N such that that σ is j − 1 twin of π. Since 1 < j ,
we have that p ∈ V(σk) and thus (N, σ≥k) |= p as desired. Suppose that the lemma’s statement holds
for any formula whose size is at most n and let λ be a formula whose size is n + 1. Fix a path π of
M, an iCGS N, and a path σ of N that is a j − 1-twin of π. We detail some cases.

• If λ = λ1 ∧ λ2 then (M, π≥k) |= λ1 ∧ λ2 iff (M, π≥k) |= λi for i ∈ {1, 2}. By Proposition 2, we
deduce that k < j. We thus apply the induction hypothesis, and we obtain that (N, σ≥k) |= λi

for i ∈ {1, 2}, thus (N, σ≥k) |= λ1 ∧ λ2.

789

Catta, Ferrando, & Malvone

• if λ = λ1 U λ2 then (M, π≥k) |= λ1 U λ2 iff there is r ≥ 1 such that (M, π≥k+r) |= λ2 and
(M, π≥k+i) |= λ1 for every 0 ≤ i < r. Using again Proposition 2, we deduce that k + r < j, we
apply the induction hypothesis and obtain that (N, σ≥k+r) |= λ2 and (N, σ≥k+i) |= λ1 for each
0 ≤ i < r. We thus obtain that (N, σ≥k) |= λ1 U λ2.

□

By the Lemma and Proposition above, and by the fact that any for any path π we have that
π = π≥1, we obtain the following.

Corollary 1. Let θ be negation-free LTL formula,M an iCGS, and π a path ofM:

1. if π≥ j is ⊥-like for some j ≥ 1 and (M, π) |= θ then for every iCGS N and every path σ of N
such that σ is j − 1-twin of π we have that (N, σ) |= θ.

2. if π≥ j is ⊤-like for some j ≥ 1 and (M, π) ̸|= θ, then for every iCGS N and every path σ of N
such that σ is j − 1-twin of π we have that (N, σ) ̸|= θ.

Lemma 2. LetM be an iCGS andM• a negative sub-model ofM with perfect information. For any
subset Γ of agents, for any negation-free formula φ of the form ⟨⟨Γ⟩⟩ψ (resp., [[Γ]]ψ), for any s ∈ S•

, we have that (M•, s) |= φ implies s , s⊥ and (M, s) |= φ.

Proof. We consider a formula φ whose rank is 1, i.e., ψ is an LTL formula. This suffices since we
can extend the result to formulas of arbitrary rank using the classic bottom up approach.

Suppose that (M•, s) |= φ. By the definition of satisfaction, this means that there is a strategy
ΣΓ for the coalition Γ such that (M•, ρ) |= ψ for any ρ ∈ out(s,ΣΓ). Observe that given any of these
paths ρ, we have two cases:

1. either for every i ≥ 1, ρi ∈ S, or

2. ρ has the form ρS · ρ⊥, where ρS is the prefix of ρ such that ρSi ∈ S for each 1 ≤ i ≤ |ρS|, and
ρ⊥ is the suffix of ρ where ρ⊥ = sω⊥. That is, ρ⊥ is a ⊥-like. Remark that for any path ρ of the
form ρS · ρ⊥ the prefix ρS must be non-empty because of Proposition 2. We thus obtain that
s , s⊥.

In the first case ρ is also a path ofM, thus we get that (M, ρ) |= φ. In the second case, since ρS

is non-empty and each state s of ρ is also a state of M, there must be at least a path σ of M such
that ρS is a strict-prefix or σ. We deduce that ρ and σ are k-twins for k < j and ρ≥ j = ρ⊥. We
thus apply Corollary 1 and obtain that (M, σ) |= ψ. Now, consider any uniform strategy Σ′

Γ
for the

coalition Γ such that Σ′
Γ
(h) = ΣΓ(h) for any history h such that h ⊏ ρ ∈ out(s,ΣΓ). Clearly any path

σ ∈ out(s,Σ′
Γ
) is either equal to some path in out(s,ΣΓ) or is a k-twin, for some k, of a path of the

form π · π⊥ in out(s,ΣΓ). Thus, any path in out(s,Σ′
Γ
) satisfies ψ. By the above discussion, we can

conclude that (M, s) |= φ.
□

The following Lemma states that any (negation-free) formula that is not satisfied in a positive
submodel of a given model, will be not satisfied in the model itself.

790

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Lemma 3. LetM be an iCGS andM◦ a positive sub-model ofM with perfect information. For any
subset Γ of agents, for any negation-free formula φ of the form ⟨⟨Γ⟩⟩ψ (resp., [[Γ]]ψ), for any s ∈ S◦,
we have that (M◦, s) ̸|= φ implies s , s⊤ and (M, s) ̸|= φ.

Proof. The proof of this lemma mirrors the proof of the lemma above. One obtains that any path
in M◦ must either be composed only of states of M or must be of the form ρS · ρ⊤ where ρ⊤ = sω⊤.
Given this fact, we apply exactly the same line of reasoning as above. □

We thus have that the wanted preservation result holds for formulas that are negation-free. At
first glance, this may see a limitation of our approach. However, first impressions are not always
correct: we can extend the above preservation results to all formulas by using a simple trick.

First, given an ATL∗ formula θ, we substitute each negated atom ¬q of θ by a “fresh” atom nq,
obtaining a formula (θ)t. Then, given an iCGS M in which states are labeled by elements of Ap,
we define a new iCGS MAp− that have the same structure as M and in which states are labeled by
elements of Ap∪Ap− where Ap− is a set of fresh atomic propositions containing an atom nq for each
atom q ∈ Ap. In this latter iCGS we will impose that an atom nq ∈ Ap− will label a state s if and
only if (M, s) |= ¬q. As a consequence of this transformation, we will obtain that (M, s) |= θ if and
only if (MAp− , s) |= (θ)t. More precisely, let Ap be a finite, non-empty set of atomic propositions.
We denote by Ap− the set {np | p ∈ Ap}. The formal translation follows.

Definition 11. Let F be a set of formulas generated by a finite set of atoms Ap. Let F − be a set of
negation-free formulas generated by Ap∪Ap−. The function (−)t : F → F − is defined by structural
induction on θ ∈ F as follows:

(p)t = p if p is an atom

(¬p)t = np

(◦θ)t = ◦(θ)t ◦ ∈ {X, ⟨⟨Γ⟩⟩, [[Γ]]}

(θ ⋆ λ)t = (θ)t ⋆ (λ)t ⋆ ∈ {∧,∨, U ,R}

Note that, the function (−)t is injective, translates state formulas to state formulas, path formulas to
path formulas, and preserves the size of the formulas, i.e., |θ| = |(θ)t| for any formula θ.

Now, we have all the elements to provide the formal definition ofMAp− .

Definition 12. Let M = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ be a model and Ap− = {np | p ∈
Ap}. We write MAp− to denote the iCGS ⟨Ag, Ap ∪ Ap−, S, si, {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⋆⟩ where
V⋆(s) = V(s) ∪ {np1, . . . , npm} iff npi ∈ Ap

− and pi < V(s).

We can now prove the result that we have anticipated just above Definition 11.

Proposition 3. LetM = ⟨Ag, Ap, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V⟩ be an iCGS,MAp− the correspond-
ing iCGS introduced in Definition 12, and let r be either a path ρ ∈ Sω or state s ∈ S. For any
formula θ, we have that:

(M, r) |= θ iff (MAp− , r) |= (θ)t

Proof. We prove that (M, r) |= θ implies (MAp− , r) |= (θ)t, and that (MAp− , r) |= (θ)t implies (M, r) |=
θ by induction on the size |θ| of θ.

791

Catta, Ferrando, & Malvone

(⇒) If |θ| = 0, then there are two cases:

i) θ is an atom q ∈ Ap. Since q ∈ V(s) implies q ∈ V⋆(s) for all s ∈ S and q ∈ Ap, we can
conclude that (MAp− , r) |= (θ)t.

ii) θ = ¬q for some atom q, then (¬q)t = nq. Suppose that (M, s) |= ¬q. By the semantics
q < V(s). By the definition ofMAp− , nq ∈ V⋆(s) and thus (MAp− , s) |= nq.

Suppose that the statement of the proposition holds for any formula θ′ such that |θ′| ≤ n and
let θ a formula with |θ| = n + 1. We detail two cases:

– if θ = Xψ then (M, ρ) |= Xψ iff (M, ρ≥2) |= ψ. By the definition of MAp− and by
induction hypothesis, (MAp− , ρ≥2) |= (ψ)t, thus (MAp− , ρ) |= X (ψ)t = (θ)t.

– if θ = ψ1 Uψ2 then (M, ρ) |= θ iff there is k ≥ 1 (M, ρ≥k) |= ψ2 and for all 1 ≤ j < k
(M, ρ≥ j) |= ψ1. By induction hypothesis, (MAp− , ρ≥k) |= (ψ2)t and for all 1 ≤ j < k,
(MAp− , ρ≥ j) |= (ψ1)t. Thus, by definition of (−)t, (MAp− , ρ) |= (ψ1)t U (ψ2)t = (θ)t.

(⇐) If |θ| = 0 there are two cases.

i) if θ is an atom q, since for all q ∈ Ap, q ∈ V⋆(r) implies q ∈ V(r) whenever r is a state of
S. Since (q)t = q the result follows.

ii) if θ = ¬q for some atom q, we have that (¬q)t = nq where nq ∈ Ap−. We have that
(MAp− , r) |= nq iff r is a state s ∈ S and nq ∈ V⋆(s). By Definition 12, nq ∈ V⋆(s) iff
q < V(s) it follows that (M, r) |= ¬q.

Suppose that the statement of the proposition holds for any formula θ′ such that |θ′| ≤ n and
let θ a formula with |θ| = n + 1. All cases follow by a straightforward application of the
induction hypothesis and by the definition ofMAp− . We thus detail only two cases:

– if θ = φ1 ∧ φ2 then (θ)t = (φ1)t ∧ (φ2)t. By definition (MAp− , r) |= (φ1)t ∧ (φ2)t iff
(MAp− , r) |= (φ1)t and (MAp− , r) |= (φ2)t. We have that |φi| < |φ1 ∧ φ2| for i ∈ {1, 2}. By
induction hypothesis (M, r) |= φ1 and (M, r) |= φ2, thus (M, r) |= φ1 ∧ φ2.

– if θ = ⟨⟨Γ⟩⟩ψ for some set of agents Γ and state-formula ψ then (θ)t = ⟨⟨Γ⟩⟩ (ψ)t.
(MAp− , r) |= ⟨⟨Γ⟩⟩ (ψ)t iff r is some state s and for some joint strategy ΣΓ, for all ρ ∈
out(s,ΣΓ), (MAp− , ρ) |= (ψ)t. Since |ψ| < |⟨⟨Γ⟩⟩ψ|, from (MAp− , ρ) |= (ψ)t we conclude by
induction hypothesis that (M, ρ) |=ψ. By Definition 12, the function d and δ as well as
the equivalence relation ∼i are the same on bothM andMAp− . We can conclude that the
strategy ΣΓ satisfies ⟨⟨Γ⟩⟩ψ at s = r inM.

