Gripper Domain

TIM: Type Inference Mechanism - support for STAN: State Analysis Planner

D. Long and M. Fox, University of Durham

Reading domain file: domain02.pddl

Reading problem file: prob004.pddl

TIM: Domain analysis complete for gripper-strips

TIM: TYPES:

Type T0 = {rooma,roomb}

Type T1 = {left,right}

Type T2 = {ball1,ball2,ball3,ball4}

TIM: STATE INVARIANTS:

FORALL x:T2. FORALL y1. FORALL z1. at(x,y1) AND at(x,z1) => y1 = z1

FORALL x:T2. FORALL y1. FORALL z1. carry(x,y1) AND carry(x,z1) => y1 = z1

FORALL x:T2. (Exists y1:T0. at(x,y1) OR Exists y1:T1. carry(x,y1))

FORALL x:T2. NOT (Exists y1:T0. at(x,y1) AND Exists y1:T1. carry(x,y1))

FORALL x:T1. FORALL y1. FORALL z1. carry(y1,x) AND carry(z1,x) => y1 = z1

FORALL x:T1. (free(x) OR Exists y1:T2. carry(y1,x))

FORALL x:T1. NOT (free(x) AND Exists y1:T2. carry(y1,x))

TIM: DOMAIN INVARIANTS:

|{x0: at-robby(x0)}| = 1

|{x0: ball(x0)}| = 4

|{x0: gripper(x0)}| = 2

|{x0: room(x0)}| = 2

TIM: ATTRIBUTE SPACES:

Objects, x, in T0 can have property:

Objects, x, in T0 can have property:

Objects, x, in T2 all have property:

Objects, x, in T1 all have property:

Objects, x, in T0 all have property:

TIM: OPERATOR PARAMETER RESTRICTIONS:

drop(x1:T2,x2:T0,x3:T1)

pick(x1:T2,x2:T0,x3:T1)

move(x1:T0,x2:T0)

TIM: ADDITIONAL STATE INVARIANTS, USING SUB-STATE ANALYSIS: