Knowledge Forgetting in Answer Set Programming

Main Article Content

Abstract

The ability of discarding or hiding irrelevant information has been

recognized as an important feature for knowledge based systems, including answer set programming. The notion of strong equivalence in answer set programming plays an important role for different problems as it gives rise to a substitution principle and amounts to knowledge equivalence of logic programs. In this paper, we uniformly propose a semantic knowledge forgetting, called HT- and FLP-forgetting, for logic programs under stable model and FLP-stable model semantics, respectively. Our proposed knowledge forgetting discards exactly the knowledge of a logic program which is relevant to forgotten variables. Thus it preserves strong equivalence in the sense that strongly equivalent logic programs will remain strongly equivalent after forgetting the same variables. We show that this semantic forgetting result is always expressible; and we prove a representation theorem stating that the HT- and FLP-forgetting can be precisely characterized by Zhang-Zhou's four forgetting postulates under the HT- and FLP-model semantics, respectively. We also reveal underlying connections between the proposed forgetting and the forgetting of propositional logic, and provide complexity results for decision problems in relation to the forgetting. An application of the proposed forgetting is also considered in a conflict solving scenario.

Article Details

Section
Articles