Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies
Main Article Content
Abstract
Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms have been shown to correspond to extrema of the Bethe and Kikuchi free energy, both of which are approximations of the exact Helmholtz free energy. However, belief propagation does not always converge, which motivates approaches that explicitly minimize the Kikuchi/Bethe free energy, such as CCCP and UPS.
Here we describe a class of algorithms that solves this typically non-convex constrained minimization problem through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.
Here we describe a class of algorithms that solves this typically non-convex constrained minimization problem through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.
Article Details
Issue
Section
Articles