Generic Constraint-based Block Modeling using Constraint Programming

Main Article Content

Alex Mattenet
Ian Davidson
Siegfried Nijssen
Pierre Schaus


Block modeling has been used extensively in many domains including social science, spatial temporal data analysis and even medical imaging. Original formulations of the problem modeled it as a mixed integer programming problem, but were not scalable. Subsequent work relaxed the discrete optimization requirement, and showed that adding constraints is not straightforward in existing approaches. In this work, we present a new approach based on constraint programming, allowing discrete optimization of block modeling in a manner that is not only scalable, but also allows the easy incorporation of constraints. We introduce a new constraint filtering algorithm that outperforms earlier approaches, in both constrained and unconstrained settings, for an exhaustive search and for a type of local search called Large Neighborhood Search. We show its use in the analysis of real datasets. Finally, we show an application of the CP framework for model selection using the Minimum Description Length principle.

Article Details