□

Thanks to the above proposition, we can extend the preservation results of Lemma 2 and 3 to
any strategic formula ⟨⟨Γ⟩⟩ψ. Given a model M, we simply evaluate (⟨⟨Γ⟩⟩ψ)t on negative (resp.,
positive) sub-models ofMAp− .

792

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

5. The Procedure

In this section, we detail the procedure that we use to give an approximate solution to the model
checking problem of ATL∗ with imperfect information and perfect recall. Our procedure is com-
posed of different steps. In the following, we give a detailed description of each of these steps and
provide complexity result for them. Finally, we put them together and prove the soundness of the
so obtained algorithm.

Before diving into more details, we provide an high-level idea of our approach by means of Fig-
ure 4. As it can be noted, our procedure is divided into multiple phases. In the first step (Imperfec-
tRecall), we check whether there are sub-formulas that can be checked with memoryless strategies
and imperfect information over the model; a problem that is known to be decidable (Schobbens,
2003). Then, we clean the model and the formula w.r.t. the negated atoms (Preprocessing). Af-
ter that, we generate all the positive and negative sub-models with perfect information (FindSub-
Models). If only one sub-model is so generated, this means we have perfect information for the
agents involved in the property; so, we can exploit model checking for perfect information and
memoryful strategies (Model Checking IR). Otherwise, for each sub-model, we first check the sat-
isfaction/violation of sub-formulas (CheckSub-Formulas). Then, to provide a verification result for
the whole formula, we use CTL∗ model checking. If it is not possible to conclude a verdict, then
the procedure continues its evolution by storing some information via Runtime Verification. The
loop continues until there are no more sub-models to analyse, or a conclusive verdict is provided
via CTL∗ model checking.

5.1 Subroutine Subformulas

The algorithms that we will present in the upcoming sections use different subroutines. The behav-
ior of most of them can be straightforwardly grasped. Thus, we will introduce them directly into the
algorithms so as not to further burden the reading of our work. One of these subroutines, however,
requires a more detailed presentation. This subroutine, that we will present in the following para-
graph, will be extensively used in Algotithm 5 to reduce the problem of checking whether a formula
with multiple occurrence of strategic operators is true in a given model, to the problem of checking
whether a formula with a single occurrence of a strategic operator is true in the given model. Said
otherwise, the subroutine is needed to implement the classic bottom-up approach of strategic and
temporal logic (Alur et al., 2002). We recall that the bottom-up approach can be formulated as
follows. Given a formula ϕ containing multiple strategic operators and a model M, we first collect
the set of states of the model that satisfies subformulas ϕ1, ..., ϕn of ϕ containing a single strategic
operator. For any of these formulas we choose a fresh atomic formula p1, ..., pn. We add pi to V(s)
whenever s satisfies ϕi inM, obtaining a new modelM′. We now consider the formula ϕ′ obtained
from ϕ by substituting each occurrence of one of the ϕi with atom pi and evaluate ϕ′ onM′ reusing
the same procedure.

Let Replace be a function that takes as input a formula θ, a list of formulas ⟨λ1, . . . , λn⟩, and
a list of atomic proposition ⟨p1, . . . , pn⟩, and outputs the formula θ⋆ obtained by replacing each
occurrence of the formula λi in θ (if any) with pi, for all i ∈ {1, . . . , n}. If θ is a formula, we denote
by SubS (θ) the set of strategic sub-formulas of θ and by SubS n(θ) the set of strategic sub-formulas of
θ whose rank is n. Algorithm 1 takes as input a formula θ and works as follows. First, we initialize
a list L (line 1), then a while loop starts and continues until the rank r(θ) of θ is bigger or equal
to 1 (lines 2-10). Inside the latter, the algorithm loops on the subset of strategic sub-formulas of θ

793

Catta, Ferrando, & Malvone

ImperfectRecall
(Algorithm 2)

Preprocessing
(Algorithm 3)

FindSub-Models
(Algorithm 4)

CheckSub-Formulas
(Algorithm 5)

CTL∗ Model Checking
(Algorithm 6)

Runtime Verification
(Algorithm 8)

only 1 Model Checking
IR

Get Sub-Model

ModelCheckingProcedure
(Algorithm 9)

result

none, then result

⊤ or ⊥, then result

model and formula

preprocessed model and formula

else

else

else

Figure 4: Procedure’s overview.

whose rank is 1 (lines 5-8). For each of these sub-formulas φ, it adds φ to Temp (line 6), creates a
new atomic proposition pφ and adds it to Satom (lines 7-8). It then exits the for loop and replaces
in θ each strategic formula of Temp with the corresponding atom in Satom (line 9) and concatenates
Temp to L (line 10). By doing so, the rank of θ goes down at every cycle of the while loop. Finally,
the algorithm outputs the lists L and Satom. Note that, this procedure works in polynomial time
with respect to the number of sub-formulas of θ.

Example 1. Let us consider the formula:

φ = (⟨⟨Γ1⟩⟩X [[Γ2]] q U r) ∧ (⟨⟨Γ3⟩⟩X q ∨ [[Γ4]] q R r)

this formula has rank 2, and its strategic sub-formulas of rank 1 are φ1 = [[Γ2]] q U r, φ2 = ⟨⟨Γ3⟩⟩X q
and φ3 = [[Γ4]] q R r. After the first iteration of the while loop, we obtain that Temp is ⟨φ1, φ2, φ3⟩

and Satom is ⟨atomφ1 , atomφ2 , atomφ3⟩, then L is equal to Temp and φ becomes (⟨⟨Γ1⟩⟩X atomφ1) ∧
(atomφ2 ∨ atomφ3). This latter formula has rank 1, and its only strategic sub-formula is φ4 =

⟨⟨Γ1⟩⟩X atomφ1 . After another iteration of the while loop, we obtain that φ has become atomφ4 ∧

794

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Algorithm 1 Subformulas(θ)
1: L = ∅;
2: while r(θ) ≥ 1 do
3: Temp = ∅;
4: Satom = ∅;
5: for φ ∈ SubS 1(θ) do
6: Temp = Temp · ⟨φ⟩;
7: generate atom atomφ;
8: Satom = Satom · ⟨atomφ⟩;

9: θ = Replace(θ,Temp, Satom);
10: L = L · Temp;
11: return ⟨L, Satom⟩;

(atomφ2 ∨ atomφ3) and that L = ⟨φ1, φ2, φ3, φ4⟩ and Satom = ⟨atomφ1 , atomφ2 , atomφ3 , atomφ4⟩.
Since now φ has rank 0, we can exit the while loop and return the lists L and Satom.

5.2 Phase 1: Imperfect Recall Check

Now that we have detailed the behavior of the subroutine Subformulas, we can start exposing the
main components of our procedure.

First, given an ATL∗ formula θ and an iCGSM, we check which strategic sub-formulas of θ can
be satisfied byM by using imperfect recall strategies. With more detail, we create a new iCGSM′

whose states are labeled by atomic propositions representing the strategic sub-formulas of θ that can
be satisfied using imperfect recall strategies and we substitute in φ those strategic sub-formulas by
the aforementioned atomic propositions (generated by the subroutine Subformulas).

Algorithm 2 is simple and works as follows: for each strategic sub-formula φ of θ and each state
s ofM, we check whether (M, s) |=ir φ. If this is the case, we add atomφ to the set of atoms labeling
s (line 6-7). Finally, we return the so obtained model and formula (line 8). Note that, the complexity
of this procedure is given by the model checking for ATL∗ with imperfect information and imperfect
recall strategies, that is PSPACE (Schobbens, 2003).

Algorithm 2 ImperfectRecall (M, θ)
1: ⟨L, Satom⟩ = Subformulas(θ);
2: for φ ∈ L do
3: extract atomφ from Satom;
4: for s ∈ S do
5: if (M, s) |=ir φ then
6: Ap = Ap ∪ {atomφ};
7: V(s) = V(s) ∪ {atomφ};

8: return ⟨M, θ⟩;

5.3 Phase 2: Preprocessing

Here, we present the second phase of our procedure. Informally, given an iCGS M and an ATL∗

formula θ, Algorithm 3 replaces the negated atoms by additional atoms, and updates the model M
accordingly. With more detail, first all the negated atoms are extracted (line 1). Then, for each
negated atom ¬p, the algorithm generates a new atomic proposition np (line 3), adds np to the set

795

Catta, Ferrando, & Malvone

of atomic propositions Ap (line 4), updates the formula (line 5), and updates the labeling function
ofM. For the latter, for each state s ofM, the algorithm checks if p is false in s; if this is the case,
it adds np to the set of atomic propositions true on s (lines 6-8). Note that, this procedure works in
polynomial time with respect to the number of negated atoms.

Algorithm 3 Preprocessing (M, θ)
1: neg-atoms = NegAtoms(φ);
2: for ¬p ∈ neg-atoms do
3: generate atom np;
4: Ap = Ap ∪ {np};
5: Replace(θ,¬p, np);
6: for s ∈ S do
7: if p < V(s) then
8: V(s) = V(s) ∪ np;

5.4 Phase 3: Find Sub-models

Here, we present how to find the sub-models with perfect information inside the original model. The
procedure to generate the set of positive and negative sub-models ofM with perfect information for
the agents involved in the coalitions of θ is presented in Algorithm 4. The algorithm takes an iCGS
M and an ATL∗ formula θ and works with two sets. The set substates contains the sets of states of
M that have to be evaluated, and the set candidates contains pairs of sub-models ofM with perfect
information. Each pair represents the positive and negative sub-models for a given subset of states
ofM. In the first part of the algorithm (lines 1-4) the set of states and the indistinguishability relation
are extracted from the model M and the lists substates and candidates are initialised to S and ∅,
respectively. The main loop (lines 5-15) works until the list substates is empty. In each iteration
an element S ′ is extracted from substates and if there is an equivalence relation over the states in
S ′, for some agent i ∈ Ag(θ)1, then two new subsets of states are generated to remove this relation
(lines 8-11), otherwise S ′ is a set of states with perfect information for the agents in Ag(θ). So, from
S ′ two models are generated, a positive sub-model as described in Definition 10 and a negative
sub-model as described in Definition 9, and the pair is added to the list candidates. The latter is
returned at the end of Algorithm 4 (line 16).

Example 2. In Figure 5, we show a candidate negative sub-model M• extracted from the rover
mission (see the model in Figure 2) using Algorithm 4. Note that, we can generate the positive
sub-model counterpart by replacing the state s⊥ with s⊤ and following the labelling rule described
in Definition 10.

To conclude this part, we provide the complexity of the described procedure.

Theorem 1. Algorithm 4 terminates in exponential time w.r.t. the size of the modelM.

