Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic

Main Article Content

Agi Kurucz
Vladislav Ryzhikov
Yury Savateev
Michael Zakharyaschev

Abstract

Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete.

Article Details

Section
Articles