Combining the Delete Relaxation with Critical-Path Heuristics: A Direct Characterization

Main Article Content

Abstract

Recent work has shown how to improve delete relaxation heuristics by computing relaxed plans, i.e., the hFF heuristic, in a compiled planning task PiC which represents a given set C of fact conjunctions explicitly. While this compilation view of such partial delete relaxation is simple and elegant, its meaning with respect to the original planning task is opaque, and the size of PiC grows exponentially in |C|. We herein provide a direct characterization, without compilation, making explicit how the approach arises from a combination of the delete-relaxation with critical-path heuristics. Designing equations characterizing a novel view on h+ on the one hand, and a generalized version hC of hm on the other hand, we show that h+(PiC) can be characterized in terms of a combined hcplus equation. This naturally generalizes the standard delete-relaxation framework: understanding that framework as a relaxation over singleton facts as atomic subgoals, one can refine the relaxation by using the conjunctions C as atomic subgoals instead. Thanks to this explicit view, we identify the precise source of complexity in hFF(PiC), namely maximization of sets of supported atomic subgoals during relaxed plan extraction, which is easy for singleton-fact subgoals but is NP-complete in the general case. Approximating that problem greedily, we obtain a polynomial-time hCFF version of hFF(PiC), superseding the PiC compilation, and superseding the modified PiCce compilation which achieves the same complexity reduction but at an information loss. Experiments on IPC benchmarks show that these theoretical advantages can translate into empirical ones.

Article Details

Section
Articles