Proof. The procedures GenerateNegative() and GeneratePositive() to produce modelsM• andM◦

are polynomial in the size of the original model M. In the worst case, the loop to generate the list
candidates (lines 5-15) terminates in an exponential number of steps. Note that, the worst case
happens when there is full indistinguishability, i.e., ∀s, s′ ∈ S: s ∼i s′. For the above reasoning, the
result follows. □

1. Ag(θ) is the set of agents involved in the coalitions of the formula θ.

796

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Algorithm 4 FindSub-models (M, θ)
1: extract ∼ fromM;
2: extract S fromM;
3: candidates = ∅;
4: substates = {S};
5: while substates is not empty do
6: extract S ′ from substates;
7: if there exists s ∼i s′ with s , s′ and i ∈ Ag(θ) then
8: S 1 = S ′ \ {s};
9: substates = S 1 ∪ substates;

10: S 2 = S ′ \ {s′};
11: substates = S 2 ∪ substates;
12: else
13: M• = GenerateNegative(M, S ′);
14: M◦ = GeneratePositive(M, S ′);
15: candidates = ⟨M•,M◦⟩ ∪ candidates;
16: return candidates;

sp
sI

∅
s⊥

cpw
s3

oc,rm
s4

∅
e2

rp,ip
s6

rp,ip
s7

pl
s5

pr
s8

∅
e1

(L, i) (R, i)
(i, i)

(chk, ca)

(chk, cm)

(chk, cw)

(i, ⋆)

(⋆,⋆)

(i, ok)

(i, nok)

(L, i)
(mp, i)

(R, i) (⋆,⋆)

(⋆,⋆)

(R, i)
(mp, i)

(L, i)

(i, i) (i, i)

Figure 5: A negative sub-model generated by Algorithm 4 from modelM depicted in Figure 2.

5.5 Phase 4: Check Sub-formulas

Given a candidate, we present here how to check the sub-formulas on it. The procedure is presented
in Algorithm 5. Informally, the algorithm takes a candidate and an ATL∗ formula θ. It works with
the set result that contains tuples ⟨s, φ, vatomφ⟩, where s is a state in a sub-model, φ is a (strategic)
sub-formula of θ, and vatomφ is the atomic proposition generated from φ, where v ∈ {n, p} is the type
of the sub-model (i.e., positive or negative). In more detail, s satisfies φ and v is used to remember
if φ is satisfied in a negative (v = n) or positive sub-model (v = p). In line 1, the set result is
initialized to ∅. In line 2, the set subformulas is initialized via the subroutine Subformulas(). The
extraction of the set of sub-formulas from θ is necessary to verify whether there are sub-models
satisfying/unsatisfying at least a part of θ (not exclusively the whole θ). If that is the case, such sub-

797

Catta, Ferrando, & Malvone

models can later on be used to verify θ over the entire modelM through CTL∗ model checking. The
main loop (lines 3-12) works until all the sub-formulas of θ are treated. By starting from the first
formula of the set, the loop in lines 5-11 proceeds for each state, and checks the current sub-formula
against the currently selected sub-models M• and M◦. Note that, in lines 6 and 9, we have IR as
verification mode2. Thus, the models are checked under the assumptions of perfect information
and perfect recall. If the sub-formula is satisfied over the model M• (line 6), then the procedure
updates the model M• through the set of atomic propositions and the labelling function (line 7).
Furthermore, in line 8, the set result is updated by adding a new tuple. The reasoning applied to the
model M• is also applied to M◦ (lines 9-11). At the end of the procedure, the state s⊤ is updated
(line 12) since, by Definition 10, it needs to contain all the possible atoms that are inM.

Algorithm 5 CheckSub-f ormulas (⟨M•,M◦⟩, θ)
1: result = ∅;
2: ⟨subformulas, atoms⟩ = Subformulas(θ);
3: while subformulas , ∅ do
4: extract φ from subformulas; extract atomφ from atoms;
5: for s ∈ S• ∩ S◦ do
6: if M•, s |=IR φ then
7: Ap• = Ap• ∪ {atomφ}; V•(s) = V•(s) ∪ {atomφ};
8: result = ⟨s, φ, natomφ⟩ ∪ result;

9: if M◦, s |=IR φ then
10: Ap◦ = Ap◦ ∪ {atomφ}; V◦(s) = V◦(s) ∪ {atomφ};
11: result = ⟨s, φ, patomφ⟩ ∪ result;

12: Ap◦ = Ap◦ ∪ {atomφ}; V◦(s⊤) = V◦(s⊤) ∪ {atomφ};

13: return result;

Example 3. Given the negative sub-model M• as in Figure 5 and its positive counterpart M◦ as
input of Algorithm 5 we can analyze the formulas3:

φ1 = ⟨⟨rover⟩⟩F((oc ∧ rm) ∧ F((pl ∨ pr) ∧ F(oc ∧ rm)))

φ2 = ⟨⟨rover,mechanic⟩⟩F((oc ∧ rm) ∧ ⟨⟨rover⟩⟩F((pl ∨ pr) ∧ F(oc ∧ rm)))

φ′3 = ⟨⟨rover,mechanic⟩⟩F((rp ∧ nip) ∧ ⟨⟨rover⟩⟩F((pl ∨ pr) ∧ F(oc ∧ rm)))

We start with φ1 where the list subformulas is initialized to ⟨φ1⟩ since there is only one strategic
operator in φ1. By line 4, the algorithm extracts φ1 and by the loop in lines 5-11 it verifies that
the formula is true in the negative and positive sub-models in states s4, s5, s6, s7, and s8. By lines
7 and 10 it updates the model M⋄ by adding atomφ1 in Ap⋄ and by updating the labeling function
as V⋄(si) = V⋄(si) ∪ {atomφ1}, for all i ∈ {4, 5, 6, 7, 8} and with ⋄ ∈ {•, ◦}. Since there is only one
strategic operator, the procedure is concluded. For φ2, the list subformulas is initialized to ⟨φ21 =

⟨⟨rover⟩⟩F((pl∨ pr)∧F(oc∧ rm)), φ22 = ⟨⟨rover,mechanic⟩⟩F((oc∧ rm)∧ atomφ21)⟩. By line 4, the
algorithm extracts φ21 and by the loop in lines 5-11 it verifies that the formula is true in the negative
and positive sub-models in states s4, s5, s6, s7, and s8. By lines 7 and 10 it updates the model M⋄

by adding atomφ21 in Ap⋄ and by updating the labeling function as V⋄(si) = V⋄(si) ∪ {atomφ21}, for
all i ∈ {4, 5, 6, 7, 8} and with ⋄ ∈ {•, ◦}. For the second iteration of the main loop (lines 3-11) the

2. As usual, I denotes perfect information and R denotes perfect recall.
3. φ′3 is the updated version of φ3 given in Section 3, where nip replaces ¬ip as described in Algorithm 3.

798

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

formula φ22 is analyzed. In this case, φ22 is true in the negative and positive sub-models in states
sI , s3, s4, s5, s6, s7, and s8. Again, the models M• and M◦ are updated by adding atomφ22 in Ap⋄

and by updating the labeling function as V⋄(si) = V⋄(si)∪{atomφ22}, for all i ∈ {I, 3, 4, 5, 6, 7, 8} with
⋄ ∈ {•, ◦}. For φ′3, the list subformulas is initialized to ⟨φ21 = ⟨⟨rover⟩⟩F((pl ∨ pr) ∧ F(oc ∧ rm)),
φ′31 = ⟨⟨rover,mechanic⟩⟩F(rp ∧ nip ∧ atomφ21)⟩. Since φ21 is the same as before for φ2, we have
the same behavior of the algorithm. For the second iteration, φ′31 is false in all the states in S◦ ∩ S•.
So, no update is done in the set result.

To conclude this part, we provide the complexity result.

Theorem 2. Algorithm 5 terminates in double exponential time w.r.t. the size of θ.

Proof. The procedure Subformulas() is polynomial in the size of the formula under exam. ATL∗

model checking, called in lines 6 and 9, is 2EXPT IME (Alur et al., 2002). Furthermore, the number
of iterations of the inner part (lines 5-11) is |θ| · |S|, i.e., polynomial in the size of the model and of
the formula. Then, the total complexity derives from ATL∗ model checking and is 2EXPT IME. □

5.6 Phase 5: CTL∗ Verification

In the previous sections, we showed how to extract sub-models of a modelM satisfying at least one
sub-formula φ of θ. Here, we present in Algorithm 6, how to apply CTL∗ model checking to try to
conclude the satisfaction/violation of θ inM.

Algorithm 6 takes as input an iCGSM, an ATL∗ formula θ, and a set result. The latter contains
tuples ⟨s, φ, vatomφ⟩, where s is a state of S • ∩ S ◦, φ is a (strategic) sub-formula of θ, vatomφ is
the atomic proposition generated from φ. Algorithm 7 denotes an auxiliary procedure, which is
used in Algorithm 6 to update the model and the formula w.r.t. the results obtained in Algorithm 5.
Thus, we start describing Algorithm 7. The algorithm starts by updating the model M with the
atoms generated from Algorithm 5 and stored in result (lines 1-3). In lines 4-10, the procedure
generates formulas φ◦ and φ• in accordance with the tuples in result. The formulas θ• and θ◦
represent the ATL∗ formulas which remain to verify inM. These, along with the updated modelM′,
are the outcomes of Algorithm 7, and are the ones returned to Algorithm 6 (line 2). Continuing with
Algorithm 6, the algorithm proceeds with the CTL∗ verification. To achieve this, we transform θ•
and θ◦ into their CTL∗ counterparts θA and θE, respectively (lines 3-4). Given a formula θ in ATL∗,
we denote with θA (resp., θE) the universal formula (resp., existential) of θ, i.e., we substitute each
occurrence of a strategic operator in θ with the universal (resp., existential) operator of CTL∗. Given
θA and θE we can perform standard CTL∗ model checking. First, by verifying if θA is satisfied by
M′ (line 5). If this is the case, we can derive that M |= θ and set k = ⊤. Otherwise, the algorithm
continues verifying if θE is not satisfied by M′ (line 7). If this is the case we can derive that M ̸|= θ
and set k=⊥. If neither of the two previous conditions are satisfied, then the inconclusive result is
returned.

Before concluding, we show a preservation result from CTL∗ to ATL∗. This is the key to guar-
antee that the truth value returned by Algorithm 6 also holds for the ATL∗ formula.

