Improved High Dimensional Discrete Bayesian Network Inference using Triplet Region Construction

Main Article Content

Peng Lin
Martin Neil
Norman Fenton

Abstract

Performing efficient inference on high dimensional discrete Bayesian Networks (BNs) is challenging. When using exact inference methods the space complexity can grow exponentially with the tree-width, thus making computation intractable. This paper presents a general purpose approximate inference algorithm, based on a new region belief approximation method, called Triplet Region Construction (TRC). TRC reduces the cluster space complexity for factorized models from worst-case exponential to polynomial by performing graph factorization and producing clusters of limited size. Unlike previous generations of region-based algorithms, TRC is guaranteed to converge and effectively addresses the region choice problem that bedevils other region-based algorithms used for BN inference. Our experiments demonstrate that it also achieves significantly more accurate results than competing algorithms.

Article Details

Section
Articles