Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences

Main Article Content

Abstract

The paper describes an extension of well-founded semantics for logic programs with two types of negation. In this extension information about preferences between rules can be expressed in the logical language and derived dynamically. This is achieved by using a reserved predicate symbol and a naming technique. Conflicts among rules are resolved whenever possible on the basis of derived preference information. The well-founded conclusions of prioritized logic programs can be computed in polynomial time. A legal reasoning example illustrates the usefulness of the approach.

Article Details

Section
Articles