Lemma 4. Given a modelM, a formula φ in ATL∗, and the CTL∗ universal (resp., existential) version
φA (resp., φE) of φ. For any s ∈ S, we have that:

1. (M, s) |= φA ⇒ (M, s) |= φ;

799

Catta, Ferrando, & Malvone

Algorithm 6 Veri f ication (M, θ, result)
1: k = ?;
2: ⟨M′, ⟨θ•, θ◦⟩⟩ = UpdateModel&Formula(M, θ, result);
3: θA = FromAT LtoCT L(θ•, •);
4: θE = FromAT LtoCT L(θ◦, ◦);
5: if M′ |= θA then
6: k = ⊤;
7: if M′ ̸|= θE then
8: k = ⊥;
9: return k;

Algorithm 7 UpdateModel&Formula (M, θ, result)
1: for s ∈ S do
2: take set atoms from result(s);
3: Ap = Ap ∪ atoms; V(s) = V(s) ∪ atoms;
4: θ• = θ, θ◦ = θ;
5: while result is not empty do
6: extract ⟨s, φ, atomφ⟩ from result;
7: if v = n then
8: θ• = Replace(θ•, φ, natomφ);
9: else

10: θ◦ = Replace(θ◦, φ, patomψ);

11: return ⟨M, ⟨θ•, θ◦⟩⟩;

2. (M, s) ̸|= φE ⇒ (M, s) ̸|= φ.

Proof. To prove (1), consider the formula φ = ⟨⟨Γ⟩⟩ψ, in which Γ ⊆ Ag and ψ is a temporal formula
without quantification. By consequence, φA = Aψ. By the semantics of CTL∗, (M, s) |= Aψ iff for
all paths ρ with ρ1 = s, (M, ρ) |= ψ. As presented in (Alur et al., 2002), the formula Aψ in CTL∗

is equivalent to ⟨⟨∅⟩⟩ψ in ATL∗. In fact, by Definition 6, the set of paths that need to verify ψ are
in out(s, ∅), i.e., all the paths of M from s. Then, we need to prove that: if (M, s) |= ⟨⟨∅⟩⟩ψ then
(M, s) |= ⟨⟨Γ⟩⟩ψ. But, this follows directly by the semantics in Definition 6.

Now, consider the formula φ = [[Γ]]ψ, in which Γ ⊆ Ag and ψ is a temporal formula without
quantification. By consequence, φA = Aψ. By the semantics of CTL∗, (M, s) |= Aψ iff for all paths ρ
with ρ1 = s, (M, ρ) |= ψ. As presented in (Alur et al., 2002), the formula Aψ in CTL∗ is equivalent to
[[Ag]]ψ in ATL∗. In fact, by Definition 6, for each joint strategy ΣAg the resulted path needs to verify
ψ. Since we consider all the possible joint strategies for the whole set of agents by consequence
all the paths of M from s need to satisfy ψ. Then, we need to prove that: if (M, s) |= [[Ag]]ψ then
(M, s) |= [[Γ]]ψ. But, this follows directly by the semantics in Definition 6.

To prove (2), consider the formula φ = ⟨⟨Γ⟩⟩ψ, in which Γ ⊆ Ag and ψ is a temporal formula
without quantifications. By consequence, φE = Eψ. By the semantics of CTL∗, (M, s) ̸|= Eψ iff there
is no path ρ with ρ1 = s, such that (M, ρ) |= ψ. As presented in (Alur et al., 2002), the formula Eψ
in CTL∗ is equivalent to ⟨⟨Ag⟩⟩ψ in ATL∗. In fact, by Definition 6, we take out(s,ΣAg), i.e., only one
path ofM. Then, we need to prove that: if (M, s) ̸|= ⟨⟨Ag⟩⟩ψ then (M, s) ̸|= ⟨⟨Γ⟩⟩ψ. But, this follows
directly by the semantics in Definition 6.

Now, consider the formula φ = [[Γ]]ψ, in which Γ ⊆ Ag and ψ is a temporal formula without
quantifications. By consequence, φE = Eψ. By the semantics of CTL∗, (M, s) ̸|= Eψ iff there is not
a path ρ with ρ1 = s, such that (M, ρ) |= ψ. As presented in (Alur et al., 2002), the formula Eψ in

800

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

CTL∗ is equivalent to [[∅]]ψ in ATL∗. In fact, by Definition 6, we take out(s, ∅), i.e., all the paths
of M starting from s, and verify if there exists a path in out(s, ∅) satisfying ψ. Then, we need to
prove that: if (M, s) ̸|= [[∅]]ψ then (M, s) ̸|= [[Γ]]ψ. But, this follows directly by the semantics in
Definition 6.

To conclude the proof, note that if we have a formula with more strategic operators, then we can
use the classic bottom-up approach.

□

Example 4. As for the previous example, we continue to analyze formulas φ1, φ2, and φ′3. For
φ1 the set result is composed by the tuples: ⟨s4, φ1, vatomφ1⟩, ⟨s5, φ1, vatomφ1⟩, ⟨s6, φ1, vatomφ1⟩,

⟨s7, φ1, vatomφ1⟩, and⟨s8, φ1, vatomφ1⟩where v∈{p, n}. First, Algorithm 6 is launched and the model
M depicted in Figure 2 is updated with the atoms natomφ1 and patomφ1 in states s4, s5, s6, s7, and s8.
Then, θ• and θ◦ are generated as natomφ1 and patomφ1 , respectively. Since there are no strategic
operators in the latter formulas, then θA = θ• and θE = θ◦. In Algorithm 6, the condition in line 5 is
not satisfied, but it is in line 7. So, the output of the procedure is ⊥, i.e., the formula is false in the
modelM. For φ2 the set result is composed by the tuples:
⟨s4, φ21, vatomφ21⟩, ⟨s5, φ21, vatomφ21⟩, ⟨s6, φ21, vatomφ21⟩, ⟨s7, φ21, vatomφ21⟩, ⟨s8, φ21, vatomφ21⟩,
⟨s0, φ22, vatomφ22⟩, ⟨s3, φ22, vatomφ22⟩, ⟨s4, φ22, vatomφ22⟩, ⟨s5, φ22, vatomφ22⟩, ⟨s6, φ22, vatomφ22⟩,
⟨s7, φ22, vatomφ22⟩, ⟨s8, φ22, vatomφ22⟩ where v ∈ {n, p}. Using again Algorithm 6, M is updated
with the atoms natomφ21 and patomφ21 in states s4, s5, s6, s7, and s8; and atoms natomφ22 and
patomφ22 in states sI , s3, s4, s5, s6, s7, and s8. Then, θ• and θ◦ are generated as natomφ22 and
patomφ22 , respectively. As before, θA = θ• and θE = θ◦. The condition in line 5 of Algorithm 6
is satisfied, so the output of the procedure is ⊤, i.e., the formula is true in the model M. For φ′3
the set result is composed by the tuples: ⟨s4, φ21, vatomφ21⟩, ⟨s5, φ21, vatomφ21⟩, ⟨s6, φ21, vatomφ21⟩,
⟨s7, φ21, vatomφ21⟩, and ⟨s8, φ21, vatomφ21⟩ where v ∈ {n, p}. Using Algorithm 6, M is updated with
the atoms natomφ21 and patomφ21 in states s4, s5, s6, s7, and s8. Then θ• and θ◦ are generated
as ⟨⟨rover,mechanic⟩⟩F(rp ∧ nip ∧ natomφ21) and ⟨⟨rover,mechanic⟩⟩F(rp ∧ nip ∧ patomφ21), re-
spectively. Since there are strategic operators in the latter formulas, then the algorithm produces
formulas θA = AF(rp ∧ nip ∧ natomφ21) and θE = EF(rp ∧ nip ∧ patomφ21). In Algorithm 6, the
condition in line 5 is not satisfied, but it is in line 7. So, the output of the procedure is ⊥, i.e., the
formula is false in the modelM.

Note that, in these examples, with our algorithm we can find solution to some ATL∗ model
checking problems that are in the class of undecidable problems (naturally, not for all ATL∗ model
checking problems in such class, otherwise it would be decidable). Moreover, we preserve the truth
values, i.e., they are the same as described in Section 3.

To conclude this part, we provide the complexity result.

Theorem 3. Algorithm 6 requires polynomial space w.r.t. the size of φ and ofM.

Proof. In Algorithm 7, the cost of the loop in lines 1-3 is polynomial in the size of the model. Since
the complexity of Replace() is polynomial in the size of the formula, then the cost of the loop in
lines 5-10 is polynomial in the size of the formula and in the size of the model. In Algorithm 6, the
procedure FromAT LtoCT L() is polynomial in the size of the formula. The CTL∗ model checking
problem is PSPACE (Vardi & Wolper, 1994) (lines 5 and 7). Then, the total complexity is PSPACE.

□

801

Catta, Ferrando, & Malvone

5.7 Phase 6: Runtime Verification

Now, we focus on the procedure RuntimeVeri f ication(). In previous steps, the sub-models satisfy-
ing sub-properties φ of θ are generated, and listed into the set result. In Algorithm 8, we report the
procedure performing runtime verification on the system. Such algorithm gets in input the modelM,
an ATL∗ property θ to verify, an history h of M, and the set result containing the sub-properties of
θ that have been checked on sub-models ofM. This procedure generates a tuple ⟨k, θmc, θrv, θunchk⟩,
where k is a truth value, θmc is the set of sub-formulas verified via model checking, θrv is the set
of sub-formulas verified via runtime verification, and θunchk is the set of sub-formulas that cannot
be verified in both static and runtime techniques. First, in line 2, M and θ are updated according
to the atoms listed in result. This step is used to identify in M and θ which sub-formulas have
already been verified through CheckS ub- f ormulas(). Note that, UpdateModel&Formula produces
two new ATL∗ formulas (θ•, θ◦), which correspond to the updated version of θ for the negative and
positive sub-models, respectively.

Once θ• and θ◦ have been generated, they need to be converted into their corresponding LTL
representations to be verified at runtime. This translation is obtained by removing the strategic oper-
ators, while leaving the temporal ones (and the atoms). The resulting two new LTL properties ψ• and
ψ◦ are so obtained (lines 7-8). Finally, by having these two LTL properties, the algorithm proceeds
generating (using the standard LTL monitor generation algorithm (Bauer, Leucker, & Schallhart,
2011)) the corresponding monitors MonM

′

ψ•
and MonM

′

ψ◦
. Such monitors are then used by Algo-

rithm 8 to check ψ• and ψ◦ over an execution trace h given in input. Analysing h the monitor can
conclude the satisfaction (resp., violation) of the LTL property under analysis (w.r.t. the modelM′).
However, only certain results can actually be considered valid. Specifically, when MonM

′

ψ•
(h) = ⊤,

or when MonM
′

ψ◦
(h) = ⊥. The other cases, which may include the inconclusive verdict (?), are con-

sidered undefined, since nothing can be concluded at runtime. The reason why the conditions in
lines 11-14 are enough to conclude ⊤ and ⊥ directly follow from the preservation results presented
in Lemma 5. The rest of the algorithm is only for storing how the sub-formulas have been verified,
whether at runtime (i.e., stored in θrv), at static time (i.e., stored in θmc), or not at all (i.e., stored
in θunchk). Specifically, in lines 16-19, the algorithm iterates on all sub-formulas that have not been
verified at static time. For each sub-formula, first, we obtain the corresponding LTL version (line
17), then we synthesise the corresponding monitor (line 18), and finally we use the latter to verify
the sub-formula against the history h. If the monitor returns a conclusive verdict, the sub-formula
remains in the set θrv, otherwise the latter is removed from θrv and added to θunchk. At the end of the
loop, the tuple ⟨k, θmc, θrv, θunchk⟩ is returned (line 20).

Before concluding, we show a preservation result from LTL to ATL∗. This is the key to guarantee
that the results returned in line 12 and 14 make sense in terms of ATL∗ formulas.

Lemma 5. Given a modelM and an ATL∗ formula φ, for any history h ofM starting in sI , we have
that:

1. MonφLT L(h) = ⊤ ⇒ (M, sI) |= φAg

2. MonφLT L(h) = ⊥ ⇒ (M, sI) ̸|= φ∅

where φLT L is the variant of φ where all strategic operators are removed, φAg is the variant of φ
where all strategic operators are converted into ⟨⟨Ag⟩⟩ , φ∅ is the variant of φ where all strategic
operators are converted into ⟨⟨∅⟩⟩ .

802

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Algorithm 8 RuntimeVerification (M, θ, h, result)
1: k = ?;
2: ⟨M′, ⟨θ•, θ◦⟩⟩ = U pdateModel&Formula(M, θ, result);
3: θmc = ∅;
4: for ⟨s, φ, atom⟩ ∈ result do
5: θmc = θmc ∪ φ;
6: θrv = S ubFormulas(θ) \ θmc;
7: ψ• = FromATLtoLTL(θ•);
8: ψ◦ = FromATLtoLTL(θ◦);
9: MonM

′

ψ•
= GenerateMonitor(ψ•);

10: MonM
′

ψ◦
= GenerateMonitor(ψ◦);

11: if MonM
′

ψ•
(h) = ⊤ then

12: return ⟨⊤, θmc, θrv, ∅⟩;
13: if MonM

′

ψ◦
(h) = ⊥ then

14: return ⟨⊥, θmc, θrv, ∅⟩;
15: θunchk = ∅ ;
16: for φ′ ∈ θrv do
17: φ′ = FromATLtoLTL(φ′)
18: MonM

′

φ′ = GenerateMonitor(φ′);
19: if MonM

′

φ′ (h) = ? then θrv = θrv \ φ
′; θunchk = θunchk ∪ φ

′;

20: return ⟨k, θmc, θrv, θunchk⟩;

Proof. To prove (1), consider the formula φ = ⟨⟨Γ⟩⟩ψ, in which Γ ⊆ Ag and ψ is a temporal for-
mula without quantifications. So, φLT L = ψ and φAg = ⟨⟨Ag⟩⟩ψ. By Definition 8 we know that
MonφLT L(h) = ⊤ if and only if for all path ρ in Sω we have that h · ρ is in JφLT LK. Note that, the
latter is the set of paths that satisfy ψ, i.e., JφLT LK = {ρ | (M, ρ) |= ψ}. By Definition 6 we know that
(M, sI) |= φAg if and only if there exist a strategy profile ΣAg such that for all paths ρ in out(sI ,ΣAg)
we have that (M, ρ) |= ψ. Notice that, since the strategic operator involves the whole set of agents,
out(sI ,ΣAg) is composed by a single path. Thus, to guarantee that φAg holds in M, our objective is
to construct from sI the history h as prefix of the unique path in out(sI ,ΣAg). Since we have ⟨⟨Ag⟩⟩
as strategic operator, this means that there is a way for the set of agents to construct h starting from
sI and the set out(sI ,ΣAg) becomes equal to {ρ}, where ρ = h · ρ′, for any ρ′ ∈ S ω. From the above
reasoning, the result follows. The proof for (2) is a variant of the previous case.

To conclude the proof, note that if we have a formula with more strategic operators then we can
use the classic bottom-up approach. □

Remark 2. The above lemma shows a preservation result from RV to ATL∗ model checking for
a given model M and formula φ that needs to be discussed. If our monitor returns true, then a
sub-formula φ′ of φ is satisfied in a negative sub-model and at runtime the formula φLT L holds on
the history h given in input. Thus, by Lemma 5 we have that φAg is satisfied in M. That is, φAg
substitutes Ag as coalition for all the strategic operators of φ but the ones in φ′. So, our procedure
approximates the truth value of φ by considering the case in which all the agents in the MAS
collaborate to achieve the objectives not satisfied in the model checking phase. Notice that, this
preservation result also holds in the imperfect information case. In fact, the agents can reproduce
an history h by using a uniform strategy profile. Consequently, while in (Belardinelli, Lomuscio, &
Malvone, 2019; Belardinelli & Malvone, 2020; Belardinelli et al., 2023) the approximation is given
in terms of information and in (Belardinelli, Lomuscio, & Malvone, 2018; Belardinelli et al., 2022)

803

Catta, Ferrando, & Malvone

is given in terms of memory of strategies, via Algorithm 8, we give results by approximating the
coalitions. Notice that, this approach is only used every time Algorithm 6 is not able to return a
conclusive verdict. So, thanks to Algorithm 8, our procedure produces always results, even partial.
This aspect is strongly relevant in concrete scenario in which there is the necessity to have some
sort of verification results. For example, in the context of swarm robots (Kouvaros & Lomuscio,
2016), with our procedure we can verify macro properties such as “the system works properly”
since we are able to guarantee fully collaboration between agents because this property is relevant
and desirable for each agent in the system. The same reasoning described above, can be applied in
a complementary way for the case of positive sub-models and the falsity.

Example 5. Given the model in Figure 2, the negative sub-model in Figure 5, and its positive
counterpart, consider the following formula:

θ = ⟨⟨rover⟩⟩F cpa

Such an ATL∗ formula specifies whether it is possible for the rover to have the robotic arm checked.
Assume, the procedure is checking the sub-model in Figure 5. In this model, state s1 is not present
and Algorithm 6 cannot conclude a result. So, Algorithm 8 is called. Assume as finite trace h =
sI , s1, s4, s6, and θ• and θ◦ the ATL∗ formulas updated w.r.t. sub-formulas verified in the negative
and positive sub-models, respectively (line 2). Note that, in this example, we have θ• = θ◦ = θ,
because Algorithm 5 cannot verify the unique strategic sub-formula of θ. At this point, Algorithm 8
generates the corresponding LTL formulas ψ• and ψ◦ to be checked (lines 7-8), that is, ψ• = ψ◦ =
F cpa. Then, the procedure synthesises the resulting monitors, and uses them to check the given
history h (lines 9-10). The monitor for ψ• concludes ⊤ when applied to h, because s1 is present in h,
and s1 is labelled with cpa (line 11). So, the procedure terminates by returning the tuple ⟨⊤, ∅, θ, ∅⟩
(line 12).

To conclude this part, we provide the complexity result.

Theorem 4. Algorithm 8 terminates in double exponential time w.r.t. the size of θ.

Proof. The auxiliary functions UpdateModel&Formula(), SubFormulas(), and FromATLtoLTL()
are polynomial in the size of the formula and model under exam. The procedure GenerateMonitor()
is double exponential w.r.t. the size of θ (Bauer et al., 2011). The loop in lines 4-5 is linear w.r.t.
the size of the list result. The loop in lines 16-19 calls a polynomial number of times a double
exponential procedure (i.e., GenerateMonitor()). Then, the total complexity follows. □

5.8 The Overall Model Checking Procedure

Given the algorithms presented in the previous subsections, we can now provide the overall proce-
dure as described in Algorithm 9.

The ModelCheckingProcedure() takes in input a model M, a formula θ, and a history h of M.
First, it calls Algorithm 2, and updates the model and the formula accordingly. Then, it calls the
function Preprocessing() to replace all negated atoms with new positive atoms inside the model
and the formula. After that, the algorithm calls the function FindS ub-models() to generate all the
positive and negative sub-models that represent all the possible sub-models with perfect information.
If the number of candidates is equal to one (line 5), i.e., the modelM given in input is with perfect
information w.r.t. the agents involved in the formula θ, then we can directly call the ATL∗ model

804

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Algorithm 9 ModelCheckingProcedure (M, θ, h)
1: FinalResult = ∅;
2: ⟨N, λ⟩ = Imper f ectRecall(M, θ)
3: Preprocessing(N, λ);
4: candidates = FindSub-models(N, λ);
5: if |candidates| = 1 then
6: return ⟨N |=IR λ, ∅⟩;
7: while candidates is not empty do
8: extract ⟨N•,N◦⟩ from candidates;
9: result = CheckSub-formulas(⟨N•,N◦⟩, λ);

10: k = Veri f ication(N, λ, result);
11: if k , ? then
12: return ⟨k, ∅⟩;
13: else FinalResult = RuntimeVerification(N, λ, h, result) ∪ FinalResult;
14: return ⟨?, FinalResult⟩;

checking procedure in case of perfect information and perfect recall. After that, there is a while loop
(lines 7-13) that for each candidate checks the sub-formulas true on the sub-models via CheckS ub-
formulas() and the truth value of the whole formula via Veri f ication(). If the output of the latter
procedure is different from ? then the result is directly returned (line 12). Otherwise, the Runtime
Verification phase is launched (line 13). In case the condition in line 11 is false for each candidate,
then the procedure returns the partial runtime verification results in line 14.

Theorem 5. Algorithm 9 terminates in double exponential time w.r.t. the size of φ and exponential
time w.r.t. the size ofM.

Proof. In the worst case the while loop in lines 7-13 needs to check all the candidates (i.e., the
condition in line 11 is always false) and the size of the set of candidates is equal to the size of the
set of states ofM (i.e., polynomial in the size ofM). So, the total complexity is still determined by
the subroutines and follows by Theorems 1, 2, 3, and 4. □

We now prove that our procedure (i.e., Algorithm 9) is sound, we do so in terms of the preser-
vation results presented previously in this paper.

Theorem 6. Algorithm 9 is sound: if the value k returned is not ?, thenM |= φ iff k = ⊤.

Proof. Let N = MAp− , we prove that N |= (φ)t iff k = ⊤. This is sufficient because of Algorithm 3
and Proposition 3. Suppose that the value returned is different from ?. In particular, either k = ⊤
or k = ⊥. Suppose, to reach a contradiction, that N |= (φ)t and k = ⊥. By Algorithm 6 and 9, we
have that N′ ̸|= (φ)t

E. Now, there are two cases: (1) N and N′ are the same models or (2) N differs
from N′ for some atomic propositions added to N′ in line 2 of Algorithm 6. In case (1), we reach
a contradiction by a direct application of Lemma 4. In case (2), we know that N and N′ differs
for some atomic propositions. Suppose w.l.o.g. that N′ has only one additional atomic proposition
atomφ′ , i.e., Ap′ = Ap ∪ {atomφ′}. The latter means that Algorithm 5 found a positive sub-model
N◦ such that (N◦, s) |= φ′, for some state s of N. Since (φ)t is negation-free, so it is φ′, thus by
Lemma 3, we obtain that (N, s) ̸|= φ′. So, N′ over-approximates N, i.e., there could be some states
that in N′ are labeled with atom′φ but they do not satisfy φ′ in N. Thus, if N′ ̸|= (φ)t

E then N ̸|= (φ)t
E

and, by Lemma 4, N ̸|= (φ)t, a contradiction. Hence, k = ⊤ as required.

