Goal Recognition Design in Deterministic Environments

Main Article Content

Sarah Keren
Avigdor Gal
Erez Karpas

Abstract

Goal recognition design (GRD) facilitates understanding the goals of acting agents through the analysis and redesign of goal recognition models, thus offering a solution for assessing and minimizing the maximal progress of any agent in the model before goal recognition is guaranteed. In a nutshell, given a model of a domain and a set of possible goals, a solution to a GRD problem determines (1) the extent to which actions performed by an agent within the model reveal the agent’s objective; and (2) how best to modify the model so that the objective of an agent can be detected as early as possible. This approach is relevant to any domain in which rapid goal recognition is essential and the model design can be controlled. Applications include intrusion detection, assisted cognition, computer games, and human-robot collaboration.


A GRD problem has two components: the analyzed goal recognition setting, and a design model specifying the possible ways the environment in which agents act can be modified so as to facilitate recognition. This work formulates a general framework for GRD in deterministic and partially observable environments, and offers a toolbox of solutions for evaluating and optimizing model quality for various settings.


For the purpose of evaluation we suggest the worst case distinctiveness (WCD) measure, which represents the maximal cost of a path an agent may follow before its goal can be inferred by a goal recognition system. We offer novel compilations to classical planning for calculating WCD in settings where agents are bounded-suboptimal. We then suggest methods for minimizing WCD by searching for an optimal redesign strategy within the space of possible modifications, and using pruning to increase efficiency. We support our approach with an empirical evaluation that measures WCD in a variety of GRD settings and tests the efficiency of our compilation-based methods for computing it. We also examine the effectiveness of reducing WCD via redesign and the performance gain brought about by our proposed pruning strategy.

Article Details

Section
Articles