Bilingual Distributed Word Representations from Document-Aligned Comparable Data

Main Article Content

Ivan Vulić
Marie-Francine Moens

Abstract

We propose a new model for learning bilingual word representations from non-parallel document-aligned data. Following the recent advances in word representation learning, our model learns dense real-valued word vectors, that is, bilingual word embeddings (BWEs). Unlike prior work on inducing BWEs which heavily relied on parallel sentence-aligned corpora and/or readily available translation resources such as dictionaries, the article reveals that BWEs may be learned solely on the basis of document-aligned comparable data without any additional lexical resources nor syntactic information. We present a comparison of our approach with previous state-of-the-art models for learning bilingual word representations from comparable data that rely on the framework of multilingual probabilistic topic modeling (MuPTM), as well as with distributional local context-counting models. We demonstrate the utility of the induced BWEs in two semantic tasks: (1) bilingual lexicon extraction, (2) suggesting word translations in context for polysemous words. Our simple yet effective BWE-based models significantly outperform the MuPTM-based and context-counting representation models from comparable data as well as prior BWE-based models, and acquire the best reported results on both tasks for all three tested language pairs.

Article Details

Section
Articles