805

Catta, Ferrando, & Malvone

On the other hand, if k = ⊤ then by Algorithm 6 and 9, we have that N′ |= (φ)t
A. Again, there are

two cases: (1) N and N′ are the same models or (2) N differs from N′ for some atomic propositions
added to N′ in line 2 of Algorithm 6. In case (1), we conclude by Lemma 4. In case (2), we know
that N and N′ differs for some atomic propositions. Suppose w.l.o.g. that N′ has only one additional
atomic proposition atomφ′ , i.e., Ap′ = Ap ∪ {atomφ′}. The latter means that Algorithm 5 found
a negative sub-model N• in which N•, s |= φ′, for some state s of N. Since φ′ is negation-free,
by Lemma 2, we know that if (N•, s) |= φ′ then (N, s) |= φ′. So, N′ under-approximates N, i.e.,
there could be some states that in N′ are not labeled with atom′φ but they satisfy φ′ in N. Thus, if
N′ |= (φ)t

A then N |= (φ)t
A and, by Lemma 4, N |= (φ)t as required.

□

6. Our Tool

In this section, we present the tool which represents an instantiation of the theory presented in this
paper. Such a tool can be found as a publicly available GitHub repository4.

An overview of the tool is reported in Figure 6. In more detail, the tool takes in input an ATL
formula θ to verify, an iCGS on which we want to verify θ, and a trace h denoting an execution
of the actual system (the one modelled by the iCGS). Once such inputs are passed to the tool, first
the latter synthesises an internal representation of the iCGS, which is denoted as a graph object
in Java. Such internal representation is used inside the tool to manipulate the iCGS and work on
it. Specifically, since the actual static verification of the ATL formula θ is obtained by exploiting
the existing MCMAS5 model checker, our tool needs to address the translation of the model into
the format supported by MCMAS. Indeed, the latter does not support iCGSs by default, but it
expects models denoted as Interpreted Systems specified using the ISPL format. Thus, in order to
use MCMAS, our tool translates the iCGS, on which we want to perform the verification, into its
equivalent Interpreted System. Once this step is performed, the static verification can be achieved
(this corresponds to lines 6 and 9 of Algorithm 5). After this step, which corresponds to Algorithm 5,
the tool has access to a list of sub-models for which a subset of properties of θ is satisfied. Such a
list, as shown in Algorithm 7 is used to update the internal model representationM and the formula
θ, accordingly. The resulting model and formula are then used, as shown in Algorithm 6, to perform
the CTL verification (again exploiting MCMAS). Depending on the result of such verification step
(as shown in Algorithm 9), the tool concludes, with a final verdict, or continues with the Runtime
Verification step. In case the CTL verification step failed to conclude either the satisfaction or
violation of θ, the tool moves on with the implementation of Algorithm 8; where the Runtime
Verification step is performed. The latter is obtained by verifying the LTL version of the remaining
part of θ. We remind the reader that some sub-properties of θ may have been verified in Algorithm 5,
but some may have been left to verify. This step is obtained through monitoring the LTL properties,
and it has been implemented by exploiting the LamaConv library6. Through such a library, the
LTL Runtime Verification is performed; while its result is used to populate the corresponding list
of outcomes (as shown in Algorithm 8). Note that, the Runtime Verification step terminates the
procedure only in case no more sub-models have to be checked, and the CTL verification step is not
capable of concluding.

4. https://github.com/AngeloFerrando/strategyCTLRV
5. https://vas.doc.ic.ac.uk/software/mcmas/
6. https://www.isp.uni-luebeck.de/lamaconv

806

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

ATL property
θ

iCGS
M

Execution
trace

h

Our tool

.json

{⟨si, φi, atomψi⟩, . . . , ⟨s j, φ j, atomψ j⟩}

M′

internal
representation

⟨θ•, θ◦⟩

⟨ψ•, ψ◦⟩

⟨Monψ• ,Monψ◦⟩

parsing

RV

⟨k, θmc, θrv, θunchk⟩

MC-ATL

MCMAS

LamaConv

⟨θA, θE⟩

to CTL
MC-CTL

M′ |= θA return ⊤

M′ ̸|= θE return ⊥

yes

yes
no

no

to LTL

M
C

M
A

S

yes, more sub-models

no

Figure 6: High-level overview of the tool.

In the next sections, we are going to report the results we obtained by experimenting our tool.
We show both results w.r.t. the CTL and Runtime Verification instantiations.

6.1 Experiments

We have tested our tool over the rover’s mission, on a machine with the following specifications:
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4. By con-
sidering the model of Figure 2 and the three formulas φ1, φ2, and φ3 presented in the same section,
Algorithm 4 finds 3 sub-models with perfect information (precisely, 3 negative and 3 positive sub-
models). Such sub-models are then evaluated by applying first Algorithm 5, and then Algorithm 6
(as shown in Algorithm 9). The resulting implementation takes less than 1 sec to conclude the satis-
faction of φ2 and the violation of φ1 and φ3 on the model (empirically confirming our expectations).
The example of Figure 2 is expressly small, since it is used as running example to help the reader to
understand the contribution. However, the actual rover example we tested on our tool contains hun-
dreds of states and dozens of agents (we have multiple rovers and mechanics in the real example).
Such more complex scenario served us as a stressed test to analyse the performance of our tool for
more realistic MAS. Since Algorithm 9 is exponential, when the model grows, the performance is
highly affected. Nonetheless, even when the model reaches 300 states, the tool concludes in ∼10
min.

807

Catta, Ferrando, & Malvone

Figure 7: Success rate.

Other than the rover’s mission, our tool has been further experimented on a large set of automat-
ically and randomly generated7 iCGSs. In what follows, we divide the experiments w.r.t. the CTL
and RV modules. This is done to analyse more in detail their performances in random scenarios.

Experiments on the CTL Module The objective of these experiments have been to show how
many times Algorithm 6 has returned a conclusive verdict. For each model, we have run our pro-
cedure and counted the number of times a solution has been returned. Note that, our approach
concludes in any case, but since the general problem is undecidable, the result might be inconclu-
sive (i.e., ?). In Figure 7, we report our results by varying the percentage of imperfect information
(x axis) inside the iCGSs, from 0% (perfect information, i.e., all states are distinguishable for all
agents), to 100% (no information, i.e., no state is distinguishable for any agent). For each percentage
selected, we have generated 10, 000 random iCGSs and counted the number of times our algorithm
has returned a conclusive result (i.e., ⊤ or ⊥). As it can be seen in Figure 7, our algorithm has
returned a conclusive verdict for almost the 80% of the models analysed (y axis). It is important to
notice how this result has not been influenced (empirically) by the percentage of imperfect informa-
tion added inside the iCGSs. In fact, the accuracy of the algorithm is not determined by the number
of indistinguishable states, but by the topology of the iCGS and the structure of the formula under
exam. In order to have pseudo-realistic results, the automatically generated iCGSs have varied over
the number of states, the complexity of the formula to analyse, and the number of transitions among
states. More specifically, not all iCGSs have been generated completely randomly, but a subset of
them has been generated considering more interesting topologies (similar to the rover’s mission).
This has contributed to have more realistic iCGSs, and consequently, more realistic results.

Experiments on the RV Module Other than testing our tool w.r.t. the success rate over a random
set of iCGSs, we evaluated the execution time as well. Specifically, we were much interested in

7. Such iCGSs ranged in size from 10 to 50 states, with the number of agents varying between 2 and 8.

808

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Figure 8: Execution time (static vs dynamic).

analysing how such execution time is divided between CheckSub- f ormulas() and Algorithm 8. i.e.,
how much time is spent on verifying the models statically (through model checking), and how
much is spent on verifying the temporal properties (through runtime verification). Figure 8 reports
the results we obtained on the same set of randomly generated iCGSs used in Figure 7. The results
we obtained are intriguing, indeed we can note a variation in the percentage of time spent on the two
phases (y-axis) moving from low percentages to high percentages of imperfect information in the
iCGSs (x-axis). When the iCGS is close to have perfect information (low percentages on x-axis),
we may observe that most of the execution time is spent on performing static verification (∼70%),
which corresponds to CheckSub- f ormulas(). On the other hand, when imperfect information grows
inside the iCGS (high percentage on x-axis), we may observe that most of the execution time is
spent on performing runtime verification (∼90% in occurrence of absence of information). This
behaviour is determined by the number of candidates extracted by the FindSub-models() function.
When the iCGS has perfect information, such function only extracts a single candidate (i.e., the
entire model), since FindSub-models() generates only one tuple. Such single candidate can be
of non-negligible size, and the resulting static verification, time consuming; while the subsequent
runtime verification is only performed once on the remaining temporal parts of the property to
verify. On the other hand, when the iCGS has imperfect information, FindSub-models() returns a
set of candidates that can grow exponentially w.r.t. the number of states of the iCGS. Nonetheless,
such candidates are small in size, since FindSub-models() splits the iCGS into multiple smaller
iCGSs with perfect information. Thus, the static verification step is applied on small iCGSs and
requires less execution time and the runtime verification step is called for each candidate (so an
exponential number of times as in the model checking counterpart). In conclusion, it is important to
emphasise that, even though the monitor synthesis is computationally hard (i.e., 2EXPT IME), the
resulting runtime verification process is polynomial in the size of the history analysed. Naturally,
the actual running complexity of a monitor depends on the formalism used to describe the formal
property. In this work, monitors are synthesised from LTL properties. Since LTL properties are

809

Catta, Ferrando, & Malvone

translated into Moore machines (Bauer et al., 2011), the time complexity w.r.t. the length of the
analysed trace is linear. This can be understood intuitively by noticing that the Moore machine so
generated has finite size, and it does not change at runtime.

6.2 Benchmarks

In addition to the experiments presented above, we carried out benchmarks considering a variant
of the simple voting scenario presented in (Jamroga, Knapik, Kurpiewski, & Mikulski, 2019), and
used in (Belardinelli et al., 2022, 2023) to evaluate the partial model checking procedure proposed
therein. Furthermore, we carried out experiments on the rover case study with (Belardinelli et al.,
2022, 2023) as well.

The voting scenario comprises of ℓ voters, k candidates, and a single coercer. Every voter i ≤ ℓ
votes for one candidate j ≤ k (action votei j), and after casting her ballot, voter i can either give a
proof of vote to the coercer (action givei j), or refrain from doing so (action n givei), assuming the
proof is trustworthy. The coercer receives the proof (action reci), and decides whether to punish
voter i or not (actions pi and n pi). The decision is made t timestamps after the proof is submitted
by the voter (the coercer delays decision by performing the wait action). For the sake of clarity, the
iCGS is given in Figure 9 in the case with a single voter, two candidates, and one waiting step. In that
case, we have the following indistinguishability relations between different states: s6 ∼Coercer s7,
s6 ∼Coercer s8, and s7 ∼Coercer s8. Note that, since we have a single voter, in Figure 9 we omit the
index i for the voter’s actions.

This scenario and the corresponding iCGS is used in (Belardinelli et al., 2022) to analyse the
expressive power of bounded-recall strategies, and in (Belardinelli et al., 2023) to experiment an
abstraction refinement mechanism. In particular, the property “there exists a strategy for the coercer
such that voter i is not punished if she votes for candidate 1 and provides the proof, otherwise she
is punished” (for any i ≤ l) can be represented in ATL as follows:

θ1 = ⟨⟨Coercer⟩⟩ F((votei1 ∧ n pi) ∨ (
k∨

j=2

votei j ∧ pi) ∨ (n givei ∧ pi))

We observe that θ1 is false w.r.t. memoryless strategies, since for this property to hold, the
coercer is supposed to perform two different actions in indistinguishable states (the states connected
with dotted lines in Figure 9 are indistinguishable for the coercer). However, the coercer has a
(t + 1)-bounded recall strategy (in the sense of (Belardinelli et al., 2022)) to win the game, where t
is the number of waiting steps. More formally, we have that (M, s0) |=n θ1 holds iff n > t.

In (Belardinelli et al., 2022, 2023) the authors evaluate the ATL specification θ2 stating that the
voters collectively have a strategy to avoid being punished:

θ2 = ⟨⟨all voters⟩⟩G¬(
∨nv

i=1(n givei ∧ n pi) ∨ (¬n givei ∧ pi))

This voting scenario is a good candidate to compare our verification approach with the ones
proposed in (Belardinelli et al., 2022, 2023).

In those works, the authors consider the same problem as we do here, i.e., ATL∗ model check-
ing under imperfect information and perfect recall. However, (Belardinelli et al., 2022) approxi-
mates perfect recall by considering bounded-recall strategies with an increasingly greater bound,
while (Belardinelli et al., 2023) approximates imperfect information (by an abstraction refinement

810

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

s0

s1 s2

s4s3 s5

s7s6 s8

s9p, v1

s10v1

s11n g, p
s12n g

s14v2

s13v2, p

(I, vote1) (I, vote2)

(rec, give1) (rec, n give) (rec, give2)(rec, n give)

(wait, ∗) (wait, ∗) (wait, ∗)

(p, ∗)

(n p, ∗)

(p, ∗) (n p, ∗)

(p, ∗)

(n p, ∗)

Coercer Coercer

{(I, give1), (I, n give)} {(I, give2), (I, n give)}

(∗, ∗)

(∗, ∗)

(∗, ∗)
(∗, ∗)

(∗, ∗)

(∗, ∗)

Figure 9: The iCGS M for the simple voting scenario. We consider the setting with one waiting
step before the Coercer makes a decision for punishment. Here, action ∗ represents any
action available for the agent and action I represents the idle action. The states s9, . . . , s14
are labeled with atomic propositions, where p stands for punish, vi stands for voter voted
for candidate i, and n g the voter did not give a proof to the coercer. This figure is taken
from (Belardinelli et al., 2023).

method). Instead, in here, we propose to study sub-models of iCGSs and present a richer verifi-
cation mechanism of the latter based upon the combination of CTL∗ model checking and runtime
verification.

Table 1 reports our experimental results w.r.t. the voting scenario previously introduced. We
experimented our approach and the ones from (Belardinelli et al., 2022, 2023). Specifically, w.r.t.
Figure 9, we tested a more complex scenario involving 2 voters and 1 coercer. The results are
divided into three groups (each of 4 rows in Table 1). The first group considers the scenario where
we have 6 layers of waiting states. That is, looking at Figure 9, we may see in there only one layer
of waiting states (i.e., s6, s7, and s8). In our experiments, we stressed this aspect (as in (Belardinelli
et al., 2022, 2023)), and we considered 6, 8, and 10 layers of waiting states. For each of these
scenarios, we experimented our approach, and the ones from (Belardinelli et al., 2022, 2023). Note

811

Catta, Ferrando, & Malvone

Voters Waiting Bound Verdict (Belardinelli et al., 2022) Verdict (Belardinelli et al., 2023) Verdict (Ours) (Belardinelli et al., 2022) (Belardinelli et al., 2023) Ours

2 6 7 ⊥ ⊥ ⊥ 2.8 135.3 3294.3
2 6 9 ⊥ ⊥ ⊥ 5.8 135.3 3294.3
2 6 11 ⊥ ⊥ ⊥ 11.1 135.3 3294.3
2 6 13 ⊥ ⊥ ⊥ 18.1 135.3 3294.3
2 8 7 uu ⊥ ⊥ 3.2 139.1 3851.6
2 8 9 ⊥ ⊥ ⊥ 6.8 139.1 3851.6
2 8 11 ⊥ ⊥ ⊥ 12.4 139.1 3851.6
2 8 13 ⊥ ⊥ ⊥ 18.5 139.1 3851.6
2 10 7 − ⊥ ⊥ T/O 143.6 4263.9
2 10 9 − ⊥ ⊥ T/O 143.6 4263.9
2 10 11 − ⊥ ⊥ T/O 143.6 4263.9
2 10 13 − ⊥ ⊥ T/O 143.6 4263.9

Table 1: Benchmarks results for the simple voting scenario for property θ2 (all times are in seconds),
where T/O is reported when time superior at 2 hours (timeout).

that, an additional parameter has to be considered, that is the bound used in (Belardinelli et al.,
2022); this denotes its maximum bound for the strategies.

The results reported in Table 1 show that our approach is capable of concluding the verification,
along with (Belardinelli et al., 2023). While (Belardinelli et al., 2022) suffers from scalability and
stops when the layers of waiting states become 10. Note that, even though both conclude with the
correct outcome (i.e., the violation of formula θ2), (Belardinelli et al., 2023) terminates in less time
than us.

As we see in Table 2, our approach instead takes less time w.r.t. (Belardinelli et al., 2022, 2023)
when applied to the rover case study. This empirically demonstrate that the approaches could be
alternated to tackle different kinds of iCGSs. That is, depending on the iCGS structure and topology,
one approach could be better suited to perform the verification. This aspect is relevant from a more
technological perspective, and it is left as a future work.

Formulas Bound Verdict (Belardinelli et al., 2022) Verdict (Belardinelli et al., 2023) Verdict (Ours) (Belardinelli et al., 2022) (Belardinelli et al., 2023) Ours

φ1 1 uu ⊥ ⊥ 0.54 2.01 1.03
φ1 2 − ⊥ ⊥ T/O 2.01 1.03
φ2 1 ⊤ ⊤ ⊤ 0.69 3.15 0.91
φ2 2 − ⊤ ⊤ T/O 3.15 0.91
φ3 1 uu ⊥ ⊥ 1.35 2.10 0.85
φ3 2 − ⊥ ⊥ T/O 2.10 0.85
φ4 1 ⊤ uu ⊤ 0.03 4.78 0.36
φ4 2 − uu ⊤ T/O 4.78 0.36

Table 2: Benchmarks results for Rover scenario (all the times are in seconds), where T/O is reported
when time superior at 2 hours (timeout).

It is important to note that, Table 2 does not only show that our approach can be faster than
(Belardinelli et al., 2022, 2023), but it also demonstrates empirically that our approach can conclude
the verification in cases where (Belardinelli et al., 2022, 2023) cannot. In more detail, this happens
for formulas φ1 and φ3, where (Belardinelli et al., 2022) is not capable of concluding the verification
(the undefined outcome is returned). Instead, our approach correctly concludes the violation of φ1
and φ3. Note that, in both cases (and also for φ2), (Belardinelli et al., 2023) also concludes the
correct verification outcome for the formulas. However, to show that our approach can indeed
conclude where (Belardinelli et al., 2023) cannot, we also experimented an additional formula:

812

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

φ4 = ⟨⟨rover,mechanic⟩⟩F cpw

Such ATL formula specifies whether it is possible for the rover and the mechanic (in coalition) to
have the robotic wheels checked. Now, even though this formula is quite simple, (Belardinelli et al.,
2023) is not capable of concluding its verification with a conclusive outcome (it returns uu). Instead,
our approach concludes the verification and correctly returns ⊤ (indeed, if the mechanic is in the
coalition, φ4 is satisfied).

Thanks to the set of experiments reported in Table 2, we demonstrated empirically that our
approach concludes where (Belardinelli et al., 2022, 2023) conclude, but there are scenarios where
our approach concludes and the ones from (Belardinelli et al., 2022, 2023) do not.

7. Related Work

Formal Verification on MAS Various approaches for the verification of specifications in ATL
under imperfect information have been recently put forward. In (Lomuscio & Michaliszyn, 2014,
2015, 2016) the authors consider non-uniform strategies for which the corresponding model check-
ing problem is decidable. Their aim, therefore, is rather to speed-up the verification process and not,
as we do here, to provide a sound approximation to an otherwise undecidable problem. In (Jamroga
et al., 2019) is presented a translation of ATL formulas under imperfect information and imper-
fect recall strategies that provide lower and upper bounds for their truth values. In another line,
restrictions are made on how information is shared amongst the agents, so as to retain decidabil-
ity (Berthon, Maubert, Murano, Rubin, & Vardi, 2021). In a related line, interactions amongst agents
are limited to public actions only (Belardinelli, Lomuscio, Murano, & Rubin, 2017b, 2017a). These
approaches are markedly different from ours as they seek to identify classes for which verification
is decidable. Instead, we consider the whole class of models and define a general verification proce-
dure. In this sense, our approach is related to (Belardinelli et al., 2018, 2022) where an abstraction
method over the strategies is defined and to (Belardinelli et al., 2019; Belardinelli & Malvone, 2020;
Belardinelli et al., 2023) where an approximation to the information is presented. While the orthog-
onality between our approach and (Belardinelli et al., 2018, 2022) is clear since they approximate
over the memory while we approximate over the information, it could be useful for the reader to add
further words about the relation with (Belardinelli et al., 2019; Belardinelli & Malvone, 2020; Be-
lardinelli et al., 2023). With more detail, in (Belardinelli et al., 2019; Belardinelli & Malvone, 2020;
Belardinelli et al., 2023) an abstract model abstracts the imperfect information by using a state for
each equivalence class, here we do not have an abstraction on the states, that is each state remains
as it is in the original model or it is removed. Additionally, while in (Belardinelli et al., 2019; Be-
lardinelli & Malvone, 2020; Belardinelli et al., 2023) there are may/must transitions, here, for the
sub-models, we have the same transitions of the original model but the ones related to equivalent
states that are all connected with a special state. Thus, the two approaches are orthogonal.

