TIM: Type Inference Mechanism - support for STAN: State Analysis Planner
D. Long and M. Fox, University of Durham
Reading domain file: domain02.pddl
Reading problem file: prob004.pddl
TIM: Domain analysis complete for gripper-strips
TIM: TYPES:
Type T0 = {rooma,roomb}
Type T1 = {left,right}
Type T2 = {ball1,ball2,ball3,ball4}
TIM: STATE INVARIANTS:
FORALL x:T2. FORALL y1. FORALL z1. at(x,y1) AND at(x,z1) => y1 = z1
FORALL x:T2. FORALL y1. FORALL z1. carry(x,y1) AND carry(x,z1) => y1 = z1
FORALL x:T2. (Exists y1:T0. at(x,y1) OR Exists y1:T1. carry(x,y1))
FORALL x:T2. NOT (Exists y1:T0. at(x,y1) AND Exists y1:T1. carry(x,y1))
FORALL x:T1. FORALL y1. FORALL z1. carry(y1,x) AND carry(z1,x) => y1 = z1
FORALL x:T1. (free(x) OR Exists y1:T2. carry(y1,x))
FORALL x:T1. NOT (free(x) AND Exists y1:T2. carry(y1,x))
TIM: DOMAIN INVARIANTS:
|{x0: at-robby(x0)}| = 1
|{x0: ball(x0)}| = 4
|{x0: gripper(x0)}| = 2
|{x0: room(x0)}| = 2
TIM: ATTRIBUTE SPACES:
Objects, x, in T0 can have property:
Exists y1:T2. at(y1,x);
Objects, x, in T0 can have property:
at-robby(x);
Objects, x, in T2 all have property:
ball(x);
Objects, x, in T1 all have property:
gripper(x);
Objects, x, in T0 all have property:
room(x);
TIM: OPERATOR PARAMETER RESTRICTIONS:
drop(x1:T2,x2:T0,x3:T1)
pick(x1:T2,x2:T0,x3:T1)
move(x1:T0,x2:T0)
TIM: ADDITIONAL STATE INVARIANTS, USING SUB-STATE ANALYSIS: