Interactive Execution Monitoring of Agent Teams
Main Article Content
Abstract
We use this framework to describe an execution monitoring approach we have used to implement Execution Assistants (EAs) in two different dynamic, data-rich, real-world domains to assist a human in monitoring team behavior. One domain (Army small unit operations) has hundreds of mobile, geographically distributed agents, a combination of humans, robots, and vehicles. The other domain (teams of unmanned ground and air vehicles) has a handful of cooperating robots. Both domains involve unpredictable adversaries in the vicinity. Our approach customizes monitoring behavior for each specific task, plan, and situation, as well as for user preferences. Our EAs alert the human controller when reported events threaten plan execution or physically threaten team members. Alerts were generated in a timely manner without inundating the user with too many alerts (less than 10 percent of alerts are unwanted, as judged by domain experts).