Visualizing the Implicit Model Selection Tradeoff
Main Article Content
Abstract
The recent rise of machine learning (ML) has been leveraged by practitioners and researchers to provide new solutions to an ever growing number of business problems. As with other ML applications, these solutions rely on model selection, which is typically achieved by evaluating certain metrics on models separately and selecting the model whose evaluations (i.e., accuracy-related loss and/or certain interpretability measures) are optimal. However, empirical evidence suggests that, in practice, multiple models often attain competitive results. Therefore, while models’ overall performance could be similar, they could operate quite differently. This results in an implicit tradeoff in models’ performance throughout the feature space which resolving requires new model selection tools.
This paper explores methods for comparing predictive models in an interpretable manner to uncover the tradeoff and help resolve it. To this end, we propose various methods that synthesize ideas from supervised learning, unsupervised learning, dimensionality reduction, and visualization to demonstrate how they can be used to inform model developers about the model selection process. Using various datasets and a simple Python interface, we demonstrate how practitioners and researchers could benefit from applying these approaches to better understand the broader impact of their model selection choices.