Runtime Verification RV has never been used before in a strategic context, where monitors check
whether a coalition of agents satisfies a strategic property. This can be obtained by combining Model
Checking on MAS with RV. The combination of Model Checking with RV is not new; in a position
paper dating back to 2014, Hinrichs et al. suggested to “model check what you can, runtime verify
the rest” (Hinrichs, Sistla, & Zuck, 2014). Their work presented several realistic examples where
such mixed approach would give advantages, but no technical aspects were addressed. Desai et
al. (Desai, Dreossi, & Seshia, 2017) present a framework to combine model checking and runtime

813

Catta, Ferrando, & Malvone

verification for robotic applications. They represent the discrete model of their system and extract
the assumptions deriving from such abstraction. Kejstová et al. (Kejstová, Rockai, & Barnat, 2017)
extend an existing software model checker, DIVINE (Barnat, Brim, Havel, Havlı́ček, Kriho, Lenčo,
Ročkai, Štill, & Weiser, 2013), with a runtime verification mode. The system under test consists of
a user program in C or C++, along with the environment. Other blended approaches exist, such as a
verification-centric software development process for Java making it possible to write, type check,
and consistency check behavioural specifications for Java before writing any code (Zimmerman &
Kiniry, 2009). Although it integrates a static checker for Java and a runtime assertion checker, it
does not properly integrate model checking and RV. In all the previously mentioned works, both
Model Checking and RV were used to verify temporal properties, such as LTL. Instead, we focus on
strategic properties, we show how combining Model Checking of ATL∗ properties with RV, and we
can give results; even in scenarios where Model Checking alone would not suffice. Because of this,
our work is closer in spirit to (Hinrichs et al., 2014); in fact, we use RV to support Model Checking
in verifying at runtime what the model checker could not at static time.

8. Conclusion and Future Work

In this paper, we proposed a procedure to overcome the issue in employing logics for strategic rea-
soning in the context of MAS under perfect recall and imperfect information, a problem in general
undecidable. Specifically, we showed how to generate the sub-models in which the verification of
strategic objectives is decidable and then used CTL∗ model checking and Runtime Verification to
provide a verification result. We proved that the entire procedure is in the same complexity class
of ATL∗IR model checking. We also implemented our procedure by using MCMAS and provided
encouraging experimental results.

In future work, we intend to extend our procedure to increase the types of models and specifi-
cations that we can cover. In fact, we recall that our procedure is sound but not complete. It is not
possible to find a complete method since, in general, ATL model checking with imperfect informa-
tion and perfect recall strategies is undecidable. Additionally, we plan to extend our techniques to
more expressive languages for strategic reasoning like Strategy Logic (Mogavero, Murano, Perelli,
& Vardi, 2014). Furthermore, we are planning to extend the RV part of our work by considering a
more predictive flavour (Zhang, Leucker, & Dong, 2012), this can be done by recognising that by
verifying at static time part of the system, we can use this information at runtime to predict future
events and conclude the runtime verification in advance.

References

Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. J. ACM,
49(5), 672–713.

Baier, C., & Katoen, J.-P. (2008). Principles of Model Checking (Representation and Mind Series).
ACM.

Barnat, J., Brim, L., Havel, V., Havlı́ček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V., & Weiser, J.
(2013). Divine 3.0 – an explicit-state model checker for multithreaded c & c++ programs. In
Sharygina, N., & Veith, H. (Eds.), Computer Aided Verification, pp. 863–868, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

814

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

Bartocci, E., Falcone, Y., Francalanza, A., & Reger, G. (2018). Introduction to runtime verification.
In Bartocci, E., & Falcone, Y. (Eds.), Lectures on Runtime Verification - Introductory and
Advanced Topics, Vol. 10457 of Lecture Notes in Computer Science, pp. 1–33. Springer.

Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol., 20(4), 14:1–14:64.

Belardinelli, F., Ferrando, A., & Malvone, V. (2023). An abstraction-refinement framework for
verifying strategic properties in multi-agent systems with imperfect information. Artif. Intell.,
316, 103847.

Belardinelli, F., Lomuscio, A., & Malvone, V. (2018). Approximating perfect recall when model
checking strategic abilities. In Thielscher, M., Toni, F., & Wolter, F. (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Con-
ference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, pp. 435–444. AAAI Press.

Belardinelli, F., Lomuscio, A., & Malvone, V. (2019). An abstraction-based method for verifying
strategic properties in multi-agent systems with imperfect information. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pp. 6030–6037. AAAI Press.

Belardinelli, F., Lomuscio, A., Malvone, V., & Yu, E. (2022). Approximating perfect recall when
model checking strategic abilities: Theory and applications. J. Artif. Intell. Res., 73, 897–932.

Belardinelli, F., Lomuscio, A., Murano, A., & Rubin, S. (2017a). Verification of broadcasting
multi-agent systems against an epistemic strategy logic. In Sierra, C. (Ed.), Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pp. 91–97. ijcai.org.

Belardinelli, F., Lomuscio, A., Murano, A., & Rubin, S. (2017b). Verification of multi-agent systems
with imperfect information and public actions. In Larson, K., Winikoff, M., Das, S., & Durfee,
E. H. (Eds.), Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pp. 1268–1276. ACM.

Belardinelli, F., & Malvone, V. (2020). A three-valued approach to strategic abilities under imper-
fect information. In Calvanese, D., Erdem, E., & Thielscher, M. (Eds.), Proceedings of the
17th International Conference on Principles of Knowledge Representation and Reasoning,
KR 2020, Rhodes, Greece, September 12-18, 2020, pp. 89–98.

Berthon, R., Maubert, B., Murano, A., Rubin, S., & Vardi, M. Y. (2021). Strategy logic with imper-
fect information. ACM Trans. Comput. Log., 22(1), 5:1–5:51.

Desai, A., Dreossi, T., & Seshia, S. A. (2017). Combining model checking and runtime verification
for safe robotics. In Lahiri, S. K., & Reger, G. (Eds.), Runtime Verification - 17th International
Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, Vol. 10548 of
Lecture Notes in Computer Science, pp. 172–189. Springer.

Dima, C., & Tiplea, F. L. (2011). Model-checking ATL under imperfect information and perfect
recall semantics is undecidable. CoRR, abs/1102.4225.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. (1995). Reasoning about Knowledge. MIT.

815

Catta, Ferrando, & Malvone

Ferrando, A., & Malvone, V. (2021). Strategy RV: A tool to approximate ATL model checking
under imperfect information and perfect recall. In Dignum, F., Lomuscio, A., Endriss, U.,
& Nowé, A. (Eds.), AAMAS ’21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, pp. 1764–1766. ACM.

Ferrando, A., & Malvone, V. (2022). Towards the combination of model checking and runtime ver-
ification on multi-agent systems. In Dignum, F., Mathieu, P., Corchado, J. M., & de la Prieta,
F. (Eds.), Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex
Systems Simulation. The PAAMS Collection - 20th International Conference, PAAMS 2022,
L’Aquila, Italy, July 13-15, 2022, Proceedings, Vol. 13616 of Lecture Notes in Computer
Science, pp. 140–152. Springer.

Ferrando, A., & Malvone, V. (2023). Towards the verification of strategic properties in multi-agent
systems with imperfect information. In Agmon, N., An, B., Ricci, A., & Yeoh, W. (Eds.),
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023, pp. 793–801.
ACM.

Hinrichs, T. L., Sistla, A. P., & Zuck, L. D. (2014). Model check what you can, runtime verify the
rest. In Voronkov, A., & Korovina, M. V. (Eds.), HOWARD-60: A Festschrift on the Occasion
of Howard Barringer’s 60th Birthday, Vol. 42 of EPiC Series in Computing, pp. 234–244.
EasyChair.

Jamroga, W., Knapik, M., Kurpiewski, D., & Mikulski, L. (2019). Approximate verification of
strategic abilities under imperfect information. Artif. Intell., 277.

Jamroga, W., & van der Hoek, W. (2004). Agents that know how to play. Fundam. Informaticae,
63(2-3), 185–219.

Kejstová, K., Rockai, P., & Barnat, J. (2017). From model checking to runtime verification and back.
In Lahiri, S. K., & Reger, G. (Eds.), Runtime Verification - 17th International Conference, RV
2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, Vol. 10548 of Lecture Notes
in Computer Science, pp. 225–240. Springer.

Kouvaros, P., & Lomuscio, A. (2016). Parameterised verification for multi-agent systems. Artif.
Intell., 234, 152–189.

Leucker, M., & Schallhart, C. (2009). A brief account of runtime verification. J. Log. Algebraic
Methods Program., 78(5), 293–303.

Lomuscio, A., & Michaliszyn, J. (2014). An abstraction technique for the verification of multi-
agent systems against ATL specifications. In Baral, C., Giacomo, G. D., & Eiter, T. (Eds.),
Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth In-
ternational Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press.

Lomuscio, A., & Michaliszyn, J. (2015). Verifying multi-agent systems by model checking three-
valued abstractions. In Weiss, G., Yolum, P., Bordini, R. H., & Elkind, E. (Eds.), Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2015, Istanbul, Turkey, May 4-8, 2015, pp. 189–198. ACM.

Lomuscio, A., & Michaliszyn, J. (2016). Verification of multi-agent systems via predicate abstrac-
tion against ATLK specifications. In Jonker, C. M., Marsella, S., Thangarajah, J., & Tuyls, K.

816

Reasoning aboutDecidability of Strategic Logics with Imperfect Information and PerfectRecall Strategies

(Eds.), Proceedings of the 2016 International Conference on Autonomous Agents & Multia-
gent Systems, Singapore, May 9-13, 2016, pp. 662–670. ACM.

Mogavero, F., Murano, A., Perelli, G., & Vardi, M. Y. (2014). Reasoning about strategies: On the
model-checking problem. ACM Trans. Comput. Log., 15(4), 34:1–34:47.

NASA (2024). Mars curiosity rover. https://mars.nasa.gov/msl/home/. Accessed on 2024-05-07.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp.
46–57. IEEE Computer Society.

Schobbens, P. (2003). Alternating-time logic with imperfect recall. In van der Hoek, W., Lomuscio,
A., de Vink, E. P., & Wooldridge, M. J. (Eds.), 1st International Workshop on Logic and
Communication in Multi-Agent Systems, LCMAS 2003, Eindhoven, The Netherlands, June
29, 2003, Vol. 85 of Electronic Notes in Theoretical Computer Science, pp. 82–93. Elsevier.

Vardi, M. Y., & Wolper, P. (1994). Reasoning about infinite computations. Inf. Comput., 115(1),
1–37.

Zhang, X., Leucker, M., & Dong, W. (2012). Runtime Verification with Predictive Semantics. In
NASA Formal Methods, Vol. 7226 of LNCS, pp. 418–432. Springer.

Zimmerman, D. M., & Kiniry, J. R. (2009). A verification-centric software development process
for java. In Choi, B. (Ed.), Proceedings of the Ninth International Conference on Quality
Software, QSIC 2009, Jeju, Korea, August 24-25, 2009, pp. 76–85. IEEE Computer Society.

817

