Tie-Breaking Strategies for Cost-Optimal Best First Search

Main Article Content

Masataro Asai
Alex Fukunaga


Best-first search algorithms such as A* need to apply tie-breaking strategies in order to decide which node to expand when multiple search nodes have the same evaluation score. We investigate and improve tie-breaking strategies for cost-optimal search using A*. We first experimentally analyze the performance of common tie-breaking strategies that break ties according to the heuristic value of the nodes. We find that the tie-breaking strategy has a significant impact on search algorithm performance when there are 0-cost operators that induce large plateau regions in the search space. Based on this, we develop two new classes of tie-breaking strategies. We first propose a depth diversification strategy which breaks ties according to the distance from the entrance to the plateau, and then show that this new strategy significantly outperforms standard strategies on domains with 0-cost actions. Next, we propose a new framework for interpreting A* search as a series of satisficing searches within plateaus consisting of nodes with the same f-cost. Based on this framework, we investigate a second, new class of tie-breaking strategy, a multi-heuristic tie-breaking strategy which embeds inadmissible, distance-to-go variations of various heuristics within an admissible search. This is shown to further improve the performance in combination with the depth metric.

Article Details