Communication-Aware Local Search for Distributed Constraint Optimization

Main Article Content

Ben Rachmut
Roie Zivan
William Yeoh


Most studies investigating models and algorithms for distributed constraint optimization problems (DCOPs) assume that messages arrive instantaneously and are never lost. Specifically, distributed local search DCOP algorithms, have been designed as synchronous algorithms (i.e., they perform in synchronous iterations in which each agent exchanges messages with all its neighbors), despite running in asynchronous environments. This is true also for an anytime mechanism that reports the best solution explored during the run of synchronous distributed local search algorithms. Thus, when the assumption of perfect communication is relaxed, the properties that were established for the state-of-the-art local search algorithms and the anytime mechanism may not necessarily apply.

In this work, we address this limitation by: (1) Proposing a Communication-Aware DCOP model (CA-DCOP) that can represent scenarios with different communication disturbances; (2) Investigating the performance of existing local search DCOP algorithms, specifically Distributed Stochastic Algorithm (DSA) and Maximum Gain Messages (MGM), in the presence of message latency and message loss; (3) Proposing a latency-aware monotonic distributed local search DCOP algorithm; and (4) Proposing an asynchronous anytime framework for reporting the best solution explored by non-monotonic asynchronous local search DCOP algorithms. Our empirical results demonstrate that imperfect communication has a positive effect on distributed local search algorithms due to increased exploration. Furthermore, the asynchronous anytime framework we proposed allows one to benefit from algorithms with inherent explorative heuristics.

Article Details