A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment

Main Article Content

Jordi Ganzer
Natalia Criado
Maite Lopez-Sanchez
Simon Parsons
Juan A. Rodriguez-Aguilar


In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants’ opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.

Article Details