Closure and Consistency In Logic-Associated Argumentation

Main Article Content

P. M. Dung
P. M. Thang

Abstract

Properties like logical closure and consistency are important properties in any logical reasoning system. Caminada and Amgoud showed that not every logic-based argument system satisfies these relevant properties. But under conditions like closure under contraposition or transposition of the monotonic part of the underlying logic, ASPIC-like systems satisfy these properties. In contrast, the logical closure and consistency properties are not well-understood for other well-known and widely applied systems like logic programming or assumption based argumentation. Though conditions like closure under contraposition or transposition seem intuitive in ASPIC-like systems, they rule out many sensible ASPIC-like systems that satisfy both properties of closure and consistency.





We present a new condition referred to as the self-contradiction axiom that guarantees the consistency property in both ASPIC-like and assumption-based systems and is implied by both properties of closure under contraposition or transposition. We develop a logic-associated abstract argumentation framework, by associating abstract argumentation with abstract logics to represent the conclusions of arguments. We show that logic-associated abstract argumentation frameworks capture ASPIC-like systems (without preferences) and assumption-based argumentation. We present two simple and natural properties of compactness and cohesion in logic-associated abstract argumentation frameworks and show that they capture the logical closure and consistency properties. We demonstrate that in both assumption-based argumentation and ASPIC-like systems, cohesion follows naturally from the self-contradiction axiom. We further give a translation from ASPIC-like systems (without preferences) into equivalent assumption-based systems that keeps the self-contradiction axiom invariant.

Article Details

Section
Articles