Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Main Article Content


The minimisation problem of a sum of unary and pairwise functions of discrete variables is a general NP-hard problem with wide applications such as computing MAP configurations in Markov Random Fields (MRF), minimising Gibbs energy, or solving binary Valued Constraint Satisfaction Problems (VCSPs).

We study the computational complexity of classes of discrete optimisation problems given by allowing only certain types of costs in every triangle of variable-value assignments to three distinct variables. We show that for several computational problems, the only non- trivial tractable classes are the well known maximum matching problem and the recently discovered joint-winner property. Our results, apart from giving complete classifications in the studied cases, provide guidance in the search for hybrid tractable classes; that is, classes of problems that are not captured by restrictions on the functions (such as submodularity) or the structure of the problem graph (such as bounded treewidth).

Furthermore, we introduce a class of problems with convex cardinality functions on cross-free sets of assignments. We prove that while imposing only one of the two conditions renders the problem NP-hard, the conjunction of the two gives rise to a novel tractable class satisfying the cross-free convexity property, which generalises the joint-winner property to problems of unbounded arity.

Article Details